
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A History-Based I-Cashe for Low-Energy
Multimedia Applications

Inoue, Koji
Dept. of Elec. Eng. and Computer Science Fukuoka University

Moshnyaga, Vasily G.
Dept. of Elec. Eng. and Computer Science Fukuoka University

Murakami, Kazuaki
Dept. of Informatics Kyushu University

https://hdl.handle.net/2324/5632

出版情報：Proc. of 2002 International Symposium on Low Power Electronics and Design
(ISLPED'02), pp.148-153, 2002-08. Association for Computing Machinery
バージョン：
権利関係：

A History-Based I-Cache for Low-Energy Multimedia
Applications

Koji Inoue
Dept. of Elec. Eng. and

Computer Science
Fukuoka University

8-19-1 Nanakuma, Jonan-ku,
Fukuoka 814-0180 JAPAN

inoue@tl.fukuoka-u.ac.jp

V.G. Moshnyaga
Dept. of Elec. Eng. and

Computer Science
Fukuoka University

8-19-1 Nanakuma, Jonan-ku,
Fukuoka 814-0180 JAPAN

vasily@fukuoka-u.ac.jp

K. Murakami
Dept. of Informatics
Kyushu University

6-1 Kasuga-Koen, Kasuga,
Fukuoka 816-8580 JAPAN

murakami@i.kyushu-
u.ac.jp

ABSTRACT
This paper proposes a history-based tag-comparison scheme
for reducing energy consumption of direct-mapped instruc-
tion caches. The proposed cache efficiently exploits program-
execution footprints recorded in the Branch Target Buffer
(BTB), and attempts to detect and eliminate unnecessary
tag checks at run time. Simulation results show that our
approach can eliminate up to 95% of tag checks, saving the
cache energy by 17%, while affecting the processor perfor-
mance by only 0.2%.

Categories and Subject Descriptors
B.3 [Hardware]: Memory Structures; C.1 [Computer Sys-
tems Organization]: Processor Architectures

General Terms
Design

1. INTRODUCTION

1.1 Motivation
As the popularity of multimedia applications increases,

the workload of microprocessors employed in battery-operated
computing devices such as laptop and hand-held computers
is dominated by media programs (e.g., video, 3-D graphics,
audio, and speech). In order to satisfy the high performance
requirements imposed by these workloads, under the grow-
ing speed discrepancy between microprocessors and external
memory, there is a tendency to use larger and larger on-
chip caches. However, their large load capacitance accounts
for significant energy dissipation. Instruction caches (or I-
caches) particularly affects total energy consumption due to
their high access frequency. The Strong-ARM SA110, for
example, dissipates 25% of its total energy in the I-cache

Fukuoka Univ. Technical Report
(appears in ISLPED'02)

129.compress

0 127 255 383 511

Cache-line address

A
ve

. #
 o

f r
ed

un
da

nt
 ta

g-
ch

ec
ks

1

2

3
4
5

10

20

30
40
50

100

Figure 1: Redundant tag-check distribution

[11]. Therefore, reducing the I-cache energy is critical for
lowering the overall energy consumption of microprocessors.

In this paper, we focus on direct-mapped instruction caches
which employ the simplest control and exhibit the fastest ac-
cess time in comparison to set-associative organization. On
an I-cache access, a tag check and data read are performed
in parallel. The tag check is required to determine whether
the current reference hits the cache. Thus, we can consider
at least two energy sources: the energy used for the tag
check and that for the data read. Cache subbanking is a
well known approach to reducing the data-read energy, in
which the data SRAM array is partitioned into several sub-
banks and only one subbank including the target instruction
is activated [6]. However, since the whole tag is required for
the tag check, this kind of partitioning approach can not
be applied to the tag SRAM array. Therefore, we need to
devise another approach to reducing the tag-check energy.

Consider a direct-mapped I-cache behavior. Only when a
cache miss takes place, some instructions are evicted from
the cache to fill the missed instructions. Thus, once an in-
struction is loaded into the cache, it stays there at least until
the next cache miss occurs. Suppose an instruction is exe-
cuted repeatedly, e.g., loop executions. At the first reference
of the instruction, the tag check has to be performed to ex-
amine its presence in the cache. However, at and after the
second reference, if no cache miss has occurred, that target
instruction is guaranteed to currently reside in the cache. In
this case, we can detect a cache hit without performing the
tag check. We refer to the period between two consecutive
cache misses as a cache-miss interval. When an instruction

is accessed repeatedly during a cache-miss interval, the tag
check for the first reference has to be performed, but af-
ter that it is not unnecessary. However, conventional caches
perform the tag check at every cache access, therefore a large
amount of energy is unnecessarily dissipated.

Figure 1 shows the average number of unnecessary tag
checks performed at each cache line (or block)1, i.e., the av-
erage access count to each cache line per cache-miss interval.
As we can see, the number of redundant tag-checks is more
than four for the majority of the cache lines, with some lines
having as many as one hundred. If we detect and eliminate
the unnecessary tag checks at run time, then we can save
significant amounts of energy.

1.2 Related Research
Several architectural approaches to reducing the frequency

of I-cache tag-checks have been proposed. A popular one is
to augment the I-cache with a small Level-0 memory (or
L0-cache) which stores the frequently executed instructions
[3][4][8]. Since the I-cache is accessed only on L0-cache
misses, the number of I-cache tag-checks is reduced.

Panwar et al. [10] proposed to perform tag-checks only
for instructions that belong to different cache lines. If two
instructions i and j reside in the same cache line, and instruc-
tion j is executed immediately after i, then the tag check for
j can be omitted. Although this method can be controlled
via the Program Counter, it requires tagging each branch
instruction to indicate whether a branch transfers control
to an nninstruction outside the current line. We refer to
this technique as interline tag-comparison or ITC.

Witchel et al. [13] presented a Direct Addressed scheme
that allows software to access cache data without hardware
cache tag checks. The key idea is to store the tag-check
results in DA-register file, and then reuse them based on
compiler supports. If the DA-register file is valid, the com-
piler analyses its content to ensure that the current access is
to the same cache line as an earlier access. The main short-
coming of this method is the special compilation scheme that
might affect code compatibility.

Ma et al. [9] suggested a dynamic way-memoization for
eliminating tag checks. The idea is to record within I-cache
both the tag check results (links) and the valid bits to show
whether the link is correct. If the link is valid, it is fol-
lowed to fetch the next instruction without tag checks. This
approach can be applied regardless of cache associativity
but implies hardware overhead in the cache for keeping the
branch links.

1.3 Contribution
This paper proposes an alternative approach for detecting

and removing unnecessary tag-checks in I-cache: –“history-
based tag-comparison (HBTC)2. Unlike existing techniques,
the HBTC cache exploits execution footprints recorded in
the Branch Target Buffer (BTB) for reducing the frequency
of tag checks. In contrast to [10], our technique is more feasi-

1Usually, tag checks are performed at cache-line granularity.
2In [5], the concept of the HBTC cache and rough evalua-
tion results in terms of the total tag-check count performed
have been reported. This paper describes an extended ar-
chitecture which does not require the rollback operation for
execution footprints on branch mis-prediction. In addition,
the total energy consumption including BTB overhead and
the impact on processor performance are evaluated.

ble because it can omit redundant tag checks for instructions
which belong to different cache lines. Moreover, it requires
neither a large timing-area overhead in the cache nor addi-
tional compiler supports. The proposed approach is orthog-
onal to, and can be used in conjunction with, other cache en-
ergy reduction techniques such as L0-cache. We present the
HBTC implementation scheme for direct-mapped I-caches,
and evaluate performance/energy efficiency by using various
benchmark programs.

The paper is organized as follows: The next section presents
the HBTC architecture. Section 3 outlines the simulation
environment and the experimental results. Conclusions are
drawn in Section 4.

2. THE HISTORY-BASED TAG-COMPARISON
CACHE

2.1 Main Idea
At and after the second reference to the same instruction

in a cache-miss interval, performing tag checks is unneces-
sary, as explained in Section 1.1. In other words, we can
omit the tag check if: (i) the target instruction has been ref-
erenced before, and (ii) no cache misses have occurred since
the previous reference to the target instruction.

In modern microprocessors, a Branch Target Buffer (BTB)
is employed to obtain a branch-target address as soon as pos-
sible. In order to detect the above two conditions, the HBTC
cache records execution footprints in the BTB. An execu-
tion footprint indicates whether or not the target-instruction
block (or the fall-through-instruction block) associated with
the branch currently resides in the I-cache. The execution
footprint is recorded after all instructions in the correspond-
ing block are referenced without any cache misses. When-
ever a cache miss takes place, all the recorded footprints are
erased (or invalidated). Therefore, when the microprocessor
fetches an instruction block, if the corresponding footprint
is valid, the two conditions for dynamic tag-check omission
are satisfied. In this case, we can omit tag checks for all
instructions in the block.

This approach separates the hardware for dynamic tag-
check omission from the I-cache structure, therefore it does
not degrade the cache-core-access time, energy consump-
tion, or transistor budget. In addition, since we exploit the
BTB employed for branch prediction, our scheme can be
implemented with small hardware overhead.

2.2 Organization
The proposed HBTC cache combines four components:

BTB, Previous Branch Address register (PBAreg), a mode
controller, and I-cache, as shown in Figure 2. Unlike existing
designs, the following 1-bit flags associated with the branch
are added to each BTB entry.

• Flag T: This is the execution footprint of the branch-
target-instruction block whose start address is indi-
cated by the target address.

• Flag F: This is the execution footprint of the fall-
through-instruction block whose start address is in-
dicated by the fall-through address of the branch.

The end address of both the branch-target- and the fall-
through-instruction block are given by the other branch-
instruction addresses which have already been registered in

Adr-A:

Adr-B:

Adr-C:

branch X

basic
block-A

branch Y

Target of branch-K

Addr. of Branch-K Adr-A

Addr. of Branch-Y Adr-E

branch-inst.
address

target
address

Branch Target Buffer

Prediction
Result

 Branch Inst. Addr.

Prediction
 Result

PBAreg
Address

I-Cache

tag-check
elimination

from
PC

branch Z

Addr. of Branch-Z Adr-F

fall-through
address of Branch-Y

T F

Program Code

Mode
Controller

Execution
Footprint

Inst.
Block 1

Inst.
Block 2

from PC

to PC

basic
block-B

basic
block-C

Figure 2: The HBTC implementation scheme

the BTB. A validated footprint ensures that the correspond-
ing instruction block, i.e., all instructions from the branch-
target (or fall-through) address to the end address, certainly
resides in the cache.

For example, suppose branch-X of the basic block A (see
Figure 2) has not been executed as a taken branch, and
branch-K, -Y, and -Z have been registered in the BTB.
In this scenario, the instruction block 1 is the target-
instruction block of branch-K, because its start address is
specified by the target address (Adr-A) and the end address
is given by branch-Y’s address registered in the BTB. On the
other hand, the instruction block 2 is the fall-through-
instruction block of branch-Y, and its end address is given
by branch-Z’s address. The size of the instruction block
may be changed at run time. For instance, when branch-X
is executed as taken, it will be registered in the BTB. As a
result, the end address of the instruction block 1 becomes
branch-X’s address. Thus, the fall-through-instruction block
of branch-X, whose start address is Adr-B and the end ad-
dress is branch-Y’s address, is created.

The PBAreg stores the previous-branch-instruction ad-
dress and the result of branch prediction (taken or not-
taken), and is used as an address register when the BTB
is accessed for leaving the execution footprints. The mode
controller manages the HBTC behavior. The details of the
HBTC operation are explained in Section 2.3.

2.3 Operation
The HBTC cache has the following three operation modes,

one of which is activated by the mode controller:

• Normal mode (Nmode): The cache behaves as a con-
ventional I-cache, so that the tag check is performed
at every cache access.

• Omitting mode (Omode): The cache omits the tag
check in I-cache accesses.

• Tracing mode (Tmode): The cache performs tag checks
as in the Nmode, and also set the execution footprints
(this operation is not performed in the Nmode).

Figure 3 displays the operation transitions. On every BTB
hit, the HBTC cache works as follows:

1. Regardless of the current operation mode, both the T
and F flags associated with the BTB-hit entry are read
in parallel.

Nmode

Omode

Tmode

BTB Hit
T (or F) is ’1’

T (or F) is ’0’
I-Cache miss or

BTB replacement or
RAS access or

Branch misprediction

On BTB hit, the execution footprint
addressed by the PBAreg is written in the BTB

Store
PC & pred. result

in the PBAreg

Figure 3: Operation-Mode Transition

2. Based on the branch-prediction result, one of them (T
on taken or F on not-taken) is selected.

3. If the selected execution footprint is ’1’ (or valid), the
operation mode is changed to the Omode. Otherwise,
the Tmode is activated, and the current PC (branch-
instruction address) and the branch-prediction result
(taken or not-taken) are stored in the PBAreg.

Whenever a cache miss takes place, the operation mode is
transited to the Nmode. Therefore, a BTB hit in the Tmode
means that there have been no cache misses since the pre-
vious BTB hit. In other words, the whole instruction block,
whose start address is related to the PBAreg and whose end
address is specified by the current branch-instruction ad-
dress (or PC), resides in the I-cache. Note that the access
information for the previous BTB hit has been kept in the
PBAreg. Thus, when a BTB hit occurs in the Tmode, the
execution footprint indexed by the PBAreg is validated (set
to ’1’).

When an execution footprint recorded in the BTB loses
accurate information for the presence of corresponding in-
struction block in the cache, it has to be invalidated to en-
sure the correct program execution. To simplify the mode
control, we have employed a conservative scheme that inval-
idates all the execution footprints in the BTB. In addition,
the cache switches the operation mode to the Nmode. The
conditions for footprint invalidation are:

• I-cache miss: Because the cache-line replacement evicts
an instruction block (or a part of it), the execution
footprints have to be invalidated according to the vic-
tim line.

• BTB replacement: When a BTB entry is replaced, we
might lose the end-address information of an instruc-
tion block, which has a valid execution footprint.

To avoid complex hardware control, we assume that the
cache operates in the Nmode whenever the branch-target
address is provided by the RAS (Return Address Stack), or
a branch mis-prediction is detected (footprint invalidation
is not performed).

2.4 Operation Example
Figure 4 (A) shows the execution example of a loop. The

solid and broken arrows represent the control flow of the
execution. Figure 4 (B) depicts the behavior of the extended
BTB. A number and a capital letter pair denotes the BTB
look-up/update time. For instance, 1−C indicates the time
when the branch-C (the branch addressed by C) is executed
in iteration 1. It is assumed that the branch prediction is
perfect, and that the initial operation mode is the Nmode

(A) Execution Flow

1-C

2-C

3-C

3-D

4-D

5-B
New
Entry

Time:#Iteration-BranchAddr

T F

Operation
Mode

Branch-C

Branch-C

Branch-C

Branch-C

Branch-C

Branch-C

Branch-D

Branch-D

Branch-D

Branch-B

(B) BTB

Branch
Inst. Addr.

O

PBAreg

Branch-D

Branch-D

Branch-D

O

T C:n

T D:t

T flag of
Branch-D

brranch-inst. addr.: prediction result

O

N

A
A

A
A

A
A

A
A

A
A

F

A
A

Target
Addr.

Execution Flow
Top

Branch to F

Branch to A

Branch to A

A

B

C

D

F Top

1 2 3 4 5
of Iteration

IB1

IB2

IB: Instruction Block

Initial
Branch-C

N
Branch-D

A
A

t:taken
n:not-taken

4-C
Branch-C
Branch-D

O
A
A

Figure 4: Operation Example

(Normal-Mode). In addition, we assume the branch-C in
the BTB has the valid flag T at the initial state. In the first
iteration, tag checks must be performed, as we operate in
the Nmode. After that, the HBTC cache works as follows:

1-C : The branch-C is predicted as a taken branch, and the
associated flag T is read from the BTB. This flag indicates
whether the associated target-instruction block (i.e., IB1 in
the figure) resides in the cache. Since the flag is ’1’, the
cache enters the Omode (Omitting-Mode). Therefore, tag
checks for the IB1 in the second iteration are omitted.

2-C : The branch-C is predicted as a taken branch again.
Since the flag T read from the BTB is ’1’, the cache works in
the Omode. Thus, during the third iteration, all instructions
in the IB1 can be fetched without tag checks.

3-C : The prediction result for the branch-C is “not-taken”,
and the associated flag F is read from the BTB. That flag in-
dicates whether the fall-through-instruction block (i.e., IB2
in the figure) resides in the cache. Since the read flag is
’0’, the operation mode is changed to the Tmode (Tracing-
Mode). Thus, tag checks for the IB2 in the third iteration
are performed. In addition, the branch-instruction address
(or PC) C and the prediction result “not−taken” are stored
in the PBAreg.

3-D : The flag T associated with branch-D is 0, so that the
operation mode is not changed (Tmode). In addition, this
is a BTB hit in the Tmode. Therefore, the flag F pointed
by the PBAreg (AddressC : not − taken) is set to ’1’ in
order to leave the execution footprint of the IB2. The BTB
access information (AddressD : taken) is then stored in the
PBAreg.

4-C : The flag F of branch-C is ’1’, so that the operation
mode transits to the Omode. Thus, the tag checks for the
fall-through-instruction block denoted as IB2 are omitted.
Moreover, since this is a BTB hit in the Tmode, the flag T
addressed by the PBAreg (AddressD : taken) is set to ’1’.

4-D : The flag T of branch-D is ’1’, so that the cache works
in the Omode and tag checks are not performed during the
fifth iteration.

5-B : This is the first taken operation for the branch-B,
hence branch-B is registered in the BTB. In this case, a
branch-miss prediction should be detected because the mi-
croprocessor can not obtain the branch-target address from
the BTB. The operation mode is thus changed to the Nmode,
and tag checks are resumed.

2.5 Performance/Energy Overhead
The proposed approach allows us to eliminate all tag checks

in the Omode. On the other hand, accessing the execution
footprints produces an energy overhead for the BTB. In ad-
dition, if the operation enters the Tmode, saving the address
in the PBAreg produces a small energy overhead.

From the performance point of view, controlling the ex-
ecution footprints may lead to some performance degrada-
tion. In conventional microprocessors, the BTB is accessed
at every clock cycle for branch prediction. Reading the ex-
ecution footprints can be done in parallel with the BTB
access. However, writing the execution footprints requires
one processor-stall cycle because it is performed on another
BTB entry for branch prediction. This performance draw-
back appears at every BTB hit in the Tmode. Also, the
execution-footprint invalidation caused by cache misses or
BTB replacements produces one stall cycle due to the BTB
access conflict.

3. EVALUATION

3.1 Energy Modeling
The total energy dissipated by the HBTC cache can be

expressed by the following equations:

ETOTAL = ECACHE + EBTBadd, (1)

where, ECACHE is the I-cache energy, and EBTBadd is the
additional energy dissipated by the BTB extension (the en-
ergy of the conventional BTB is not included).

ECACHE = Etag + Edata + Eoutput + Edec, (2)

where Etag and Edata are the energy dissipated by the tag
array and the data array, respectively; Eoutput the energy
required for driving output buses; Edec the energy of the
address decoder. In this paper, we do not consider Edec,
because it is usually three orders of magnitude smaller than
the other components [8].

EBTBadd = EBTBef + EBTBlogic, (3)

where EBTBef is the energy dissipated on reading or writing
the execution footprints; EBTBlogic the energy consumed by
the mode controller and the PBAreg. Since the PBAreg is
small and the mode controller is simple, EBTBlogic can be
ignored. We also ignore the energy for execution-footprint
invalidations, since they occur very rarely, i.e. when an
instruction-cache miss or a BTB replacement occurs.

3.2 Simulation Environment
We used the SimpleScalar simulator from [2] to evaluate

the proposed architecture. The cache energy was computed
based on 0.8 µm CMOS using models presented in [6]. The
load capacitance of each node has been taken from [7] [12].
We experimented with the 16 KB direct-mapped I-cache,
32 B cache-line size, assuming that the data array of the
cache is partitioned into 4 subbanks. For the other processor
parameters, we used the default values of the SimpleScalar
simulator.

The cache was simulated on two SPEC benchmark pro-
grams: 129.compress (text file compression) and 132.ijpeg
(jpeg image compression), and four Mediabench programs[1]:
adpcm (adaptive differential pulse code modulation), mpeg2

0.00

0.10

0.20

0.30

0.40

0.50

129.compress adpcm(e) mpeg2(e) epic(e) pegwit(e)

Benchmark Programs

132.ijpeg adpcm(d) mpeg2(d) epic(d) pegwit(d)

ITC: Inter-line Tag-Comparison scheme
HBTC: History-Based Tag-Comparison scheme
Hybrid: Combination of ITC and HBTC

N
or

m
al

iz
ed

 ta
g-

ch
ec

k
C

ou
nt

Figure 5: Tag-check counts

(MPEG-2 video bitstream compression), epic (efficient Pyra-
mid image coder), and pegwit (public key encryption and
authentication). For each of the Mediabench programs, an
encoder and a decoder were evaluated separately. Thus, ten
benchmark programs were used in total.

3.3 Results

3.3.1 Tag-Check Count
Figure 5 shows the total amount of tag-checks performed

on the benchmarks. The label (e) denotes encoders, and (d)
denotes decoders. All the results are normalized to the val-
ues produced by the 16 KB conventional cache. The ’ITC’
bars show the results of the ITC approach explained in Sec-
tion 1.2, and the ’Hybrid’ bars show the results of the com-
bined approach which includes both the ITC and the HBTC.

We observe that the ITC approach has almost a constant
reduction factor along the simulated programs (around 0.33)
because it focuses mainly on sequential accesses inherent in
programs. In contrast, the results obtained by the proposed
approach vary over the programs. For all the programs,
the HBTC cache produces better results than the ITC ap-
proach, allowing us to reduce the amount of tag checks up
to 95% (epic(e)). The reason is that since the HBTC cache
effectively treats the branch operation, the cache can detect
and eliminate large amount of unnecessary tag checks due
to many repetitive executions of instructions.

The hybrid model of the ITC and the HBTC approaches
shows the best results, removing 85% to 98% of total tag
checks. This is because it combines the benefits of the ITC
for sequential accesses and that of the HBTC for dealing
with branches.

3.3.2 Performance/Energy Efficiency
Figure 6 reports energy consumption of the HBTC cache

and its break down. All the results are normalized to the
results of the conventional organization. Although the en-
ergy model used in this paper does not take into account
the energy consumed in sense amplifiers, we believe that
their consideration would not change the picture. Since the
HBTC scheme completely avoids the tag-array accesses in
the Omode, the energy dissipated by sense amplifiers in this
mode is also eliminated. As the figure shows, the HBTC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 T
ot

al
 E

ne
rg

y
C

on
su

m
pt

io
n

129.compress adpcm(e) mpeg2(e) epic(e) pegwit(e)

Benchmark Programs

132.ijpeg adpcm(d) mpeg2(d) epic(d) pegwit(d)

Energy Consumption

Execution Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
orm

alized E
xecution T

im
e

E data
E tag
E output
E btbadd

Figure 6: Energy and Performance

cache reduces the total energy by 8% – 17% even though
there is a small energy overhead for the BTB accesses.

Now consider the bars, which depict the normalized exe-
cution time in Figure 6. As we see, the performance degra-
dation is less than 1% for all benchmarks. This small perfor-
mance overhead is caused by the processor stalls due to the
simultaneous BTB accesses by the processor for branch pre-
diction and the footprint up-date in the HBTC approach.
However, these BTB conflicts can be easily alleviated by
adding a special port for treating the execution footprints.

3.3.3 Footprint-Invalidation Penalty
So far, we have assumed that the footprint invalidation

can be performed in one processor-clock cycle. In practice,
the invalidation penalty largely depends on the BTB imple-
mentation. Figure 7 shows the performance overhead caused
by the HBTC approach when the invalidation penalty changes
from 1 to 32 cycles. We observe that the performance degra-
dation is very small even when the invalidation penalty ex-
tends to 4 clock cycles. We analyzed the invalidations and
found that over 98% of them are caused by cache misses,
and less than 2% by BTB replacements. When a cache miss
occurs, the microprocessor waits to fetch new instructions
until the missed instruction is loaded from the next-level
memory into the I-cache. The footprint invalidation caused
by the cache miss is performed in parallel with the cache-line
replacement. Therefore, the footprint invalidation penalty
can be hidden if it is smaller than the cache-miss penalty. In
the experiment, we assumed a cache-miss penalty of 6 clock
cycles.

3.3.4 Effects of Cache Size and BTB Associativity
To evaluate the impact of the cache size and the BTB

associativity, we simulated caches varying in size from 4 KB
to 64 KB (assuming a BTB associativity of 4), and the BTB
associativity from 1 to 32 (assuming a cache size of 16 KB).
Figure 8 and 9 show the results, respectively. The results
are normalized to the value of a conventional cache with the
same cache size and BTB associativity.

As we see, the energy reduction of the proposed approach
increases as the cache grows in size, because the frequency
of footprint invalidations is reduced. On the other hand, al-
though increasing the BTB associativity has the same effect

1.00

1.05

1.10

1.15

1 2 4 8 16

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

 (
cl

oc
k

cy
cl

e)

Execution-Footprint Invalidation Penalty (clock cycle)

129.compress
132.ijpeg
adpcm(e)
adpcm(d)
mepg2(e)
mpeg2(d)

epic(e)
epic(d)

pegwit(e)
pegwit(d)

Figure 7: Effect of Footprint-Invalidation Penalty

on the invalidation frequency (i.e., BTB replacements could
be avoided), the energy efficiency obtained by the HBTC
approach degradeds when the associativity is changed from
1 to 32. These results can be understood from the fact that
almost all invalidations are caused by I-cache misses rather
than BTB replacements. The total number of execution
footprints to be read on each BTB access increases with an
increase in the BTB associativity. Since the negative effect
caused by the footprint reads exceeds the energy reduction
obtained by reducing the invalidation frequency, increasing
the BTB associativity worsens the HBTC energy efficiency.

4. CONCLUSIONS
In this paper, we have proposed a history-based tag-comparison

(HBTC) cache for reducing the energy consumption of direct-
mapped I-caches. The cache dynamically utilizes the BTB
contents to determine whether the target instructions are
within the I-cache without performing tag checks. The HBTC
approach exploits the repeated execution of loop instruc-
tions, and hence is suitable for media programs.

Simulations showed that our cache can reduce the total
amount of tag checks up to 95%, and save up to 17% of
the energy consumed by the direct-mapped I-cache, with
less than 0.2% performance degradation. In addition, it
was observed that combining the ITC approach [10] and the
proposed approach makes a significant tag-check reduction.
Therefore, we conclude that this combination is very promis-
ing for reducing the frequency of the I-cache tag checks.

Acknowledgments
We thank Hiroto Yasuura who gave us advice. This research
was supported in part by the Grant-in-Aid for Creative Basic
Research, 14GS0218, for Scientific Research (A), 12358002,
13308015, and for Encouragement of Young Scientists (A),
14702064.

5. REFERENCES
[1] Mediabench. In

URL:http://www.cs.ucla.edu/ l̃eec/mediabench/.

[2] Simplescalar simulation tools for microprocessor and
system evaluation. In
URL:http://www.simplescalar.org/.

[3] N. Bellas, I. Hajj, C. Polychronopoulos, and
G. Stamoulis. Energy and performance improvements
in microprocessor design using a loop cache. In Proc. of
the 1999 Int. Conf. on Computer Design: VLSI in
Computers & Processors, pages 378–383, Oct. 1999.

[4] K. Ghose and M. Kamble. Reducing power in
superscalar processor caches using subbanking, multiple

Cache Size [KB]

N
o

rm
al

iz
ed

 T
o

ta
l E

n
er

g
y

0.80

0.85

0.90

0.95

1.00

4 8 16 32 64

129.compress
132.ijpeg
adpcm(e)
adpcm(d)
mepg2(e)
mpeg2(d)

epic(e)
epic(d)

pegwit(e)
pegwit(d)

Figure 8: I-cache energy vs. cache size

BTB Associativity

N
o

rm
al

iz
ed

 T
o

ta
l E

n
er

g
y

0.80

0.85

0.90

0.95

1 2 4 8 16 32

epic(e)
epic(d)

pegwit(e)
pegwit(d)

129.compress
132.ijpeg
adpcm(e)
adpcm(d)
mepg2(e)
mpeg2(d)

Figure 9: I-cache energy vs. BTB associativity

line buffers and bit-segmentation. In Proc. of the 1999
Int. Symp. on Low Power Electronics and Design,
pages 70–75, Oct. 1999.

[5] K. Inoue and K. Murakami. Instruction cache
architecture exploiting program execution footprints. In
International Symposium on High-Performance
Computer Architecture, Work-in-progress session
(included in the CD proceedings), Feb. 2001.

[6] M. Kamble and K. Ghose. Analytical energy
dissipation models for low power caches. In Proc. of the
1997 Int. Symp. on Low Power Electronics and Design,
pages 143–148, Aug. 1997.

[7] M. Kamble and K. Ghose. Energy-efficiency of vlsi
caches: A comparative study. In Proc. of the 10th Int.
Conf. on VLSI Design, pages 261–267, Jan. 1997.

[8] J. Kin, M. Gupta, and W. Mangione-Smith. The filter
cache: An energy efficient memory structure. In Proc.
of the 30th Int. Symp. on Microarchitecture, pages
184–193, Dec. 1997.

[9] A. Ma, M. Zhan, and K. Asanović. Way memorization
to reduce fetch energy in instruction caches. In ISCA
Workshop on Complexity Effective Design, July 2001.

[10] R. Panwar and D. Rennels. Reducing the frequency of
tag compares for low power i-cache design. In Proc. of
the 1995 Int. Symp. on Low Power Electronics and
Design, pages 57–62, Aug. 1995.

[11] S. Segars. Low power desin techniques for
microprocessors. In ISSCC Tutorial, Feb. 2001.

[12] S. Wilton and N. Jouppi. An enhanced access and
cycle time model for on-chip caches. In WRL Research
Report 93/5, July 1994.

[13] E. Witchel, S. Larsen, C. Ananian, and K. Asanović.
Direct addressed caches for reduced power
consumption. In Proc. of the 34th Int. Symp. on
Microarchitecture, Dec. 2001.

