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Abstract. In this paper, we present RPV-II, a stream-based real-time
parallel image processing environment on distributed parallel computers,
or PC-cluster, and its performance evaluation using a realistic applica-
tion. The system is based on our previous PC-cluster system for real-time
image processing and computer vision, and is designed to overcome the
problems of our previous system, one of which is long latency when we
use pipelined structures. This becomes a serious problem when we apply
the system to interactive applications. To make the latency shorter, we
have introduced stream data transfer, or fine grained data transfer, to
RPV-II. One frame data is divided into small elements such as pixels,
lines and voxels, and we have developed efficient real-time data transfer
mechanism of those. Using RPV-II we have developed a real-time vol-
ume reconstruction system by visual volume intersection method, and
we have measured the system performance. Experimental results show
better performance than that of our previous system, RPV.

1 Introduction

Recently, especially in computer vision community, image analysis using multiple
cameras has been extensively researched[1,2]. When we use multiple cameras,
distributed systems are indispensable because a single or centralized system can
not handle a large amount of image data[3,4,5,6,7]. When we require real-time
analysis of those images, the problem becomes much more serious because of their
large bandwidth and their huge computation demand. To solve the problems, we
have developed a parallel/distributed real-time image processing system, RPV
(Real-time Parallel Vision), on a PC-cluster, which consists of multiple off-the-
shelf PCs connected via very high speed network[3,4]. The PC-cluster strategy
has an important merit of scalability, which means that putting additional PCs
into the network we can easily acquire larger number of sensors, or cameras, and
larger computation power with low cost. The key issues of such distributed real-
time image processing systems are synchronization among distributed PCs, the
performance of network, the end-to-end latency at user level, the programming
framework and the cost of the system.
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The biggest problem of RPV is its long latency when we employ pipelined
structures to acquire higher throughput. This is because, for real-time data trans-
fer in RPV, we have developed synchronization mechanism based on the timing
of image frame in an video sequence, and, as a result, the latency becomes
2N × one frame period, when we use N PCs arranged in a pipeline struc-
ture. This becomes a serious problem when we apply the system to interactive
applications.

To make the latency smaller, we have introduced stream data transfer, or
fine grained data transfer, to RPV-II, the next version of RPV. One frame data
is divided into small elements such as pixels, lines and voxels. When each PC
finishes processing an element, it starts sending it to the succeeding PC and then
starts processing the next element. This mechanism can make the latency 1/M ,
where M is the number of elements in one frame period.

Using RPV-II, as a realistic application, we have developed real-time volume
reconstruction system by visual volume intersection method[8], and we have
measured the system performance. The main part of this system consists of three
steps: silhouette extraction, visual cone generation and volume construction by
intersecting the visual cones. Each of three steps are executed by multiple PCs
and voxel data representing the visual cones and the object shape are transfered
in stream among the PCs. In this paper, at first, we overview RPV and outline
RPV-II emphasizing on its stream data transfer. Then we describe real-time
volume reconstruction using RPV-II, and, finally, the performance evaluation
based on the developed application.

2 Real-Time Parallel Vision

2.1 Overview

Our PC-cluster system consists of 14 PCs, each of which has Pentium-III×2(see
Fig 1 and Fig. 2). All the PCs are connected via Myrinet, a crossbar-switch
based gigabit network, and six of them have IEEE1394-based digital cameras[9],
each of which can capture an uncompressed image sequence in real-time. On
our PC-cluster, we support the following parallel processing schemes and their
combinations. From the viewpoint of program structure, each PC corresponds
to a component of a structured program of image processing.

Pipeline parallel processing. As shown in Fig. 3(a), the whole procedure is
divided into sub-functions, and each sub-function is executed on a different
PC sequentially.

Data parallel processing. As shown in Fig. 3(b), a set of data is divided into
sub-data, and each sub-data is processed on a different PC in parallel. There
are two approaches in data parallel processing:
– Image is divided into sub-images, and each sub-image is processed on a

different PC in parallel.
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Fig. 1. Configuration of PC-cluster

Fig. 2. PC-cluster
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Fig. 3. Parallel processing schemes

– Different frames are processed on different PCs. The longer1 processing
time can be secured, but the latency also becomes longer.

Data gathering. As shown in Fig. 3(c), images captured by multiple cameras
are processed by PCs and integrated on the succeeding processing stage.

1 It is proportion to the number of pipelined PCs. When N PCs are used the secured
processing time is up to N × one frame period.
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Function parallel processing. As shown in Fig. 3(d), images are multicast
to multiple PCs, on which different procedures are executed in parallel, and
their results are unified in the succeeding processing stage.

2.2 Mechanisms for Real-Time Parallel Processing

For supporting the real-time parallel processing schemes described before, the
system must have such mechanism as follows[3].

Real-time data transfer. We have used PM library[10] as communication
primitives on Myrinet, and its actual network bandwidth is enough high
to transfer image data in real-time. Since PM library supports DMA trans-
fer between a main memory and a buffer on Myrinet board, it is able to
reduce waste of CPU power for data transfer.

Synchronization. To inform all PCs when they start processing a frame data,
we introduce Frame Synchronization Signal (FSS), which notifies the time
to start processing, and which is received by all the PCs.

Error recovery. If data processing has not been finished or data receiving has
not been finished when FSS is received by a PC, it is necessary to invoke an
error recovery function. According to the image processing algorithm in each
PC, programmers can select an error recovery mode from data missing mode,
incomplete data mode or complete queuing mode. In data missing mode,
only complete data are sent to the following PCs but some data are lost.
In incomplete data mode, no data are lost, but incomplete data, which are
intermediate result data, previous frame data or default data, are sometimes
sent. In complete queuing mode, no data are lost and all data are completely
processed, but the latency of data increases and a certain size of queue is
required.

2.3 Implementation

In each PC, the following four modules are running concurrently to realize the
mechanisms described before(see Fig. 4). Each of the modules is implemented
as a UNIX process.

Data Processing Module(DPM). This module is the main part of the image
processing algorithms, and is to process data input to the PC. It receives
data from a DRM and sends data to a DSM via UNIX shared memory.
In DPM, any programs should consist of the following three elements:
1. A main loop is to process image sequence, in which one iteration is

executed per one frame time. The main loop is executed according to
the following procedure to process image sequence continuously.
a) Wait for a signal from FSM to start processing. If a signal arrives

before processing of previous frame is not finished, an error recovery
function is invoked.



RPV-II: A Stream-Based Real-Time Parallel Vision System 179

DRM DSM

FSM

shared
memory

shared
memory

pre_func()

input data

user_func()

output data

DPM

main loop

FSS FSS

wait signal

signal

PC

post_func()

Fig. 4. Modules and functions in RPV

b) Get input data. Actually pointers to input data are transferred in
order to avoid copying data. If input data has not been received, an
error recovery function is invoked.

c) Execute a user-defined function representing one iteration of the
main loop, which is named user func here. Function user func re-
ceives synchronous input data I and asynchronous input data A and
sends output data O. Synchronous input data I are main streams of
data, which originates from image capture cards and are transferred
between PCs synchronously. They are synchronized at the beginning
of function user func (described at previous step). Asynchronous
input data A can be used for feedback data and irregular data in
cooperative processing. They are not synchronized at the beginning
of function user func and are reloaded with the newest ones at any
timing a programmer indicates.

d) Put output data. Because output data are directly written to shared
memory in order to avoid copying data, only a notification of write-
done is sent to DSM.

2. Before entering the main loop, a pre-processing function is executed. It
is named pre func here. Function pre func is a user-defined function,
which is used, for example, to load data necessary for the main loop such
as a background image and calibration parameters.

3. After exiting the main loop, a post-processing function is executed. It is
named post func here. Function post func is a user-defined function,
which is used, for example, to save results.

Data Receiving Module(DRM). This module is to receive data from other
PCs via messages, and has buffers for queuing data. When a data request
demand arrives from its succeeding DPM, it returns pointers to data.
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Fig. 5. Modules and functions in RPV-II

Data Sending Module(DSM). This module is to send data to other PCs via
messages, and has buffers for queuing data. When processed data arrives
from its preceding DPM, it sends the data to the succeeding PCs.

Frame Synchronization Module(FSM). To realize synchronization among
PCs, FSS is introduced, which is a time quantum signal of 1/30 second cycle.
FSS, which originates in an image capturing component, is transfered via
Myrinet network from upper PCs to lower PCs of the data flow. FSM sends
FSSs to the succeeding FSM, and/or receives FSSs from the preceding FSM.
FSM also sends start signals to activate the DPM in the PC. This framework
makes executions of different DPMs synchronize with one another.

3 Stream Data Transfer on RPV-II

RPV has been designed to achieve quite high throughput of real-time image
processing. However, its biggest problem is the long latency when we employ
pipelined structures to acquire higher throughput. This is because, for real-time
data transfer in RPV, we have developed synchronization mechanism based on
the timing of image frame in an video sequence. For each pipeline step, one frame
period τ , which is 33msec in case of NTSC-based camera signal, is allocated to
process one image frame and one frame period is allocated to transfer one image
frame to the succeeding PC (see Fig. 6 (a)). Therefore, when we use N PCs
arranged in a pipeline structure, the latency becomes 2Nτ (τ is a frame period
and is 33msec for NTSC-based camera signal). For example, 3 stage pipeline
causes about 0.2 sec. Thus, the latency problem becomes a serious problem
when we apply the system to interactive applications. However, in general it is
not easy to solve the tradeoff between high throughput and low latency.
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To solve this problem, i.e., to make the latency smaller keeping high through-
put, we have introduced stream data transfer, or fine grained data transfer, to
the next version of RPV, RPV-II. One frame data is divided into small packets
consisting of pixels, lines, voxels, or other image features, and data processing
and transfer are applied to each packet. When each PC finishes processing a
packet, it immediately starts sending it to the succeeding PC and then starts
processing the next packet. Therefore, when the packet arrives at the succeed-
ing PC, the processing of the packet can be started immediately. Fig. 5 shows
the processing procedure implemented in RPV-II. The key difference is that,
in RPV-II, function user func is executed for every packet. This mechanism
can greatly reduce the latency (see Fig. 6 (b)). Of course, the tradeoff between
throughput and latency sill remains. When the size of the packet becomes too
small, the communication overhead exhibits apparently. Therefore, we have to
decide the adequate size of the packet, with which reduction of the throughput
is small.

Compared with the previous framework, stream data transfer mechanism has
the following features.

– Keeping high throughput, in general, the latency can be drastically reduced,
i.e., 1/M . It is 2Nτ/M , instead of 2Nτ , where M is the number of packets
in one frame period.2

– In the succeeding PC, the packets should be processed in the order that the
packets are received. When the data should be reordered or reorganized for
processing, the latency for the reorganization is added.

4 Real-Time Volume Reconstruction

For evaluation of effectiveness of stream data transfer on RPV-II, we have devel-
oped a real-time volume reconstruction system on our PC-cluster. The volume
of an object is reconstructed via visual cone intersection using multi-perspective
view of the object. A visual cone is defined as a cone whose vertex is the view
point and whose cross section coincide with the silhouette of the object (see
Fig. 7). Since the object is included in the visual cone, intersecting visual cones
constructed from multiple view points makes the volumetric data of the object.

4.1 System Configuration

This method consists of four stages as follows (see Fig. 8).

1. Extraction of object silhouette (EOS)
Background subtraction is employed to extract the silhouette of the object in
each view. We use a simple method, i.e., thresholding of difference between
pixel values of a captured image and those of a pre-acquired background
image.

2 Here, we assume that data transfer time is equal to data processing time.
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(a) Synchronous (Frame-based) Data Transfer

(b) Stream Data Transfer

Fig. 6. Comparison of data transfer mechanism
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Fig. 7. Visual Cone

Fig. 8. System Configuration

Essentially a silhouette image can be calculated and sent to the succeeding
PC in pixel-wise order, and therefore its latency should be τ/Mp, where Mp is
the number of packets of pixels in one frame image. However, in this system,
an image captured by a camera is received frame by frame, not pixel by pixel,
and the silhouette calculation can not be started after one complete image
frame has been received. This inconsistency makes an additional latency τ .3

As a result, the latency caused in this stage becomes τ + τ/Mp.
2. Calculation of visual cone (CVC)

A visual cone represented in terms of voxels is constructed from the object
silhouette of each view point. For each voxel, the system examines whether

3 This can be easily reduced by modifying the camera interface with which image
data can be acquired line by line.
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a pixel corresponding to a voxel is included in the object silhouette or not4.
This process consists of two subprocesses, voxel projection to a silhouette im-
age and inclusion test on it. The voxel projection can be optimized by using
a pre-computed lookup table representing correspondence between voxels
and pixels. Using this lookup table improves the speed of the visual cone
calculation drastically.
A silhouette image is received in a pixel-wise order, but visual cone con-
struction is executed in a voxel-wise order. Because of this inconsistency
the latency between data receiving and data processing becomes τ . On the
other hand, since voxel space representing visual cone is generated and sent
in a voxel-wise order and there is no inconsistency, the latency between data
processing and data sending is τ/Mv, where Mv is the number of packets of
voxels in one voxel space. Total latency at this stage becomes τ + τ/Mv

3. Intersection of visual cones (IVC)
Visual cones from multiple view points are gathered and intersected to gen-
erate a volumetric data of the object represented in terms of voxels. Since
receiving a voxel space, intersecting all voxel spaces and sending a generated
voxel space are executed in a voxel-wise order, both the latency between
data receiving and data processing and the one between data processing and
data sending are τ/Mv.

4. Display of object image (DOI)
Reconstructed volumetric data is projected to an image plane to generate
an object image and the image is displayed on a screen.
Since receiving a voxel space and projecting it to an image plane is executed
in a voxel-wise order, the latency between receiving and processing is τ/Mv.

The total latency becomes τ/Mp+4τ/Mv+2τ ' 2τ (suppose Mp and Mv is large
enough). It is much reduced compared with the case of frame-based data transfer
where the total latency becomes 7τ . Again, the decline of the throughput is very
little.

4.2 Performance Evaluation

First, Table 1 shows throughput, the number of frames which the volume re-
construction system process in one second. The amount of its computation is
proportional to the number of voxels. In case that the number of packets is
small, or the size of the packet is large, the throughput is in inverse proportion
to the number of voxels, which is an ideal characteristic. However, in case that
the number of packets is large, or the size of the packet is small, the throughput
is not in inverse proportion to the number of voxels. This is because the overhead
of data transfer is getting large. Since the maximum frame rate of our cameras
30 fps, the maximum throughput of the system becomes 30 fps.

Second, Table 2 shows latency. Throughput in this experiment is lower than
that in previous one because of probing overhead. The results are nearly equal
4 Though multiple pixels are usually corresponding to one voxel, only one pixel is

selected for simplification and speed up.
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Table 1. Throughput(fps)

Mv (Mp is fixed on 10)
# voxels 125 1000 2500 5000

40 × 40 × 40 = 64000 30.00 30.00 30.00 30.00
80 × 80 × 80 = 512000 28.57 25.00 11.11 6.67

100 × 100 × 100 = 1000000 14.27 12.46 10.99 5.71

Table 2. Latency(msec)

Mv (Mp is fixed on 10)
stage 125 1000 2500 5000
EOS 10.154 11.163 11.140 11.070

EOS–CVC 0.309 0.337 0.350 0.329
CVC 156.260 182.816 201.501 384.612

CVC–IVC 9.904 0.143 1.644 38.518
IVC 0.187 0.073 1.107 23.135

IVC–DOI 0.315 0.155 0.501 42.939
DOI 6.407 6.326 6.390 7.195

Total(L) 183.536 201.013 222.696 507.793
Frame rate(1/τ) 12.5 11.1 10.0 4
Frame period(τ) 80.000 90.000 100.000 250.000

L/τ(experimental) 2.294 2.233 2.227 2.031
L/τ(designed) 2.132 2.104 2.102 2.101

to the designed values, which shows that the system works correctly. Assuming
that the experimental values (L/τ) are effective in case of no probes, the latency
L may be equal to 1000/14.27 × 2.294 = 160.8 msec.

These experiments are preliminary ones and, because of the limitation of
physical space and camera calibration, we have used three cameras. According
to the experiments, for real-time volume reconstruction, the number of voxels
should be around 100 × 100 × 100. In this case, the throughput is about 14.27
fps and the latency is 184 msec with an optimal packet size. In other words, the
number of packets in one frame is 125, or the size of the packet is 8000 bytes.
The low latency exhibits the effectiveness of our method.

Fig. 9 shows input image sequences of three views and Fig. 10 shows re-
constructed volumetric representation. Since we have only three cameras in this
experiment, the reconstructed 3D shape is not very accurate. We are making
large scaled experiments with more cameras, which can produce more precise
3D shape.
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(a) Viewpoint 1

(b) Viewpoint 2

(c) Viewpoint 3

Fig. 9. Input Images



RPV-II: A Stream-Based Real-Time Parallel Vision System 187

vp frame a frame b

1

2

3

v

Fig. 10. Output Images: The first column is viewpoint. Viewpoint v means a virtual
viewpoint. The second and the third columns are output images on different frames
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5 Conclusion

In this paper, we have presented a stream-based real-time parallel vision system
on PC-cluster and its application to a real-time volume reconstruction system.
The motivation of this research is to develop a large-scaled real-time computer
vision system with high performance, i.e., high throughput and low latency.
The low latency is quite important especially for interactive application such
as human interface systems. The key idea is that real-time data processing and
transfer is established not on image frames but on finer grained data packets
consisting of pixels, lines, voxels, or other image features. This enables the sys-
tems to have much less latency with little decrease of throughput, compared with
ordinary frame-based real-time image processing and transfer. The effectiveness
of our idea has been also shown by a realistic application of real-time volume
reconstruction from multiple views. The throughput of the experimental system
is about 14 fps for a 100 × 100 × 100 voxel space, and the latency is only about
160 msec, which can be improved by further refinement.

The future works remaining are as follows.

– Evaluation with larger scaled applications: we are constructing a 20 camera
systems to acquire more precise volumetric representation.

– System construction with cheaper cost: we are developing a PC-cluster whose
network is IEEE1394 bus, not Myrinet[11]. Evaluation of this system should
be done, too.
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