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Daisaku Arita and Sakashi Maeda

Abstract-The Self Organizing Map, or Kohonen SOM, is
one of the most widely used neural network paradigm based on
unsupervised competitive learning. However, the search
algorithm introduced by Kohonen is slow when the size of the
map is large. This slowness is caused by seeking about the best
matching neuron among "all" the map neurons which tuned to
"each" input sample. In this paper, we present a new strategy
capable to accelerate the SOM's competition algorithm.
Instead of Kohonen SOM strategy, the new approach concerns
"only" with the neurons which are aligned along the low-order
principal components of the feature space and neglects the rest
of neurons. The idea is based on the fact that most of the data
variance lie on the low-order principal components of the
manifold which often contain the most important features of
the data [1] [6]. The new SOM can works effectively as a
feature extractor for all kinds of manifolds even in the curved
ones. Two data sets are utilized to illustrate how the proposed
algorithm reduces the computation efforts (or time) of SOM
effectively. For N-dimensions feature space, it is shown here
that the computation effort to get the best matching units is
reduced to O(D1+ D2+...+ DN) instead of O(D1 X D2 X ... x DN),
where Di is the number of neurons through the dimension i.
Also, under same experimental conditions, our method
computation time is less than that of fast DCT by sixth times.
In all cases, the new SOM shows, at least, same recognition
accuracy or may be better.

I. INTRODUCTION
In many situations in pattern recognition, machine

intelligence, and computer vision, it is necessary to
achieve fast feature extraction for large-size multivariate

data sets using a low cost tool in order to handle the
information contained in these data easily. Usually, features
are extracted as functions (linear or non-linear) of the
original set of features. Unsupervised linear feature
extraction techniques more or less all rely on Principal
Component Analysis (PCA) [1]. It yields a linear mapping
(or representation) with the most minimum amount of
required cost and information loss.

However, in some situations, there is a possibility that
the feature space is curved. Since PCA summarizes the data
by the mean and the standard deviation (the covariance
matrix), the linear representation is proper only if the data
distribution is Gaussian. In other words, PCA is
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inappropriate tool for modeling nonlinear effects such as
data bending or shape rotation [2].

Several approaches have been developed also to be as a
non-linear extension for PCA, for instance, Kernel PCA
(KPCA) [3]. It executes the linear PCA algorithm for the
image of input data mapped by a nonlinear mapping
function to construct the ordered principal components
(PCs). However, KPCA does not give an adequate way to
determine the exploited nonlinear mapping function. In
addition, much pre-experiment computations are needed
such as solve an Eigen-equation for the covariance matrix of
the input image and also calculations of kernel functions
between the objective data and all training data to calculate a
principal component score [4].

The conventional self-organizing map (SOM) [5] can be
also viewed as a non-linear extension ofPCA. It replaces the
linear subspace of PCA by a nonlinear manifold that can
represent even the curved data distributions. The manifold is
constructed by an iterative learning procedure and can be
viewed as a non-linear 'topology-preserving map' of the
original data space. Mainly, it models the self-organization
of topographic maps in populations of discrete neurons in
the brain.

Though SOM is simple enough and does not require
much pre-computation; like KPCA, its discrete nature can be
a limitation when the construction of smooth, higher-
dimensional map manifolds is desired by the more powerful
learning algorithms such as face or robot applications. It is
worthy to say that, increasing the feature space dimensions
will increase the computation effort of conventional SOM.
In mathematical terms, in case of N-dimensions feature
space, the required computation effort is O(D1 x D2 x ... x
DN), where Di is the number of neurons through dimension i.

Therefore, a powerful competition algorithm preserves
the properties of conventional SOM and, in the same time,
avoids much computational effort or time is desired. This
paper presents a new paradigm for Fast SOM (FSOM)
consumes less recognition time than conventional SOM.
Similar to SOM, FSOM is a non-parametric simple method
does not need any pre-calculation steps, and consists of a
piecewise one dimension SOM networks. The idea is based
on the fact that the greatest variance of the data distribution
comes to lie on the low-order axes; or principal components
PCs. It is demonstrated that such low-order components
often contain the most important aspects of the data set [1]
[6]. Thus, our approach starts by extracting the first
principal component PC and then picks up the first winner
neuron among this component's neurons. Then extracts the
second PC and picks up the second winner neuron and so
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on. Accordingly, the computation effort required for FSOM
has been reduced to O(DI+ D2+...+ DN), which of course,
less than O(D1 x D2 X ... x DN) required by SOM. In the same
time, FSOM still shows, at least, same recognition accuracy
of conventional SOM, if not better.

In conclusion, FSOM network is enough stable, simple
and low cost alternatives to the original SOM network and
viewed as a non linear extension to PCA. It is applicable
until N-dimensions according to the application in hands.
The outline of this paper is as follows: Section II shows
overview for the original SOM, the motivation of our
method and related works. Then the new, FSOM, algorithm
and a simple example are provided in section III and V,
respectively. Later, fair comparisons with conventional
SOM and Fast DCT are given in section V. Conclusion and
future works are figure out in section VI.

II. SOM & COMPUTATION COMPLEXITY

A. Overview
Conceptually, the SOM [5] simulates the functioning of

the hyper column in human brain. Mathematically, it is an
unsupervised learning algorithm learns the distribution of a
set of patterns without any pre-class information. In the
context of image processing, the conventional SOM
provides a good quantization of the image samples into a
topological low-dimensional space such that the input
samples which are nearby in the original space are also
nearby in the output space. This topological preservation of
SOM makes it so useful in the classification of data even if
the dimensionality of SOM is smaller than this of input data.

Consider the input data x {xi, 1 < i <M} belongs to a
high dimensional space, i.e. xi = (x(/)i),<,<, E Rn . SOM is
usually represented as a neural network sheet or map whose
units, usually called nodes or neurons, become tuned to
different input vectors xi. A weight vector wj, sometimes
called reference, is associated with each neuron j and the
map weight vectors are given by w {w;, 1 < j <N}; such
that N < M.

In each training step, the following two steps are
repeated for each input sample xi.
1) Find the best matching neuron c using a similarity

measure between the input and all the map's neurons.
This step name is winner-take-all (WTA) where c is the
desired winner and should satisfy:

xi-WCl min( Xi w) (1)

2) Update the weigh vector of the winner c and also all its
topological neighborhood in the map towards the
prevailing input according to the rule:
w.j (t + 1) = wj (t) + hcj (t)[xi (t) - wjy (t)] (2)

h,j (t) = a (t). exp( r - rj /2 2(t)) (3)
where hCj(t) is the neighborhood kernel function around the
winner c at time t, a(t) is the learning rate and is decreased
gradually toward zero and 72(t) is a factor used to control
the width of the neighborhood kernel. The term || rc - rill

refers to the distance between the winner neuron c and
neuron j. After the training data is exhausted, the neurons
sheet is automatically organized, without external
supervision, into a meaningful N-dimensional order denoted
by feature map (or codebooks). Beside the advantage of
topological preservation, it is demonstrated that, the
Probability Distribution Function (PDF) of SOM codebook
is a good approximation for the PDF of the training data [5].

B. Motivation
Generally, the higher computational cost of training

artificial neural network algorithms, including SOM, limits
the use of large systems capable of processing complex
problems. From the computation complexity point of view,
SOM is expensive approach especially when a large sized
map is needed. This is because "each" learning pass in (1)
requires a computation of the distance of the "current"
sample to "all" nodes in the map [7].

It has been noted that a manageably sized maps with
two dimensions admit only very few nodes along each axis
direction and can, therefore, not be sufficiently smooth for
many purposes where continuity is very important, as e.g. in
control tasks in robotics or face applications [8]. On the
other side, as the number of nodes grows exponentially with
the dimensions number of the map, then using more than 2
dimensions will move the performance to be slow. In
conclusion, conventional SOM search algorithm is not easily
affordable for most of image recognition problems [19].

The authors of this paper observed this phenomenon and
already developed a lip-reading system based on
conventional SOM. Table I shows the relation among
number of dimensions, recognition accuracy and recognition
time; time is measured in seconds. We got these results
using one of the lip-reading data sets which utilized in this
paper. The most left column in Table I represents number of
dimensions of the feature map. Each feature map is extended
through 2, 3 and 4 dimensions with sizes 14x12, 14x12xlO
and 14x12xlOx8 neurons, respectively. Second column is
for recognition time consumed through each dimension.
Then the recognition accuracy for both training and testing
phases for word unit and sentence "sent" unit are given. As
it is shown, if we increase the number of dimensions (or
map size) the recognition accuracy is growing up and the
recognition time becomes longer.

TABLE I
RELATION AMONG NUMBER OF DIMENSIOS, TIME "SECOND" AND

ACCURACY "%" FOR WORD AND SENTENCE UNITS

# Dim~Time Training Data Testing Data
# Dim .".second" Word Sent Word Sent

2-Dim [10] 92.4 76.9 61.1 51.6 40.1
3-Dim [11] 656.7 82.7 64.8 70.5 40.7
4-Dim 5312.8 92.3 85.2 76.9 51.8

Motivated by SOM complex computation and our previous
work [9-11] using SOM for lip-reading applications, we
propose a new fast search strategy can enhance the SOM
competition algorithm.
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C. Related Works
Several structures have been developed in order to

enhance the SOM competition algorithm. Here we highlight
three major types from these structures:

1) Tree structure SOMs,
2) Hierarchical structure SOMs and
3) Randomized structure SOM
Regarding tree structure, in [12] an SOM tree is

generated dynamically. Though the tree SOM is able to
handle many complex data sets, it spends almost twice
longer than the conventional SOM [13]. In [14], the layers
of the tree are organized layer by layer. Therefore, the input
data set needs to be input many times, which is not desirable
in real-time and large data set applications [15]. In general,
most tree structure approaches require alleviation for the
bias brought by the tree structure, so a lateral search module
is usually used in such approaches. On the other side, this
lateral search will increase the computational complexity,
and in same time, destroy the interlayer topology between
the root neuron and leaf neurons [15].

In the hierarchy structure, one treatment is to build an
SOM's map with a relatively small size and then associate
additional maps to specific winner neurons. This naturally
decomposes the training and recall overheads as only the
smallest SOM requires a winner estimation before the
problem is associated with independent SOMs [16]. In
another treatment, the network is created by doubling its size
periodically during training. In general, such treatments are
conditioned to assuming that the topological order is optimal
prior to each double step [17]. Moreover, the hierarchy map
loses some properties of the conventional SOM feature map
by their structure [ 18].

Using a randomized technique, the authors in [19-20]
presented a fast search algorithm for conventional SOM.
The method starts with handling a random subset from the
input data and then the whole of the input data set. As stated
before, the input data is feed to the system repeatedly, which
is not proper in case of large data sets. The most important
notice is that the method depends on two experimental
parameters, to control the computation, without any
theoretical paradigm. These two parameters are pixel usage
ratio and neighborhood range, the network's user should
follow try and error rule to decide their values.

Not only the above three structures are developed, there
are other fast SOM approaches also presented. For example
in [21], the authors are combining SOM with K-means
algorithm in three stages. First stage, the authors use K-
means to select N2 (map size) cluster centers from the data
set. Then a heuristic assignment strategy is used to organize
those N2 selected data points, and later, they use SOM to
fine tune the feature map to input samples. Of course, the
computation cost became higher than using SOM only. In
addition, every stage depends upon the one before in a
supervised manner. Moreover, the method is conditioned for
running with small number of iterations. The following
section addresses the SOM feature map and how the
principal components are extracted through it.

III. FEATURE MAP AND PRINCIPAL COMPONENTS
Let us addressing our target now as follows: Giving a

large-sized high-dimensional data space, how can we get a
well-ordered feature map using SOM without consuming
much time and effort and, in same time, preserving the SOM
performance? Answering this question is the topic of this
paper. To this end, we utilize two lip-reading datasets. First,
let's investigate and visualize this data using PCA.

A. Curved Feature Map
Fig. 1 shows a distribution of 2000 lip-reading image

through the first three PCs (1-2), (2-3) and (1-3) in the
manifold, respectively. In (a) and (b), it is easy to remark
that the center of each distribution is not clear. In (c) the
curved data is so clear too.

-(a-Cn-t is n clear -

(a) Center is not clear
- )-.. _; eN -- I - -.Cete i no c

(b) Center is not clear

:he~~~~~~~~~~~~~~~t
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-kQ

* eE w § ,,;q
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Fig. 1. Lip-Reading image distribution by the PCs (a)1-2, (b)2-3 and (c)1-3.

Therefore, the most important issue now is: How can the
topological orders of SOM meet with the analysis of non-
linear PCs in such a curved manifold?

B. Principal Components Extraction
As we explained in the previous section that SOM forms

a discrete space (map) such that each point (node)j has a
reference vector w; indicates the corresponding point in the

koriginal space and has a neighborhood range w1. When a

training data sample xi is given, then SOM tries to find the
best matching unit (winner) that can:
1) Minimize the quantization error |x1 WC, included

in (1), where c is the winner and given by the (WTA)
rule;

c=minE xi-wj
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2) Minimize the total distance among the neighbot
measuredinthefeaturespace w w k

jk
To answer the question at the end of the pr

section, let us imagine, artificially, the shape of our (

manifold as it is shown in Fig. 2, for two dimension,
In this figure, to minimize the quantization errc
codebooks should be aligned along the first PC,
colored by blue. Then, to meet with the second facti
minimize the total distance between neighborhoods
should be aligned in order of the lateral neighborhood
constructs the second PC, which colored by red. I
sense SOM is able to extract the PCs such thai
dimension matches a principal component.

Fig. 2. Curved manifold explaining first "blue" and second "red")

Now, the original N-dimensional SOM is denoted
=U dl,2..d dj l,2,..,Dj,j =l,..,N}

whereUdU&12 .,dN terms to the neuron u aligned through
dimensions d,d'2''. dN In each dimensiond. =1 21

Dj refers to the maximum number of neurons distr
through the dimension j. Each neuron udld2.dv
codebook vector wd ,d2 ,..,d_ According to (1) the 1
neuron is decided according to the following (WTA) n

xi C2 min( xi W d2dd )
~d

Therefore, the original N-dimensions feature map of SOM
can be viewed as "N" one-dimension SOM, such that each
one-dimension SOM matches a principal component PC in
the feature space.

In other words, the FSOM structure consists of the
following N-series of one-dimension SOM:

{1,dl Id1 =1,2,..,D1} (6)

U2 {U2,dl,d2 d2 1, 2,.., D2}

UN {UN,dl,...d ,dN 1 ,2,.. DN}

(7)

(8)
L CUUII where the term u refers to the neurons aligned along the

first "one-dimension SOM" d1 (or first PC), U2 dld refers

to the neurons aligned along the two dimensions which are

the second "one dimension SOM" d2 (or second PC) plus
the dimension d1 (or first PC) and so on. According to the
above scenario we denote our method as piecewise one-

dimension SOM. The following sections give more details.

B. Learning Phase
The learning process is described as a recursive call for the

function Learn (1, u1l 1, c I), where 1 is the order (n) of the

extracted component, U1d refers to the neurons aligned

PCs. along this component where cl is the winner neuron.

by: Therefore, the function Learn(n,Ud ,.. can be

(4) generated as given in Table II below.
(4) TABLE II

FAST SOM LEARNING ALGORITHM

(5)

It is clear that, the computational steps which are required to
get the winner neurons list C = (C1, C2, -, CN) along the N-

dimensions d1, d2,.., dN using (5) is O(D1 x D2 x ... x DN).

IV. FAST SOM (FSOM) ALGORITHM

A. FSOMStructure
It is demonstrated that, the greatest variance of the data

distribution comes to lie on the low-order principal
components PCs of the manifold. Accordingly, such low-
order PCs often contain the most important aspects of the
data set [1] [6]. In N-dimensions data space, the basic idea of
FSOM is to measure the distance between the input pixels
and the nodes distributed along these PCs only, instead of
all the map's nodes as the conventional SOM requires in (5).
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{II start of algorithm
If (n # N)
{ 1- Train the following (N-n+1)-dimensions SOM

u {Udn,dn,..,d dj = 1,2,.., Dj, j = n,n+1,.., N}

using (WTA) rule in (5) and get the winner list.
2- For each dn, regard to the central column of the

current codebook units;

Un 1Ud,,D,+/2,...,D /2 dn 1,2,..,Dn}
as the nth PC and "copy" it onto un d

3- For each dn, train un,d using (WTA) rule in (1-3) and

get the winner neuron through dn.
4- For each n, do: Learn(n + 1, Un+l,d,+ C)

else
{ 5- For each input sample xi, train each neuron

uN,dl,..,dN That is, for each (dN = 1,2,..,DN) apply
the following (WTA) rule

Xi w 1C7C2 ---CN mdin( xi wC1, I2C2 1
,d )

} end of else
} end of algorithm



where C =c.,...,c, is the winner list through n-dimensions.
In step 2 in the "if' part, it is worthy to explain that we
decide each PC by using the central column of current map
and copy it to first PC (or ul), then for second PC (or u2)
and so on until extracting all PCs.

The simplicity of the proposed approach is obvious as this
recursive function can easily translate to a one For-loop
statement. In this "For-loop", the function Learn (n, Un,d I c)

calls the function Learn(n+11,Un+1d c) Dn times. Now,

as the sizes of un+ld is /Dn of Un,dn , therefore, the

computational complexity to train un+1 is l/Dn of the

complexity to train un. In notations, if the computational
complexity to train un (or conventional N-dimension SOM)
is C, then, the overall complexity of the FSOM is

C r1+1/Dl +1/DD2 + + f7JDI ) C (9)

This means that the consumed time to train the FSOM is
"approximately" the same of that to train conventional
SOM. So, the new learning method does not add any extra
load or burden to the conventional SOM training phase.
C. Recognition (Competition) Phase

In image recognition domain, the most challenge is to
achieve recognition in a real time or near to real time. In
FSOM, after getting a well ordered feature map during
learning phase, now we try to get the winner list through
recognition phase using the following N-steps in turn.
- First, (WTA) rule is applied to select first winner cl from

first PC (or ul) in (6) according to:

xi-wl cl = min xi Wldl ) (10)

- Second winner C2 is picked from second PC (U2) in (7) as:

xi- w2,clC2 minn(ix W2,cl,d2 ) (11)

- Finally, the N-winner CN is picked from theY PC (or UN)
given in (8):

Xi WN, Cl, C2....CN i w N, Cl,C2,.CN1,ldN ) (12)

Obviously, computation efforts (or steps) during FSOM
recognition phase is O(DI+ D2+. .+ DN). Of course, this
amount is less than that of the conventional N-dimension
SOM in (5); which is O(D1 x D2 X ... x DN). According to the
above scenario, FSOM consumes less computation time than
conventional SOM during recognition stage.

V. EXAMPLE

Let's consider a simple example to illustrate how the
new algorithm runs. For instance, consider the case of 3-
dimensions; i.e. we have dl, d2, d3, such that d1 = 1,2,.., Dj .

For further simplicity, consider D1=30, D2=20 and D3=10,
respectively.

A. Learning Phase in 3-dimensions
According to the training algorithm given in Table II,

the training steps here will run in 3 stages as follows:
(1)

- For each input sample xi, train the normal SOM
in 3-dimensions (U3,d, d2,d3 ) using (1) (or (5)) as:

X -W3 C1 C2 C3 = min( xi W3,dl,d2,d3 ) (13)

- Update the codebook of the winner neurons
and their neighbors using (2-3).

(2)
- For each d1, put

U],d1 U3,d1,d2 2,d3 2 (14)

- xi-w1
,

min( xi WI1 ) (15)

- X- W3,C1,C2,C3 = Min( Xi W3,c1,d2,d3 ) (16)

- Update the codebook of the winner neurons
and their neighbors using (2-3).

(3)
- For each d1 and d2, put

U2,dl,d2 =3 ,d3 /2 (17)

- Xi-xi, wcml m(Xiwxi- ) (18)
d4

get cl.

xiW2 cl c2 = Min X1 W2C1d2) (19)

get C2.
- xi W3,c1,c2,c3 = Min Xi W3,c1,c2,d3 ) (20)

get C3.

B. Recognition Phase in 3-Dimension
It supposed that after the training phase, the SOM

feature map is became a well ordered map and has all the
qualities of conventional SOM feature map. To achieve the
recognition task, we exploit the sequence in (10-12) as
follows:
- First, winner-take all rule is applied to first PC, then first

winner c is selected by:
xi - W1 c = mlint Xi - Wv, (21)

- Second, we will concern, ONLY, with the neurons of
second PC, which already passing through first winner
c. Then second winner d is selected from:

|Xi - W2c,d| min( x - w2,c, ) (22)
- Similarly, we concern, ONLY, with the neurons of third

PC which passing through first and second winner c and
d, respectively. Then third winner m is selected from;
|Xi -W3,c,d,m min (xi- W3,c,d,k ) (23)
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Obviously, computational efforts during FSOM
recognition phase is (30+20+10) steps or (60) steps. In
contrast, to exploit conventional SOM with same number of
dimensions and same number of neurons you need
(30x20x10) which is equal to (6000) steps. This means that,
the required effort to use FSOM is " %" from that which is
required for using conventional SOM. Please note that, this
speedup rate is only for this example, therefore, if you
increase or decrease each dimension size (D's) the speedup
rate will increase or decrease accordingly.

VI. EXPERIMENTAL RESULTS

A. First Experiment- Artificial data
Here we exploit a kind of artificial data to test FSOM's

ability; this is considered as a kind of academic judgment
[2]. We use a package able to plot normal and curved
manifolds randomly. Then we feed these data to FSOM
directly. Let's first show how we created such artificial data.

In case of single class data, ifwe have a data set denoted
byD = {dj j 1,2,..,N}, where

d, = Ld,l,di2, din,fl, di,N (24)
is N-dimensional data and generated from the M-
dimensional data source;

Si =[Sil,Si2 , ,Si, , ,Sil M < N] (25)
by using the following quadric transformation:
din= SfASS. (26)
where A is a (M+1) x (M+1) matrix. The data source S, is
generated as a random data in a range of-i < sim < 1, or as

a Gaussian distribution data P (si) = N(0, 1) . Fig.3 shows the
generation of curved manifold in case of single class; such
kind of artificial data can also be generated in case of
multiple classes [2].

s

zz.

a'
Fig. 3. Transform a plain manifold to a curved one

Exploiting the above data generator, we generated 6
different types of artificial data (plain and curved). Namely,
we generated: Triangle, curved Triangle, Gaussian, curved
Gaussian, Trapezoid and Lozenge data type. Due to space
limitation we will show only the distribution of two types of
them using 2-dimensions FSOM; since 2-dim is so enough
for such kind of applications. Fig. 4 and 5 shows the
distribution of: "curved" Gaussian and Trapezoid data types,
respectively. The blue points represent the FSOM map
nodes whereas the pink line connects the nodes of the first

PC. As it is clear in the curved Gaussian type, Fig.4, how
the first PC bends with the data bending. Also, in the other
distribution, Fig. 5, the first PC is centralized and seems
natural and coincides with the data distribution.

Fig. 4. Curved Gaussian distribution including first PC nodes (pink)

Fig. 5. Trapezoid data distribution

B. Second Experiment-Lip Reading
1) Databases overview

The authors of this paper are already presented a lip-
reading system applied for Japanese [9] and Arabic [10] data
sets; please note that, the results of [9] and [10] are
updated in [11]. Images of each set are captured from 9
native subject, 6 subjects for training and 3 for test, such
that each subject uttered 9 different sentences using his own
language. For Japanese data set, the number of image is
5670 gray image divided as 3780 image for training and
1890 for test. For Arabic data set, the number of image is
5760 image divided as 4320 for training and 1440 for test.
Each original image resolution is 160x120 pixels. In this
paper, we used the above resolution to conduct the
comparison between FSOM and SOM. However, to run Fast
Discrete Cosine Transform (FDCT) the input image
dimensions should take the power of 2 (i.e. 2X), therefore, to
conduct a comparison between FSOM and FDCT we crop
each original image to the size of 128x128 to just show the
mouth area. Examples for the used images are shown in Fig.
6. For more details about the two data sets and used
sentences please refer to [9-1 1].

;. 6. Examples for lip readini

3780
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2) Experiments overview
Exploiting same data sets, same dictionary and same

environment, we provide here a comparison among SOM,
FDCT and FSOM. For all models in the paper, we used
Hidden Markov Model (HMM) as a recognizer, as it is
given in details in [9-11]. Regarding to recognition
"accuracies", the experiments have been conducted using
different number of dimensions and different number of
neurons, and finally, the "best" accuracy over these runs is
recorded below for each model for each data set. Regarding
to the recognition "time", all experiments are conducted on
the same machine, Pentium IV Intel 2.0 GHz. The time unit
in the below comparisons is "second". Since our main
motivation is recognition time, the column "S.R." in the
tables given below represents Speedup Ratio or the ratio of
SOMrecognition time to FSOMrecognition time.
3) Comparison between SOMandFSOM

The feature map of both SOM and FSOM model is
extended through 2, 3 and 4 dimensions.

A. For Arabic data set, the "best" size of each
dimension was 14x12, 14x12x10 and 14x12x10x8 neuron,
respectively.

TABLE III
ARABIC DATA SET: RECOGNITION TIME "SECOND"

#Dim SOM FSOM S.R.
2 92.4 15.1 6
3 656.7 36 18
4 5312.8 101.9 52

TABLE IV
ARABIC DATA SET: RECOGNITION ACCURACY "%

IN 3 DIMENSION (14x12x10)
Training data Test data

Model Word Sent Word Sent
SOM 82.7 64.8 70.5 40.7
FSOM 85.3 70.4 75.6 51.6

As it is shown in Table III, the required recognition time
to run FSOM is less than this required for original SOM by
6 times in case of 2 dimensions. As we increase the number
of dimensions (or the map size) as the time required for
FSOM becomes less and less than this which is required for
SOM by 18 and 52 times for 3 and 4 dimensions
respectively. In Table IV, the accuracy results are for the
case of 3-dimensions 14x12xlO for both models. It is clear
that FSOM accuracies are better than this for SOM for both
word and sentence units through training and test phases. In
our opinion, this is due to that FSOM concentrate the
information contained in the feature space in few neurons,
which are aligned along principal components. From these
neurons FSOM choose the best matching one for input
sample.

B. For Japanese data set, one of the best sequences for
each dimension is 1 x9, 1 x9x7 and 1 x9x7x5 neuron,
respectively. In Table V, and similar to Arabic data set, as
we increase the number of dimensions as the recognition
time ofFSOM is less than this of SOM. Also as we increase
the number of dimensions as SOM became slower than
FSOM.

The accuracy results given in Table VI are for the case
of three dimensions 1 lx9x7 for both models. Unlike Arabic
data set, for Japanese set the original SOM performs better
than FSOM for training data. However, for test data or new
subjects, which is more challenging, FSOM performs like
SOM for word unit and exceeds SOM for sentence unit.

TABLE V
JAPANESE DATA SET: RECOGNITION TIME "SECOND"

#Dim SOM FSOM S.R.
2 144.7 25.2 5.7
3 713.6 51.4 14
4 6652.1 154.7 43

TABLE VI
JAPANESE DATA SET: RECOGNITION ACCURACY "%0

IN 3 DIMENSION (1 1x9x7)

Model Training data Test data
Word Sent Word Sent

SOM 89.8 83.3 63 48.2
FSOM 86.1 77.8 63 55.6

From the above results and comparison it is easily to
remark the promising of our method than original SOM
because it does not require much efforts SOM and, in the
same time, preserving the quality of SOM by behaving at
least same performance if not better. In other words, FSOM
is a proper and fast alternate for the conventional SOM.
4) Recognition Timefor One Image

Moreover, the recognition time for one image with a
resolution 160x120 pixels using FSOM is less than this
using conventional SOM. Definitely, using a feature map in
3 dimensions, the recognition time for one image using
SOM and FSOM is 0.104 and 0.005 "second", respectively.
In other words, FSOM can process 200 image frames per
second in computer Pentium IV 2.0 GHz.
5) Comparison between FSOMandFDCT

It is demonstrated that Fast Discrete Cosine Transform
(FDCT) is one of the fastest state-of-the-art algorithms
which can perform image compression in a well manner and
by a similar way to the Fast Fourier Transform (FFT) [22].
The authors of this paper already showed this fact
experimentally when we compared recognition time of
FDCT with that of SOM which was longer [11]. Also we
showed experimentally in [ 1] that FDCT accuracy is better
a little than this ofSOM for the data sets of lip-reading.

Unlike SOM, here we show that FDCT is not faster than
FSOM. Table VII provides a comparison between the
recognition time of FDCT and the proposed algorithm
FSOM. It is clear that FSOM is faster than FDCT by about
sixth times for both data sets exploited here.

TABLE VII
COMPARISON OF COMPUTATION TIME BETWEEN FSOM AND FDCT

Data FDCT FSOM
Japanese 302.8 47.2
Arabic 374.4 58

Also Table VIII shows a comparison between FDCT
and FSOM for recognition accuracy. The feature map of
FSOM is in 3 dimensions including 14x12xlO neuron for
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both data sets. For FDCT we chose the number of
coefficients which gives higher accuracies which was 7
coefficients for Japanese and 8 for Arabic. Due to using
FDCT, the resolution of input image for both models is
128x128 pixels.

TABLE VIII
RECOGNITION AccuRAcY "%" COMPARISON BETWEEN THE THREE MODELS

Japanese Arabic
Model Word Sent Word Sent
FDCT 68.5 51.9 73.1 48.2
FSOM 74.1 51.9 64.1 48.1

It is obvious that both models show same performance
approximately. For example, FSOM shows better accuracy
than FDCT as in the case of Japanese word unit, whereas
FDCT gives better performance in Arabic word unit also.
Both of them give same accuracy for Japanese and Arabic
sentence unit. But regarding to the superiority of FSOM in
recognition time then we can also regard to FSOM as a
better and accelerated alternate to fast DCT.

VII. CONCLUSION AND FUTURE WORK
In this paper we presented a fast search algorithm for

SOM able to reduce its computational complexity and, in the
same time, preserving the basic quality of SOM. The new
SOM algorithm is based on the fact that most of the variance
of the data distribution comes to lie on the low-order axes;
or principal component. Accordingly, it is widely known
that these low-order components often contain the most
important features of the data stream. Therefore in N-
dimensions feature space, the proposed algorithm extracts N
"one-dimension SOM" such that each "one-dimension
SOM" matches a principal component. Then the search
about best matching unit will be through the nodes of these
components "only" instead of the search through the nodes
of the "entire" map, as it in the original SOM.

Exploiting two lip-reading data sets, we showed that
FSOM needs computation time much less than the
conventional SOM. In addition, recognition time using
FSOM is less than this of FDCT using same data bases. On
the other hand, FSOM shows same accuracies, or may be
better a little bit, than conventional SOM and fast DCT.
According the performance presented in this paper, we
expect that FSOM impact will be great in case of using
multivariate or large data sets which require a large size
feature map especially for complex applications. We are
planning to investigate this matter using some of face
recognition databases.
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