
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Categorizing Questions According To A
Navigation List For A Web-Based Self-Teaching
System : AEGIS

Mine, Tsunenori
Department of Intelligent Systems, Kyushu University

Suganuma, Akira
Department of Intelligent Systems, Kyushu University

Shoudai, Takayoshi
Department of Intelligent Systems, Kyushu University

https://hdl.handle.net/2324/5582

出版情報：Proceedings of International Conference on Computers in Education, 2002-12
バージョン：
権利関係：

Categorizing Questions According To A Navigation List
For A Web-Based Self-Teaching System : AEGIS

Tsunenori Mine, Akira Suganuma, and Takayoshi Shoudai
Faculty of Information Science and Electrical Engineering, Kyushu University

6-1 Kasuga-kouen, Kasuga, Fukuoka 816-8580, Japan
{mine,suga}@is.kyushu-u.ac.jp, shoudai@i.kyushu-u.ac.jp

Abstract

With increasing access to the Internet and the wealth
of material online, a Web-based self-teaching system has
considerable educational value. Accordingly, we developed
AEGIS (Automatic Exercise Generator based on the Intel-
ligence of Students), which automatically generates ques-
tions whose difficulty level fits the achievement level of a
student. However, it was implicitly assumed that all the
questions were already categorized according to their sub-
jects. In practice, this is not the case, but it is unreasonable
(because of time and cost) to expect teachers to categorize
each question into a suitable subject domain. Therefore,
we need a method for categorizing questions automatically
according to specified teaching concepts.

This paper presents an automatic question categoriza-
tion mechanism according to both a list of teaching con-
cepts, called a Navigation List (NaviList for short), and the
meaning of questions. We define an XML tag called a CON-
CEPT tag, which indicates a concept in a question, and
an ontology, which is a hierarchical cluster of concepts.
The method uses the tags and the ontology to categorize
questions, based on the similarity between each category in
a NaviList pre-composed by a teacher and an ontological
concept specified by a CONCEPT tag in a question.

1 Introduction

The World Wide Web is a widely accessible public
source of information, which encourages exploration and
self-help in the pursuit of knowledge, and provides a wide
variety of multi-media contents and added-value services.
In an educational domain, many teachers hold lectures
using Web contents as a teaching material and even de-
velop new lecture methods based on Web technologies. A
Web-based self-teaching system, which enables a student
to study something at his/her own pace, anytime and any-

where, has considerable educational benefits, not only for
students who take part in a lecture, but also for other people
who do not directly take it.

We have developed several kinds of Web-based self-
teaching systems[1, 2, 3]. Through our experiences of
teaching in classes and developing such systems, we recog-
nized the necessity of methods both for evaluating students’
achievement levels and for generating questions suitable for
the students automatically.

We have consequently designed and developed an au-
tomatic evaluator of a student’s achievement level called
AEGIS(Automatic Exercise Generator based on the Intel-
ligence of Students)[4]. AEGIS generates questions from
tagged documents, presents them to students and marks
their answers automatically. AEGIS however expects that
the source documents for generating questions have already
been categorized into a particular domain according to their
subjects. So, AEGIS presents questions to students accord-
ing to their achievement level, but not to the domain where
the questions belong.

From the point of view of an educational policy, these
questions should be tailored according to a concept or an
aim of a lecture because each teacher teaches his/her stu-
dents based on these concepts and aims. The questions
should also be given to students in a suitable order for
his/her lecture. For example, in the case of teaching a
programming language, we may want to present the ques-
tions classified under the category of ‘programming lan-
guage specification’ when focusing on the grammar of the
language. On the other hand, we may want to give the ques-
tions classified under ‘programming patterns’ when focus-
ing on program design. In both cases, the same questions
can be given although the order of presentation may be dif-
ferent. However, it requires a long time and high cost for a
teacher to categorize questions one by one into their suitable
domains. It is therefore important to develop a method for
categorizing questions automatically according to the teach-
ing concept of a lecture.

This paper presents an automatic question categoriza-

tion mechanism according to both a list of teacher’s teach-
ing concepts, called Navigation List (NaviList for short),
and the meaning of questions. We define both an XML
tag called a CONCEPT tag, which indicates a concept in a
question, and a method, which categorizes questions based
on the similarity between each category in a NaviList pre-
composed by a teacher and one or more keywords sur-
rounded by the CONCEPT tags in a question. Such key-
words give a context-sensitive representation of the concep-
tual meaning of a question. The similarity calculation is
performed with an ontology, which is a hierarchical cluster
of questions’ concepts. Each question is categorized into its
most similar category in a NaviList, provided that its simi-
larity is over a predetermined threshold.

After a student selects a category, AEGIS can then
choose the most suitable questions from the category for
him/her, according to both his/her achievement level and
the difficulty level of the question, just as before.

2 A Method for Mapping Questions with a
Category in a NaviList

Our method maps a question onto a category item in a
NaviList if the similarity between them is over a threshold,
which is determined empirically. The similarity is calcu-
lated based on the concepts of a question and those of the
category. The easiest way to calculate the similarity be-
tween them would be matching concept labels attached to
a question with those to the category. Unfortunately, this
method sometimes fails because it requires consistency in
choosing and attaching concept labels to questions and cat-
egories. This is difficult to realize, especially when different
people are making the associations. In any case, concept
labels are not always the same although they may be con-
nected with some relationship such as a-kind-of, synonym,
a-part-of, and so forth. Concepts of a category in a NaviList
usually subsume those of questions. Therefore the similar-
ity calculation between concepts of both a NaviList cate-
gory and a question requires an ontology related to them
(Fig.1).

Our method defines an ontology as a hierarchical cluster
that consists of common concepts of its sub clusters, recur-
sively. The cluster is constructed by a simple linkage clus-
tering method[7, 8]. The cluster’s primitive cluster, called
the base cluster, consists of both a main concept and its re-
lated concepts of questions and NaviList categories. The
main concept can be regarded as a class and its related con-
cepts as its instances. Although a created cluster has at most
a few hierarchies, it is enough for our purpose because the
purpose is not to calculate the exact or precise similarity be-
tween them, but just to find a connection between a question
and a NaviList category.

When we construct the ontology, first, we apply a mor-

Questions pool

Navigation List

category 1

category 2

category 3

category n-1

category n

Ontology

Similarity
Calculation
With Ontology
For Mapping
Each Question
onto A category
in the
Navigation List

III

II I

Other
Fields

.......

Figure 1. Mapping a concept of a question
onto that of a category in a NaviList

phological analyzer[6] to teaching documents. Then, con-
cept labels of a question are attached to the words of specific
parts of speech such as a common noun, proper noun or un-
defined, for example an operator or a reserved word of a
programming language.

The concept labels of a NaviList category are mostly
chosen by NaviList creators (e.g. teachers) from the rep-
resentative concepts in superior level sub-clusters. The rep-
resentative concepts are selected by calculating the weight
of their frequency in a question text, which is referred to
as TF(text frequency), and inverse question text frequency,
referred to as IDF(inverse document frequency).

A procedure to create an ontology is as follows:

1. Transform teaching documents(e.g. MS Power Point
slides) into Web(XML or HTML) format documents.

2. Eliminate XML and HTML tags from the Web format
documents to give plain text documents.

3. Apply a morphological analyzer to the plain text doc-
uments.

4. Reconnect keywords that have been segmented too
much, with hand-written rules.

5. Extract salient keywords according to their TF.IDF
weight.

6. Cluster the keywords by a simple linkage clustering
method[7, 8].

Table 1 depicts a part of ontology automatically gener-
ated from lecture slides about the introduction to C pro-
gramming.

2

Table 1. A part of an ontology created au-
tomatically from Power Point lecture slides
about the introduction to C programming

A part of Ontology related to Text File
Main
Concept

Related Concepts

text file character, line, unit, fprintf, random ac-
cess, sequential, fgetc

fgetc character, processing, text file, lecture,
fgets, input, line, sscanf, unit, output,
fprintf

fprintf character, processing, text file, fgets,
line, unit, fgetc

line character, processing, text file, fgets,
fprintf, fgetc

unit text file, fprintf, fgetc
character raw, text file, string, line, float, numeri-

cal value, concatenation, output, order,
fprintf, comparison, letter, for, creating
date, author, error level, fgetc, abcde,
World

3 A Concept Tag and a Category of a Nav-
iList

This section, first, gives explanations about a new tag,
called a CONCEPT tag 〈CONCEPT〉. Categories in a Nav-
iList are constructed with keywords in a teaching document.
Such keywords are surrounded by concept tags and rep-
resent the conceptual meaning of the document. As men-
tioned in Section 2, we map these keywords onto categories
in a NaviList.

The tag 〈CONCEPT〉 is defined by a DTD of XML
(Fig.2). Tagging a teaching document is partially auto-
mated. First a morphological analyzer[6] is applied to the
teaching document, and then tags are automatically attached
to the document in a simple way based on past attachment
processes. After that, using an authoring tool for XML, the
system asks the user to confirm whether or not newly tagged
areas are correct. The authoring tool can automatically at-
tach concept tags to the areas with the same keyword to
which the concept tag has been attached in the past.

We specify a question in teaching documents by tags
which were formally defined by a DTD of XML[4]. These
tags are also described in Fig.2, which include a tag
〈QUESTION〉 for specifying an area of a question, a tag
〈DEL〉 for specifying a solution, and a tag 〈LABEL〉 for
a hint of some questions. The tag 〈DEL〉 has an attribute
LEVEL for specifying a pair of initial minimum and max-
imum difficulties of the question’s solution. For more de-

〈!DOCTYPE EXERCISE [
〈!ELEMENT QUESTION (#PCDATA | DEL | CONCEPT

| LABEL)*〉
〈!ELEMENT DEL (#PCDATA)〉
〈!ELEMENT CONCEPT (#PCDATA)〉
〈!ELEMENT LABEL (#PCDATA)〉
〈!ATTLIST QUESTION SUBJECT CDATA #IMPLIED〉
〈!ATTLIST DEL CAND CDATA #IMPLIED

LEVEL NMTOKENS #REQUIRED
GROUP NMTOKEN #IMPLIED
REF IDREF #IMPLIED〉

〈!ATTLIST LABEL NAME ID #IMPLIED〉
] 〉

Figure 2. DTD of the tags defined for AEGIS

tailed definitions and explanations, please see [4].
An example of a teaching document with 〈CONCEPT〉

tags, is described in Fig.3. The example has some
words which are surrounded by 〈CONCEPT〉 tags. These
〈CONCEPT〉 tags specify important concepts for teaching
the subject. The concepts are used to construct categories
of a NaviList and an ontology, and also to map a question
onto a category of the NaviList. The question specified by
a tag 〈QUESTION〉 has to contain several keywords sur-
rounded by a tag 〈CONCEPT〉, otherwise it is meaningless.
Each question is classified into a category in a NaviList.
Each category represents one of the important subjects in a
teaching document.

Since we believe that the difficulty of categories’ con-
cepts in a NaviList should depend on the order of the cat-
egories in the NaviList, a question will be categorized into
such a category any of whose concepts’ difficulty is more
than or equal to that of any concepts of a question.

4 The Construction and Functions of AEGIS

Once categorizing questions has been finished, AEGIS
chooses questions from one of the categories. AEGIS is im-
plemented in Java. It runs under JDK (ver. 1.3) and Tomcat
(ver. 3.2). The system is based on the MVC (Model, View,
Controller) model. The MVC model is an application ar-
chitecture, which was firstly introduced at a Smalltalk pro-
gramming environment. This model divides an application
into three parts which are called Model (or logic), View (or
presentation), and Controller (or communication, control).
These three parts can be developed separately because they
are functionally independent from each other. This model
supports modular system development and ease of mainte-
nance.

Our system AEGIS consists of two subsystems: the
Manager System and the User System. The Manager Sys-
tem is used for teachers to manage questions. This system

3

In the previous section, we learned a 〈CONCEPT〉 program 〈/CONCEPT〉 for adding two integers and showing the answer
on the display. In the similar way, for all basic 〈CONCEPT〉 arithmetic operations 〈/CONCEPT〉 including 〈CONCEPT〉
addition 〈/CONCEPT〉, 〈CONCEPT〉 subtraction 〈/CONCEPT〉, 〈CONCEPT〉 multiplication 〈/CONCEPT〉 , and
〈CONCEPT〉 division 〈/CONCEPT〉, we can make a Pascal program in the following way.
〈QUESTIONSUBJECT = ”arithmeticoperations”〉
This program computes the multiplication and division for two input integers and shows the answer.

program enzan;
var x,y:integer;

seki,shou:integer;
begin
〈CONCEPT〉write 〈/CONCEPT〉(’Input two integers : ’);
〈CONCEPT〉readln 〈/CONCEPT〉(x,y);
seki:=〈DEL CAND=”x,xy,x×y,x mul y” LEVEL=”1 5”〉x*y〈/DEL〉;
shou:=〈DEL CAND=”x/y,x÷y,xdivy,x mod y” LEVEL=”1 5”〉x div y〈/DEL〉;
〈CONCEPT〉writeln 〈/CONCEPT〉(’Seki:’,seki);
〈CONCEPT〉writeln 〈/CONCEPT〉(’Shou:’,shou)

end.

〈/QUESTION〉
The 7th statement multiplies x by y, and the 8th statement divides x by y. We note that the answer of “div” is an integer.

Figure 3. Example of teaching documents with the tags

also supports teachers in creating a NaviList with an ontol-
ogy generated from concepts of their teaching documents.

The other system, the User System, helps students to
learn a subject. It has two function modes: Learning Mode
and Test Mode. In Learning Mode, AEGIS shows part of
a teaching text in its normal form (e.g. Power Point slide,
Web pages, etc.), which is utilized for generating questions.
It is useful for students to learn its contents and to con-
firm their understanding of those contents. Furthermore,
from the point of view of teaching materials creator (e.g.
a teacher), Learning Mode can be used for checking how
many students understand the materials and then the ap-
propriateness of the slides to describe questions suitable for
the students. In Test Mode, AEGIS generates questions to
let students try to answer. The questions AEGIS generates
have various levels according to each student’s achievement
level. After submitting their answers, AEGIS marks those
answers and returns the marked results to the student. The
types of a question AEGIS generates are a multiple-choice
question, fill-the-gap question, and error-correcting ques-
tion. The difficulty of a question is strongly related to the
type of the question. The marked results of a series of ques-
tions are stored into each student’s profile, and it is used
to evaluate the new achievement level of the student. At
the same time, AEGIS evaluates the new difficulty level
of questions. These two evaluations are dynamically com-
puted at some predetermined intervals. We have evaluated
the effectiveness of the updating mechanism of both levels
by computer simulations [5, 9], and showed that the esti-
mated difficulty level of a question gradually approaches the
inherent one of the question and the estimated achievement

level of a student does also his/her inherent one, provided
that we assumed there are such inherent levels.

Fig.4 and Fig.5 depict a snapshot of Learning Mode and
that of Test Mode, respectively, both of which generate a
fill-the-gap question.

5 Concluding Remarks

AEGIS[4] is a Web-based self-teaching system, which
searches teaching documents described in XML and gen-
erates three types of questions automatically. A question
to be generated is based on both its difficulty level and the
achievement level of a student who tries the question. In
order to generate the questions automatically, the questions
in a teaching document are specified by an XML tag, called
a QUESTION tag. The user profiles of AEGIS keep his/her
marked results and are utilized to make AEGIS generate a
next question. This generating a question is managed by
one of AEGIS’s subsystems, called the User System. The
effectiveness of this User System was reported by computer
simulations[5, 9].

However, it had been implicitly assumed that all the
questions were already categorized according to their sub-
jects. This paper presented a new subsystem of AEGIS,
called the Manager System, and a method for categoriz-
ing questions which AEGIS generates automatically, using
a new XML tag called a CONCEPT tag. The Manager
System categorizes these questions into the categories of
a NaviList created by teachers, and assists the students in
mastering their subject by navigating them through a lecture

4

Figure 4. Learning Mode

course’s contents, with continual assessment and feedback
by asking and marking appropriate questions.

Teaching materials for AEGIS are intended for text doc-
uments written in XML or HTML. Recently many teachers
use a presentation software for their lectures, for example
Microsoft Power Point. The files of Power Point can be
transformed into Web documents without any difficulties.
They are good materials to generate questions. Although
AEGIS can deal with the documents to create an ontology
and to map a question onto a category in a NaviList, it does
not surround appropriate keywords by 〈CONCEPT〉 tags
yet automatically. We need to continuously investigate a
method to solve the problem. We also have to evaluate the
created ontology and our presented method to map a ques-
tion onto a category in a NaviList.

AEGIS is implemented as a Java application. The mod-
ular design supported by the MVC model has made it
straightforward to extend AEGIS with the new subsystem
reported here. The same modularity should support exten-
sion to AEGIS in its implementation as a multi-agent sys-
tem using the KODAMA framework[10].

Acknowledgment

This research was partly supported by a Grant-in-Aid for
Scientific Research on Priority Areas (2) from the Ministry
of Education, Culture, Sports, Science and Technology, No.
14022239, 2002, and by a Grant for Special Academic Re-
search P&P from Kyushu University, type C, 2001-2002.

References

[1] H. Sato, T. Mine, T. Shoudai, H. Arimura, and S. Hirokawa.
On web visualizing how programs run for teaching 2300 stu-
dents. In ICCE(International Conference on Computers in
Education)97 in Malaysia, pages 952–954, 1997.

Figure 5. Test Mode

[2] T. Mine, D. Nagano, K. Baba, T. Shoudai, and S. Hirokawa.
On-web visualizing a mechanism of a single chip computer
for computer literacy courses. In ICCE(International Confer-
ence on Computers in Education)98, volume 2, pages 496–
499, 1998.

[3] A. Suganuma, R. Fujimoto, and Y. Tsutsumi. An WWW-
based supporting system realizing cooperative environment
for classroom teaching. In World Conference on the WWW
and Internet, pages 830–831, 2000.

[4] T. Mine, A. Suganuma, and T. Shoudai. The design and
implementation of automatic exercise generator with tagged
documents based on the intelligence of students:AEGIS. In
the ICCE/ICCAI 2000, pages 651–658, 2000.

[5] A. Suganuma, T. Mine, and T. Shoudai. Automatic generating
appropriate exercises based on dynamic evaluating both stu-
dents’ and questions’ levels. In ED-MEDIA 2002–World Con-
ference on Educational Multimedia, Hypermedia & Telecom-
munications, pages 1898–1903, 2002.

[6] Y. Matsumoto, A. Kitauchi, T. Yamashita, Y. Hirano, H. Mat-
suda, K. Takaoka, and M. Asahara. Morphological analysis
system CHASEN version 2.2.8 manual. In Technical report,
Nara Institute of Science and Technology, 2001.

[7] T. Mine, S. Lu, and M. Amamiya. Discovering relation-
ships between topics of conferences by filtering, extracting
and clustering. In the 3rd International Workshop on Natu-
ral Language and Information Systems(NLIS2002), to appear,
2002.

[8] O. Zamir and O. Etzioni. Web document clustering:a feasibil-
ity demonstration. In the 21th Intl. ACM SIGIR Conference,
pages 46–54, 1998.

[9] A. Suganuma, T. Mine, and T. Shoudai. AEGIS : Automatic
exercise generator based on the intelligence of students with
tagged documents. In 5th Joint Conference on Knowledge-
Based Software Engineering(JCKBSE2002), to appear, 2002.

[10] G. Zhong, S. Amamiya, K. Takahashi, T. Mine, and
M. Amamiya. The design and application of KODAMA sys-
tem. In IEICE Transactions on Information and Systems,
E85-D(4), pages 637–646, 2002.

5

