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1 Introduction

Requirements to compute stationary flow patterns are often encountered.
With progress of computer environments and increasing demand of precise
analyses, the number of degrees of freedom (DOF) of such a computation has
become larger. However, as far as we know, computational codes are rare,
which are efficient for large scale, stationary, and nonlinear flow problems.
Therefore, we have developed ADVENTURE sFlow [3], which is one of mod-
ules included in the ADVENTURE project [1].

ADVENTURE sFlow uses the Newton method as the nonlinear iteration,
and to compute the problem at each step of the nonlinear iteration a stabilized
finite element method is introduced. Moreover, to reduce the computational
costs, an iterative domain decomposition method is applied to stabilized fi-
nite element approximations of stationary Navier–Stokes equations, for which
Generalized Product-type methods based on Bi-CG (GPBiCG) [6] is used as
the iterative solver of the reduced linear system in each step of the nonlin-
ear iteration. A parallel computing method using the Hierarchical Domain
Decomposition Method (HDDM) is also introduced.

Numerical results show that ADVENTURE sFLow can analyze a station-
ary flow problem with 10 million DOF.

2 Formulation

Let Ω be a three-dimensional bounded domain with the Lipschitz continuous
boundary Γ. We consider the stationary incompressible Navier–Stokes equa-
tions: 




−1
ρ
∇· σ(u, p) + (u·∇)u =

1
ρ

f in Ω, (1a)

∇· u = 0 in Ω, (1b)
u = g on Γ, (1c)
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where u = (u1, u2, u3)T is the velocity [m/s], p is the pressure [N/m2], ρ is the
density [kg/m3], f = (f1, f2, f3)T is the body force [N/m3], g = (g1, g2, g3)T

is the boundary velocity [m/s], and σ(u, p) is the stress tensor [N/m2] defined
by

σij(u, p) ≡ −pδij + 2µDij(u), Dij(u) ≡ 1
2

( ∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2, 3,

with the Kronecker delta δij and the viscosity µ [kg/(ms)].
By application of the Newton method to (1) as the nonlinear iteration

method, the kth step linearized equations become the following: find (uk, pk)
such that





−1
ρ
∇· σ(uk, pk) +

(
uk−1 ·∇)

uk +
(
uk ·∇)

uk−1

=
1
ρ

f +
(
uk−1 ·∇)

uk−1 in Ω, (2a)

∇· uk = 0 in Ω, (2b)
uk = g on Γ. (2c)

To avoid some intricate notations, we rewrite the linearized Navier–Stokes
equations as follows: find (u, p) such that





−1
ρ
∇· σ(u, p) + (w·∇) u + (u·∇)w = f̃ in Ω, (3a)

∇· u = 0 in Ω, (3b)
u = g on Γ, (3c)

where w is a given velocity [m/s]. Obviously, the equations (3) yield (2) by
substituting

uk−1, uk, pk, and
1
ρ
f +

(
uk−1 ·∇)

uk−1

for w, u, p, and f̃ , respectively.
Let Th be a decomposition of Ω consisting of a union of tetrahedra, and

let K be a tetrahedron in Th. Let uh and ph be the velocity and the pressure
approximated by P1/P1 elements. As in [3], a stabilized finite element method
is introduced to (3) as follows: find (uh, ph) satisfying (1c) such that

a0(uh, vh) + a1(wh, uh, vh) + a1(uh, wh, vh) + b(vh, ph) + b(uh, qh)

+
∑

K∈Th

{
τK

((
wh ·∇

)
uh +

(
uh ·∇

)
wh +

1
ρ
∇ph,

(
wh ·∇

)
vh +

(
vh ·∇

)
wh − 1

ρ
∇qh

)
K

+ δK(∇·uh,∇·vh)K

}

= (f̃ , vh) +
∑

K∈Th

τK

(
f̃ ,

(
wh ·∇

)
vh +

(
vh ·∇

)
wh − 1

ρ
∇qh

)
K

, (4)
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where

a0(u, v) ≡ 2µ

ρ

∫

Ω

D(u) :D(v) dx, a1(w, u, v) ≡
∫

Ω

[
(w·∇)u

]
v dx,

b(v, q) ≡ − 1
ρ

∫

Ω

q∇· v dx, (f, v) ≡
∫

Ω

fv dx, (f, v)K ≡
∫

K

fv dx,

vh and qh are test functions satisfying vh = 0 on Γ, wh is the convection
velocity approximated by P1 elements, and the notation “:” denotes the tensor
product. The stabilized parameters τK and δK are defined by

τK ≡ min
{

hK

2 ‖w‖∞
,

ρ h2
K

24µ

}
, δK ≡ min

{
λρh2

K‖w‖2∞
12µ

, λhK‖w‖∞
}

,

where λ denotes a positive constant, ‖w‖∞ denotes the maximum norm of w
in K, hK denotes the diameter of K.

Let Kx = f be the finite element system derived from (4), where K
denotes the regular, asymmetric coefficient matrix corresponding to (4), x
the vector corresponding to the velocity and the pressure, f the vector cor-
responding to the body force and the boundary velocity. Let Ω be divided
into subdomains. Let xi, xb, and xt be vectors corresponding to DOF in the
interior of Ω, on the interface between subdomains, and on Γ, where xt is a
given vector. Then, the system Kx = f can be rewritten as follows:




Kii Kib Kit

Kbi Kbb Kbt

0 0 E








xi
xb
xt



 =





fi
fb
ft



 , (5)

where E is an identity matrix. Eliminating xi from (5), we get the linear
system on the interface:

Sxb = χ, (6)

where

S ≡ Kbb −KbiKii
−1Kib,

χ ≡ fb −KbiKii
−1fi − (Kbt −KbiKii

−1Kit)xt.

GPBiCG is apllied to (6), and xb is obtained. In the implementation, the
matrix S is not constructed explicitly. The products of matrices and vectors
appearing in GPBiCG can be replaced by solving the Navier–Stokes equations
in each subdomain, which implies that the method is fit for parallel computing;
see, for example, [2]. The application of the skyline method to a problem in
each subdomain yields xi from xb. The solution in the whole domain at the
nth step of the nonlinear iteration is then obtained.

In the actual parallel computing, we adopt HDDM [5] for data and pro-
cessor management to have the workload balanced among processors. It has
already been shown that HDDM is effective for a structural problem where
the number of DOF is 100 million [4].
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3 Numerical examples

A model of a station is considered as a numerical example; see Fig. 1. The
station has one platform on the lower floor, one ticket gate on the upper floor,
and three exits from the upper floor to the ground. Two trains are approaching
along the red arrows in Fig. 1 with speeds of 1 [m/s]; fixed boundary conditions
are imposed on the wall boundaries, and the air flows out from the other sides
of the platform and the exits with the stress-free conditions. The body force
is set to be 0. The kinematic viscosity µ/ρ is set to be 1.0× 10−1 [m2/s].

As in Section 2, Ω is divided into a union of tetrahedra, and the flow field
is approximated by P1/P1 elements: the number of elements and DOF are
18, 873, 133 and 12, 943, 664, respectively. The number of subdomains is set to
300, 000. Throughout this section, λ is set to be 1.0.

As in Section 2, the Newton method is used for the nonlinear iteration.
The initial value of the nonlinear iteration is the finite element solution of
the corresponding Stokes problem. The nonlinear iteration is stopped when
the relative rate of changes ‖xn+1− xn‖∞

/ ‖xn+1‖∞ becomes smaller than
1.0 × 10−4, where xn denotes the solution vector at the nth step, and ‖ . ‖∞
is the maximum norm.

In the Stokes equation to obtain the initial condition of the nonlinear iter-
ation, and in each step of the nonlinear iteration, the resulting linear systems
on the interface are solved by GPBiCG with a simplified diagonal scaling
preconditioner. The initial vector of the GPBiCG iteration is taken to be
zero vector in case of the Stokes equation to obtain the initial condition of
the nonlinear iteration, and is taken from the solution vector at the previ-
ous step at each step of the nonlinear iteration. The GPBiCG iteration is
stopped when the relative residual norm ‖χ− Sxb‖2

/ ‖χ‖2 becomes smaller
than 1.0×10−5, where ‖ . ‖2 denotes the Euclidean norm. Computation of the
model was performed on the Alpha21264 system with 30 CPU at the Com-
puting and Communications Center, Kyushu University. It took about 100
hours to compute.

Fig. 2 shows the residual norm versus the number of GPBiCG iterations
at each step of the nonlinear iteration. As the iteration progresses, the con-
vergence of GPBiCG becomes faster. Fig. 3 shows the relative rate of change
versus the number of nonlinear iterations. The nonlinear iteration by the New-
ton method works well. Fig. 4 shows the streamlines in the station. In both
cases, the flow comes into the station along the approaches of the trains, and
goes out from the other sides of the platform and from the exits.

At the end of this section, we consider the difficulty of computations in
case of high Reynolds numbers and large scale problems. Table 1 shows the
computational data on the mesh size and the numbers of DOF. Table 2 shows
CPU time [min] for some Reynolds numbers and meshes. In Cases I and II,
the problem can be solved for six Reynolds numbers. However, as the scale
increases, the problem cannot be solved for higher Reynolds numbers. Finally,
in Case VI, the problem can be solved for only Re = 50.
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4 Conclusion

To analyze the stationary Navier–Stokes equations, ADVENTURE sFlow has
been developed, which is one of the modules produced in the ADVENTURE
project [1]. The Newton method has been introduced as the nonlinear iter-
ation, and the stabilized finite element method as the approximation of the
linearized equations in every step of the nonlinear iteration. Moreover, for par-
allel computations, an iterative domain decomposition method and HDDM
have been introduced, which are based on GPBiCG.

A station model with about 10 million DOF has been analyzed.
We are going to analyze problems in case of higher Reynolds numbers or

coupled problems in the future.
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Table 1. The maximum diameter of mesh and the numbers of DOF.

Case I II III IV V VI

Diameter [m] 1.60 0.90 0.80 0.71 0.59 0.50
DOF [×105] 0.5 2 3 4 7 10

DOF: in round numbers
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Fig. 1. A station model.
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Fig. 2. Relative residuals of GPBiCG at each step of the nonlinear iteration.
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Fig. 3. Relative rates of change in the Newton method.

Table 2. The number of iterations in case of some Reynolds numbers and meshes

Re I II III IV V VI

50 1.67 8.80 15.17 23.07 23.52 48.1
245 1.83 31.60 66.27 120.9 350.5 —
490 1.83 44.45 130.0 343.1 — —
735 2.00 59.20 152.4 — — —
980 2.12 57.77 396.5 — — —
1225 2.25 63.91 — — — —

Unit: [min], —: Divergence
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Fig. 4. The streamlines of the station model.


