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ABSTRACT

A fundamental task in pattern recognition field is to find a 

suitable representation for a feature. In this paper, we present a 

new visual speech feature representation approach that 

combines Hypercolumn Model (HCM) with HMM to perform a 

complete lip-reading system. In this system, we use HCM to 

extract visual speech features from input image. The extracted 

features are modeled by Gaussian distributions through using 

HMM. The proposed lip-reading system can work under 

varying lip positions and sizes. All images were captured in a 

natural environment without using special lighting or lip 

markers. Experimental results are shown to compare favourably 

with the results of two reported systems: SOM and DCT base 

systems. HCM provides better performance than both systems. 

1. INTRODUCTION 

Recently, visual speech recognition has undergone much 

interest and advancement, especially when the visual speech 

channel is combined to the acoustic channel for speech 

recognition. The resulting bimodal speech recognizer is shown 

to be markedly more robust, when it compared to the only 

acoustic counterpart [1-2].  

    Early evidence that vision can improve speech recognition 

was presented by Petajan [1]. In Petajan’s system, binary mouth 

images are analyzed to calculate the distance of geometric 

measures among different mouth shapes in order to identify the 

visual representations of word units. Mase [2] used optical flow 

as input for a visual speech recognizer. Subsequent researches 

on implementing visual speech processing also include fuzzy 

logic and self organizing map [3]. 

    Later, with the beginning of the 90’s decade, the development 

of hidden Markov models (HMM) improved the speech 

recognition accuracy and made possible large-vocabulary 

recognition. HMM was first applied to visual speech recognition 

by Goldschen [4] who modified the earlier Petajan’s system by 

using discrete HMMs. Potamianos [7] combined the visual 

features either geometrically (lip’s height and width) or 

nongeometrically using the wavelet transform of the mouth 

images to form a feature vector to train the HMM-based speech 

recognizer.

    In this paper, a novel visual speech feature representation 

(and lip-reading) system is proposed. Our system consists of 

two consecutive stages: Visual speech feature extraction and 

visual speech feature recognition. First stage is performed by 

HCM and second stage is performed by HMM. The advantage 

of our system is that it is capable to extract all the relevant 

features without reduction and without needing to lips model or 

lips marker. Furthermore, the proposed system may work under 

shifted or rotated lip positions, which is not available in some  

other systems such as DCT-base systems; Heckmann [6]. 

Further, we compare our recognition results with those achieved 

by both SOM [3] using same database and Discrete Cosine 

Transform (DCT) [6] using different database. Comparison 

shows that HCM has a better performance than SOM and DCT 

for features extraction task.  

2. VISUAL SPEECH FEATURES EXTRACTION 

It is known that, most of lip-reading systems have two core 

stages: First stage is visual feature extraction which applies to 

each frame of the video image sequence, and second stage 

inputs the feature vector sequence, from first stage, and 

recognizes whole of the target sentence. In fact, performance of 

lip-reading system significantly depends on first stage. Simply, 

feature extraction process in lip-reading systems involves the 

derivation of salient features (phoneme) from raw data in order 

to reduce the amount of data used in classification. In fact, 

conventional lip-reading systems use different techniques to 

implement the feature extraction from the image. Among of 

these techniques are: Discrete Cosine Transform (DCT) [6] and 

Discrete Wavelets Transform (DWT) [7]. Regardless this fact, 

in our thinking, the visual feature extraction module is required 

to have the following two conditions: 

1. It should make a parametric feature space with low 

dimensionality. 

2. Distributions of each phoneme should be simple and 

approximated by the normal distributions. 

As it is explained later in section 4, using HCM satisfies these 

conditions.

3. HYPERCOLUMN MODEL (HCM) 

Hypercolumn model is an unsupervised neural network model. 

Mainly it is derived from the Neocognitron neural network (NC) 

model [8], which is a multi-layered neural network, by replacing 

each NC unit cell with a Hierarchical SOM (HSOM) [9]. As it is 

depicted in Figure 1, HCM has two intra-layers and one output 

layer. The output layer consists only one SOM with 64 neurons 

distributed in two dimensions. Each intra-layer has number of 

overlapped HSOM units. Each HSOM unit consists of two 

hierarchical SOM layers: Lower layer performs feature 

extraction by quantizing the input space and mapping it into a 

neuron array of low dimensional. The upper layer inputs the 

winner neuron index from lower layer to perform feature 

integration and then choose the winner neuron. Moreover, this 

layer enables shift, rotate and distort invariant recognition by a 

similar way as it is in the Neocognitron.    
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Figure 1: HCM model

3.1 HCM Algorithm 

HCM uses an unsupervised learning scheme to construct its 

layer’s feature map. Only one cell will activate in

correspondence to one category of input patterns, other cells 

respond to other categories according to the following rule: 

),(min u
u

c WIWI  (1)

where Wu is the neuron weight vector. Strictly speaking, the 

winner neuron c is the neuron that has the nearest weight vector 

to the input data I. So in learning phase, each time a training 

data item is input, the winner is selected according to Eq (1).

The weight vectors are updated according to: 
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where (t) is the learning rate and is a factor used to 

control the neighborhood range. The term r

)(2 t

c – ru  is referring 

to the distance between the neuron c and neuron u.

3.2 HCM Advantages 

HCM is capable of generating ordered mappings of input data 

onto low-dimensional space [5]. Another challenge is the ability

to partitioning the input data into clusters in such a way that

gathering the similar data items into one cluster (preserving the 

topological order); see Figure 3. Other HCM advantages can be 

summarized as follows [5]:

1. HCM can recognize distort and invariant objects with

variations in position and size.

2. Accept random initialization for network weights. 

3. No preprocessing for input images is needed.

4. HMM-BASE VISUAL SPEECH FEATURES 

RECOGNITION

Needless to say that HMM holds the greatest promise among the 

various techniques used for visual speech recognition studied so 

far due to its capabilities in handling either the variability or the

sequence of speech features. Visual speech features, extracted 

by HCM, is recognized using HMM. One HMM is constructed 

for each phoneme and continuous speech is recognized by

joining the phonemes together to make any required word or 

sentence using pronunciation dictionary. Each HMM has five 

states from left to right and allows self-loops and sequential 

transitions between current state and next state; see Figure 2.

Recognition process using HMM is divided into two phases:

training and testing. In training phase, a training set of features

and their associated transcriptions for each sentence are used to 

estimate the HMM parameters of that sentence. In testing phase,

unknown features are transcribed and then the probability of 

each model generating that sentence is calculated. Finally, most

likely model identifies the target sentence.

4.1 Visual Speech Features Modeling

For modeling visual speech features, consider a visual

observation O of uttered sentence is represented by the 

following sequence of features vectors:  O = o1, o2, o3,…., oT ,

where ot is the feature vector extracted at time t. Each HMM is

initialized using a uniform segmentation, followed by iterative 

segmentation using Viterbi alignment approach. Each model 

parameters are further re-estimated using Baum–Welch 

procedure.

It is demonstrated in HMM base approach that each HMM

representing a particular utterance is defined by the parameter 

set: i = (A, B, )  where A={aij} is a matrix of state transition 

probabilities from state i to state j, B is vector of observation (or 

output) probabilities bj(o) for state j, and is the vector with 

probabilities i of entering the model at state i [10].

    HMM-base recognition is performed using Viterbi algorithm

which calculates the most likely state sequence for each HMM

of having generated the observed sequence. In other words,

sentence recognition is performed by estimating the following 

maximum a posteriori probability:

}.)({maxarg OP i
i

                          (4) 

The probability included in Eq. (4) can be obtained using Bayes

rule:

,
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where P( i ) represents the prior probability of a category i and 

it is assumed to be equal for all categories, and P(O) constant 

for all categories. So, for simplicity, both P( i ) and P(O) are 
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ignored. For a state sequence has the form of x(1), x(2),…,x(T )

of any model, the most probable spoken sentence depends only

on the likelihood P (O | i ) and can be estimated as the product 

of state transition probabilities ax and output probabilities bx(o)

of the most likely state sequence. In other words,
T

t

txtxttxi aobOP
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4.2 Requirements for Phoneme Features Space

According to the above representation of each sentence, it is 

clear that our system is concerned with the output probability
T

t

ttx ob
1

)( )(

of Eq. (6). To approximate this probability, the feature space

should be low dimensionality and every distribution function 

should be simple. In the current project we approximate such 

probability using Gaussian distribution. In addition, we 

demonstrated, experimentally, that HCM can generate a low 

dimensional feature space. From this point of view, conditions 1 

and 2, which mentioned in section 2, are satisfied.

Figure 2: HMM-Base Lip-Reading for ATAMA ITAI

4.3 HMM-Base Phoneme Recognition: Example

Here, we show an example of speech recognition process using 

our system. For instance, consider the word ITAI of the first 

Japanese sentence in Table 1; ATAMA ITAI (A Headache in 

head). Specifically, consider the phoneme A of this word. In the

structure of HMM in Figure 2, first and fifth node represents

start and end node, respectively. The other three nodes, from

node 2 to node 4, are representing phoneme A. Node 3 

represents the stable state of the phoneme, while node 2 and 

node 4 are representing changing status from the previous

phoneme T to the current and from the current to the following 

phoneme I, respectively.

    Since images have large dimensionality, then feature

extraction process using HCM model is applied to draw a low-

dimensional continuous space. In the recognition process, each

node from 2 to 4 outputs one frame image at the transition space

according to the output probability bx(o), as it is shown in

Figure 2. These output probabilities are approximated by single 

Gaussian distribution. Finally, the most likely state sequence of 

each HMM is calculated using Viterbi algorithm to represent the 

phoneme A. 

5. EXPERIMENTS

It is known that, one of the biggest challenges in visual speech

recognition domain is to cope with the large variability across 

speakers, due to individual appearance and individual lip

movements and sizes. We therefore performed our experiments 

according to speaker-independent-base rule using different 

speakers for both training and testing phases. Namely, we 

performed our experiments using Japanese database set includes

9 full sentences uttered by 9 different Japanese adults, such that 

each adult uttered all sentences one time. Table 1 shows the

uttered sentences and their English meaning. 

Table 1: Japanese Sentences Database Set

Japanese Sentence English Meaning 

1- ATAMA ITAI 

2- SENAKA ITAI 

3- ONAKA SUITA 

4- MUNE ITAI 

5- TEACHI ITAI

6- ATAMA OMOI 

7- ONAKA ITAI 

8- MUNE KURUSHI 

9- TEACHI SHIBIRERU

- A headache in head 

- A pain in back 

- Feel hungry

- A pain in chest 

- A pain in limbs

- Heavy head 

- A pain in stomach 

- Difficult breath 

- Spasm in hand and leg

432
23a 34a

Ea4

“A TA MA” “I TA I” I T A I

Viseme Modeling

S E

Word unitSentence Unit

33a 44a22a

2Sa

ltob2tob1 mtob3

Phoneme Modeling

   The image database set includes 5670 gray images; image size 

is 160x120 pixels. We divided the image database set into two 

subgroups: First group, training group, has 3780 gray images 

gathered from 6 speakers. The second group, test group, has

1890 gray images gathered from 3 speakers different completely

than those of the first group. Each uttered sentence represented 

by 70 visual frames.

It has been remarked that a considerable part of the existing

work in visual speech recognition domain has been explored

only by small data sets such as digits from 1 to 10 or isolated 

words or words repeated more than one time by same speaker as

it is in [6] and [12] for examples. Of course handling full

grammatical sentences with a complete meaning has a higher 

challenge than isolated words.

6. EXPERIMENTAL RESULTS & COMPARISON 

Needless to say that, the target of improving the recognition 

accuracy stills an essential target in the field of pattern

recognition. Table 2 shows our recognition results using current 

system (HCM+HMM) and those results performed by Tsuruta

et al. [3] using (SOM+HMM) system in case of using a full rank 
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covariance matrix. Both experiments are performed using same

database, same dictionary and same phoneme models.

Table 2: Recognition Accuracy Results

Training Data Testing Data 

Target SOM HCM SOM HCM

Word 92.6 95.4 83.3 90.7

Sentence 88.9 94.4 70.7 81.5

    Fairly comparison between both systems demonstrates that 

HCM/HMM system’s results are better than those using 

SOM/HMM system in both units of word and sentence for

training and testing phases. This means that HCM can extract

and separate the features clearly in the feature space better than 

SOM. However, some dwindling occurred in the testing phase

especially for sentence unit. This dwindling may due to 

pronunciation similarity between some Japanese characters like

(A and E) and (O and U); see Figure 3. Furthermore, this 

dwindling may be caused by one or both of the following 

factors:

1. The estimated covariance was too small.

2. The number of learning data was not enough. 

In future work, we will pay attention to these two factors.

     On the other hand, comparison with other systems

performance reported elsewhere in the literature with different 

databases and conditions is not a fair way for judgment. 

Nevertheless, our results are measured well against the 70-80%

different word accuracies by Heckmann et al. 2002 [6] who 

used DCT-base system. Another drawback, DCT-base system is

not a shift invariant recognition approach. In other words, a

precise positioning of the region around the mouth is required to 

perform DCT experiments. 

Figure 3: Feature Map Neuron of HCM includes Japanese

vowels and consonant. Due to pronunciation similarities

between both (A & E) and (O & U), HCM preserves their 

topological orderings by keeping each couple close in final

output feature space.

In contrast, HCM enables shift and rotate invariant object

recognition [5]. Finally, in DCT-base system experiments, a lot 

of coefficients have to be selected from each image frame.

7. CONCLUSION & FUTUR WORK

In this paper, we proposed a novel visual speech features 

representation system. The proposed system is a combination of 

HCM neural network model with HMM. The system

performance is examined using multiple sentences of Japanese 

language. Comparison turned out that our system accuracy

results are higher than others. Even though, the drawback of our 

system is the recognition time is still longer than the recognition 

time of SOM/HMM. One of our urgent future tasks is to

modeling the recognition parameters of HCM. 
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