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Abstract

This paper proposes a low-energy instruction-cache ar-
chitecture, called history-based tag-comparison (HBTC)
cache. The HBTC cache attempts to re-use tag-comparison
results for avoiding unnecessary way activation in set-
associative caches. The cache records tag-comparison re-
sults in an extended BTB, and re-uses them for directly se-
lecting only the hit-way which includes the target instruc-
tion. In our simulation, it is observed that the HBTC cache
can achieve 62% of energy reduction, with less than 1%
performance degradation, compared with a conventional
cache.

1. Introduction

On-chip caches have been playing an important role
in bridging the performance gap between low-speed main
memory and high-speed microprocessors. As on-chip cache
size has increased, however, the energy dissipated by on-
chip caches has become significant. Instruction caches (or
I-caches) particularly affects total energy consumption due
to their high access frequency. For instance, ARM920T
microprocessor dissipates 25% of its total power in the I-
cache [10]. For recent mobile devices, such as notebook and
hand-held computers, one uncompromising requirement is
low-energy consumption, because that directly affects the
battery life. Therefore, it is important to reduce the energy
consumption of the I-cache.

Modern microprocessors employ set-associative scheme
as L1 or L2 caches to achieve high cache-hit rates. An
n-way set-associative (SA) cache has n locations where a
cache line (or a block) can be placed. However, from the
energy point of view, SA caches tend to dissipate larger
amount of energy than direct-mapped caches [1]. The en-
ergy consumed per I-cache access, ECache, can roughly be

approximated by the following equation [3]:

ECache = Tnum × Etag + Lnum × Eline, (1)

where Etag and Eline are the energy dissipated for reading a
tag and a cache-line from SRAM array, respectively; Tnum
and Lnum are the number of tags and cache-lines accessed,
respectively.

On an SA-cache access, all ways are activated in parallel
to compensate for longer access time. Namely, both Tnum
and Lnum are equal to the cache associativity n. How-
ever, the parallel search strategy dissipates large amount of
energy unnecessarily, because at most only one way can in-
clude the target instruction. In order to solve the energy
issue of the SA cache, we propose an I-cache architecture
called history-based tag-comparison cache (HBTC cache).
The HBTC cache attempts to co-operate with an extended
branch target buffer (BTB) to avoid unnecessary way activa-
tion. Tag-comparison results stored in the BTB are re-used
in order to directly select the hit-way (i.e., Tnum = 0and
Lnum = 1)1. Since our approach does not affect the cache-
access time and the hit rate, the cache performance can be
maintained.

The rest of this paper is organized as follows: Section
2 shows related work. Section 3 presents the organization
of the HBTC cache, and explains its operation in detail. In
Section 4, we evaluate the energy efficiency of the HBTC
cache, and Section 5 gives some concluding remarks.

2. Related Work

In order to alleviate the negative effect of SA caches, re-
searchers have proposed many low-energy cache architec-

1In [4], a cache architecture exploiting an extended BTB has been pro-
posed to reduce tag-check frequency of direct-mapped instruction caches.
On the other hand, the architecture presented in this paper can be applied
to set-associative caches, and eliminates not only the energy for tag checks
but also that for data read.



tures. A well known approach is to employ a small Level-
0 cache (or L0-cache) between the microprocessor and
the Level-1 main cache, e.g., Block-Buffer[5], S-cache[9],
filter-cache[7], loop-cache[2], etc. By concentrating mem-
ory accesses to the L0-cache, the number of L1-cache ac-
cesses can be reduced (i.e., Tnum = 0 and Lnum = 0).
Only when an L0-cache miss takes place, the L1-cache is
accessed. The HBTC cache proposed in this paper does not
affect the memory hierarchy, therefore it can be used in con-
junction with the L0-caches.

If two instructions i and j reside in the same cache line,
and instruction j is executed immediately after i, then it is
guaranteed that the hit-way of j is the same as that of i.
Therefore, without performing tag checks, we can directly
select the hit way for j (i.e., Tnum = 0 and Lnum =
1)[9][10]. We call this technique interline tag-comparison
cache (ITC cache) in this paper. On the other hand, the
HBTC cache can eliminate unnecessary way activation even
if consecutive instructions reside in different cache lines.

In a way-predicting cache[3], before starting normal
cache access, the hit-way is predicted. If the way predic-
tion is correct, only the hit-way is activated and the cache
access can be completed in one cycle (i.e., Tnum = 1 and
Lnum = 1). Witchel et al.[12] presented a Direct Ad-
dressed scheme that allows software to access cache data
without hardware tag checks. The key idea is to store the
tag-check results to the DA-register file, and then re-use
them based on the compiler supports (i.e., Tnum = 0 and
Lnum = 1). Unlike the way-predicting cache, our scheme
does not perform speculative operation. In addition, no soft-
ware supports are required, therefore the code compatibility
can be completely maintained.

Ma et al.[8] suggested a dynamic way-memoization for
eliminating the cache-search operation. The idea is to
record within I-cache both the tag check results (links) and
the valid bits. If the link is valid, it is followed to fetch
the next instruction without tag checks (i.e.,Tnum = 0
and Lnum = 1). Although our purpose is similar to that
of the way memoization, implementation scheme is com-
pletely different. In our approach, the hardware for tag-
comparison re-use is separated from the cache core, so that
cache-core access time, energy consumption, and cost are
not affected. In addition, since we exploit the BTB already
employed for branch prediction, our scheme can be imple-
mented with smaller hardware overhead.

3. History-Based Tag-Comparison

The HBTC cache exploits a BTB, which is convention-
ally used for branch prediction, to achieve I-cache energy
reduction. In this section, we explain the details of the
HBTC cache architecture.
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Figure 1. Block diagram of a 4-way SA HBTC
cache

3.1. Tag-Comparison Re-use

For almost all programs, I-caches can achieve high hit
rates. In other words, the state (or contents) of the I-cache
is rarely changed. Only when a cache miss takes place,
the state is changed by evicting some instructions from the
cache and filling the missed instructions. Therefore, once
an instruction is loaded into the cache, it stays there at least
until the next cache miss occurs.

Now, consider where an instruction is executed repeat-
edly. At the first reference of the instruction, tag checks
have to be performed to identify the hit way (i.e., Tnum =
n and Lnum = n: n is the cache associativity). How-
ever, at and after the second reference, if no cache miss
has occurred, it is guaranteed that the target instruction still
stays at the same location. Therefore, by re-using the tag-
comparison result of the first reference, we can directly se-
lect the hit-way (i.e., Tnum = 0 and Lnum = 1).

High performance microprocessors employ a branch tar-
get buffer (BTB) to obtain a branch-target address in an
early pipeline stage. Executed taken-branches are registered
in the BTB at run time. Therefore, the BTB inherently in-
cludes the information for execution footprints. The main
idea of the HBTC cache is to exploit the BTB information
for the tag-comparison re-use.

3.2. Organization

As shown in Figure 1, the HBTC cache requires six ad-
ditional components: Way-Pointer table (WP table), Way-
Pointer Register (WPreg), Way-Pointer Record Register
(WPRreg), a mode controller, Previous Branch-Address
Register (PBAreg), and Cache-Line Boundary Detector.



A conventional BTB is extended by adding the WP ta-
ble. Each entry of the table corresponds to that of the BTB,
and consists of two of M way-pointers. A tag-comparison
result (i.e., hit-way number) is stored in the extended BTB
as a way pointer (WP). Therefore, the WP can be imple-
mented as a log n-bit flag where n is the cache associativity,
and specifies the hit-way of the corresponding instructions.
The 1-bit valid-flag is used for determining whether the M
of WPs are valid, or not. The taken WPs are used for the
target instructions, and the not-taken WPs are used for the
fall-through instructions, of the corresponding branch in the
BTB. In Figure 1, for example, cache line A, B, C, and D
are referenced sequentially after a taken branch is executed.
In this case, the tag-comparison results (or the hit-way num-
bers) for their references are 0, 1, 0, and 3. This information
is stored in the WP table, and is re-used when the target in-
structions are referenced in the future. Note that the HBTC
cache attempts to re-use tag-comparison results at cache-
line granularity.

At the first reference of instructions, we have to perform
tag checks. In order to record the generated tag-comparison
results in the WP table, the WPRreg is used as a temporal
register. The PBAreg stores the previous-branch-instruction
address and the result of branch prediction (taken or not-
taken), and is used as an address register to store the value
of the WPRreg to the WP table. At every BTB hit, the WPs
read from the BTB is stored in the WPreg, and are pro-
vided to the I-cache for tag-comparison re-use. The mode
controller manages the HBTC behavior. The details of the
HBTC operation are explained in Section 3.3.

In order to re-use the tag-comparison results at cache-
line granularity, we need to detect cache-line boundary for
instruction references. This can be done by monitoring PC
control signals and a few bits of the PC[9].

3.3. Operation

The HBTC cache has the following three operation
modes, one of which is activated by the mode controller:

• Normal mode (Nmode): The cache behaves as a con-
ventional I-cache, so that the tag check is performed at
every cache access (i.e., Tnum = n and Lnum = n
where n is the cache associativity).

• Omitting mode (Omode): The cache re-uses tag-
comparison results, so that only the hit-way is acti-
vated without performing tag checks (i.e., Tnum = 0
and Lnum = 1).

• Tracing mode (Tmode): The cache works as the same
as the Nmode (i.e., Tnum = n and Lnum = n), and
also attempts to record the tag-comparison results gen-
erated by the I-cache (this operation is not performed
in the Nmode).
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Way-pointer access overflow

On BTB hit, the WPRreg is stored to the 
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Selected 
Valid-Flag is ’0’

*) WP invalidation is performed only when 
   a cache miss or a BTB replalcement occurs.

Figure 2. Operation-Mode Transition

Figure 2 displays the operation transitions. On every
BTB hit, the HBTC cache reads in parallel both the taken
and the not-taken WPs associated with the BTB-hit entry,
and selects one of them based on the branch prediction re-
sult. If the selected valid-flag is ’1 ’, the operation enters
the Omode and the selected WPs are stored to the WPreg.
Otherwise the Tmode is activated, and both the branch-
instruction address (PC) and the branch-prediction result
(taken or not-taken) are stored to the PBAreg.

In the Omode, whenever a cache-line boundary is de-
tected, the next WP in the WPreg is selected. On the other
hand, in the Tmode, the tag-comparison results generated
by the I-cache are stored to the WPRreg at cache-line gran-
ularity. When the next BTB hit occurs in the Tmode, the
value of the WPRreg is written into the WP-table entry
pointed by the PBAreg and the corresponding valid-flag is
set to ’1’.

The WPreg and the WPRreg can hold WPs up to M ,
where M is the total number of WPs implemented in a
WP-table taken (or not-taken) entry. In the Omode or the
Tmode, if the cache attempts to access the M + 1th WP in
the WPreg or the WPRreg, WP-access overflow occurs and
the operation switches to the Nmode.

Whenever a cache miss takes place, all WPs recorded
in the WP table are invalidated by resetting all the valid-
flags to ’0’, and operation transits to the Nmode. This is
because instructions corresponding to valid WPs may be
evicted from the cache.

In the Tmode, when a BTB hit occurs before the number
of recorded WPs reaches to M (i.e., before the WPRreg is
completely filled by valid WPs), some of invalid WPs are
stored to the WP table. This issue can be solved by follow-
ing BTB access behavior. Consider the BTB-entry i makes
a BTB hit in the Tmode, which occurs just after L(L < M)
of tag-comparison results are written in the WPRreg. In
this scenario, L of valid WPs and M − L of invalid WPs
are stored to the WP table, and the corresponding valid-flag
is set to ’1’. After that, when the stored WPs are re-used,
the HBTC cache switches to the Omode because the cor-
responding valid-flag is ’1’. However, we can re-use only
L of valid WPs, because the remaining M − L WPs are
invalid. Here, we assume that no BTB replacement has oc-



curred since the previous Tmode. Under this assumption,
it is guaranteed that the BTB-entry i makes the next BTB
hit just after L of valid WPs are accessed. Since the WPreg
is overwritten by the next BTB hit, there is no chance to
be used for the M − L of invalid WPs. In order to guar-
antee this assumption, the cache performs WP invalidation
and changes the operation mode to the Nmode whenever not
only a cache miss takes place but also a BTB replacement
occurs.

To simplify the mode control, in addition, we assume
that the cache operates in the Nmode whenever a branch-
target address is provided by a return address stack (RAS),
or a branch mis-prediction is detected (WP invalidation is
not performed).

3.4. Performance/Energy Overhead

The proposed scheme eliminates unnecessary way acti-
vation in the Omode. Thus, the energy reduction for cache
accesses is proportional to the number of accesses in the
Omode. On the other hand, accessing the WP table pro-
duces an energy overhead at every BTB access.

From the performance point of view, controlling the WPs
may lead to some performance degradation. Writing the
WPRreg into the WP table may be performed to a differ-
ent entry with that accessed for branch-target prediction.
Therefore, the branch-prediction unit has to wait until the
WP write operation is completed. Also, during WP inval-
idation, accessing to the BTB is prohibited. These BTB
conflicts cause one processor-stall cycle. Since reading the
WPs can be performed in parallel with the BTB access for
obtaining a branch-target address, no performance overhead
appears for WP-table read accesses.

4. Evaluation

In this section, we evaluate the performance/energy effi-
ciency of the HBTC cache by using some benchmark pro-
grams.

4.1. Simulation Environment

We used the SimpleScalar simulator from [14] to eval-
uate the HBTC cache. The cache energy was computed
based on 0.8µm CMOS using the cache-energy model pre-
sented in [5]. The load capacitance of each node was taken
from [6][11]. The energy overhead caused by the WP ta-
ble is also included. However, we did not take into ac-
count the energy consumed by logic portion, the WPreg, the
WPRreg, the PBAreg, the mode controller, and the cache-
line boundary detector. In addition, we do not consider
the energy consumed by address decoder, because it is usu-
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Figure 3. Energy consumption and program-
execution time

ally three orders of magnitude smaller than the other cache
components[1][7].

We experimented with a 16 KB 4-way SA I-cache, 32
B cache-line size. The number of WPs implemented in
each WP table entry (M ) is 4. In addition, it is assumed
that the BTB access occurs only when jump or branch in-
structions are executed by employing pre-decoding scheme.
The energy efficiency without pre-decoding scheme is also
evaluated in Section 4.3. Moreover, the following config-
uration is assumed unless stated otherwise: the number of
direct-mapped branch-prediction-table entry is 2048, pre-
dictor type is bimod, the number of BTB set is 512, BTB
associativity is 4, and RAS size is 8. For other parameters,
the default value of the SimpleScalar out-of-order simulator
was used.

The cache was simulated on six SPEC95 integer
programs (099.go, 124.m88ksim, 126.gcc, 129.compress,
130.li, and 132.ijpeg) using the train input, one SPEC95
floating-point program (102.swim) using the test input [15],
and two Mediabench programs [13] (adpcm and mpeg2).
For each of the Mediabench programs, an encoder and a
decoder were evaluated separately.

4.2. Performance/Energy Efficiency

Figure 3 shows energy consumption of the HBTC cache
and program-execution time in terms of clock cycle. All
results are normalized to the value of a conventional 16 KB
4-way SA cache. Note that the energy consumed by the
WP table is included. As the figure shows, the HBTC cache
reduces the total cache-energy by up to 62% (decoders of
media programs) from the conventional organization.

Now consider the bars, which depict the normalized ex-
ecution time in Figure 3. Wee can see that the perfor-
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mance degradation is less than 1% for all but three (099.go,
124. m88ksim, and 126.gcc) benchmarks. The performance
overhead is caused by the processor stalls due to simultane-
ous BTB accesses from the processor and the HBTC cache.
However, this negative effect can be easily alleviated by
adding a special write-port for up-dating the WP table.

4.3. Number of Way-Pointers

So far, we have assumed that the number of WPs im-
plemented in each WP-table entry (M ) is 4. Although in-
creasing M would improve the opportunity for re-using tag-
comparison results, it also increases the energy overhead
caused by WP-table accesses.

Figure 4 depicts the total energy and its breakdown for
four benchmark programs; 099.go and 126.gcc (worst two
benchmarks in Figure 3), mpeg2 dec (the best benchmark),
and 132.ijpeg (middle of them). ECACHE and EWPtable

are the energy consumed by the I-cache and the WP table,
respectively. In Figure 4 (A), pre-decoding is assumed (the
WP table is accessed only when branch or jump instructions
are executed), whereas the Figure 4 (B) is the results with-
out pre-decoding scheme (the WP table is accessed at every
instruction fetch).

From Figure 4 (A), it is observed that the total energy
is reduced with the increase in the number of WPs until it
reaches to 4. After that, the energy consumption increases
in proportional to the number of WPs. This phenomenon is
clearly shown in Figure 4 (B) due to the energy overhead
caused by the WP table. From the simulation results, we
conclude that the appropriate number of WPs is 4. More-
over, we can see that the HBTC cache produces significant
energy reduction even if the pre-decoding scheme is not em-
ployed (e.g., the cache reduces the total energy by about
55% from the conventional cache for mpeg2 dec).
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4.4. Cache Associativity

Figure 5 shows the total energy and its breakdown of the
HBTC cache in case that the cache associativity is changed
from 1 to 64. Edata and Etag are the energy consumed by
data-memory accesses and tag-memory accesses, respec-
tively. Eothers includes the energy consumed for driving
output buses (Eoutput) and that for accessing the WP table.

In a conventional cache, the energy consumption is pro-
portional to the cache associativity, because the energy dis-
sipated by memory-array accesses (Edata + Etag) is in-
creased [1]. On the other hand, in the HBTC cache, we can
see a different phenomenon. Since increasing the cache as-
sociativity reduces the total capacity of each way, this kind
of selective activation effectively reduces cache-access en-
ergy. Therefore, if many cache accesses are performed in
the Omode, as 132.ijpeg and mpeg2dec, the total cache en-
ergy can be reduced as the associativity is increased. How-
ever, the energy starts to increase when the associativity
is higher than 4 or 8. This is because the energy over-
head caused by increasing the cache associativity is over
the amount of energy reduced by the selective activation.

4.5. HBTC Cache vs ITC Cache

As explained in Section 2, one of common techniques
to avoid the unnecessary way activation is the interline tag-
comparison (ITC) scheme. Figure 6 shows the compari-
son results of the HBTC cache with the ITC cache in terms
of the total number of cache look-up performed (i.e., total
number of parallel search executed). All results are normal-
ized to the look-up count in the conventional cache.

Since programs inherently include sequential
instruction-accesses, the ITC cache works well. For
all but one, adpcm dec, the cache makes from 60% to
70% of reduction. While the effectiveness of the HBTC
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cache is application dependent. The HBTC cache produces
better results than the ITC cache for more than half of
programs. In particular, the cache works very well for
media applications, adpcm and mpeg2, more than 80% of
look-up count reduction is achieved. This is because the
HBTC cache attempts to avoid unnecessary cache look-up
by exploiting the iterative execution of instructions, which
is the main feature of media programs. In addition, we see
that combining the HBTC approach with the ITC scheme
achieves outstanding reduction, about 95% in the best case
(mpeg2 dec) and 70% in the worst case (099.go).

5. Conclusions

In this paper, we have proposed a low-energy SA I-cache
architecture, called history-based tag-comparison cache
(HBTC cache). The HBTC cache attempts to re-use tag-
comparison results to eliminate unnecessary way activation.
An extended BTB is used for the re-use strategy.

In our simulation, it has been observed that a 4-way set-
associative HBTC I-cache can achieve 62% of energy re-
duction from a conventional cache with less than 1% per-
formance degradation. In addition, it has been reported
that the proposed cache can produce remarkable energy re-
duction by combining with the interline tag-comparison ap-
proach, which is commonly used in low-power micropro-
cessors, 95% of cache look-up could be eliminated in the
best case.

In this evaluation, we have assumed that no energy is
consumed in the logic portion for controlling the HBTC
cache. Our ongoing work is to design the HBTC cache and
evaluate the energy overhead caused by the logic portion.
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