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Abstract 

 
 

The importance of spatial uniformity of local critical current, Ic, in long 

length high-temperature superconducting tapes has been increasingly recognized in 

recent years from the viewpoint of reliability and stability of the applied equipment as 

a required specification. The uniformity of local Ic along the CCs was usually restricted 

due to any local obstacles that occurred during the long fabrication process. Usually, 

the Ic along the CCs was limited due to obstacles and characterized by one-directional 

characterization, TAPESTAR. It measures Ic variation as a function of longitudinal 

coordinate and identifies Ic drops for ensuring uniformity in long CCs, but the 

measurement does not give sufficient information to study local obstacles in more detail 

due to a lack of spatial resolution along the tape width direction. However, the Reel-to-

Reel Scanning Hall-probe Microscopy (RTR-SHPM) is possible to visualize 

inhomogeneity on two-dimensional magnetization current distribution because of its 

high resolution across the tape width. Based on this approach, it has been utilized to 

introduce deep learning-based based image analysis, such as classification and object 

detection to analyze the inhomogeneity in the long tape of several hundreds of meters 

because it still requires so much time to analyze the result of RTR-SHPM for whole 

length by the human eye in order for characterizing detailed features of the obstacles 

such as shape, size and position. Moreover, the inhomogeneity of commercial HTS 

coated conductors made from different fabrication  processes is extended by adopting 

the deep learning-based based image analysis to recognize the local obstacle and to 

extract not only merely the critical current, Ic value, but also more detailed information 

on local current limiting factors such as the types of local obstacle in each coated 

conductor tapes, the influence of fabrication processes, statistical properties of local 

defects and its influence on the positional local critical current over the defect region 

even under the influence of intrinsic fluctuation of Ic in the normal region, which are 

difficult to detect by the conventional characterization. Hence, the instant 

characterization or analytical techniques is essential for the evaluation and provide such 

helpful information leading further research and development of the REBCO. 
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Chapter 1 

Introduction 

 

1.1 Background  

1.1.1 High temperature superconductors (HTSs) 

Superconductivity is a phenomenon of the zero electrical resistivity of materials 

when they are cooled to sufficiently low temperature called critical temperature (Tc). 

This phenomenon was first discovered in 1911 by the Dutch physicist H. Kamerlingh 

Onnes and his assistant Gilles Holst in Leiden. They found that the dc resistivity of 

mercury suddenly dropped to zero when the temperature was dropped to below 4.2 K, 

so this material transformed from the normal conducting state to the superconducting 

state for the first time. In the superconducting state, the electrons that carry the current 

are not scattered by the atoms/ions, resulting in dissipation due to thermal motion. Since 

this motion is reduced with decreasing temperature, the electrical resistance is also 

reduced [1, 2]. 

In 1986, the high-temperature superconductivity (HTS) in a perovskite 

structured lanthanum based cuprate oxide (La2-X BaXCuO4) with a critical temperature 

of 35 K was first discovered by Georg Bednorz and Karl Müller [3]. The range of this 

transition temperature best confirmed at present extends from 90 K for the replacement 

of La by Y for the compound YBa2Cu3O7 was discovered by M. K. Wu, P. W. Chu and 

his students at the University of Alabama, Huntsville in 1987 [4]. Many researchers 

have ever investigated the HTSs, including the crystal structure of Bi2Ca2Sr2Cu3Ox 

with Tc > 110 K, which H. Maeda proposed in 1987 [5]. These were usually called type-

II superconductors and a remarkable discovery to push the transition temperatures well 

beyond the liquid nitrogen temperature (77 K), which is a much cheaper and easily 

accessible medium than liquid helium. The development of Tc for various conventional 

and high-temperature superconductors as a function of the year of their discovery is 

shown in Fig. 1.1.  
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Fig. 1.1 The development of Tc for various conventional and high-temperature 

superconductors as a function of the year of their discovery [6] 

 

1.1.2 The architecture of high-temperature superconductors 

The high-temperature superconductivity has a chemical composition of 

REBa2Cu3Ox (Rare-earth barium copper oxide, REBCO). The crystal structure of the 

REBCO superconductor is shown in Fig. 1.2. The CuO2 layers are separated by 

insulating layers and exist superconducting current in its ab-plane.  

 

 

Fig. 1.2 The crystal structure of REBCO superconductor [7] 
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In 1988, The high Jc (103-104A/cm2) was succeeded in epitaxial YBCO films 

deposited on single crystalline oxide substrates (MgO, STO) [8]. The film aligned in c-

axis normal to substrates (out-of-plane) was still randomly distributed high-angle grain 

boundaries in the ab-planes resulting in suppressing critical current density. The method 

to solve this problem is to deposit both in-plane and out-of-plane texturing of the 

superconducting layers on buffered metal substrates in a biaxial alignment. It requires 

biaxially alignment like a single crystal along the long tape [9]. Therefore, the 

superconducting properties of REBCO coated conductors mainly depend on two 

common layers: a biaxially aligned polycrystalline buffer layer on the substrate and an 

epitaxial REBCO layer.  

In order to obtain in-plane grain alignment of buffer layer crystals on a metallic 

substrate, there were two approaches employed: ion beam-assisted deposition (IBAD) 

[10] and rolling-assisted biaxially textured substrates (RABiTS) [11]. Architecture of 

coated conductors based IBAD and RABiTS is shown in Fig. 1.3. 

 

 

 

Fig 1.3 Architecture of coated conductors based IBAD and RABiTS [12] 

 

In 1991, the bi-axially aligned polycrystalline buffer layer on the non-textured 

metal substrate was succeed in introducing of IBAD process that developed by Ar+ ion 

beam irradiated from a particular angle and the epitaxial REBCO layer was deposited 

on this bi-axially aligned polycrystalline buffer layer using pulsed laser deposition 

(PLD). As a result, The Jc was more 105 A/cm2 on the metal substrate [13]. The IBAD 

process is displayed in Fig. 1.4. In the case of  RABiTS, biaxial texturing is carried out 

through cold rolling and recrystallization of the metallic substrate (Ni). This process of 
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biaxially oriented buffer layer on the polycrystalline metallic substrate is deposited 

before the deposition of the superconducting film. 

 

 

Fig. 1.4 IBAD process [14] 

 

However, many groups of researchers have also developed the deposition of 

superconducting layer on this biaxially oriented buffer layer to achieve high current 

density in high magnetic field and scale up this process for long lengths coated 

conductors. Nowadays, the epitaxial superconducting layer is deposited by at least four 

deposition techniques by chemical routes, such as metal-organic deposition (MOD) 

[15] and metal organic chemical vapor deposition (MOCVD) [16], or by physical 

routes, such as pulsed laser deposition (PLD) [17] and reactive co-evaporation (RCE) 

[18]. The schematic of each technique is shown in Fig. 1.5. 
 

 

Fig. 1.5 Development of REBCO film formation techniques [19] 



5 
 

  
 

The development of HTS coated conductors with different fabrications, 

conductor architecture and materials were driven by various manufacturers, namely 

Fujikura Ltd (Japan), SuNAM Co. Ltd (Korea), SuperOx ZAO (Russia), SuperPower 

Inc. (US) etc. The example of a schematic of the structure of REBCO tapes made from 

Fujikura Ltd. is shown in Fig. 1.6. They consists of a subtract, buffer layer, 

superconducting layer, and other stabilizing layers. The CCs can be manufactured in 

flexible, long lengths using IBAD-PLD process. Based on these properties and their 

superior critical current properties under high magnetic fields, they are expected to be 

applied for many applications such as power cables, magnetic resonance imaging 

(MRI), reactors, and other various electrical applications, as shown in Fig. 1.7 [20]. 

 

 
 

Fig. 1.6 Schematic of RE-based HTS tape [21] 

 

 

Fig. 1.7 HTS applications [22-25] 



6 
 

  
 

1.1.3 The evaluations of HTS tapes 

The further optimization in the HTS fabrication process is still required to 

improve not only the long length of tapes but also the non-uniformity of critical current 

(Ic) along the length, which are so important for the high performance of practical 

applications. The non-uniformity of superconducting properties is the main critical 

issue and can result from undesired structural damage, macroscopic defect, 

contamination, and impurities during the long length manufacturing process and 

originate from multiple layers of the CCs [26-28].  

The inhomogeneity normally affects the local critical current (Ic) along the 

longitudinal direction of the tapes so the conventional characterization such as 

TAPESTAR™ [29] is used for evaluating Ic value as a function of longitudinal 

coordinate, shown in Fig 1.8. It is used as a de facto standard method which can indicate 

the significant Ic drops caused by local defects. However, the lack of spatial resolution 

across the tape width makes it difficult to visualize defects in two-dimensional (2D), 

which can study more in detail. Reel-to-reel Scanning Hall-probe microscopy (RTR-

SHPM) [30], [31] has been a promising measurement using scanning Hall-probe with 

high spatial resolution across the width direction as well as the longitudinal direction. 

It measures the distribution of the magnetic fields above the sample in a remanent state 

with a non-destructive and contactless system. By considering the inversion problem of 

Biot-Savart law, the critical current density (Jc) was estimated from the corresponding 

magnetic field distributions. The advantage of this method can provide information 

about 2D Jc mapping along the tapes and characterize the local defect by checking the 

in-plane Jc distributions, as shown in Fig. 1.9. 

 

 
 

Fig. 1.8 Longitudinal distributions of critical currents in a tape characterized by the 

conventional technique: TAPESTAR [32] 
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Fig. 1.9 The current density distribution in a long REBCO coated conductor 

characterized by RTR-SHPM. 

 

 

1.2 Research purpose 

As mentioned above, the non-uniformity along the long tapes is a key issue for 

the high performance of practical applications. Because the mass production of CCs in 

many companies has been fabricated on a scale of several hundreds of meters, the 

instant characterization or analytical techniques is essential for the evaluation and 

provide such helpful information for the improvement of the REBCO. Not only merely 

the critical current, Ic value, but also more advanced information of obstacles is required 

for the research and development. 

Currently, many deep learning algorithms have been used to accelerate and 

solve various challenges of big data [33], [34]. One of the most remarkable candidates 

dealing with various kinds of images and object in image is image recognition, such as 

image classification and object detection [35]. In this research, we integrated high-

resolution 2D characterization: RTR-SHPM with deep learning-based image analysis 

for automatically evaluating more detailed information on local obstacles in the long 

length CCs. 
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Chapter 2 

Characterization method of HTS tapes 

The superconductors are able to transfer large currents through a long length of 

superconductor without electrical resistance or dissipation. This maximum value is 

called the critical current (Ic). Hence, the estimation of the longitudinal distribution of 

the critical current is a basic indicator for characterizing long superconductors. 

Characterization methods of a superconductor are performed by either measuring the 

one-dimensional distribution of critical current or two-dimensional distribution of 

current density distribution (Jc), which is the critical current per unit cross-sectional 

area of the superconductor. The methods, namely RTR-SHPM and TapestarTM system 

are described for evaluating the superconducting properties in this chapter.  

 

2.1 RTR-SHPM system 

2.1.1 Principle of RTR-SHPM 

    In this research, we use RTR-SHPM to characterize the long tapes, as shown in 

Fig 2.1. Because high spatial resolution measurements across the width direction as 

well as the longitudinal direction, the RTR-SHPM characterization can fully visualize 

a two-dimensional (2D) inhomogeneity with a non-contact or non-destructive manner. 

While the long tape was traveling under a liquid nitrogen container in the longitudinal 

direction from transport feeding reel to retrieval reel and passed the external magnetic 

field, then 2D distribution of the magnetic fields above the sample surface in a remanent 

state was measured continuously by scanning a Hall sensor at high speed across the 

width direction [30], [31]. The schematic of RTR-SHPM system is shown in Fig 2.2. 

The spatial resolution was 833 µm and 20 µm in longitudinal and width directions, 

respectively.  
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Fig. 2.1 RTR-SHPM system [36] 

 

 

Fig. 2.2 Schematic of RTR-SHPM system  

 

The system can measure the magnetic penetration after being magnetized until 

the full flux penetration. According to Meissner effect, whenever a superconductor is 

placed in a weak external magnetic field and cooled below its critical temperature Tc, 

the magnetic field is ejected in Fig. 2.3. It does penetrate the superconductor due to also 

small shielding current be generated to prevent the magnetic flux. As the external 

magnetic field increases, more magnetic field penetrates the inside of the 

superconductor, and the shielding current begins to flow and shield such the external 

magnetic field, Fig. 2.4. When the external magnetic field is sufficiently applied until 



10 
 

  
 

the shielding current flows in the center of the conductor and is then removed, the 

shielding current continues to flow in the opposite direction from the applied magnetic 

field. Then, the shielding current flowing at the amplitude of critical current density Jc 

is shown in Fig 2.5. According to Lenz's law, when a changing magnetic field is applied 

to a conductor, it will induce an electric current in the conductor creating an opposing 

magnetic field, even the external magnetic field disappear, the inverse electric current 

also creates an opposing magnetic field. This opposing magnetic field can be measured 

by Hall prob of RTR-SHPM system. Then, this corresponding critical current density 

can be calculated by solving inverted Biot-Savart law. 

 

Fig. 2.3 Shielding current generated by magnetic field [36] 

 

 

 

Fig. 2.4 Shielding current generated by high magnetic field [36] 
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Fig. 2.5 Shielding current after initial magnetization [36] 

 

2.1.2 Evaluation of current density distribution [31], [37] 

The Biot–Savart law is a physics equation that describes the magnetic field 

produced by an electric current. It connects the magnetic field to the magnitude, 

direction, length, and proximity of the electric current. The magnetic field can be used 

to determine the electric current using the inverse Biot-Savart law. 

Biot-Savart Law equation in SI unit is described by the following equation. 

𝑩(𝒓) =
𝜇0

4𝜋
∫

𝑱d(𝒓′)×(𝒓−𝒓′)

|𝒓−𝒓′|3
𝑑𝒓′                                                 (2.1) 

B(r) is resultant magnetic field B at position r created by a steady current density 𝑱d at 

position r', μ0 is the magnetic permeability in a vacuum. By Eq. (2.1), the current 

density 𝑱d  also can be solved by B(r). When comparing the 2D and 3D equations for 

computing current density 𝑱d b y  B(r), the 3D calculation is much more complicated. 

The uniform 𝑱d can be considered two-dimensional in the x-y plane where z = 0. It is 

assumed that a current density 𝑱d lies wholly in a thin sheet and that the thickness can 

be ignored. Furthermore, we assume that the current is quasistatic so that the inverse 

problem can be solved by 2D equation. The x component of magnetic field generated 

by current density Jy at measurement position r (x, y, z) is expressed by the following 

equation. 

𝐵𝑥(𝑥, 𝑦, 𝑧) =
𝜇0𝑧

4𝜋
∫ ∫

𝐽𝑦(𝑥′,𝑦′)

((𝑥−𝑥′)2+(𝑦−𝑦′)2+𝑧2)
3
2

𝑑𝑥′𝑑𝑦′                               (2.2) 

https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Electric_current
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Eq. (2.2) represents a convolution of the current density Jy (x', y') with a weighting 

function, or Green`s function, that depends only on the distance between r and r'. The 

convolution theorem allows us to write this equation as the following equation. 

𝑏𝑥(𝑘𝑥, 𝑘𝑦 , 𝑧) = 𝑔(𝑘𝑥, 𝑘𝑦 , 𝑧)𝑗𝑦(𝑘𝑥, 𝑘𝑦)                                      (2.3) 

In Eq. (2.3), bx (kx, ky, z) and jy (kx, ky) are the two-dimensional Fourier transforms of the 

magnetic field and current density, respectively. g (kx, ky, z) is the Fourier transform of 

the Green`s function: 

𝐺(𝑥 − 𝑥 ′, 𝑦 − 𝑦′, 𝑧) =
𝜇0

4𝜋

𝑧

((𝑥−𝑥′)2+(𝑦−𝑦′)2+𝑧2)
3
2

                               (2.4) 

The two-dimensional Fourier transform is defined as 

𝑗𝑦(𝑘𝑥, 𝑘𝑦) = ∬  𝐽𝑦(𝑥′, 𝑦′)𝑒−𝑖(𝑘𝑥𝑥′+𝑘𝑦𝑦′)𝑑𝑥′𝑑𝑦′                                 (2.5) 

to give the inverse Fourier transform given by 

𝐽𝑦(𝑥, 𝑦) =
1

(2𝜋)2
 ∬  𝑗𝑦(𝑘𝑥, 𝑘𝑦) × 𝑒−𝑖(𝑘𝑥𝑥′+𝑘𝑦𝑦′)𝑑𝑘𝑥𝑑𝑘𝑦 .                      (2.6) 

The variables kx and ky are the components of the spatial frequency k. The transform of 

the expression in Eq. (2.4) can be evaluated analytically and is obtained by the 

following equation. 

𝑔(𝑘𝑥, 𝑘𝑦 , 𝑧) =
𝜇0

2
𝑒

−√𝑘𝑥
2+𝑘𝑦

2

                                     (2.7) 

Similarly, we can calculate the y and z components of the magnetic field: 

𝑏𝑦(𝑘𝑥, 𝑘𝑦 , 𝑧) =
𝜇0

2
𝑒−𝑘𝑧𝑗𝑥(𝑘𝑥, 𝑘𝑦),                                         (2.8) 

and 

𝑏𝑧(𝑘𝑥, 𝑘𝑦 , 𝑧) = 𝑖
𝜇0

2
𝑒−𝑘𝑧 (

𝑘𝑦

𝑘
𝑗𝑥(𝑘𝑥, 𝑘𝑦) −

𝑘𝑥

𝑘
𝑗𝑦(𝑘𝑥, 𝑘𝑦)).                      (2.9) 

In this research, Bz is the only measured component It does not determine both 𝐽𝑥 and 

𝐽𝑦  According to current density obeys the equation of continuity, ∇ ∙ 𝐽 = 0, the 

following equation is also obtained in the transform space. 
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−𝑖𝑘𝑥𝑗𝑥(𝑘𝑥, 𝑘𝑦) − 𝑖𝑘𝑦𝑗𝑦(𝑘𝑥, 𝑘𝑦) = 0                                      (2.10)     

From Eq. (2.9) and (2.10), jx and jy can be solved as 

𝑗𝑥(𝑘𝑥, 𝑘𝑦) = −
2𝑖

𝜇𝑜

𝑒𝑘𝑧0

𝑘
𝑘𝑦𝑏𝑧(𝑘𝑥, 𝑘𝑦 , 𝑧),                                    (2.11) 

and 

𝑗𝑦(𝑘𝑥, 𝑘𝑦) =
2𝑖

𝜇𝑜

𝑒𝑘𝑧0

𝑘
𝑘𝑥𝑏𝑧(𝑘𝑥, 𝑘𝑦 , 𝑧).                                       (2.12) 

In Eq. (2.11) and (2.12), z0 is lift-off distance that from superconductor layer to 

hall probe. 

Because of the measurement noise as increase as signal is amplified, the 

harmonic component must be eliminated. In this research, we applied Hanning window, 

𝑤(𝑘) = {

1

2
(1 + cos

𝑘

𝑘cut−off
𝜋) for     𝑘 ≤ 𝑘cut−off

0 for     𝑘 > 𝑘cut−off

                      (2.13) 

The cut-off frequency, k cut-off  is the cut-off wave number. The spatial resolution 

is determined by k cut-off, which is employed in this investigation. The sheet current 

density distribution Jx and Jy in Eq.  (2.11) and (2.12) can be calculated after removing 

the noise component by multiplying this Hanning-filtered equation.  

 

2.1.3 Estimation of longitudinal distribution of local critical current 

The current Ic distribution in the longitudinal direction is obtained from the 

sheet current density distribution by integrating the absolute value of Jx across the 

width direction, a longitudinal 1D Ic distribution can be derived, as known in Fig. 2.6. 

If the cut-off wavelength 𝜆cut−off(= 2𝜋/𝑘cut−off), is too large in relation to the width 

of the tape, information on the point where the current reciprocates in the middle of 

the tape width is missing. In Fig. 2.7, this relationship depends on the width, w and the  

𝜆cut−off, and taking this into account, Ic can be obtained using the following equation.  

𝐼c =
𝑤

𝑤−0.6𝜆cut−off
∫ |𝐽𝑥|

∞

−∞
d𝑦                           (2.14) 
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In this study, the vector sum of the sheet current densities Jx and Jy was taken 

to evaluate the two-dimensional Jc distribution in the longitudinal direction, taking 

into account the current flowing in the width direction Using  𝐽 = √𝐽𝑥
2 + 𝐽𝑦

2, the one-

dimensional Ic was derived by performing calculations using |Jx| in Equations 2.14 as 

J. 

 

 

Fig. 2.6 the lateral |Jx| distribution for different values of 𝜆cut−off [31] 

 

 
Fig. 2.7 Relationship between the total sheet current, I, (the area of the lateral 

distributions shown in Fig. 2.6) and their cut-off wavelength [31] 
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2.2 TapestarTM system 

2.2.1 Principle of TapestarTM [29], [38] 

TapestarTM is a as a de facto standard characterization for determining local 

critical current by measuring the magnetization of superconducting tapes, as shown Fig. 

2.8. The tape is constantly supplied by a feed reel and travel under liquid nitrogen and 

the perpendicular magnetic field applied by a coil while the tension and position of the 

tape are controlled. The measurement may be done at a maximum speed of 200 m/h, 

with a longitudinal resolution of around 1.1 mm. the schematic of the system is shown 

in Fig 2.9. 

 

 

Fig. 2.8 The TapestarTM system [38] 

 

 

Fig. 2.9 The schematic of TapestarTM system [29] 
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For estimation of longitudinal distribution of local critical current, the magnetic 

field penetration into the superconducing tape measured by an array of Hall sensor is 

shown by the blue points in Fig. 2.10. The distribution of the thin black line passing 

through the blue points is the magnetic field penetration when an external magnetic 

field is applied to the tape and the thick black line on the x-axis represents the tape area. 

The measure field penetration marked as the blue points. In general, there are 7 or 21 

Hall arrays at equal intervals. It means that the higher resolution in the width direction 

can be achieved when number of  array increase. As aresult, the magnetic field 

penetration  is much more accurate.  

 

 

Fig. 2.10  Magnetic field penetration along width direction 

 

The local critical current distribution is evaluated by continuously measuring 

this magnetic field distribution for the entire length. It is calculated by taking the root 

mean squares of the slope of the penetrating magnetic field across the width direction 

at each longitudinal position using an array of Hall elements. It is derived by the 

following equation (2.15). 

𝐼c = 𝛼√∑
(𝐵𝑖+1−𝐵𝑖)2

𝑁−1
𝑁−1
𝑖=1                                                (2.15) 

α is a coefficient for calibration and is determined based on the actual values measured 

by the four-probe method. N means the number of Hall arrays in the measurement. As 

described above, TapestarTM provides the local critical current distribution in 

longitudinal position. 
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Chapter 3 

Image classification for recognizing defect in HTS tapes 

In this chapter, the basic principle of image analysis based deep leaning, the 

process of creating reliable image classification model for recognizing the local 

obstacles from microscopy images of HTS tape obtained by RTR-SHPM the evaluation 

and the matrices for image classification demonstrated the model performance were 

explained.  

 

3.1 The basic principle of image classification based on the convolutional 

neural network [39-41] 

Image classification is a deep learning (DL) that computer algorithm can learn 

from past data or experiences without being explicitly programmed. It is built based on 

convolutional neural networks (CNN) that extract underlying feature of input data, 

known as training data, in order not only to make reliable predictions or decisions but 

also to make more sense to humans. Image classification is used to classify an image 

into different classes or categories. 

 

3.1.1 Neural networks 

(1) Forward Propagation 

The forward propagation is first step in the neural networks to extract  the 

important information from input. The output is extracted from very layers and passed 

on to the next layer until its output is computed at last layer. They are comprised of 

node layers containing an input layer, one or more hidden layers, and an output layer. 

The block diagram of neuron networks consisting of these layers is shown in Fig. 3.1. 
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Fig. 3.1. The block diagram of neuron networks in mathematical terms (a) deep neuron 

networks and (b) single neuron [39] 

 

 
In the case of fully connected artificial neural network, all inputs are multiplied 

by their respective weights and summed. Then, each node connects to another and has 

an associated bias, defined by 

𝑣𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗
𝑚
𝑗=1 + 𝑏𝑘                                             (3.1) 

where xj is the jth input signals, wkj is the weight for the connection to the kth 

neuron and bk is the bias at the kth neuron. Then, the sum of input to the kth neuron, 𝑣𝑘. 

The output from the kth neuron denoted by 𝑦𝑘  is obtained by passing through an 

activation function 𝑓 as follows. 

                                                                     𝑦𝑘 = 𝑓(𝑣𝑘)                                                             (3.2) 

Then, the 𝑦𝑘 is connected to the next layer as an input signal.  

 We now consider the connection among the neurons in the lth and the (l+1)th 

layer. We will use 𝑤𝑘𝑗
𝑙+1 to denote the weight for the connection from the jth neuron in 

the lth layer to the kth neuron in the (l+1)th layer. Similar notation is also used for the 
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biases and outputs, i.e.,  𝑏𝑘
𝑙+1 is for the bias if the kth neuron in the (l+1)th layer, and 𝑦𝑘

𝑙  

is the output from the kth neuron in the lth layer. 

𝑣𝑘
𝑙+1 = ∑ 𝑤𝑘𝑗

𝑙+1𝑦𝑗
𝑙 + 𝑏𝑘

𝑙+1𝑚
𝑗=1                                (3.3) 

𝑦𝑘
𝑙 = 𝑓(𝑣𝑘

𝑙 ) = 𝑓(∑ 𝑤𝑘𝑗
𝑙 𝑦𝑗

𝑙−1 + 𝑏𝑘
𝑙𝑚

𝑗=1 )                                 (3.4) 

 

(2) Activation Function 

The activation function is the function that decides whether a neuron should be 

activated or not. This means that if the input is more important to the network or higher 

than threshold value, the input should be taken into account by applying mathematical 

activation functions. Therefore, the activation function in a neural network is used to 

transfer the weighted sum of the input from the node into the output value to give neural 

nonlinear expression ability.   

Generally, the non-linear activation function used in the neural networks or deep 

learning is the rectified linear unit (ReLU) function. It is a standard function for hidden 

layers in the deep neural networks. 

𝑓(𝑣) = max(0, 𝑣)                                        (3.5) 

  𝑓(𝑣) = {
𝑣      if  𝑣 > 0
0      if  𝑣 ≤ 0

                                              (3.6) 

When the inputs are positive, this function returns the same value as the input, and when 

the inputs are negative or 0, it returns 0. The gradient is not continuous, but it is 

constant. The ReLU is described by the graph in Fig. 3.2.  
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Fig. 3.2 The graph of rectified linear unit (ReLU) activation function. 

 

(3) Classification and Its Confidence Value 

In the very last layer L,  the softmax activation function is used for classification. 

The softmax function takes a vector of real numbers as input and normalizes it into a 

probability distribution with probabilities proportional to the exponentials of the input 

numbers as shown in the following equation. It transforms the numerical value into a 

probability of a specific class between 0 and 1 by summing all classes. 

�̂�𝑘   = 𝑆(𝑦𝑘
𝐿) =

𝑒𝑦𝑘
𝐿

∑ 𝑒
𝑦𝑗

𝐿
𝑛
𝑗=1

                                    (3.7) 

where,  �̂�𝑘 is probability score for the class k. 

             𝑛 is the total number of classes. 

            𝑦𝑘
𝐿 is output score for the class k in last layer L. 

 

As can be seen, the softmax function is essentially same to the Boltzmann distribution 

which gives the probability distribution of states with its energy. From this analogy, it 

is reasonable that the softmax function gives us the confidence value of the predicted 

class in the classification.  
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(4) Loss Function 

To evaluate the performance of a classification model, cross-entropy loss is 

generally used in the classification as described below. The loss value will decrease as 

the predicted probability close to the actual label results in a low loss value. It is defined 

as the following. 

𝐸 =  − ∑ 𝑦𝑘
𝑛
𝑘=1 log �̂�𝑘                                    (3.8) 

where, 𝐸 is the loss value.  

            𝑦𝑘  is output score of the ground truth for the class k. 

            �̂�𝑘  is the predicted value for the class k. 

In a binary classification task, where 𝑛 = 2 (total number of classes)  , the cross-

entropy loss is defined as. 

𝐸 =  −𝑦1 log �̂�1 − (1 − 𝑦1) log(1 − �̂�1)                     (3.9) 

 

(5) Backpropagation 

During the training process of deep neuron network, the first step follows 

forward propagation in the network, where the data is passed through all layers, from 

the input layer to the output layer. After that, the loss function is calculated at final 

output layer by comparing between predicted value and ground truth value. In order to 

minimize this loss value calculated by the forward propagation, the backpropagation is 

used to calculate the gradient descent for minimizing the loss function by adjusting 

weights and biases.  

We start consideration from the influence of total input 𝑣𝑘
𝐿 to the kth node to the 

output error at the very last layer L. We define the error 𝛿𝑘
𝐿 as follows. 

𝛿𝑘
𝐿 ≡

𝜕𝐸

𝜕𝑣𝑘
𝐿                                            (3.10) 

Using chain rule, we can obtain following relationship. 

𝛿𝑘
𝐿 ≡

𝜕𝐸

𝜕𝑣𝑘
𝐿 = ∑

𝜕𝐸

𝜕𝑦𝑗
𝐿𝑗

𝜕𝑦𝑗
𝐿

𝜕𝑣𝑘
𝐿 =

𝜕𝐸

𝜕𝑦𝑘
𝐿

𝜕𝑦𝑘
𝐿

𝜕𝑣𝑘
𝐿 =

𝜕𝐸

𝜕𝑦𝑘
𝐿 𝑓′(𝑣𝑘

𝐿)             (3.11) 
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Note that 

𝜕𝑦𝑗
𝐿

𝜕𝑣𝑘
𝐿 = {

0                for 𝑗 ≠ 𝑘

𝑓′(𝑣𝑘
𝐿)       for 𝑗 = 𝑘

                              (3.12) 

We can then extend it to the error of neuron k in the lth layer, denoted by 𝛿𝑘
𝑙 . 

𝛿𝑘
𝑙 ≡

𝜕𝐸

𝜕𝑣𝑘
𝑙                                                (3.13) 

By using chain rule technique,  

𝛿𝑘
𝑙 ≡

𝜕𝐸

𝜕𝑣𝑘
𝑙 = ∑

𝜕𝐸

𝜕𝑣𝑗
𝑙+1

𝜕𝑣𝑗
𝑙+1

𝜕𝑦𝑘
𝑙𝑗

𝜕𝑦𝑘
𝑙

𝜕𝑣𝑘
𝑙 = ∑ 𝛿𝑗

𝑙+1 𝜕𝑣𝑗
𝑙+1

𝜕𝑦𝑘
𝑙𝑗

𝜕𝑦𝑘
𝑙

𝜕𝑣𝑘
𝑙               (3.14) 

From Eqs. (3.3), and (3.4) 

𝜕𝑣𝑗
𝑙+1

𝜕𝑦𝑘
𝑙 = 𝑤𝑗𝑘

𝑙+1                                         (3.15) 

Therefore, 

𝛿𝑘
𝑙 = ∑ 𝛿𝑗

𝑙+1𝑤𝑗𝑘
𝑙+1

𝑗 𝑓′(𝑣𝑘
𝑙 )                               (3.16) 

We can think of this as moving the error backward through the network from the very 

end layer L, then can obtain the error at arbitrary layer l. Next, we consider the influence 

of weights and biases by the partial derivative of loss function by weights and losses.  

Using the chain rule, the derivatives for weight at the lth layer can be obtained as 

follows.  

𝜕𝐸

𝜕𝑤𝑘𝑗
𝑙 =

𝜕𝐸

𝜕𝑣𝑘
𝑙

𝜕𝑣𝑘
𝑙

𝜕𝑤𝑘𝑗
𝑙 =

𝜕𝐸

𝜕𝑣𝑘
𝑙

𝜕(∑ 𝑤𝑘𝑗
𝑙 𝑦𝑗

𝑙−1𝑚
𝑗=1 +𝑏𝑗

𝑙   )

𝜕𝑤𝑘𝑗
𝑙 = 𝛿𝑘

𝑙 𝑦𝑗
𝑙−1         (3.17) 

Similar way, the derivatives for the biases in the lth layer can be obtained as follows. 

𝜕𝐸

𝜕𝑏𝑘
𝑙 =

𝜕𝐸

𝜕𝑣𝑘
𝑙

𝜕𝑣𝑘
𝑙

𝜕𝑏𝑘
𝑙 =

𝜕𝐸

𝜕𝑣𝑘
𝑙

𝜕(∑ 𝑤𝑘𝑗
𝑙 𝑦𝑗

𝑙−1𝑚
𝑗=1 +𝑏𝑘

𝑙 )

𝜕𝑏𝑘
= 𝛿𝑘

𝑙                  (3.18) 

We can calculate those derivatives by 𝛿𝑗
𝑙 using backpropagation. This then allows us to 

adjust (train) the weights and biases to minimize the loss function. To decrease the 

error, we then subtract this derivative value from current value multiplied by a learning 

rate γ as follows. 
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𝑤𝑘𝑗
′𝑙 = 𝑤𝑘𝑗

𝑙 − 𝛾𝛿𝑘
𝑙 𝑦𝑗

𝑙−1                                  (3.19) 

𝑏𝑘
′𝑙 = 𝑏𝑘

𝑙 − 𝛾𝛿𝑘
𝑙                                         (3.20) 

where, 𝛾 is learning rate. 

𝑤𝑘𝑗
𝑙  is the old weight in the lth layer. 

𝑤𝑘𝑗
′𝑙 is the new weight in the lth layer. 

𝑏𝑘
𝑙  is the old bias in the lth layer. 

𝑏𝑘
′𝑙 is the new bias in the lth layer. 

 

3.1.2 Convolutional neural networks (CNNs) 

 
In the fully connected neural network, the numbers of parameters become so 

large for the analysis of images. To reduce the parameters by keeping the local 

relationship, convolutional neural networks (CNNs) are now widely used for DL based 

image analyses such as classification and object detection. They have a large amount 

of data and can be computationally demanding, requiring graphical processing units 

(GPUs) to train models. They consist of three main layers: convolutional, pooling, and 

fully connected. In principle, convolutional neural networks, do not link every neuron 

in each layer to every neuron in the next layer, relying on weight sharing instead. The 

weights are connected locally, meaning one node only links to nodes in the following 

layer. This concept is beneficial for images because it is reasonable to assume that every 

pixel has some correlation to the neighbors. 

 
(1) Convolutional Layer 

 
An image is represented as matrices in the computer by their RBG values. This 

means that image input will have three dimensions, height, width, and depth, 

corresponding to RGB in an image. Therefore, the convolution process starts with 

extracting the features from the pixel using a kernel or a filter, which will move over 

the image fields, checking if the feature is present. The kernel is a two-dimensional (2-

D) array of weights representing part of the image. The filter is then applied to a part of 

the image, and the dot product between the input pixels and the filter is calculated, so 

the filter then shifts by a stride and repeats the operation until the kernel has swept 
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across the entire image. This dot product is then supplied into an array of outputs. The 

illustration of convolutional layer is shown in Fig. 3.3. The final feature map is the 

ultimate output of a series of dot products from the input and the filter. 

 

 

 
Fig. 3.3 Convoluted feature output [42] 

 
(2) Pooling Layer 

Pooling layer, also known as down sampling, reduces the number of parameters 

in the input by performing dimensionality reduction. The pooling process, like the 

convolutional layer, sweeps a filter across the whole input, but this filter does not 

contain any weights. Instead, the kernel applies an aggregation function on the receptive 

field values, creating the output array. There are two main types of pooling. Firstly, 

max pooling is the filter that take the pixel with the highest value to the output array as 

the filter moves across the input. Secondly, Average pooling is the filter, which 

calculates the average value within the receptive field and sends it to the output array. 

In comparison to average pooling, this strategy is employed more frequently.  

The illustration of 2x2 pooling applied to 3x3 convoluted feature is shown in 

Fig. 3.4. While the pooling layer loses a lot of information, it does provide certain 

advantages for the CNN. They assist in reducing complexity, increasing efficiency, and 

reducing the danger of overfitting. 

 



25 
 

  
 

 

Fig. 3.4 The illustration of two pooling types with 2x2 filters and stride 1 

 

 
(3) Fully Connected Layer 

 
After passing through the final convolution and pooling layer, the data is 

flattened or transformed into a one-dimensional (1D) array of numbers (or vector) and 

then fed into the fully connected layer, which has full connections to every neuron in 

another layer, as seen in regular artificial neural networks.  The flattened array goes 

through the fully connected layer to classify the images by using activation function 

such as softmax. 

 
(4) GoogLeNet Architecture 

One of the difficulties in this study is the limited number of training data sets 

especially for defect regions. We first identified local defects by use of local critical 

current criterion, however, the numbers of the defects are still relatively small because 

the samples investigated in this study are practical industrial materials. In order to 

develop reliable image classification model from such limited number of data sets, we 

adopted a pre-trained well-known GoogleNet architecture, and fine-tune its parameters 

through training using our own images.  

The GoogleNet was pretrained on approximately 1.28 million images (1,000 

object categories) from ImageNet dataset with an error rate of 6.67%. The architecture 

consists of 22 layers deep, with 27 pooling layers included and 9 inception modules 
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stacked linearly in total, as known in Fig. 3.5. All inception models compute the feature 

at different scales using variable size convolutional filters, namely 1 × 1, 3 × 3 and 5 × 

5 and an additional 3 × 3 max pooling to capture more discriminative features from the 

pattern passed from the previous layer. These four branches all use same padding to 

give the input and output the same height and width before concatenating into a single 

output vector forming the input of the next stage. After that, the output is passed on to 

the classifier, which composes of one average pooling layer, one convolutional layer, 

two fully connected layers with 1,000 units, and a softmax activation layer for 

estimating class probabilities. We reduced the output of the fully connected layers from 

1000 categories to 2 for our purpose to produce a binary output. All convolutional layers 

in this network use the ReLU activation function. Moreover, during the training 

process, two more auxiliary classifiers are plugged on top of the third and sixth 

inception modules to calculate the overall loss.  

This approach allows us to develop a reasonably high performance image 

classification model even from small number of defect images. Detailed results are 

described in section 3.2. 

 

 

Fig. 3.5 GoogLe5Net architecture based on CNN [41] 
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3.1.3 Deep learning platform provided by IBM PowerAI vision 

 
Deep learning is basically a type of machine learning and made up of very deep 

with multiple hidden layers based on complicated convolution neuron network. It has 

been popular utilized to help the computer perform the difficult tasks through 

perception, more like the way human does. However, according to the complicated 

algorithms behind the deep learning, IBM PowerAI Vision has now provided a 

complete platform for image analytics, such classification and object detection by 

wrapping up the complex code tasks for users. It invents the model on top of based deep 

learning so that we can get the most accuracy model. Hence, we can create, label, train, 

validate, and deploy the models easily for image analytics. The simple outline of IBM 

PowerAI Vision is shown in Fig. 3.6.  

 
 

 

 

 
Fig. 3.6 The outline of IBM PowerAI Vision [43], [44] 
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3.2 Building image classification model 

3.2.1 Data preparation 

(1) Sample 

The commercials long REBCO coated conductors manufactured by the 

different manufacturers, and each specific tape is shown in Table 4.1. 

 

Table 3.1 The specification of the investigated commercial long tape 

Manufacturer  Fujikura 

Specification  

Fabrication process IBAD/PLD 

Width [mm] 4 

Length [m] 200 

Total thickness [mm] 0.16 

Rare earth Gd 

Substrate 
Hastelloy C-

276 

Substrate thickness [µm] 75 

Performance 

@77K, SF 
Ic [A] guaranteed >250 

 

(2) Data Set 

The data set is 2D critical current density mapping images taken from the RTR-

SHPM. The distribution of critical current density, Jc flowing along the CCs gives 

information about 2D inhomogeneity as well as Ic obtained by integrating the 

corresponding Jc across the width of tape. These images were collected every 50 mm 

in length and with 10 mm in width. The entire data set consisted of 4047 images along 

the CC. The example of 2D Jc mapping images, including minimum critical current, 

Ic,min value in each image is shown in Fig. 3.7. 
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Fig. 3.7 The example of 2D Jc mapping images 

 

3.2.2 Training set 

The training set is a set of data used to teach the model to learn the hidden 

features in the data. We used Jc images containing local obstacles for this training data 

set. According to the localized drop in the magnetization current visualized by the RTR-

SHPM technique, we defined the position at where the magnetization current drop 

locally as a position of defect related to the large discrete local Ic drops [27], [45]. The 

local Ic drops used as minimum Ic value (Ic,min) of each image was also collected and 

assumed to be relevant to the defect/normal position within the image. The statistical 

probability distribution of the Ic,min value for all images is displayed in the histogram 

with a semi-logarithmic plot in Fig. 3.8. By studying the statistical distribution, we can 

identify the group of Ic,min distribution by double peak separated by the Ic,min at around 

245 A. This distribution indicated the group in the Ic,min lower than 245 was dominated 

by extrinsic defects, not by an intrinsic Ic distribution. We selected these 8 images from 

this region for the training category. However, the model needs to separate these defects 

by knowing the different matrix between defect and normal region. The clear normal 

region image is very important for training the normal region. These normal images 

were selected from the normal position with higher than an average Ic,min of 275 A. 

There were 100 images available for the normal category. Finally, the model technically 

learns the underlying features from these two training categories. The example of Jc 

images of two categories, including local Ic,min value in each image is shown in Fig. 3.9. 

279 A 

AA 

258 A 

AA 
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Fig. 3.8. The histograms of all Ic,min values for all images along the CC, including 

training defect group at around lower  Ic,min of 245 A  

 

Fig. 3.9. The example of Jc images of two categories, including Ic,min values 

 

3.2.3 Performance of the image classification model  

In this research, we used the GoogLeNet architecture [41], a Deep 

Convolutional Neural Network (DCNN) developed by researchers at Google via the 

IBM PowerAI Vision platform. The platform offers built-in deep learning models that 

learn to analyze images for classification. It wraps up the complex code tasks in a simple 

to learn and use web interface.  
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We trained the model using Graphics Processing Units (GPU). The labeled 

training data sets were automatically divided into two for training and validation with 

the ratio of 0.8, i.e., 80% of the images in the data set (at random) being used for training 

and 20% being used for validation [44]. All model hyperparameters as illustrated in 

Table. 3.2. 

 

Table 3.2 The Model hyperparameters of model. 

Model hyperparameter value 

Learning rate 0.001 

Weight decay 0.0005 

Test interation 100 

Max interation 1500 

Test interval 10 

Ratio 0.8 

 

The data was passed through the training algorithm with 700 iterations and a 

learning rate of 0.001 and weight decay to minimize the loss function and reduce the 

error during the training. 

 The relative performance of the image classification model can be shown by 

increasing to high accuracy of 100% whereas the training loss and test loss both 

decreased close to zero with similar tendency during the iteration process, as shown in 

Fig. 3.10. This model could be shown a good fit for the learning algorithm with high 

reliability at the end of the training process without over fitting.   
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Fig. 3.10. Graph of loss and accuracy vs iterations during the training process of the 

image classification model 

 

3.3 Evaluation of the image classification model [46] 

The evaluation is an essential part of machine learning to determine the 

performance of the models. The confusion matrix is commonly used to evaluate the 

performance of the classification task. It displays a table for visualizing more detailed 

predictions of correct and incorrect classifications for each class. This matrix consists 

of 4 different combinations of predicted and actual values, as shown in Fig 3.11. 

 

Fig.  3.11 Confusion matrix 
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Note that a binary classification problem has only two classes to classify, preferably a 

positive and a negative class. The definition of the abbreviations in each cell is 

described below. 

Where, True Positive (TP): It means that the number of predictions has correctly 

predicted the positive class as positive. 

True Negative (TN): The number of predictions has correctly predicted the negative 

class as negative. 

False Positive (FP): The number of predictions has incorrectly predicted the negative 

class as positive. 

False Negative (FN): The number of predictions has incorrectly predicted the positive 

class as negative. 

By taking advantage of this confusion matrix, we can measure the other metrics 

such as recall, precision and accuracy. Recall is a measure of how accurately our model 

can identify the relevant data and sensitivity of the model. It is defined as the proportion 

of correct classifications to actual images in that class, as the following equation (3.21).  

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                              (3.21) 

Precision is the quality of repeated predictions made by the model. It is defined as the 

proportion of correct classifications to total predictions, as the following equation 

(3.22). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                       (3.22) 

Whenever data for test is an imbalance, using recall or precision alone cannot evaluate 

the model performance well. As shown in equation (3.23), the F1-score is a matric that 

balances the precision and recall in a single measure by considering the weighted 

harmonic mean.  

F1 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                    (3.23) 



34 
 

  
 

The overall accuracy of the model, meaning the ratio of the total samples that were 

correctly classified, compared to the total samples. It can calculate by using the 

following equation (3.24) below. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                 (3.24)  

We set up images used for this confusion matrix evaluation using 200 Jc map 

images at various Ic,min values selected from the whole 4047 images along the CC. For 

actual classes, 90 images are defect class as 110 images are normal class. The image 

classification model can perform well with these images that 22 actual defect images 

were misclassified as normal class, as shown in Fig. 3.12. From this confusion matrix, 

we can also calculate metrics such as accuracy, precision, and recall. The score of the 

image classification model is as follows: accuracy of 93.7%, precision of 100%, and 

recall of 75.6%. 

 

Fig. 3.12. Confusion matrix for image classification model 

 

3.4 Image classification result of a 200 m long commercial REBCO tape 

used for creating model 

3.4.1 Classification result 

The image classification could classify any local defects based on the shape of 

2D Jc mapping related to the size and position of defects at a different local Ic,min value 

as shown in Fig. 3.13. The reliability of the decision was also shown by a heat map and 

the highest confidence relating probability of classification. 
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The heat map obtained from gradient-weighted class activation mapping (Grad-

CAM) [47] can help to understand which regions of an image led a CNN to its final 

classification decision by producing the heat map of class activation over input images. 

In order to obtain this class discriminative localization map Grad-CAM of width (u) 

and height (v) for any class c, (i.e., 2D for normal and defect map) so, it first computes 

the gradient of the score for class c, yc (before the softmax), with respect to feature maps 

with the width (from i to u) and height (from j to v) dimensions, 𝐴𝑖𝑗
𝑘  of the convolutional 

layer. And then, these gradients are applied to global average pooling (GAP) over 2D 

dimensions to obtain the neuron importance weights 𝛼𝑘
𝑐 . 

𝛼𝑘
𝑐 =

1

𝑍
∑ ∑

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘

𝑣
𝑗=1

𝑢
𝑖=1                                            (3.25) 

Where, 
1

𝑍
∑ ∑ is𝑣

𝑗=1
𝑢
𝑖=1  the global average pooling in the width and height dimensions  

            Z is the total number of elements in feature map, Z=uv.  

           K is the number of feature maps (i.e., K=3; A1 (red), A2 (green), and A3 (blue)) 

This 𝛼𝑘
𝑐  is a partial linearization of the deep network downstream from 𝐴𝑘 that 

captures the importance of the feature map for a target class c. To obtain Grad-CAM, 

the weighted combination of forward activation maps follows by a ReLU. 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈(∑ 𝛼𝑘

𝑐𝐴𝑘
𝑘 )                         (3.26) 

Where,    𝛼𝑘
𝑐  is neuron importance weight. 

               𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐  is Grad-CAM heatmap. 

               𝑅𝑒𝐿𝑈 is the activation function. 

 

The idea behind Grad-CAM is to take advantage of a specific kind of 

convolutional neural network architecture to produce heat map visualizations. It could 

help us determine whether the model has correctly learned the features of this 

classification. The red area of the heat map in the defect images corresponds to the areas 

that were of the highest relevance with the defect position. 
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Fig. 3.13 The example of Jc mapping images at different  Ic,min containing defect 

classified by image classification, along with heat map images and score of confidence 

in lower images 

Furthermore, the 2D Jc mapping images containing defect and normal images 

with the same Ic drop value were still classified and compared to the Ic variation around 

the area measured, as shown in Fig. 3.14. The defect images at Ic drop of 270 A 

corresponded to the deduction of the intensity of Jc mapping at the curtain defect 

position. The local Ic drop around the defect tended to broaden along the longitudinal 

direction, which referred to the defect size whereas the normal area could also be 

classified without any significant large obstacle related to intrinsic Ic fluctuation and 

provided the heat map responded to the whole region on the tape in the images. 

 

 

Fig 3.14 Comparison between a defect and normal image at the same local Ic,min of 270 

A, including Ic variation of both images 
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3.4.2 Statistic Ic,min value classified by image classification 

The long CC was recognized as defects by the image classification model. Most 

Jc mapping images were used to classify two different kinds of images as the training 

set. The classification model classified 372 images into defect category, including 

training defect images, and 3675 images into normal category, so the 9.2% out of All 

images divided 5 cm-length individually was the defect region. It indicates that the 

frequency of the local defect located at least 1-2 defects per 1m-length. Moreover, the 

distribution of defect images can be seen in the semi-logarithmic plot with the count of 

local Ic,min distribution in Fig. 3.15. The histogram shows the relationship between the 

number of defect images and various local Ic,min values. It displayed the distribution of 

defects with a wide Ic distribution value 228 A to 275 A. It indicates that many hidden 

localized defects at Ic drops at high values were still the existence and detected by image 

classification. 

 

 

Fig. 3.15 Histogram with the probability density of local Ic,min distribution of all images 

after being classified 

 

 

 

 

 



38 
 

  
 

3.4.3 Distribution of confidence value in the classification 

In general, classifications can generally classify and provide confidence value 

showing the reliability of each prediction. The confidence value is a decimal number 

between 0 and 1, interpreted as a percentage of probability at last layer of CNN. 

Moreover, there is not any specific threshold for each class. It may be different from 

one class to another class. Therefore, the determination of the confidence value seems 

to be important to show the reliability of the classification.  

After the whole images along the long length of the CC were passed to 

recognized defects by this model, Most Jc mapping images were used for classifying 

into two different kinds of images as the training set. The classification model classified 

372 images into defect category, including the number of training defect images. The 

count of defect images with various confidence scores between 0.5 and 1 can be seen 

in the semi-logarithmic scale with the histogram as a function of local Ic,min values in 

Fig. 3.16(a). It indicated that around 80 % of these defect images were classified well 

with a confidence score of more than 0.9, and the tendency of confidence value of these 

defect images seemed to decrease, as the Ic,min value started to increase from 260 A, as 

shown in Fig 3.16(b). Because classification prediction is starting to be a hard task to 

discriminate defects from normal images based on training experience. 

On the other hand, classification classified 3675 images into the normal image 

category with high confidence value, which 98% of normal images were higher than 

0.9 of confidence score, as shown in 3.16(c). However, similar to the case of defect 

category, a low confidence value can be seen in the range of Ic,min = 250~275 A, which 

is close to the lower limit of Ic,min in the category of normal, as shown in Fig. 3.16(d). 

The averaged confidence value in both categories as a function of Ic,min was displayed 

in Fig. 3.16(e). It indicated that the confidence value increases as the Ic,min decreases in 

the defect category, whereas the normal category has a high confidence value as the 

Ic,min increases, and the crossover point is around Ic,min=260 A. It is very reasonable 

because local obstacles will suppress the Ic,min. 
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Fig. 3.16 Confidence values obtained by image classification: (a) histogram as function 

of local Ic,min values with the number of defect images in semi-logarithmic scale (b) 

confidence of defect images vs local Ic,min values (c) Histogram as function of local Ic,min 

values with the number of normal images in semi-logarithmic scale. (d) confidence of 

normal images vs local Ic,min values (e) confidence of both categories vs local Ic,min 

values including an average of confidence overlayed. 
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3.4.4 Influence of imbalanced data 

Imbalanced data is a crucial problem in the present analyses because the number 

of data set for defects are much less than that of normal region. In our case, it refers to 

learning patterns from the imbalanced data as an input for the training classification 

model using 8 and 100 images for defect and normal categories. These number of 

defected images were very much limited especially in the beginning of this research. 

We first identified the extrinsic defect based on a low local Ic criterion (< 245A).  

To train a model with such limited train dataset, we adopted high performance 

pre-trained GoogleNet model as the basic architecture [48], [49] in our network. The 

GoogleNet was trained on the ImageNet database of images. We reduced the output of 

the fully connected layers from 1000 categories to 2 for our purpose to produce a binary 

output. We then fine-tune the parameters through the training using our own dataset. 

As a result, the classification can still perform to classify into both categories well after 

training with these imbalanced data. Moreover, the classification results can be seen 

from the reasonable heat maps that illustrate where the defect regions are located and 

the tendency of the confidence score.  

However, based on the results of confusion matric, some categories of the Jc 

images with small size of defects (i.e., close to normal class) are still misclassified into 

normal due to the low number of training data for defect category that refer to 

imbalanced data resulting in more sensitivity to the majority class as normal category. 

For example, in some cases of less confidence value than 0.9, the images will contain 

a small defect that the model could not classify as a defect image, as shown Fig. 3.17, 

but the model responded to the possible position of the defect by the deficiency of heat 

map indicating the reliability and possibility of the more accurate model itself, 

including a good agreement with low loss value showing learning correctly. This result 

suggests that the imbalanced training dataset influences the threshold value in the 

classification. 

Based on the classification obtained in the first model described in this chapter, 

we could further identify the defect images which were difficult in the initial stage, the 

model can carry out additional training by adding more defect images in the training. 

The result showed that much more images were classified as defect category and the 
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initial defects from original model were still classified by improved model. These 

results were displayed in the next chapter including the influence on the confidence 

value in the classification. 

The influence of the imbalanced dataset on the precision of the classification is 

not yet fully understood in this analysis and the method to increase the training datasets 

for defect images need to be studied further as a future task.  

 

 

Fig. 3.17 The defect image was used as input data (left), and Jc image with the resultant 

heat map overlayed was classified as normal image, including confidence score (right). 
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Chapter 4 

Further upgrade of the performance of the image 

classification 

In this chapter, the improvement of defect recognition reliability was 

demonstrated after increasing the training data and using the training data with multi-

categories. Then, the image classification was applied to different long HTS tapes to 

extract valuable information regarding the local obstacles so that the properties can be 

estimated based on this approach, which could not be identified by the conventional 

method. 

 

4.1 Improvement of the reliability of the classification after additional 

training 

For further improvement of the first classification model, the additional training 

images need to strengthen the network for higher performance of the classifier. Even 

though the first model succeeded in identifying the significant large obstacles in the Jc 

images well, the number of defect images, for example normal image with lower 

confidence than 0.9, was not still able to classify to defect categories. Based on this 

information, we considered training the model using the additional training defect 

images showing obstacles clearly and then took 33 normal images with the low 

confidence ranging from 0.5 to 0.7, as shown in Fig. 4.1. The example of the additional 

defect image, including the first model's result, is shown in Fig. 4.2. 
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Fig 4.1 Additional training defect image at low confidence of normal images 

 
 

 
 

Fig 4.2 the example of additional training a defect image, including the result from the 

first model 

 
 

After the model was retained on the traditional data combining the additional 

data, The performance of the improved model named model 2 is present by the loss 

value vs Iteration in Fig. 4.3. It indicated that the accuracy of model 2 was increasing 

over time during the training process while the loss of train and test value was going 

down to zero at the same time. At the end of the training process, model 2 was generated 

under reasonable learning curves without overfitting the data. 

The confusion matrix used in the evaluation of model 2 is shown in Fig. 4.4. 

Four metrics were obtained from the binary confusion matrix, namely recall, precision, 
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accuracy, and F1-score, as illustrated in Table 4.1. As a result, all matrices of model 2 

achieved a reasonably high value compared with model 1. 

 

 
 

Fig. 4.3 Graph of loss and accuracy vs. iterations during training process of Model 2 

 

 

 
 

Fig. 4.4 Confusion matrix of Model 2 

 
 
 

Table 4.1 Metrics for evaluation of the classification models  

 

Model Recall  Precision Accuracy F1 

1 0.756 1 0.937 0.861 

2 0.967 0.936 0.955 0.951 
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Moreover, model 2 was able to classify 929 and 3118 images into the defect and 

normal categories. The number of defect and normal images vs the local Ic,min  value is 

shown in Fig. 4.5. The number of defect images is almost 2.5 times more than in model 

1. It displayed the distribution of defects showing much more defects at Ic,min value 

ranging 260-270 A and indicates that smaller obstacles at Ic drops at high values were 

still the existence and detected by model 2. The typical defect image that can be detected 

by model 2 compared to model 1, as shown in Fig. 4.6. The result shows that model 2 

gave reasonable results with high confidence and heat map responding to the defect 

region in the Jc image. It means that the increase in the number of training data with 

critical defect images could improve much more performance of correctness. 

 
Fig. 4.5 The local Ic,min distribution of all images after being classified into defect and 

normal by model 2 compared to model 1 
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Fig. 4.6 Example of typical defect Jc images being classified by Model 1 and Model 2, 

showing heat map and confidence lower image 

 

4.2  Image classification with multiple defect size categories  

4.2.1 Data preparation for training set 

 Based on previous results of the classification model, it can only perform 

between defect and normal region based Jc image, but the sizes of obstacles were not 

classified. According to a localized drop in the magnetization current indicates the 

existence of the microstructural defects, it is possible to detect different defect regions 

as size by this image classification approach.  

The different defect sizes need to be identified for use in the different training 

categories. However, the high resolution of the original Jc image consisting of the noise 

that came from a high special frequency component, we applied a Gaussian filter [50], 

which makes the 2D local average value in real space, to suppress the noise in the image 

resulting in the smoothed image. The following equation defines the Gaussian function. 

𝑔(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒−(𝑥2+𝑦2)/2𝜎2

                           (4.1) 
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where x is the distance from the origin on the horizontal axis, y is the distance from the 

origin on the vertical axis, and σ is the standard deviation of the Gaussian distribution. 

The 2D Jc image can be shown significantly detailed information more clearly so the 

gaussian filtered images of the defect region and normal region with a reasonable 

standard deviation, σ (=3). The normal region image with and without the filter is shown 

Fig 4.7 (a) and (b). After being applied filter to Jc image, the corresponding normalized 

Ic along the length obtained is shown in Fig 4.7(c). In addition, the statistical 

distributions of normalized Ic of normal regions can be seen in Fig. 4.8. It indicated the 

distribution as intrinsic Ic fluctuation in the normal region, which may come from the 

matrix itself. Hence, we identified the defect region by considering wider distribution 

of Ic than the three-standard deviation, 3 σ (0.98 of normalized Ic) as the criterion. In 

the case of defect image shown in Fig. 4.9, the defect region was 11 mm along the 

length.  
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(c) 

Fig. 4.7 (a) the normal image without filter, (b) After being applied filter to Jc image, 

(c) the corresponding normalized Ic along the length 

https://en.wikipedia.org/wiki/Standard_deviation
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Fig. 4.8. Histogram with the probability density of normalized Ic distribution of 

sampling normal region 

 

 
(c) 

Fig. 4.9 (a) the defect image without filter, (b) After being applied filter to Jc image, (c) 

the corresponding normalized Ic along the length, showing size of defect 
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In this study on different defect sizes, we decided to split the defect sizes into 

three categories: large, medium, and small, and the original normal one. There are 40 

images, 57 images, 89 images, and 100 images for large, medium, small and normal 

categories, respectively, so these images were used in the training data set to build 

multiple classifications. After measuring the defect region, the range of defect size was 

considered using the distribution of defect size fitted by Gaussian function, as shown 

in Fig. 4.10. The normal curve can determine the mode, mean and standard deviation, 

σ in order to estimate the defect size in each category. The small, medium and large 

size are 7.1±1.2 mm, 12.7±3.5 mm, and 21.8±5.8 mm, respectively. The example of Jc 

images in four categories is shown in Fig. 4.11. 

 

Fig. 4.10. Histogram with the probability density of size distribution of three defect 

categories 
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Fig. 4.11 The example of Jc images of four categories 

 

4.2.2 Performance of model 

The training data was split between a training dataset (80%) for training and a 

testing dataset (20%) for validation. In Fig. 4.12, the multiple image classification 

model reached the accuracy of 91% with loss value of 0.03 at the end of the 1500 

iterations of the training process, which could be shown the high reliability for the 

classification. Meanwhile, in Fig. 4.13, the confusion matrix is displayed that the 

precision and recall of defects in the true and predicted class. The diagonal cells from 

top-left to bottom-right were highlighted with high accuracy shown as this model could 

classify these kinds of defects from Jc images with more correct and confidence at least 

71% in each class of defect. 

 
 

Fig. 4.12 Graph of loss and accuracy vs. iterations during training process of Model 2 
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Fig. 4.13 Confusion matrix for the multi-class image classification model 

 
 

4.2.3 Classification result  

The four different categories can classify the defect sizes depending on the 

criterion for training defect size. The typical example of categorized three different 

defect sizes is shown in Fig. 4.14.  The classification result conforms that the defect 

sizes are in the range of 3 different sizes based on training conditions. Whenever the 

size is closed to another category in between, the model provides the reasonable result 

with slightly less confidence. 
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Fig. 4.14 The typical example of 3 different defect sizes in each category 

 

The 4047  Jc pictures along the long CC categorized into four categories: large, 

medium, small, and normal regions were 195 images, 501 images, 1594 images and 

1757 images, respectively. Then, this amount of defect and normal images vs the local 

Ic,min value is shown in the distribution in Fig. 4.15. It indicated that distribution of 

defects can express the different sizes based on the criterion at training conditions. The 

distribution of large and medium sizes covered the statistical distribution of initial 

defects identified in the previous model having a binary state between normal and 

defect categories. In contrast, the small defect size might be between normal and defects 

found at a high value of Ic. It means that this model relatively provides a reasonable 

classification result due to defect and normal that are not sharply separated but 
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gradually instated. As a result, large and medium were considered critical defects and 

agreed with the prevised binary classification model. 
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Fig. 4.15 The local Ic,min distribution of all images after being classified into four 

categories 

 
 
 

 

4.3 The applicability of the image classification model to sample made by 

same process from difference manufacture 

4.3.1 Classification result  

Another sample from commercial tape was used for assessing of the accuracy 

of the image classification model. The specification of the investigated commercial 

long tapes is illustract in Table 4.2.   
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Table 4.2 The specification of the investigated commercial long tape 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

The 2D Jc mapping images were taken every 5 cm in longitudinal direction and 

composed of 2953 images along the length. The defect region and normal region could 

be classified into defect image and normal image class well. The critical example of 

them is shown in Fig. 4.16. It indicated that the image classification classified well with 

the Jc image obtained the CC made from difference manufacture and provided a 

reasonable heat map as well as high confidence score. 

 The classification model classified 247 images and 2706 into the defect and 

normal categories. It indicated that 8.36% of all images along the length were the defect 

regions that referred to the frequency of the local defect located at least 1-2 defects per 

1m-length. The distribution of defect images vs local Ic,min can be seen in the semi-

logarithmic plot in Fig. 3.17.  

 
 

 

Manufacturer   SuperOx 

Specification  Fabrication process IBAD/PLD 

Width [mm] 4 

Length [m] 148 

Total thickness [µm] 60-100 

Rare earth Gd 

Substrate Hastelloy 

C-276 

Substrate thickness [µm] 60 

Performance 

@77K, SF 

Ic [A] guaranteed >130 
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Fig 4.16. Example of image classified to defect and normal category 

 
 

 
 

Fig. 4.17 Histogram with the probability density of local Ic,min distribution of defect 

images. 
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4.3.2 Comparison of the classification results of 2 tapes fabricated by 

IBAD-PLD process 

The two commercial tapes fabricated  IBAD-PLD process are illustrated in 

Table 4.3. They were classified to defect and normal images using the same 

classification model. The result of sample A and sample B are describe in section 3.4 

and 4.3, respectively. 

 

Table 4.3 the investigated two commercial long tapes 

 

In order to compare between 2 tapes, the distribution of local Ic,min need to 

normalize by an averaged Ic value, and a comparison of normalized Ic of defect category 

between 2 tapes is shown in Fig. 4.18. The statistic distribution of Ic regarding defect 

region was 9.20% in sample A and 8.36% in sample B. Boths indicated the group in the 

lower Ic distribution dominated by extrinsic defects, whereas a comparison of Ic 

normalized distribution of normal categories is shown Fig. 4.19, indicating the 

homogeneity of the intrinsic matrix. In addition, the standard deviation of each 

distribution is illustrated in Table 4.4. As a result, the standard deviation of normal 

category clearly indicates that PLD process itself was superior in the case of sample A 

showing a lower value than in sample B, even though the probability of a defect in 

sample B is slightly less. It suggests that if sample B improves PLD process as good as 

in the case of sample A, the Ic homogeneity and quality will be improved significantly. 

 
 

Sample Fabrication process Rare earth Substrate 
Width 
[mm] 

Length 
[m] 

A IBAD/PLD Gd 
Hastelloy C-

276 
4 200 

B IBAD/PLD Gd 
Hastelloy C-

276 
4 148 
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Fig. 4.18 Comparision of normalized Ic of defect category between 2 tapes. 
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Fig. 4.19 Histogram in semi-logarithmic scale with the probability density of 

normalized Ic categorized into normal category. 

 
 
 
Table 4.4 The standard deviation of each distribution from investigaed 2 samples. 

  
Standard deviation 

Sample Fujikura(A) SuperOx(B) 

All 0.2865 0.3005 

Defect 0.2714 0.2584 

Normal 0.2466 0.2650 
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4.4 The further extension to the other processes such as MOD, MOCVD, 

RCE-DR 

 
In this section, we investigated the inhomogeneity of commercial coated conductors 

made from different fabrication routes by adopting the image classification model to 

recognize the local obstacle in magnetic images visualized by the RTR-SHPM system 

and the statistics of local obstacles were studied. 

 
 

4.4.1 Sample 
 

The characteristic of the investigated commercial coated conductor from four 

different fabrication processes is present in table 4.5. 

 
Table 4.5 Detailed information of the investigated samples. 

 

Sample Fabrication process Rare earth Substrate Width [mm] 

A RABiTS/MOD Y Ni-5W 4.4 

B IBAD/RCE-DR Gd Hastelloy C-276 4.1 

C IBAD/MOCVD Y,Gd Hastelloy C-276 4 

D IBAD/PLD Gd Hastelloy C-276 5 

 
 

The commercial REBCO coated conductors were developed for both in-plane 

and out-of-plane texturing of superconducting layers on the biaxially textured 

alignment of substrates deposited by two techniques: ion beam-assisted deposition 

(IBAD) and rolling-assisted biaxially textured substrates (RABiTS). The epitaxial 

superconducting layer is deposited either by chemical routes, such as metal organic 

deposition (MOD) [15] and metal organic chemical vapour deposition (MOCVD) [16], 

or by physical routes, such as pulsed laser deposition (PLD) [17] and reactive co-

evaporation (RCE) [18]. 
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4.4.2 Comparison of the classification results of 2 tapes fabricated by 

IBAD-PLD process 

The RTR-SHPM system was used in measuring the distribution of the magnetic 

fields above the surface of four samples in a remanent state by a Hall sensor across the 

width direction, as the tape was moving in the longitudinal direction along 18.5 m the 

CCs under a liquid nitrogen temperature of 77 K. Then, by solving the inversion 

problem of Biot-Savart law, the corresponding magnetization was obtained. The sheet 

critical current density of four samples is shown in Fig 4.20, indicating the sample D is 

relatively high compared with the other samples as well we the inhomogeneity in 

distribution appear periodically. Moreover. It is roughly noticed that the 

IBAD/MOCVD technique provide the homogeneity of the CC.  

However, based on our image classification, these Jc distributions used as the 

2D images were taken every 5 cm in a longitudinal position and the images needed to 

be normalized by average Jc in each 5 cm section due to the lever of critical current 

density that was different from one another, Then, they were suitable for the image 

classification model. 

 

 
 

Fig. 4.20 Critical current density in coated conductors from different fabrication 

processes characterized by RTR-SHPM 
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4.4.3. Classification result 

In detection analysis, the model could identify the defect detection discovered 

in all samples after the images were put into the classification, as shown in Fig. 4.21(a). 

It detected very well with greater confidence of 0.9, as well as a heat map related to its 

site. The defect region indicated magnetization drop resulting in Ic degradation. It 

noticed that the kind of defect was relatively similar in each sample and familiar with 

the defect found in CC fabricated by the IBAD-PLD process, which was the data set 

for the training image. Meanwhile, the defect image was discriminated from the normal 

image showing the corresponding whole heat map with the high confidence. The 

normal image is shown in Fig. 4.21(b).  

 

 
 

Fig. 4.21 Example of defect and normal image is found in four tapes.  

 

 
 

However, in order to evaluate the applicability to four different tapes, the 

number of correct and incorrect classifications was used in the confusion matrix to 

evaluate the performance. These performance evaluations can be seen in Table 4.6.   
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Table 4.6 The evaluation matrices of the original model. 
 

 

Abbreviations: true positive (TP) means that the image is correctly identified as a defect image, true 

negative (TN), means that the image is correctly identified as a normal image, false positive (FP) means 

that the normal image is wrongly identified as defect image, and false negative (FN) means that the defect 

image is wrongly identified as a normal image. 

 

Based on the information of these evaluation matrices, it shows that samples A, 

C, and D is reasonably good recognition rates with the F1-score of more than 0.7, 

allowing this classification model to be used, whereas sample B was recognized as the 

defect image with a lower recognition rate with F1-score of 0.58 due to missing half of 

the number of an actual defect image.  

In order to investigate the reason why the sample B has lower performance on 

the classification in this model, we studied Jc images and found that the defect position 

could not defected this model. It interprets this defect type in sample B as a normal 

image, as shown in Fig. 4.22. This defect has the sharp magnetization drop around the 

shape of the defect position. Simultaneously, the model responded appropriately by 

using a heat map to avoid the defect region. 

 

Fig. 4.22 The defect image from the sample B could not be correctly classified by the 

classification model.  

 

Sample 
Classification result 

Recall Precision Accuracy F1 
TP TN FP FN 

A 7 357 3 3 0.70 0.70 0.98 0.70 

B 9 348 5 8 0.53 0.64 0.96 0.58 

C 3 367 0 0 1 1 1 1 

D 24 338 2 6 0.80 0.92 0.98 0.85 
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To further improve the model applicability, we added a few training defect 

images taken from sample B. After a bit of improvement, the performance evaluation 

is illustrated in Table 4.7.  

 

 

Table 4.7 The evaluation matrices of the improved model. 
 

Sample 
Classification result 

Recall Precision Accuracy F1 
TP TN FP FN 

A 7 358 2 3 0.70 0.77 0.98 0.73 

B 14 346 7 3 0.82 0.67 0.97 0.74 

C 3 367 0 0 1 1 1 1 

D 25 337 3 5 0.83 0.89 0.98 0.86 

 

 

The improved model could increase F1 by 16 % in sample B as well as the 

model can classify the defects well in each tape without the degradation of the 

performance on classification. The example of the test image for the improved model 

compared to the original model is shown in Fig. 4.23, indicating that the model provides 

a satisfactory result with the corresponding heat map as well as high confidence score. 

That means that the improved model was able to enhance the correctness by training 

with a variety of defect types that depended on different processes and was applicable 

to recognize two defect types in at least four combinations of the processes. 
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Fig. 4.23 Comparison of test image classified by classification model between the 

original and improved model. (a) The original model does not correctly classify the 

defect image from the sample B. (b) The improved model could correctly classify the 

defect image. 

 

 

 

4.4.4 Evaluation of longitudinal Ic distribution in the HTS tape based on 

image classification  

We investigated the influence of local obstacles in sample B on the critical 

current along the 18.5-m length to demonstrate the capability of this image 

classification. Fig. 4.24(a) shows the Ic variation as a function of longitudinal coordinate 

by integrating the local sheet current density across the width obtained by RTR-SHPM. 

The local Ic drops over 14 defect images were shown and pointed out by a red dot. After 

these detect images noticed the position of local obstacles by image recognition, the 

local Ic drops due to the existence of obstacles were crossed out, and the homogeneity 

of Ic variation can be shown in Fig. 4.24(b). Based on this advantage, the local Ic 

distribution along the defect images in sample B was extracted from the overall Ic 

distribution along the length, and it can be seen by a histogram with the semi-

logarithmic scale in Fig 4.25(a). It noted that this distribution was the double 
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distribution that originated both at lower Ic distribution corresponding to local Ic drops 

due to the obstacles in tape and high Ic distribution from the normal region. 

Consequently, we can estimate the single distribution at a high Ic value after taking into 

account the normal image, excluding the influence of local obstacles, as shown in Fig 

4.25(b). 

 

 
 

Fig. 4.24 Longitudinal variation of local Ic in the sample B. (a) original Ic along the 

whole length, including red dot pointed out local Ic drops related to defect images (b) 

Normal region without defect images removed based on information from image 

classification 
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Fig. 4.25 Histogram with the probability density of local Ic distribution in sample B 

segregated defect image from normal image by image classification (a) defect image 

(b) normal image 
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Chapter 5 

Object detection for recognizing defect in HTS tapes 
 

Based on previous classification results, the model succeeded in classifying the 

defect region, types of defects and the size of defects roughly defined based on training 

size criterions. Thus, in this chapter, we introduced the deep learning-based object 

detection to the RTR-SHPM for characterizing advanced information of the local 

obstacles such as size, position, and statistic defect behavior according to the advantage 

of object detection, which is combination of image classification and object 

localization. 

 

5.1 Overview of object detection  

The object detection algorithm has been developed and carried out on 

convolutional neural network (CNN). The CNN architecture from image classification 

is used to extract features from images for all the regions of interests (ROIs) in the 

image. Then, the bounding box Regression is directly added to the CNN network for 

training where to look or pay attention to the positioning each ROI. Finally, the system 

performs classification and regression on region proposal to gather bounding boxes 

with scores for each class. Based on this explanation, this algorithm is known as the R-

CNN algorithm based on Region Proposal, such as R-CNN, Fast R-CNN and Faster R-

CNN [51], [52].  In this research, The Faster Regional Convolutional Neural Network 

(Faster R-CNN) model providing high efficiency in object detection field is 

implemented So, object detection combines image classification and localization. It is 

used to identify the location of objects in an image showing a bounding box around 

those desired objects. 
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5.2 Building object defection model 

5.2.1 Data preparation for training set 

As describe in the section 4.2, By making the local average value in space by 

applying Gaussian filter, the 2D Jc image can be shown significantly detailed 

information more clearly as well as the corresponding normalized Ic over the length 

could also identify the defect region due to wider Ic fluctuation as extrinsic than normal 

intrinsic one. That means the defect regions were related to extrinsic defects having 

standard deviation of more than 0.01 observed normal curve of Ic from normal region.  

In Fig 5.1, we precisely decided the boundary of detects in the original Jc image 

by drawing a rectangular box around a magnetization current drop lower than 

neighboring normal region. The Jc images containing the existence of local defects were 

gartering for the training data set needed to train the model. There were 19 labelling as 

a defect that was used to train the model. The labelled box named defect give the 

coordinates of the defect where it is in that image. The labelling is only required when 

we are doing object detection to precisely teach the localization of the object. 

 

 

Fig. 5.1 The example of Jc mapping images containing with or without defects (a) 

gaussian filtered images (above) and (b) labelled defect images for training data set, 

including local minimum critical current, Ic,min in each image (below) 
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5.2.2 Performance of object detection model  

The model was trained on based Faster R-CNN architecture. The training data 

was sent to train the training algorithm at a maximum of 4000 iterations with a learning 

rate of 0.001 and weight decay of 0.0005 to minimize the loss function and reduce the 

error during the training model. The default ratio value of the training data was 0.8 

resulting in spiting 80% and 20% of the images for training, and validation, 

respectively. As a result, this model is good learning and performs with 100% accuracy 

with the selected parameters, and the relative performance of the training model over 

time shows the convergence at the end of training loss of classification and training loss 

of bounding box prediction with 0.02 of error as shown in Fig 5.2, indicating the 

reasonable training object defection model made up of classification and localization 

of object in image detected by bounding box prediction. Under object detection 

evaluation metrics, the bounding box prediction and ground-truth bounding box (i.e., 

hand labeled) are compared the area of overlap between the predicted bounding box 

and the ground-truth bounding box divided by the area of union between them, which 

is intersection over union (IoU) used as de facto evaluation metric in object detection. 

When evaluating object detection algorithms, an IoU threshold of more than 0.5 is 

typically used to determine whether a detection was correct [51], [53].  At the end of 

training object algorithm, this model had good detection with an IoU score of 0.76 that 

was highly reasonable value reported in [53]. 

 

Fig. 5.2 Graph of loss and Accuracy vs. iterations during training process of the object 

detection model 
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5.3 Defect recognition in the long commercial REBCO tape  

5.3.1 Defect recognition results object detection 

Fig. 5.3(a-1) shows the Jc mapping images containing the local defect 

recognized by the object detection. The rectangular box surrounding the localized drop 

in the magnetization current indicates the existence of a microstructural defect. The 

position of the rectangular box shows good agreement with the local Ic drop at 262 A, 

where the degradation of Ic as a function of longitudinal position occurred, as shown in 

Fig. 5.3(a-2), indicating that the fluence of local obstacles was able to be estimated from 

the bounding box. Even though, in the case of local Ic drop at a high Ic region where Ic 

drops still carried high capability, object detection could detect, as shown in Fig 5.3(b). 

Besides, considering Ic fluctuation as the conventional method is not easy to identify 

these local obstacles due to both extrinsic defects and intrinsic distribution in the matrix 

itself. As a result, we can easily recognize the obstacles from Jc mapping image and 

extract detailed information such as position, Ic over defect region.  

 

 

 

Fig. 5.3 Result of defect detection result and corresponding Ic long the longitudinal 

position. (a-1) Jc mapping image recognized the defect at Ic,min =  262 A, (a-2) 

corresponding Ic (b-1) Jc mapping image recognized the defect at Ic,min =  272 A and (d) 

) corresponding Ic 
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5.3.2 The statistical distribution of critical current 

The examined 1-m CC in longitudinal Ic distributions generated by RTR-SHPM 

is shown in Fig. 5.4. Using deep learning-based object defection, the local Ic drops 

corresponding to the influence of the obstacle were extracted from normal Ic fluctuation 

as intrinsic fluctuation. We assumed that local Ic homogeneity was obtained after 

removing the influence of microstructural defects on local Ic along the tape in order to 

explore the qualities because we can now track down the local obstacle in tape. 

 

 

Fig. 5.4 The examined 1 m CC in longitudinal distributions of Ic obtained by RTR-

SHPM 

By applying object detection to the total length, there were the detected 747 

obstacles or at least 3 obstacles per 1m-length and the local Ic corresponding to defect 

region and normal along the 200 m-long CC was studied the statistical Ic distribution 

of defect and normal region. The Ic distribution of all defect regions shows in a 

histogram with the probability density by liner scale Fig. 5.5(a). It indicated that 6.36 

% out of the total Ic was influenced by obstacles. The probability density of statistical 

Ic distribution can be seen in the semi-logarithmic plot, and the investigated properties 

of the CCs can be described as the asymmetry distribution due to the influence of 

intrinsic and/or extrinsic defects using Weibull function [54]. With three Weibull 

parameters, the probability density of the critical current is expressed by 

𝑃(𝐼c) = (
𝑚

𝐼c0
) (

𝐼c−𝐼cm

𝐼c0
)

𝑚−1
exp [− (

𝐼c−𝐼cm

𝐼c0
)

𝑚
]                          (5.1) 

Where, Icm is the minimum lower limit critical current, Ic0 is the scale parameter, and m 

is the shape parameter. 
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Fig. 5.5(b) shows the probability density of Ic distribution of defect region and 

the overall Ic distribution in histogram with the semi-logarithmic scale. The distribution 

of the overall Ic, which came from intrinsic and extrinsic fluctuation, was described by 

Weibull fit-1 with Icm = 206 A, Ic0 = 83 A, and m =12, while Weibull fit-2 separated the 

distribution of the defect region with Icm = 201 A, Ic0 = 77 A, and m =12, indicating that 

distribution shifted to lower Ic value due to including the influence of extrinsic defect 

in tape. Furthermore, the normal distribution of Ic estimated from the normal region in 

the tape, which was not detected as the defect by the object detection shown in Fig 

5.5(c). This distribution was fitted by Weibull fit-3 with Icm = 216 A, Ic0 = 74 A, and m 

=12. It noticed that the distribution of Ic is significantly narrower than its original one 

with decreased Ic0 by 6 A and increased Icm value. As a result, we can estimate the 

double distribution coming from different magnesium, such as intrinsic and extrinsic 

defects. 
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Fig. 5.5 Histogram with the probability density of local Ic distribution of the CC 

categorized into defect and normal groups by the object detection (a) defect group 

shown by linear scale, (b) defect group by semi-logarithmic scale, (c) normal group by 

semi-logarithmic scale 
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5.3.3 Information extraction of size and generation frequency in the tape  

(1) Relationship Between Defect Size and Normalized ∆ Ic 

This object detection detected total 747 defects throughout 200 m long CC. 

Based on this analysis, defect size depending on the low Ic region extending in 

longitudinal length was indicated by the length of the predicted bounding box, so the 

distribution of defect size is shown in Fig. 5.6. It indicated that object detection could 

approximately estimate the average defect size of 10.7 mm using Gaussian fit, but 

whenever defect size becomes smaller than 5 mm, the object detection could not detect 

because of the lack of spatial resolution of our measurement.  

 

 
Fig. 5.6 Histogram with the probability density of size distribution 

 

However, if we investigate the normalized ∆ Ic of those defect regions detected 

by object detection and the other normal regions within 5-cm section based on object 

defection results, as shown in Fig. 5.7. The normalized ∆ Ic of both regions is defined 

by the following equation (5.2) and (5.3). 

 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ∆𝐼c =
|𝐼𝑐,𝑎𝑣𝑒

∗ −𝐼𝑐,𝑎𝑣𝑒|

𝐼𝑐,𝑎𝑣𝑒
       (defect region)                 (5.2) 

 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ∆𝐼c =
|𝐼𝑐,𝑎𝑣𝑒

∗∗ −𝐼𝑐,𝑎𝑣𝑒|

𝐼𝑐,𝑎𝑣𝑒
      (normal region)                (5.3) 
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Where, 𝐼𝑐,𝑎𝑣𝑒
∗  is an average Ic in 5-cm over the defect and 𝐼𝑐,𝑎𝑣𝑒

∗∗  is an average Ic in 5-cm 

normal region, excluding defect region and 𝐼𝑐,𝑎𝑣𝑒  is an average Ic from all normal 

regions along 200-m (747 images) and proportional to 282.77 A. 

  

 

 

Fig. 5.7 The example of object detection result and the corresponding Ic in 5 cm, which 

is used for calculating an average Ic over defect region (𝐼𝑐,𝑎𝑣𝑒
∗ ) and an average Ic over 

normal region (𝐼𝑐,𝑎𝑣𝑒
∗∗ ). 

 

 The statistic normalized ∆ Ic distribution of both regions shows similar gaussian 

behavior with different standard deviation, as shown in Fig. 5.8. Because of extrinsic 

effect, the ∆ Ic distribution of defect region result is wider distribution than normal one. 

Based on these statistic distributions, it indicated that the rage of a smaller defect size 

than 5 mm has the distribution of normalized ∆ Ic in the range defined by 𝜎  in the 

normal region. It means that the object detection could not define the background of 

defects because of scattering of Ic in the matrix itself. Moreover, it can be seen more 

clearly by checking the relationship between defect size and ∆ Ic in Fig. 5.9. This 

relationship shows the linear relationship, which means the defect size depends on ∆ Ic 

due to the current blocking effect [54]. It is noticed that the defect region has large ∆ Ic 
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due to suppressing of Ic in the defect region, compared to the normal region at an 

average 𝜎 of 0.01. 

 
Fig. 5.8. The statistic normalized ∆ Ic distribution of defect and normal regions 

 

Fig. 5.9. The relationship between defect size and ∆ Ic/Ic,ave 
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(2) Fractal Behavior 

Based on this information extraction from object defection, detect not only the 

obstacles but also extract additional information such as size and position. In previous 

discussion about size distribution indicated that the small size is at the top of the 

distribution that commonly appears in the tape, while the large defect significantly 

decreases in terms of occurrence. Moreover, the statistic distribution of occurrence of 

defect was helpful in investigating the superconducting properties. The position of 

defect in longitudinal position is shown in Fig. 5.10 indicating that the occurrence of 

the defects shows Fractal behavior, i.e., the occurrence of the defects is not random with 

a constant probability. 

The distribution of the spacing between adjacent detects is shown in Fig. 5.11. 

It can be plotted on a double logarithmic scale as a function of probability density 

described well with a straight line by power law. As a result, power law behavior 

randomly originated the frequency of occurrence of local defects in the CC with 

fluctuated distance influenced by nature of factual behavior.  

 

 

Fig. 5.10 The position of defect in longitudinal position. 
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Fig. 5.11 The histogram illustrates the spacing distribution between adjacent defects 

(Lift) and the probability density of spacing between adjacent defects (right) 

 

5.4. Comparison of defect size distribution between classification and 

object detection  

 
From the results in section 4.2 for the image classification with multiple defect 

size categories, the defects were categorized into three levels based on the training size 

criterion. According to these results, we know the number of defects in each category. 

We then assume that the whole numbers are categorized into large, medium, and small 

sizes distributed within a normal curve evaluated by a training set, so the size 

distribution can be seen in the Histogram with probability density in Fig 5.12(a). 

In order to support this assumption, we analyzed the same coated conductor tape 

by applying object detection in section 5.3.3. The number and size of defects were 

evaluated and compared with a classified size distribution, as shown in Fig. 5.12(b). 

The distribution of both methods is almost the same if we merely limit the number of 

defects categorized in large and medium sizes. They also show reasonable results, and 

we can even predict the size based on classification. According to the object detection 

results, the minimum defect size is around 5 mm and its statistical distribution shows 

good agreement with that of medium and large size defect categories obtained from the 

multiple classification. The defects in these size range may influence the local Ic drop, 

whereas the influence on the local Ic drop is the same order of intrinsic fluctuation in 

the small side defects categorized in the small sized defect in our classification model, 

i.e., less than about 5 mm.  
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(a) 

 

(b) 

Fig. 5.12. Histogram with probability density of statistic size distribution evaluated by 

classification and object detection. (a) size distribution from classification. (b) 

comparison of size distribution between two methods 
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Chapter 6 

Image pixel interpolation for image recognition 

6.1 The advantage of  TapestarTM 

For the evaluation of longitudinal homogeneity in the CCs, TapestarTM 

technique is widely used for estimating of longitudinal distribution of critical local 

current (Ic) by measuring the penetrating gradient magnetic field across the width. The 

Ic calculated as the value is proportional to the root mean square the slope of the 

penetrating magnetic field, as described in chapter 2. The example of Ic variation along 

the 148 m-long coated conductor is shown in Fig. 6.1 

 

Fig. 6.1 The example of Ic variation along the 148 m-long coated conductor 

Based on this advantage, the distribution of magnetic field penetration across 

the width was taken into account in 1D and 2D carrying in a continuous longitudinal 

position, as shown in Fig 6.2 
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Fig. 6.2 The magnetic field penetration in 1D and 2D 
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However, by solving the inversion problem of Biot-Savart law, the 2D Jc image 

does not clearly provide detailed information such as obstacles, as shown in Fig. 6.3. 

Because of the discrete magnetic field taking from the low resolution of the 

measurement, the distribution of 2D images is still low spatial resolution. 

 

 

Fig. 6.3 The distribution of critical current density as 2D Jc image  

 

6.2 Interpolation technique for low resolution magnetic image from 

TapestarTM 

 

In order to increase the resolution of data taken from TapestarTM, the 

Interpolation approach is normally used for constructing the new data points between a 

range of discrete data points. The interpolation function can be described by the 

following equation (6.1) [55]. 

𝑦𝑖 = 𝑓(𝑥𝑖)                                                              (6.1) 

 

Where,  𝑥𝑖 =  𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛  is the independent variable values, and 𝑦𝑖 =

 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛 is the dependent variable values. The main types of interpolation were 

divided into three approaches: nearest neighbor, linear, and spline interpolation. The 

example of these interpolation results is shown in Fig. 6.4. Nearest interpolation takes 

the nearest data value for each position to be interpolated. The linear interpolation 𝑦𝑖 

on the line segment connects the two points. These two simply interpolations are still 

not close to the data in the case of different curves, whereas the spline interpolation 

performs well with a smaller error. 
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Fig. 6.4 The different interpolation methods 

  

Due to the dependent variable value passing the different curves of the data point based 

on the third-order polynomial between two adjacent points, the function is defined by 

the following equation. 

𝑦𝑖 = 𝑓(𝑥𝑖) = 𝑎𝑥𝑖
3 + 𝑏𝑥𝑖

2 + 𝑐𝑥𝑖 + 𝑑,   𝑓𝑜𝑟  (𝑖 = 1 𝑡𝑜 𝑛)                (6.2) 

where a, b, c, and d are real numbers and i = data points  

In this study, we adopted the spline interpolation to the original magnetic data 

in order to generate a high-resolution image for image analysis. The enhancement result 

for TapestarTM results is shown in Fig. 6.5, indicating an increase in data points for 

original magnetic field gradients by interpolation technique as well as resulting in the 

more detailed information on magnetic and critical current density images, as shown in 

Fig. 6.6. 

Based on this approach, the interpolation image can be used for the image 

analysis, such as object detection, as shown in Fig 6.7(a), and the position of the 

obstacle shows good agreement with the high resolution of Jc image obtained from the 

RTR-SHPM in Fig 6.7(b). As a result, even though TapestarTM has a limited number of 

channels resulting in a lack of more detailed information, we can improve the resolution 

of the magnetic image and apply it to defect recognition. 

https://www.cuemath.com/numbers/real-numbers/
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Fig. 6.5 The magnetic field penetration in 1D and 2D after interpolating 

 

 

 

 

Fig. 6.6 The 2D Jc mapping image after interpolating 
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(a) 

 

 

(b) 

Fig. 6.7 Example of defect detection result (a) the interpolated Jc image as input, and 

(b) Jc mapping image obtained RTR-SHPM 
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Chapter 7 

Conclusion 

Nowadays, the high-temperature superconducting CCs play an important role 

in many applications due to their superior high current carrying capability under high 

magnetic fields. The uniformity of local Ic along the long length tapes is required for 

improving their practical performance because the local obstacles originated in tapes 

resulting in degradation Ic. Therefore, characterization is essential to analyze and 

develop the tapes. 

In chapter 1, the general background information and the purpose of this 

research are discussed. We introduced the critical issue of the HTS tapes due to 

obstacles and requirements to improve the high performance of practical applications. 

The instant characterization or analytical techniques is essential for the evaluation and 

provide such helpful information back to the improvement of the REBCO. Not only 

merely the critical current, Ic value, but also more advanced information of obstacles is 

required for the research and development. Based on our remarkable high-resolution 

2D characterization: RTR-SHPM, it provides the 2D Jc mapping along the tapes, which 

is used for visualizing the local defects. Thus, we introduced the deep learning approach 

based on image analysis such as classification and object detection used in this research. 

They were integrated with RTR-SHPM for automatically evaluating more detailed 

information on local obstacles in the long length CCs. 

In chapter 2, the principle of two characterization methods to estimate the 

longitudinal distribution of the critical current, which is a basic indicator for 

characterizing long superconductors was described. Firstly, the 1D characterization 

method known as TapestarTM system is used to estimate the Ic variation in the 

longitudinal direction as a de facto standard method. Secondly, the 2D characterization 

method, RTR-SHPM, is used for visualizing 2D inhomogeneity with high spatial 

resolution measurements across the width direction as well as the longitudinal direction 

and main characterization generating the 2D image for image analysis in this research.  

In chapter 3, with the image classification, we successfully build the reasonable 

first classification model using critical eight defect images at low Ic region, defined by 
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extrinsic mechanism and normal images selected at higher average Ic region. The model 

was able to distinguish more critical defect regions from the normal region, even at the 

high Ic region throughout 4000 images along the 200-m long CC. Moreover, Using the 

confidence score for evaluation of correct classification, It presented that the confidence 

score increases as the Ic,min decreases in the defect category, whereas the normal 

category has a high confidence value as the Ic,min increases, and the crossover point is 

around Ic,min = 260 A. It is very reasonable because local obstacles will suppress the 

Ic,min, and correspond to a set of images that we train the model. 

In chapter 4, we further improve the classification model by using the group of 

defect images categorized as normal with low confidence scores. As a result, the 

number of defect images was almost 2.5 times more than the previous model. It 

indicates that smaller obstacles at Ic drops at high values were still the existence, and 

an increase in the number of training data with critical defect images could improve 

much more performance of correctness. The image classification was developed to 

categorize the defect sizes based on different criterions. As the result, we can categorize 

and estimate defect sizes into three categories: large, medium, and small, based on 

training size criterions compared to prevision binary classification. Moreover, the 

classification was extended to different HTS tapes to extract valuable information on 

local current limiting factors such as the types of local obstacles in each coated 

conductor tape made from different techniques, influence of fabrication processes so 

that the properties can be estimated based on this approach.  

Based on previous classification results, the model successfully classified the 

defect region and types of defects. However, it still does not clearly understand the 

defect size distraction, position, and statistical behavior of its obstacles. Hence, in 

chapter 5, we adopted the deep learning-based object detection to the RTR-SHPM to 

extract more advanced factors. This method allows us to obtain the size, clearly 

understand the influence of the defect region on ∆Ic due to suppressing of Ic in its defect 

regions and indicate the occurrence of the defects following Fractal behavior. 

Moreover, the distribution of defect size obtained from multi-classification results was 

confirm that defects categorized in large and medium sizes coincide with the object 

detection results because such a small size is not suppressed Ic significantly, which the 

smallest size is around 5 mm in the case of object detection results 
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Lastly, in chapter 6, with the 1D characterization method, TapestarTM system 

could generate the 2D images that were still low-resolution images. We applied the 

interpolation technique to original TapestarTM data for enhancing the 2D images. As a 

result, the enhanced image showing the more detailed information was able to be 

applied to image analysis. 

One of the important issues for introducing DL based image analysis for the 

defect detection is the imbalanced training data sets because the frequency of defects 

becomes less in recent practical REBCO tapes. As adopted in this study, pre-trained 

high performance such as GoogleNet can solve this issue to some extent. However, the 

classification performance could actually be improved further if we increased the input 

defect images for training based on the first model. The threshold (or confidence) value 

for the category may also be influenced by such imbalanced input data as discussed in 

Chapter 4. The influence of the imbalanced dataset on the precision of the classification 

is not yet fully understood in this study and the method to increase the training datasets 

for defect images need to be studied further as a future task. Even though, by applying 

DL based image recognition, we have succeeded in clarifying how much defect size 

will influence the local Ic drop larger than the intrinsic fluctuation, and their statistical 

nature, also we could reveal process dependent defect images by comparing difference 

processes. Those insights give us much more rich information on the current limiting 

mechanisms of the REBCO tapes and can lead to the improvement of process 

conditions. Such feedback must have a huge impact not only on characterization 

methodology but also on materials development. 
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