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Abstract

As the foundation upon which the most important, exciting, and innovative
technologies that pervade our everyday lives are built, it is no exaggeration
to say that machine learning is the backbone of modern society. The benefits
brought about both directly and indirectly by machine learning have, and
continue to, revolutionise and change our lives for the better.

To deliver these benefits, however, the underlying systems require enormous
amounts of data, which is costly both financially, and environmentally. In-
deed, storing, accessing, and leveraging this data requires access to storage
and computational infrastructure which is often expensive, sometimes pro-
hibitively so. Furthermore, the acquisition of the data, as well as the training,
testing, and deployment of the machine learning models themselves, requires
substantial amounts of energy, which has a considerable negative impact on
the environment.

The aim of our research is to tackle this problem at the source: by reducing
the amount of samples required to perform classification, we look to lower
the financial, computational, and energy-related costs incurred at every stage
of the sensing-to-classification pipeline. To this end, we design a novel
signal sensing and processing architecture, capable of acquiring signals at
sub-Nyquist rates whilst simultaneously filtering them.

We begin by presenting our proposed sub-Nyquist sampling framework.
Based on a modified random demodulator architecture, the system uses
Markov-chains to create spectrally tailored spreading sequences to attenuate
or amplify the frequency content of input signals during the acquisition
process. We establish an initial design process by measuring and quantifying
the effects of a range of bipolar spreading sequences on the frequency-domain
content of a variety of input signals.
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Next, we present two applications which make use of our proposed approach.
The first application, C-AVDI, is a compressive measurement-based acoustic
vehicle detection and identification system. The second application, C-HAR,
is a compressive measurement-based human activity recognition system. The
performance of both applications is gauged by comparing their respective
classification accuracy and computational efficiency against currently avail-
able baseline systems. We find that in both cases, our proposed systems
can be considered as lightweight alternatives to existing approaches in their
respective fields.

Finally, we investigate the viability of our proposed approach as a lightweight
sensing architecture by designing microcontroller (MCU) implementations of
both C-AVDI and C-HAR. We find that the limited memory of MCU devices
negatively impacts the performance of C-AVDI, but does not impact the
performance of C-HAR.

The results obtained during the course of our research serve to prove the
viability of our proposed compressive-measurement based sub-Nyquist ar-
chitecture as a lightweight alternative to existing sensing-to-classification
frameworks.
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Introduction
1

1.1 Background

Machine learning (ML) is the keystone underpinning some of the most
important technologies in modern society. Search engines, payment systems,
self-driving cars, and numerous other technologies all depend on some kind
of machine learning to operate and function. The advantages brought about
by these technologies, however, come at a cost. There is a colossal amount of
data used to create and operate these ML systems being created daily. In 2020,
59 zettabytes worth of data was created and analysed, and the prediction is
that this will rise to 175 zettabytes by 2025 [1]. The implications of this are
twofold: firstly, the storage, access, and use of these large amounts of data
requires access to tools such as cloud storage and expensive computers, which
makes both the use and the teaching of these technologies costly, and thus
restricts their use in developing countries and economically disadvantaged
areas. Secondly, the data centres used to store the data collected from
sources and sensors across the globe require a significant amount of energy
to function, as do the models which use the data.

This phenomenon is particularly apparent in the field of deep learning (DL),
where the average number of calculations used in DL-related research have
increased by a factor of 3 × 105 between 2012 and 2018 [2]. Indeed, there
is currently in artificial intelligence- (AI) related research an overwhelming
emphasis on obtaining the best possible performance (i.e. the best possi-
ble, accuracy, f-measure, precision or recall) in a given application. This
becomes apparent when looking at recent research papers: the authors of [3],
examined a set of 60 papers from three AI conferences (Association for Com-
putational Linguistics (ACL) 1, Conference on Neural Information Processing

1https://acl2018.org
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Systems (NeurIPS) 2, and Computer Vision and Pattern Recognition Confer-
ence (CVPR) 3), noting whether the paper’s main contribution to the field
was an improvement in performance, efficiency, or both, and found that a
significant majority of the papers reported an improvement in performance
(90% of ACL papers, 80% of NeurIPS papers and 75% of CVPR papers). This
phenomenon can also be observed when looking at the leaderboards of a
popular AI competition website 4, where contestants are most commonly
ranked by the performance of their submitted model, with no mention made
of model size or efficiency.

While this heavy focus on performance in AI- and ML-related research does
undoubtedly lead to the creation of new and cutting-edge techniques, ap-
proaches and applications, more often than not these improvements come
at a significant environmental and financial cost. According to [4], in 2019
the process of training a single ultra-high-spec natural language processing
(NLP) model (including parsing, semantic role labelling, model tuning and
the successive inference stages), emitted more than twice as many kilograms
of CO2 as the average American citizen does in a year (35592 kilograms vs
16400 kilograms).

Training cutting-edge text parsing algorithms costs in the order of several
million dollars. Smaller companies are thus not able to compete with the
biggest companies such as Google or Amazon. For instance, the cost of
training GPT-3 [5], a cutting-edge, top-of-the-range NLP model, is estimated
at $4.6 million [6]. MT-NLG, a new model jointly proposed by Microsoft
and Nvidia, contains over 3 times as many parameters as GPT-3 [7]. These
enormous costs make ultra high-end AI and ML completely inaccessible to
anyone but the richest companies, severely limiting innovation and growth.
This sentiment is echoed by Chris Manning, professor in ML at Stanford
University who is quoted in [8] as saying: “I think it does cut down innovation,
when we have only a handful of places where people can play with the innards
of these models of that scale, that has to massively reduce the amount of
creative exploration that happens.”

2https://nips.cc/Conferences/2018
3http://cvpr2019.thecvf.com
4https://www.kaggle.com/competitions
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This phenomenon is not just limited to large-scale NLP models, and is equally
prevalent in smaller-scale models typically associated with energy- and cost
efficiency such as embedded or long-timescale infrastructure monitoring
applications. This “performance first” mentality is especially problematic in
the field of medical devices: while one may expect the accuracy of a medical
device to be the most important metric, studies have found that the biggest
barrier to the effectiveness of wearable medical sensors is the inconsistent
use of the devices by the patients. Indeed, while a high-performance device
may perform better, these devices are usually more power-hungry and thus
require consistent charging, which has a significant negative impact on the
long-term use and adoption of the device [9].

Typically, the data used in ML applications is a digital-domain representation
of an analogue-domain signal. The process in which a continuous signal is
transformed into its discrete representation is known as analogue-to-digital
conversion. This procedure is governed at the most fundamental level by
the Shannon-Nyquist sampling theorem, which states that to accurately
capture and digitise an analogue signal, it is necessary to sample it at a rate
at least twice as high as the signal’s highest frequency. This ensures that
enough information is acquired for the signal to be reconstructed properly,
and that aliasing is avoided. This rule governs all devices that perform
analogue-to-digital conversion, and sets a minimum performance rate for the
hardware involved in the signal acquisition. Due to its ubiquitous nature, the
lower limit on sample rates mandated by this theorem has had a direct and
significant effect on the raw amount of data being created, transmitted, and
processed.

In response to these issues, the authors of [3] propose a set of metrics which
can be used to measure and gauge the overall efficiency of any given ML
architecture. Of particular interest are the following three:

• Energy usage: a system’s energy usage is correlated with its carbon
emission levels. This metric is of particular concern when dealing with
large-scale GPU-powered networks with large carbon footprints, but is
also important to consider when designing low-cost, low-complexity
MCU-based systems to ensure that they perform as intended while
staying under their allocated energy budget.
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• Running time: the running time of a supervised learning model is a
clear indicator of system efficiency, as for two models running on the
same hardware, the most efficient one will run faster. This metric
is particularly useful when prototyping different approaches in clean,
reproducible, software environments (such as Docker containers).

• Model parameters and size: The number of parameters used by a model
is proportional to its size. As smaller models can be deployed on
less power-hungry, smaller form factor hardware, it can thus be said
that a model’s size is proportional to its energy consumption. It is
also important to consider a model’s size when deploying models in
remote or edge situations in which system and battery autonomy are
key factors.

Taking the above criteria into account when evaluating models rather than
focussing exclusively on performance, can help guide the creation of new,
energy and cost conscious AI and ML architectures.

1.2 Research Objectives and Contributions

The objective of this research is to create a novel simultaneous signal sensing
and processing architecture which directly obtains relevant information
from an analogue input signal, in effect compressing and filtering whilst
sampling, and using it in tandem with ML in a variety of classification-
focussed applications. We do so by exploiting the underlying structure of
the information or signal we are looking to acquire to sample it at sub-
Nyquist rates using compressive sensing (CS). By reducing the raw number
of samples required to perform classification, we reduce the associated cost
and complexity at each stage of the sampling-to-classification pipeline. In
this thesis, we use the term “lightweight” to mean “low-cost, low-complexity”,
and refer to the samples obtained during the CS process as “compressive
measurements”, thus we refer to our proposed approach as: “Lightweight
Classification via Sub-Nyquist Compressive Measurements”.

We consider a sensing architecture lightweight if it can feasibly be deployed
on MCU devices. This introduces a set of considerations to the system design,
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as it is not only the limited MCU clock speed that needs to be taken into
account, but also the limited ROM and RAM. While certain systems such as
the one described in [10] attempt to mitigate this problem by transferring the
data obtained by an MCU-based sensor node to an edge node or the cloud
for processing and inference, this is not always feasible. Indeed, in certain
security- or privacy-critical applications, transferring data from the sensor
node is a potential security risk, as it can be intercepted by a malicious actor.
Furthermore, not only does the transmission process in itself consume energy,
but creating, designing, and deploying the appropriate receiving architecture
increases the overall cost of the sensing system. Therefore, for our approach
to be considered truly lightweight, it is crucial that any potential applications
based on our proposed architecture can be deployed on MCUs.

In our approach, we seek to improve the efficiency of the sensing-to-classification
process at the source. While there are a lot of potential inefficiencies when
collecting and using data, the biggest inefficiency is at the very start of the
process: we acquire our data by sampling, compressing, and then discarding
any unwanted or redundant information, which as a process is inherently
inefficient. By reducing the number of measurements required by the classifi-
cation architecture, we are looking to lower the cost, complexity, and energy
requirements associated with ML-related classification, helping to reduce the
environmental impact of these technologies while making them as accessible
as possible.

While the concept of lightweight sensing-to-classification pipelines is not
novel, as evidenced by approaches such as those in [11] and [12], the con-
cept of compressing while sampling remains largely unexplored. Recently,
however, a similar approach to the one put forward in this thesis was pre-
sented in [13], in which the authors designed a low-power compressive
sensing-inspired sub-Nyquist sensing device, capable of detecting electrocar-
diogram (ECG) anomalies. By using Non-Uniform Wavelet Sampling (NUWS)
to obtain a set of features directly from the ECG signal, the authors are
able to detect occurrences of cardiac arrhythmia with very high accuracy
and significantly reduced power consumption. The similar goals and tim-
ing of publication of both approaches highlights the growing importance of
lightweight classification in the field of ML. It is important to note, however,
that despite the similarities, there are considerable differences that exist
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between the two proposed architectures: in our proposed approach we are
looking to perform compressive-measurement based multiclass classification
with the aim of reducing the lower-bound on the number of samples needed
for classification, rather than anomaly detection using the samples obtained
by NUWS as features with the aim of reducing power consumption. In addi-
tion to this, our proposed system is capable of simultaneously filtering and
sub-Nyquist sampling of a given input signal, while the system presented
in [13] is not.

In this thesis, we are looking to address one of the fundamental limits of
traditional sensing architectures: the sampling rate. In particular, we are
looking to develop a powerful, application-agnostic alternative to existing
classification pipelines and sensing architectures. To this end, we present
two applications which make use of our proposed lightweight compressive
measurement based-classification architecture. The first is C-AVDI, a com-
pressive measurement-based acoustic vehicle detection and identification
system, which performs multiclass classification on vehicle sounds. The
installation and operation costs associated with acoustic vehicle detection
and identification (AVDI) are usually low, but the preprocessing of signals is
often computationally complex, and the typically high sample rates associ-
ated with audio signals make the acquisition and storage of longer signals
costly in terms of memory. To address this issue, our proposed approach
simultaneously filters and samples at sub-Nyquist rates, removing the need
for a dedicated preprocessing stage, and greatly reducing the amount of
samples required for classification. C-AVDI obtains an accuracy comparable
to competing systems with a sample rate 16 times slower than the Nyquist
rate. The second is C-HAR, a compressive measurement-based human activity
recognition system, which performs multiclass classification on smartwatch
sensor readings. There are two factors which have a significant impact on the
usage and adoption rates of smartwatch-based human activity recognition
(HAR) devices: battery life and data privacy. By simultaneously filtering and
sampling input signals at sub-Nyquist rates, battery life can be improved by
removing the need for a complex dedicated filtering stage, while reducing
the minimum number of required samples allows for a greater amount of
user data to be stored, processed and classified on-device, helping safeguard
user privacy. C-HAR obtains an accuracy comparable to competing systems
with a sample rate 4 times slower than the Nyquist rate.
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1.3 Thesis Outline

We begin in Chapter 2 by introducing the fundamental concepts upon which
the work in this thesis is built, covering different sampling approaches,
architectures and applications.

We then examine some existing baseline approaches in Chapter 3. First we
present a stereo microphone-based acoustic vehicle detection and identifi-
cation system (SMBAS), our initial approach to performing AVDI. Vehicle
detection is performed using a soundmap-based method based on the work
presented in [14], and vehicle classification is performed using short-time
Fourier transform (STFT) features extracted from the combined time-shifted
sum of the two microphone signals. Despite its hybrid soundmap- and
STFT-based approach, SMBAS is representative of more traditional Nyquist
rate sample-then-compress AVDI approaches, making it a suitable bench-
mark against which to compare our subsequently proposed lightweight AVDI
system. We then briefly explore a selection of existing HAR approaches,
focussing in particular on smartwatch-based systems.

In Chapter 4, we present a sub-Nyquist sampling strategy which simulta-
neously filters and samples input signals for use in classifier-based systems.
This involves running a battery of reconstruction tests on a set of input sig-
nals using a range of Markov chain-generated bipolar spreading sequences.
By observing the effects the different spreading sequences have on signal
reconstruction, we are able to iteratively determine the optimal spreading
sequence generation parameters for any given situation.

Next, we explore two applications in which we apply the simultaneous sub-
Nyquist sampling and filtering signal acquisition strategy. In both cases,
classification is performed using features extracted directly from the sub-
Nyquist compressive measurements.

The first application, presented in Chapter 5, is a compressive measurement-
based acoustic vehicle detection and identification (C-AVDI) architecture, in
which passing vehicles are detected and identified using sounds obtained
by acoustic sensors placed on the side of the road. The second application,
presented in Chapter 6, is a compressive measurement-based human activity
recognition (C-HAR) architecture, in which a selection of daily activities
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are identified from a smartwatch’s three-axis gyroscope and accelerometer
readings. The performance of both applications is gauged by comparing their
classification accuracy and computational efficiency against the benchmark
systems.

In Chapter 7, we investigate the viability of our proposed approach as a
lightweight sensing architecture by designing MCU implementations of both
the C-AVDI and C-HAR systems.

Finally, in Chapter 8, we discuss and reflect upon the results obtained during
our research, and outline relevant and promising directions for future work.
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Fundamental Concepts
2

2.1 Nyquist Rate Sampling

The process in which a continuous-time, continuous-amplitude signal is
discretised for use in digital applications is called analogue-to-digital con-
version. This is done using a device called an analogue-to-digital converter
(ADC) which assigns a numerical value to the input signal’s amplitude at
pre-determined sampling intervals, discretising the original signal in both
time and amplitude. To reconstruct the signal effectively, it must be sampled
at twice the highest frequency of the original signal; this rate is called the
Nyquist rate and is the cornerstone of modern-day signal processing. For a
continuous time-domain signal x(t) whose highest frequency component is
denoted as W/2 Hz, the Nyquist rate can be defined as:

fs = W Hz (2.1)

As ubiquitous as this technique is, it has limitations when confronted with
wideband analogue signals due to the inability of current hardware to sample
at a fast enough rate. This impracticality is compounded by the inherent inef-
ficiency of analogue-to-digital conversion, as while sampling at the Nyquist
rate ensures that all the information contained in a signal is recovered, of-
ten not all the information is needed. The use of compression algorithms
post-sampling removes redundant information present in the input signal, re-
ducing the size of the signal’s digital representation in memory, however this
practice is wasteful as we are discarding information the ADC was designed to
acquire. The benefits of designing a sampling paradigm capable of obtaining
exclusively the relevant information would enable us to reduce the required
sampling rate, replacing the traditional sample-then-compress paradigm with
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an alternative and improved compress-while-sampling paradigm [15], both of
which are shown in Figure 2.1.

In certain sensing applications, the signals being acquired present a sparse
signal structure; in other words, a given signal x contains only K non-zero
elements out of N total elements, with K ≪ N . In such cases, it is possible
to take advantage of the signal’s sparsity and sample it at a sub-Nyquist rate
using a signal processing technique called compressive sensing (CS).

Sample Compress Transmit

Use Decompress Receive

Information 

discarded

Information 

approximated

(a) Sample-then-compress

Sample and

Compress
Transmit

Use Reconstruct Receive

Information 

approximated

(b) Compress-while-sampling

Fig. 2.1: The sample-then-compress and compress-while-sampling paradigms.
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2.2 Compressive Sensing

2.2.1 Basic Concepts

First presented in [15] and [16], compressive sensing (CS) is a method to
efficiently sample sparse or compressible signals (a signal is called sparse if it
contains only a few nonzero components compared to its total length, and
is called compressible if it contains many nonzero components, but only a
few of significant magnitude), at sub-Nyquist rates enabling us to directly
acquire the information of interest in a given signal, rather than sample the
signal at the Nyquist rate and subsequently discard unwanted information.

Signals themselves are typically represented mathematically as a continuous
range of values as a function of time, or as a linear combination (i.e. a
weighted sum) of sinusoids, from which we can extract the amplitude coeffi-
cient and frequency information of each sinusoid in the linear combination
to obtain the frequency domain representation of a signal. This concept can
be extrapolated further, and for a continuous signal in the time-domain, we
can also express signals as a linear combination of basis vectors and discrete
coefficients over a given time period. Thus, let us begin by defining a real-
valued sparse signal x(t) of length Ts whose highest frequency component
is W/2 Hz. Let N = WTs be the dimensionality of x(t). This signal can be
expressed as a combination of discrete coefficients α ∈ CN and vectors ψn

that form the columns of an orthonormal basis matrix Ψ ∈ CN×N for a given
time window:

x(t) =
N∑

n=1
αnψn(t) , t ∈ [0, Ts) (2.2)

with the coefficients computed as αn = ⟨x, ψn⟩, and whose vector matrix
form is:

x = Ψα (2.3)
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with Ψm,n = ψn

(
m
N
Ts

)
, from which we can obtain our signal’s discrete-time

notation as an N -dimensional vector:

xm = x
(
m

N
Ts

)
(2.4)

More often than not, x(t) itself is not sparse and instead has a sparse rep-
resentation in Ψ. Given prior knowledge of Ψ, we need only obtain the
information contained in the sparse coefficient vector α to be able to recon-
struct the original signal. This information is obtained by drawing a set of
compressive samples ξ ∈ RM from the original signal, where M ≪ N .

The CS acquisition process can be described mathematically as:

ξ = Φx (2.5)

where Φ ∈ RM×N represents the consecutive sampling and operations per-
formed on x.

Additionally, we define the reconstruction matrix as: Θ ∈ CM×N = ΦΨ.

From (2.2) and (2.5):

ξ = ΦΨα (2.6)

= Θα (2.7)

The sparse coefficient vector and thus the original signal can be recovered
from the compressive measurements by solving the l1 minimization prob-
lem:

α̂ = arg min
α

∥α∥1 such that ξ = Θα (2.8)

where α̂ is the estimated coefficient vector and ∥α∥1 is the l1 norm (sum of
the absolute vector values) of α. In practical terms, this can be achieved by
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using a recovery algorithm; either a convex relaxation-based one such as
basis pursuit (BP) [17] or a greedy one such as orthogonal matching pursuit
(OMP) [18].

For complete recovery of x, it is necessary to design Θ in such a way that it
satisfies the incoherence and RIP (restricted isometry property) conditions
outlined in [19], thereby ensuring that all the relevant information present
in x is preserved in the measurements ξ. In [20], it is stated that a matrix
such as Θ in (2.7) satisfies these conditions with overwhelming probability if
Ψ is an orthonormal basis, Φ is drawn randomly from a suitable distribution
such as the Gaussian distribution, and if the number of measurements M is
higher than a lower bound defined as:

M ≥ SK log N
K

(2.9)

where K is the sparsity level of the input signal and S is a positive con-
stant [21].

2.2.2 The Random Demodulator

The initial theoretical work on CS as described above only considers discrete
signals, however our proposed systems look to obtain continuous-time signals.
First presented in [22] and further expanded upon in [23] and most notably
in [24], the random demodulator (RD) is a signal acquisition architecture
that enables us to perform CS on sparse or compressible continuous-time
signals. Compared to more sophisticated architectures such as the modulated
wideband converter (MWC) [25] and quadrature analog-to-information con-
verter (QAIC) [26], the RD is more straightforward to design and cheaper
to implement as it is single channel and only requires a single ADC. Further-
more, the RD is particularly suitable for our applications as it is designed to
acquire sparse single-band multitone signals, unlike the MWC for instance,
which is a multichannel architecture designed to acquire sparse multiband
signals. More details on different CS acquisition strategies can be found
in [21], and [27] provides an in-depth comparison of the RD and MWC
systems in particular.
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We can give an intuitive description of the RD’s operation as follows: rather
than acquiring a signal through traditional Nyquist sampling, the RD first de-
modulates the signal by multiplying it with a white noise-like pseudorandom
sequence, spreading the signal’s frequency content across the entirety of the
spectrum. The resulting signal is then low-passed before being sampled at a
sub-Nyquist rate. If required, the original signal can be recovered from the
sub-Nyquist compressive samples through l1 minimization as explained in
Section 2.2.1.

Let us describe the operation of the RD more formally. An analogue signal
as described in (2.2) is combined with a pseudorandom bipolar sequence of
unitary amplitude, defined as:

PRS(t) = ϵn, t ∈
[
n

C
,
n+ 1
C

)
, n = 0, 1, ..., N − 1 (2.10)

where ϵn is a Rademacher sequence that switches between values {−1, 1} at
a rate C = W .

The combined signal x(t)PRS(t) is passed through an anti-aliasing LPF h(t)
of bandwidth R/2 and sampled at a rate R < W to obtain linear compressive
samples ξ[m]. This procedure can be expressed as a multiplication followed
by a convolution in the time domain:

ξ[m] =
∫ ∞

−∞
x(τ)PRS(τ)h(t− τ) dτ

∣∣∣∣∣
t=mR

(2.11)

=
N∑

n=1
αn

∫ ∞

−∞
ψn(τ)PRS(τ)h(mR − τ) dτ (2.12)

From which we obtain an expression for Θ, whose entries are defined as θm,n

for row m and column n:

θm,n =
∫ ∞

−∞
ψn(τ)PRS(τ)h(mR − τ) dτ (2.13)

where Θ is a combination of the matrix Φ which represents the sequence of
operations mapping the input signal x to the compressive measurements ξ,
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and of the orthonormal basis matrix Ψ. It is shown in [24] that Θ satisfies the
previously outlined RIP conditions, as long as the number of measurements
matches or exceeds M as described previously in Equation 2.9

Finally, it is necessary to ensure that in any given application, the input
signals to the RD are sparse or compressible in the domain defined by Ψ.
Signals are only very rarely perfectly sparse and are much more likely to be
compressible, that is, the magnitudes of the nonzero coefficients present in
the signal decay following a power law distribution. This is defined in [28]
as:

|αn| ≤ Pn−q for n ∈ {1, 2, ..., N} (2.14)

where P and q are constants.

2.3 Intelligent Transportation Systems

The increasing development of information and communication technology
in recent years has led to similar advances in the field of intelligent transporta-
tion systems (ITS). A growing number of ITS applications such as navigation,
traffic dependent guidance and auto-cruise systems have been proposed and
realized with the aim of improving road traffic safety, efficiency, convenience,
and reliability.

2.3.1 Vehicle Detection and Identification

The process of vehicle detection and identification (VDI) plays a key role
in delivering the many economical, societal, and environmental benefits
of ITS technology. A host of applications rely on VDI to operate: traffic
flow control [29], to reduce congestion, pollution, and fuel consumption by
effectively routing traffic around road networks; road safety management
and collision avoidance [30], to reduce the number of fatal and near-fatal
accidents; and infrastructure management [31], to monitor the usage and
condition of various transport networks, helping repair and maintain them

2.3 Intelligent Transportation Systems 15



in the most optimal manner. The ubiquity and variety of these applications
serve to highlight the importance of VDI as a part of ITS as a whole.

The methods used to implement VDI are varied and numerous, and can
be split into two broad categories. The first category includes intrusive
methods, based on video cameras [32], LIDAR [33], radar [34], inductive
loop coils [35], and magnetic sensors [36], which present good detection
and identification performance, but require the use of task-specific hardware
which typically incurs substantial installation and running costs. The second
category includes non-intrusive methods, which use technologies such as on
Wi-Fi channel state information (CSI) [37] and acoustic sensors [38], which
are cheaper to install and operate, and in some cases able to function by
piggybacking off pre-existing infrastructure.

2.3.2 Acoustic Vehicle Detection and Identification

Acoustic vehicle detection and identification (AVDI) is a subcategory of VDI
which makes use of acoustic sensors to obtain information from passing
vehicles. The non-intrusive nature of acoustic sensors make AVDI an easy-
to-install and low-cost alternative to more expensive intrusive VDI systems.
Moreover, the small form factor of acoustic sensors allows them to be de-
ployed quickly and easily in remote locations.

There is a wide range of existing AVDI implementations, each of which
present different advantages and disadvantages, making them suited to dif-
ferent roles and situations. From a high-level perspective, the most commonly
used approach is sample → process → classify, typically including feature ex-
traction during the process stage. There are a substantial number of systems
that follow this general approach, but differ significantly in their implementa-
tions: input audio signals in mono [39] or stereo [40]; MFCC [41], DFT [42],
or DWT [43] as domain transforms; detection and identification performed
using supervised [44] or unsupervised learning [45]. These systems each
present a different trade-off between cost, complexity, and performance, and
the choice of which system to use depends on the application.

There are also AVDI systems which use different, more heuristic, high-level
approaches, most notably sound map-based systems such as [14] which uses
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RANSAC, and [46] which uses dynamic time warping to identify passing
vehicles, along with their direction of travel, but do not perform vehicle type
classification.

2.3.3 Lightweight AVDI

The inherently lightweight nature of AVDI makes it particularly suitable
for use in low-power MCU-based systems deployed in remote or edge ITS
environments. This is typically done by focusing on two key aspects: battery
life and system autonomy. Extending the system’s battery life ensures that it
can operate reliably for extended periods of time, while also reducing the
frequency at which the system needs to be taken offline to be recharged
or replaced. Optimising system autonomy allows the system to store and
process as much data as possible on the device itself, sending no, or very
limited amount of information back from the lightweight sensing device to a
central processing node.

In practice, this can be achieved in a number of different ways, for instance
the authors of [47] propose an ultra low-power vehicle detection system
which uses the discrete Wavelet transform (DWT) and logistic regression,
while the authors of [11] present an environment monitoring system which
uses FFTs and a hidden Markov model (HMM).

2.4 Human Activity Recognition

Human activity recognition (HAR) can be defined as the task of identifying
the actions, activities, and movements of human subjects, and plays a crucial
role in a wide range of applications such as healthcare monitoring [48],
assisted living [49], and both cyber and physical security [50, 51].

The sensors used to perform HAR can broadly be separated into two cat-
egories. The first category includes remote sensors such as video [52],
radar [53], or Wi-Fi CSI channel information [54], and are more commonly
used in applications where multiple subjects are being monitored simultane-
ously, such as in public spaces. The second category includes wearable sensors
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placed directly on the subject in the form of either custom hardware [55],
or using sensors present in everyday objects like smartphones [56], smart-
watches [57], most often used to monitor the movements and activities of
individual subjects.

While wearable sensors used in HAR initially consisted of purpose-built
devices, improvements in technology have led to the widespread adoption
and use of sensor-equipped smartphones and smartwatches, causing a rise
in both the number of people carrying sensors and the period of time the
sensors are carried for, significantly increasing the viability of individual
subject-oriented HAR. Of the two devices, the smartwatch can be considered
the most important as it is always placed in the same place, the wrist (a part
of human anatomy with multiple axes of movement) and whose movements
vary significantly depending on the activities performed by the wearer. In
contrast, the smartphone is limited to few degrees of movement due to
usually being placed in a pocket, on a table, or in a bag. It follows that
studies on individual subject-oriented HAR tend to use data collected from
smartwatches or a combination of both smartwatch and smartphone data,
paired with supervised learning to detect and identify a subject’s activities.

2.4.1 Lightweight HAR

Battery life and system autonomy are crucial factors in many HAR systems,
especially those found in safety-critical applications where usage and adop-
tion need to be as consistent and as uninterrupted as possible. A survey
conducted by [9] as part of a study on the large-scale deployment of multi-
ple wearable sensors in Parkinson’s disease found that 27% of participants
stopped using their wearable sensing devices due to difficulties ensuring they
remained charged. Lightweight approaches typically focus on minimising
model size and power consumption; a lightweight example of the first type
of system can be seen in [58], which uses a simple deep neural network-
(DNN) based framework capable of both offline and online learning, and
a lightweight example of the second type of system can be seen in [13]
which uses a compressive ultra low-power wavelet-based system to perform
anomaly detection.
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Baseline Approaches
3

3.1 Introduction

Baseline approaches are an important factor to consider during the design
process of a new system, as they are an effective way to gauge the perfor-
mance and viability of any proposed architectures. In this chapter, we focus
primarily on the acoustic vehicle detection and identification (AVDI) system
we designed in [40] as it is simultaneously an important first step in the
creation of our compressive measurement-based acoustic vehicle detection
and identification (C-AVDI) system, while also being sufficiently different to
the final system in terms of operation to act as a suitable benchmark. We
also briefly cover some existing baseline human activity recognition (HAR)
approaches, as given the popularity of the field, there is a large body of work
to draw from. For the purpose of making any comparisons as accurate as
possible, we focus in particular on smartwatch-based systems.

3.2 SMBAS: Stereo Microphone-Based AVDI
System

3.2.1 Background and Related Work

The detection and identification of vehicles is of paramount importance
in a wide variety of intelligent transportation system (ITS) applications,
and several methods have already been put forward for this purpose. The
vast majority of approaches, however, only focus on vehicle detection and
no consideration is given to the identification, or classification, of vehicle
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type. Recently, there has been an increasing demand for systems capable of
performing vehicle identification as well as vehicle detection.

There is a wide variety of existing vehicle identification approaches, which
can be split into a number of different categories.

• Camera-based systems: the authors of [32] propose a system capable
of automatically recognising a vehicle’s number plate, and thus its
registered information, from a single image using edge statistics. This
method requires the use of a high-performance computer for analysis,
and the installation of a camera in front of the vehicle passing point to
achieve high accuracy. In [59] the authors put forward a classification
method using vehicle length: by taking the background difference
information from images taken from roadside surveillance cameras,
the authors are able to obtain the passing time, and thus the length of
passing vehicles which is then used to determine vehicle type. Whilst
this method is effective for detecting long vehicles such as trucks or
buses, it is not suited for shorter ones like cars or motorbikes. In
addition, accuracy performance suffers in rainy and foggy situations.

• Electronic toll collection- (ETC) based systems: in ETC-based methods,
the vehicle type is identified by the registration information contained
in the ETC onboard equipment. Whilst ETC systems enjoy common
and widespread use on motorways in Japan and around the world, the
high installation and maintenance costs of the infrastructure make it
difficult for them to be installed on standard roads for the sole purpose
of vehicle detection and identification.

• Acoustic sensor-based systems: the authors of [44] and [60] propose
approaches using frequency domain features in tandem with supervised
learning setups such as support vector machine (SVM) and k-nearest
neighbour (k-NN) classifiers. The authors of [61] developed a method
for estimating a vehicle’s type based on the envelope shape of its
emitted acoustic signal in the frequency domain. As each vehicle has
a unique frequency spectrum shape, the system is able to accurately
distinguish individual vehicles from one another. However, the inherent
uniqueness of each frequency spectrum shape makes it impossible for
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the system to classify a passing vehicle’s type (i.e. to determine its class
label).

We are looking to create a lightweight, yet accurate, vehicle detection and
identification (VDI) system. We previously mentioned in Section 2.3.2, that
acoustic vehicle detection and identification (AVDI) can act as an inexpensive,
low-complexity VDI method. Thus, we present SMBAS, a stereo microphone-
based AVDI system capable of detecting and identifying passing vehicles as a
low-cost, easy-to-implement alternative to the VDI systems outlined above.

3.2.2 System Overview

The intuition behind SMBAS is as follows: a stereo microphone pair is
placed on the side of the road to track a vehicle’s position relative to both
microphones, as the vehicle passes in front of each microphone successively,
its sound is recorded and the time difference between both microphones is
calculated from which we can obtain the direction and speed of the passing
vehicle. The passing vehicle’s sound signature is then emphasized by aligning
and superimposing the signals obtained by each microphone.

Figure 3.1 shows an example of a vehicle moving from right to left: the
left channel microphone is located further from the vehicle than the right
channel microphone. The arrival time between the sound emanating from the
vehicle and the left microphone is larger than the arrival time between the
sound emanating from the vehicle and the right microphone. The difference
between the arrival times is ∆t.

By shifting the left channel sound by −∆t and adding it to the right channel
sound, we obtain our combined emphasized sound. We set sL(t), sR(t),
as the left and right channel audio signals respectively and semph(t) as the
emphasized signal:

semph(t) = sR(t) + sL(t+ ∆t). (3.1)
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Fig. 3.1: A passing vehicle’s sound signature is emphasized by aligning and super-
imposing the signals obtained by the microphones.

The vehicle type is estimated from this emphasized signal using supervised
learning methods. Since the vehicle is assumed to travel continuously along
the road, ∆t changes with time and is thus a function of time t:

semph(t) = sR(t) + sL [t+ ∆t(t)] . (3.2)

This concept, which underpins the operation of our proposed system, is
described as a continuous time process, but its actual implementation is done
in the digital domain.

Figure 3.2 shows a system overview of SMBAS consisting of the following
components: a Sound Retrieval block, a Vehicle Detection block, an Emphasis
Synthesizer block, and a Vehicle Type Classification block.

The Sound Retrieval and Vehicle Detection blocks listen for sounds and analyse
them to detect passing vehicles; if a vehicle is detected, then the two blocks
will both acquire the vehicle passing time and the reception time difference
∆t. The detection block is designed using the sequential acoustic vehicle
detection (SAVeD) method established in previous research [14]. Using the
acquired ∆t, the sound signals acquired by the left and right microphones are
superimposed in the Emphasis Synthesizer block to enhance the vehicle sound
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in the direction of travel. Frequency domain feature values are extracted from
this emphasized audio signal, and the vehicle is identified using supervised
learning in the Vehicle Type Classification block.

The workings of each block are explained in the following sections.

Emphasis
Synthesizer

Vehicle Type 
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Vehicle 
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Ring 
Buffer
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RightLeft

Sound Delay: �t
<latexit sha1_base64="Y8XyGa0wQXrnyWmNBE7p+7qu1ic=">AAAB8XicZVBNS8NAEJ3Urxq/qh69LJZCTyURQY8FPXisYD+gDWWz3bZLN5uwOxFK6J/wJnoQr/4dL/4bt20Q2z4YeLw3w8y8MJHCoOf9OIWt7Z3dveK+e3B4dHxSOj1rmTjVjDdZLGPdCanhUijeRIGSdxLNaRRK3g4nd3O//cy1EbF6wmnCg4iOlBgKRtFKnd49l0gJ9ktlr+YtQDaJn5My5Gj0S9+9QczSiCtkkhrT9b0Eg4xqFEzymVvppYYnlE3oiHctVTTiJsgWB89IxSoDMoy1LYVkobr/JjIaGTONQtsZURybdW8u/nmrq3B4G2RCJSlyxZabhqkkGJP5+2QgNGcop5ZQpoW9lrAx1ZShDcm1MfjrT2+S1lXNt/zxulyv5oEU4QIuoQo+3EAdHqABTWAg4QXe4N0xzqvz4XwuWwtOPnMOK3C+fgFwao/g</latexit><latexit sha1_base64="Y8XyGa0wQXrnyWmNBE7p+7qu1ic=">AAAB8XicZVBNS8NAEJ3Urxq/qh69LJZCTyURQY8FPXisYD+gDWWz3bZLN5uwOxFK6J/wJnoQr/4dL/4bt20Q2z4YeLw3w8y8MJHCoOf9OIWt7Z3dveK+e3B4dHxSOj1rmTjVjDdZLGPdCanhUijeRIGSdxLNaRRK3g4nd3O//cy1EbF6wmnCg4iOlBgKRtFKnd49l0gJ9ktlr+YtQDaJn5My5Gj0S9+9QczSiCtkkhrT9b0Eg4xqFEzymVvppYYnlE3oiHctVTTiJsgWB89IxSoDMoy1LYVkobr/JjIaGTONQtsZURybdW8u/nmrq3B4G2RCJSlyxZabhqkkGJP5+2QgNGcop5ZQpoW9lrAx1ZShDcm1MfjrT2+S1lXNt/zxulyv5oEU4QIuoQo+3EAdHqABTWAg4QXe4N0xzqvz4XwuWwtOPnMOK3C+fgFwao/g</latexit><latexit sha1_base64="Y8XyGa0wQXrnyWmNBE7p+7qu1ic=">AAAB8XicZVBNS8NAEJ3Urxq/qh69LJZCTyURQY8FPXisYD+gDWWz3bZLN5uwOxFK6J/wJnoQr/4dL/4bt20Q2z4YeLw3w8y8MJHCoOf9OIWt7Z3dveK+e3B4dHxSOj1rmTjVjDdZLGPdCanhUijeRIGSdxLNaRRK3g4nd3O//cy1EbF6wmnCg4iOlBgKRtFKnd49l0gJ9ktlr+YtQDaJn5My5Gj0S9+9QczSiCtkkhrT9b0Eg4xqFEzymVvppYYnlE3oiHctVTTiJsgWB89IxSoDMoy1LYVkobr/JjIaGTONQtsZURybdW8u/nmrq3B4G2RCJSlyxZabhqkkGJP5+2QgNGcop5ZQpoW9lrAx1ZShDcm1MfjrT2+S1lXNt/zxulyv5oEU4QIuoQo+3EAdHqABTWAg4QXe4N0xzqvz4XwuWwtOPnMOK3C+fgFwao/g</latexit><latexit sha1_base64="Y8XyGa0wQXrnyWmNBE7p+7qu1ic=">AAAB8XicZVBNS8NAEJ3Urxq/qh69LJZCTyURQY8FPXisYD+gDWWz3bZLN5uwOxFK6J/wJnoQr/4dL/4bt20Q2z4YeLw3w8y8MJHCoOf9OIWt7Z3dveK+e3B4dHxSOj1rmTjVjDdZLGPdCanhUijeRIGSdxLNaRRK3g4nd3O//cy1EbF6wmnCg4iOlBgKRtFKnd49l0gJ9ktlr+YtQDaJn5My5Gj0S9+9QczSiCtkkhrT9b0Eg4xqFEzymVvppYYnlE3oiHctVTTiJsgWB89IxSoDMoy1LYVkobr/JjIaGTONQtsZURybdW8u/nmrq3B4G2RCJSlyxZabhqkkGJP5+2QgNGcop5ZQpoW9lrAx1ZShDcm1MfjrT2+S1lXNt/zxulyv5oEU4QIuoQo+3EAdHqABTWAg4QXe4N0xzqvz4XwuWwtOPnMOK3C+fgFwao/g</latexit>

sR(t)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

sL(t)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

semph(t) = sR(t) + sL(t + �t)
<latexit sha1_base64="me+KelPCr5RXIlkxgiV57yNhojY=">AAACGHicZZBNS8NAEIY3ftb6VfXoZbEIEbEkKuhFKOjBg4cqVgVTwmY7tYu7SdidCCX0V3jzn3gTPYhX8eK/cdMW8eOFhYd3ZpidN0qlMOh5n87Y+MTk1HRppjw7N7+wWFlavjBJpjk0eSITfRUxA1LE0ESBEq5SDUxFEi6j28OifnkH2ogkPsdeCi3FbmLREZyhtcLKlgkDxbCrVQ4q7fZd3KAH1IRnBWxaOHFxMzgCiYziRlipejVvIPof/BFUyUiNsPIRtBOeKYiRS2bMte+l2MqZRsEl9MvrQWYgZfyW3cC1xZgpMK18cFefrlunTTuJti9GOnDLPyZypozpqch2FjeYv7XC/K79XoWd/VYu4jRDiPlwUyeTFBNapETbQgNH2bPAuBb2t5R3mWYcbZZlG4P/9+j/cLFd83dq26e71bo7CqREVskacYlP9kidHJMGaRJO7skjeSYvzoPz5Lw6b8PWMWc0s0J+yXn/AuIXnYQ=</latexit>

Sound Retrieval

Fig. 3.2: System overview: SMBAS consists of a Sound Retrieval, Vehicle Detection,
Emphasis Synthesizer, and Vehicle Type Classification block.

3.2.3 Sound Retrieval Block

The Sound Retrieval block is composed of a stereo microphone pair. Figure 3.3
shows the experimental microphone layout: the two microphones M1 and
M2 are installed at a distance D from each other and a distance L from
the road. As the distances d1 and d2 from the vehicle to each microphone
change over time, so does the time delay between a sound being emitted
by a vehicle and it reaching both microphones. The audio signals acquired
by both microphones are temporarily held in ring buffers for later use, as
the time difference between the signals is used in both the detection and
classification processes.
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Fig. 3.3: Microphone positioning and setup.

3.2.4 Vehicle Detection Block

The Vehicle Detection block uses the audio signals stored in the ring buffers to
detect passing vehicles by drawing a soundmap. We write the audio signals
received by the two microphones as s1(t) and s2(t), and the cross-correlation
function R(t) as:

R(t) =
∫
s1(t) s2(t+ τ) dτ. (3.3)

If the two microphones receive a signal with a time difference of ∆t such
as: s1(t) = s2(t + ∆t), then R(t) reaches its maximum value at t = ∆t.
The time difference ∆t can then be estimated by looking for the peak of
R(t). The actual value of ∆t is calculated using GCC-PHAT (Generalized
Cross-Correlation Phase Transform) which calculates the time difference in
the frequency domain.

Additionally, on Figure 3.3 we can see that the difference in reception time
(or sound delay) ∆t between microphones M1 and M2 is proportional to the
distance between the sound source and each microphone respectively. We set
the initial passing time of a vehicle in front of the centre of the microphones
as t = t0.
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We thus also derive ∆t(t), which is a function of time, in the following
manner:

∆t(t) = d1 − d2

c

=1
c


√[

v(t− t0) + D

2

]2
+ L2

−
√[

v(t− t0) − D

2

]2
+ L2

 , (3.4)

where c is the speed of sound.

From (3.4), we can see that as a vehicle passes in front of a microphone
with a constant speed v, an S-shaped curve is drawn on the soundmap. The
Vehicle Detection block works by detecting this curve using a random sample
consensus (RANSAC) robust estimation algorithm [62]. In our case, the
unknown parameters in (3.4) are the speed v and the initial passing time t0;
these are estimated by fitting (3.4) to a “high likelihood” point cloud on the
soundmap.

Figure 3.4 shows an example of vehicle detection using a soundmap and
RANSAC, with the blue dots indicating the sound delay at each time t, and
the orange line the result of the RANSAC fitting process. The red points
were judged as being of “high likelihood” during the fitting process. For each
detected vehicle, the Vehicle Detection block calculates and outputs the speed
v and the passing time t0 to the Emphasis Synthesizer block.

3.2.5 Emphasis Synthesizer Block

The Emphasis Synthesizer block begins by calculating the passing sound
time difference ∆t at each time t using the speed v and the initial passing
time t0 for each vehicle detected by the Vehicle Detection block. Using this
information, the Emphasis Synthesizer block shifts the received sound signal
at one of the microphone channels in time and adds the sounds of both
channels together, creating an emphasized sound.
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Fig. 3.4: Vehicle detection using RANSAC: the blue points indicate the sound delays
at each time t, and the red points are points judged as being of “high
likelihood” during the RANSAC fitting process. The orange line is the
result of RANSAC fitting.

If the signal obtained by the first microphone enables us to broadly estimate
the passing vehicle type, then the signal at the second microphone gives us
information about any successively or simultaneously passing vehicles. For
instance, the presence of frequency information corresponding to a high-
amplitude signal at the second microphone would suggest a simultaneously
passing vehicle in the opposite lane, whilst that of a lower-amplitude signal
would suggest a successively passing vehicle in the same lane, or no other
vehicle at all. The emphasized signal obtained from the combination of one
of these frequency signatures at the second microphone with the frequency
signature at the first microphone gives us information about both the passing
vehicle type and any successively or simultaneously passing vehicles.

Figure 3.5 shows an overview of the emphasis synthesis process: the audio
signals of the left and right channels are subdivided into multiple fixed-width
windows with the time shift being performed in the frequency domain in
order to process each window sequentially. We obtain the time-frequency
domain representation of each individual window by performing a Fast
Fourier Transform (FFT) on each of them sequentially, before using the speed
v and the passing time t0 obtained beforehand to calculate the appropriate
value of ∆t as seen in (3.4). Finally, one of the signals is shifted by ∆t to
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Fig. 3.5: Emphasis synthesis process: for each fixed-width window, the frequency
domain representation is derived using an FFT. The FFT’d signals on left
and right channels are aligned and summed together.

cancel out the time difference and the two signals are summed together. Time
shifting the signal in the frequency domain amounts to shifting the phase of
each of its frequency components. Let s[n] be the discrete-time representation
of the original signal and S[k] its frequency domain representation obtained
via DFT:

S[k] = DFT(s[n])

=
N−1∑
n=0

s[n] e−j2πk n
N . (3.5)

Here, DFT( ) represents the discrete Fourier transform, and N is the number
of points used in the DFT operation (i.e. the window size). The DFT of the
signal s[n − m], which is the signal obtained by delaying the time domain
representation of the signal s[n] by m points, can be represented as follows:

DFT(s[n−m]) =
N−1∑
n=0

s[n−m] e−j2πk n
N

= e−j2πk m
N S[k]. (3.6)

From (3.6), we can see that shifting the time shifts the phase of each fre-
quency component by −2πkm

N
.
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3.2.6 Vehicle Type Classification Block

The Vehicle Type Classification block extracts the features used for vehicle type
classification from a frequency domain representation of the emphasized
vehicle sound produced by the Emphasis Synthesizer block and determines
the vehicle type using supervised learning. In our system, we use an SVM
classifier due to the large number of features for each data point. The kernel
used is the linear kernel, as it offers good separability for our particular
dataset whilst being less complex and less prone to overfitting than other
kernels.

SMBAS uses only the low-frequency components of the emphasized audio
signal as features. Figure 3.6 shows the frequency spectrum of two audio
signals, one acquired when a vehicle was passing and one acquired when a
vehicle wasn’t passing. We can see that the majority of the frequency content
contained in a passing vehicle’s signal is located in the sub-10 kHz band.

In order to reduce the influence of environmental noise, a low-pass filter
(LPF) is applied in the time domain to the individual frequency components
prior to classification. Looking at the horizontal axes of Figure 3.6, we can
see that whilst the frequency spectrum of the actual audio signal does not
change significantly in the short period of several hundred milliseconds, there
are changes in the spectrum of the signal acquired by the microphone that
are due to the influence of environmental noise. Given that the time required
for a vehicle to pass in front of the microphone is relatively long (on the
order of a few seconds) the effect of this small change can be reduced by
applying a moving average filter over a shorter time span than the vehicle
passing time. Based on our preliminary experimental results, the length of
the moving average is set to 320 ms in our evaluations.

Finally, to improve system accuracy and efficiency, standardization is applied
to all features before classification: (xf [i] − µf )/σf , where xf [i] is the [i]th
entry in a feature vector, µf is the vector’s average value, and σf its standard
deviation.
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(a) A vehicle is passing
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Fig. 3.6: Sound spectrograms (dB) when a vehicle is passing, and when no vehicle
is passing.
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Fig. 3.7: Experimental setup: two microphones installed on the roadside record the
sounds of passing vehicles.

3.3 Evaluation

3.3.1 Evaluation Environment

The experimental setup is shown in Figure 3.7. Vehicle sounds were acquired
from a two-way, two-lane road and classification was performed on sounds
obtained by vehicles passing on either lane. Two microphones were installed
on the roadside at approximately 1 m from the ground, parallel to the road
and connected to a video camera. The distance between both microphones
was D = 50 cm, the distance between the microphones and the centre of
the front lane is L = 3 m and the distance between the microphones and
the back lane was L = 6 m. The video camera used was a SONY HDR-MV1
and the microphone an AZDEN SGM-990, recording for approximately 20
minutes at a sample rate of 48 kHz and bit depth of 16 bits. As in [14],

The total number of vehicles detected by the detection block was 142 vehicles
(46 cars, 78 scooters/motorbikes, 18 buses), and classification was performed
for 3 classes: cars, scooters/motorbikes, and buses, which we refer to as
“Car”, “Scooter” and “Bus” respectively.

The time taken by a vehicle to pass in front of the first microphone is defined
as Tpass. We set the initial passing time of a vehicle in front of the microphone
as t = t0 and evaluate signals over the range [t0,i − Tpass/2; t0,i + Tpass/2]
where i corresponds to each successive passing vehicle, and t0,i is the initial
passing time of that particular vehicle. We record each passing vehicle for
[t0,i − Tpass/2 ; t0,i + Tpass/2] before splitting the acquired audio signals into a
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sequence of windows which are sequentially transformed using an FFT and
low-pass filtered, resulting in a spectrogram from which we extract frequency
domain features (Figure 3.6). The vehicle data is randomly undersampled to
obtain classes with equal amount of entries, and the features are inputted to
a 10-fold cross-validated classifier.

During our evaluation we compared the classification accuracy of the follow-
ing two methods:

• Stereo classification method: our proposed method, SMBAS, illustrated
in Figure 3.3. By using the information obtained during the detection
process, the sound obtained by both of the microphones is combined
to emphasize the vehicle sound, and the vehicle type is determined
by supervised learning using features obtained from the emphasized
signal.

• Mono classification method: this method determines the vehicle type
using only one microphone. As the evaluation environment in this paper
uses two microphones, in this case the vehicle type was determined
using features obtained from the left microphone’s audio signal only.

3.3.2 System Performance

To mitigate the effects of any potential randomness due to undersampling,
we run the full SMBAS system 100 times, averaging the results obtained from
each run, leaving us with our final system accuracy values and confusion
matrices. The FFT window length was set to 4096 points, and the features
used in classification were obtained by shifting the FFT window along the
captured audio signals with a 25% overlap. We set Tpass = 2.0 s based on the
results of preliminary experiments.

Figure 3.8 shows the confusion matrices for the stereo and mono classification
methods. The accuracy ratings are 95.0% and 90.3% respectively: vehicle
identification accuracy is improved by 4.71 percentage points when using the
stereo classification method rather than the mono classification method.

Table 3.1 shows the proportion of simultaneously and sequentially passing
vehicles compared to the overall amount of passing vehicles. We define a
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Fig. 3.8: Confusion matrices for stereo and mono classification methods. Average
accuracy is 95.0% and 90.3%, respectively.
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vehicle as “simultaneously passing” if it passes within a previous vehicle’s
Tpass period in the opposite direction, and “successively passing” if it passes
within a previous vehicle’s Tpass period in the same direction.

Tab. 3.1: Number and Ratio of Successive and Simultaneous Passing Vehicles

Car Scooter Bus Total
Detected 46 78 18 142
Simultaneous 11 33 2 46

(23.9%) (42.3%) (11.1%) (32.4%)
Successive 6 10 3 19

(13.0%) (12.8%) (16.7%) (13.4%)
Total 17 43 5 65

(37.0%) (55.1%) (27.8%) (45.8%)

The improvement in overall system accuracy can be attributed to the im-
proved detection of simultaneously and successively passing vehicles achieved
thanks to the stereo classification method. By looking at Table 3.1 and Fig-
ure 3.8 we can see that the simultaneously and successively passing vehicles
make up only a relatively small proportion of the overall detected vehicles,
which is why the overall system accuracy shows only a slight improvement.

3.3.3 Considerations

There are a number of important lessons to take from SMBAS which can be
considered when designing our proposed C-AVDI system. First is the amount
of data used: SMBAS performs detection and identification on only 142 total
vehicles obtained during a single 20-minute recording session; it is important
to increase this number for C-AVDI. Second, SMBAS only operates on data
obtained under clear weather conditions, and has not been tested in adverse
weather conditions; this also needs to be considered when designing C-
AVDI. Third, the detection and identification processes are performed in two
separate stages, it would be more efficient to perform both these processes
in a single stage. Finally, the proportion of successively and simultaneously
passing vehicles is small compared to the total amount of passing vehicles,
thus focussing on the detection of such vehicles may not be the most efficient
use of resources: for example, the improvement in the system efficiency
achieved by using a mono input signal rather than a stereo input signal could
potentially outweigh any improved in system accuracy achieved by improving
simultaneous and successive vehicle detection.
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3.4 Baseline Human Activity Recognition
Approaches

HAR is used in a host of different scenarios, each with different constraints
and objectives, and as such there is an equally large number of implementa-
tions designed to be used in these scenarios. The most common approaches
can be broadly separated into two categories, remote sensor-based systems
and wearable sensor-based systems:

• Remote sensor-based systems: this category includes sensors such as
video cameras [52], radar [53], or Wi-Fi CSI channel information [54],
and are more commonly used in applications where multiple subjects
are being monitored simultaneously, such as in public spaces.

• Wearable sensor-based systems: this category includes wearable, on-
board sensors placed directly on the subject, either in the form of
custom hardware [55] or using sensors present in everyday objects like
smartphones [56] and smartwatches [57], and is most often used to
monitor the movements and activities of individual subjects.

In our research we focus on the second category. Wearable sensors used in
HAR were initially limited to purpose built devices, but improvements in
technology have led to the widespread adoption and use of sensor-equipped
smartphones and smartwatches. This development caused a rise in both
the number of people carrying sensors, and the period of time the sensors
are carried for, significantly increasing the viability of individual subject-
oriented HAR. Of the two devices, the smartwatch can be considered the
most important as it is always placed in the same place, the wrist, a part of the
human anatomy with multiple axes of movements, and whose movements
vary significantly depending on the activities performed by the wearer, while
the smartphone is typically limited to few degrees of movement due to usually
being placed in a pocket, on a table, or in a bag.

As such, it follows that studies on individual subject-oriented HAR tend to
use data collected from smartwatches or a combination of both smartwatch
and smartphone data, paired with supervised learning to detect and identify
a subject’s activities. The authors of [57] present a system which uses
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smartwatch accelerometer data in conjunction with a random forest (RF)
classifier to identify activities associated with forestry and cable logging.
Similarly, the authors of [63] present a system which uses data from both
the smartwatch’s gyroscope and accelerometer, as well as other onboard
sensors, as inputs to a hybrid principal component analysis (PCA) and RF
classification framework to detect and identify a set of daily activities. In [64]
the authors use a selection of artificial neural networks (ANNs) with the
gyroscope and accelerometer data obtained from smartwatch sensors to
recognise daily activities, and the authors of [51] use the biometric data
obtained by both the smartwatch and smartphone sensors in conjunction
with a range of different supervised learning methods to identify different
users based on how they perform certain activities.

3.4.1 Smartwatch-based HAR Baseline Approach

L2 Norm

x(t)

y(t)

z(t)

Signal Acquisition

Feature Extraction

5x1 feature vector or

15x1 feature vector

Classifier

Feature Extraction 

and Classification

Smartwatch

LPF

10Hz

ADC

20Hz

L2(t)

x[t]

y[t]

z[t]

L2[t]

Fig. 3.9: Baseline HAR approach: we use three different approaches to extract
features from the x-, y-, and z-axis sensor readings for use in classification.

At a later point in our thesis - in Chapter 6 - we propose C-HAR, a sys-
tem which uses data obtained from the accelerometer and gyroscope of a
smartwatch to classify a selection of activities performed by the wearer. For
the sake of future comparison, in this section we present a straightforward
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heuristic baseline approach. The dataset used, the WISDM dataset [51],
provides three-axis sensor readings for 18 different activities, divided into
three categories: “Non-Hand-Oriented”, “Hand-Oriented (General)”, and
“Hand-Oriented (Eating)”. We obtain 210 unique 3-activity combinations by
drawing an activity from each category, and perform 3-class classification
using a random forest (RF) classifier. We average the classification results
obtained from each of the 210 individual 3-class combinations, and obtain
our final accuracy values.

We use three different approaches to extract features from the x-, y-, and
z-axis sensor readings for use in classification, as shown in Figure 3.9.

The extracted features comprising a 5-feature set are:

• mean

• standard deviation

• median

• absolute largest value

• interquartile range

We list the different approaches along with their respective highest overall
sensor accuracy:

• Individual axis: the system extracts a set of 5 features from each axis,
and uses each set in turn as inputs to a classifier. We obtain an accuracy
of 97.2% using x-axis features, 95.6% using y-axis features, and 95.4%
using z-axis features.

• Combined axis: the system extracts a set of 5 features from each axis,
and introduces them as a combined 15 feature input vector to a classifier.
We obtain an accuracy of 98.8%.

• Normed axis: the system takes the L2 norm of the three input signals
and extracts a set of 5 features from the combined signal to use as
inputs to a classifier. We obtain an accuracy of 96.6%.
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The highest accuracy of 98.8% is obtained using the Normed axis approach.

We summarise the smartwatch-based approaches discussed above, including
our heuristic baseline approach in Table 3.2.

Tab. 3.2: Existing Lightweight HAR Baseline Approaches

System Focus Sensor Classification Classifier Accuracy
[52] Posture Detection Video Camera Multiclass MLP 96.0%
[53] Indoor Activities Radar Multiclass KMeans 85.0%
[54] General Activities WiFi CSI Multiclass SVM 97.0%
[57] Domain-Specific Activities Accelerometer Multiclass RF 86.7%
[63] General Activities Various Multiclass RF 98.5%
[64] General Activities Accelerometer Multiclass CNN 91.4%

Baseline (Best) General Activities Accelerometer Multiclass RF 98.8%

3.4.2 Considerations

We can draw a number of conclusions from the baseline HAR approaches
described above to consider when designing our C-HAR system. The first is
that all the systems present a very high accuracy score, regardless of their
focus or sensing strategy. This means that even if C-HAR is able to operate
at sub-Nyquist rates, it needs to achieve a comparably high accuracy to be
considered a viable alternative. The second is that given the wide range of
different sensors, setups and systems used in HAR, it is important to clearly
define the goals and chosen approach of our proposed system, as they will
be crucial in evaluating the performance of the final system. In our case, we
will look to create a lightweight smartwatch sensor-based system capable of
multiclass classification of everyday human activities.

3.5 Summary

In this chapter, we presented a selection of baseline approaches against which
to compare our proposed compressive measurement-based systems which
are to be presented in subsequent chapters. Given the relatively niche space
that AVDI occupies, both within VDI and the field of ITS more generally, an
in-depth look at a more traditional Nyquist rate AVDI architecture such as
SMBAS is crucial when designing our C-AVDI system as it gives us significant
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insight into which processes can be removed, adapted, or kept as is. In
contrast, the wide range of lightweight HAR systems means that there are a
large variety of applications and approaches against which our C-HAR system
can be compared. This allows us to quickly and simply design and determine
the viability of our proposed C-HAR system by comparing its operating
process, accuracy and efficiency to existing lightweight HAR approaches.
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Compressive
Measurement
Processing

4

4.1 Introduction

One of the main functionalities of our proposed framework is the simultane-
ous filtering and sub-Nyquist sampling of input signals, which requires the
creation of a dedicated compressive measurement sampling and processing
strategy. In this chapter, we first discuss how compressive sensing (CS) can
be considered as a dimensionality reduction operation, before presenting
our approach to simultaneous filtering and sampling using spectrally shaped
bipolar sequences.

4.1.1 Background

The term “compressive signal processing” (CSP) was first coined by the au-
thors of [65] and refers to the process of performing detection, classification,
and filtering directly on the compressive measurements obtained during
the CS process without prior reconstruction. This concept has been further
explored and analysed in [25, 66, 67]; and while the goals and approaches
differ, the fundamental idea of bypassing the reconstruction of x and instead
directly leveraging ξ remains the same. This concept underpins the approach
to sensing presented in this thesis: rather than using CS to acquire a signal
at a sub-Nyquist rate and reconstruct it at a later date, features are extracted
from the compressive measurements directly and used in supervised learning
applications.
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If the compressive measurements can be considered as a set of data points
from which features can be extracted, then it follows that appropriate pre-
processing of these measurements can improve the performance of the asso-
ciated supervised learning systems. This pre-processing can be performed
once the measurements are obtained and is typically modelled as a sequence
of matrix operations on an input matrix or vector such as in [65] or [68].
While this approach can lead to precise filtering and processing, it often
requires knowledge, and thus on-system storage of Θ, the reconstruction
matrix used in the recovery process, which places minimum requirements on
the memory and computational capabilities of the hardware on which the
processing occurs.

A different approach, and the one used in our research, is to pre-process the
measurements as they are acquired. The authors of [69] first introduce the
concept of matching the sampling strategy to the input signal to improve
reconstruction performance when using a random demodulator (RD). By
matching the frequency-domain spectra of the input signal with a specially
designed pseudo-random bipolar spreading sequence, the authors are able to
reduce the minimum amount of samples required for perfect reconstruction
when compared to using a fully randomly generated bipolar sequence. This
serves as a starting point from which to design a system capable of cutting
and boosting specific frequency bands present the original input signal as
they are acquired, creating a simultaneous sub-Nyquist sampling and filtering
architecture. Finally, we note that in this thesis, we use the term “filtering”
to refer to both the attenuation and amplification of frequencies present in a
signal.

4.1.2 Related Work

Sub-Nyquist signal processing using the measurements obtained during the
CS process has been explored as an alternative to traditional digital signal
processing in a range of existing work. The authors of [65] present a method-
ology in which signal processing is performed directly on the compressive
measurements obtained during the CS process. The paper demonstrates
that filtering, detection and classification can be performed directly on the
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compressive measurements without recovering the signal beforehand. Simi-
larly, the authors of [25] propose a multiband compressive signal processing
architecture in which information acquired at sub-Nyquist rates from differ-
ent frequency bands is used in a range of applications without prior signal
reconstruction.

In addition, there is existing research that focuses on the creation of adaptive
sampling strategies used to optimize the performance of CS-based systems.
Both [69] and [70] propose a method for shaping the spectra of the pseu-
dorandom bipolar sequences used in various CS architectures to improve
signal reconstruction performance. The first proposes a Markov chain-based
method inspired by run-length limited (RLL) sequences to both shape the
spectrum of the bipolar sequence and limit the rate at which it switches po-
larity. This paper lays the groundwork for subsequent research, but does not
fully explore the filtering effects of such a sequence in the context of CS-based
sensing, instead focusing on optimizing signal reconstruction. The second
proposes a method based on convex relaxation to create a binary sequence
whose spectrum resembles that of a notch filter. While this method is able to
produce sequences with well-defined spectra, the complexity associated with
this method makes it unsuitable for low-power applications.

The above work serves both as a proof of concept for CSP as a lightweight
alternative to traditional digital signal processing (DSP), and lays the ground-
work for our simultaneous sub-Nyquist sampling and filtering classification
architecture.

4.2 Compressive Sensing as a Dimensionality
Reduction Operation

The computational complexity associated with the CS procedure occurs pre-
dominantly during the reconstruction process, and bypassing this procedure
by performing classification based on information extracted directly from
the compressive measurements ξ enables us to significantly reduce the pro-
cessing requirements of our system compared to more traditional CS-based
systems.

4.2 Compressive Sensing as a Dimensionality Reduction
Operation
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In essence, we consider the procedure Φ: RN → RM purely as a dimension-
ality reduction operation as it produces a lower dimension representation of
our input signal. For us to be able to consider compressive measurements as
low-dimensionality representations of an input signal, we must ensure that
certain conditions are met, most importantly that for any two distinct signals
x1 and x2, Φx1 ̸= Φx2, and thus Θα1 ̸= Θα2. This is guaranteed if Φ and Θ
follow the criteria outlined in [19]. Furthermore, as stated in Section 2.2.1,
ensuring that these two matrices follow the aforementioned criteria guar-
antees that the information contained in α (and thus, x) is present in the
measurements ξ.

4.3 Compressive Sensing with Spectrally
Shaped Bipolar Sequences

In the traditional RD architecture, the PRS(t) used to demodulate the input
signal switches polarity with equal probability; as a result, its frequency-
domain representation resembles that of white noise. This ensures equal
spreading of all K non-zero elements contained within x(t) across the fre-
quency spectrum, which is optimal if we do not have prior knowledge of the
distribution of x(t)’s frequency information within its bandlimit.

If, however, we do have prior knowledge of the locations of interest, then [69]
shows that signal reconstruction accuracy can be improved by using bipolar
sequences whose frequency-domain representation matches that of the input
signal. The authors argue that, given that the RD modulates the input signal
with a pseudorandom sequence and low-pass filters the resulting signal, it
follows that the reconstruction performance improves if more energy from
the input signal is modulated to baseband. While the RD sends every spectral
region to baseband with (on average) equal weighting, which is ideal if one
has no prior knowledge about the frequency content of the input signal,
a spectrally-tailored bipolar sequence will favour some frequency content
over others in the input signal. This ensures that the modulated signal,
on average, contains a large amount of relevant energy at baseband, thus
improving reconstruction performance.
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An example illustration of the signal matching process as described by the
authors is shown in Figure 4.1. In this example, both the input signal to be
acquired and the bipolar sequence used to demodulate it have their high
amplitude frequency content in the same location within their bandlimits: to
the left of a frequency pivot point at 200 Hz. As we will see later on in this
chapter, however, there are situations in which it is more beneficial to match
the bipolar spreading sequence’s spectra to a specific band of interest in the
input signal, rather than just simply matching the high amplitude frequency
content locations of the two signals. The same authors demonstrate in
their follow-up work [71] that the bipolar sequence can be generated using a
Markov chain with each state corresponding to an output symbol of ±1. Thus,
the polarity of PRS(t) at a given time is determined by the corresponding
Markov chain’s state transition probability and chain length. The authors
also establish that the Φ matrix obtained as a result of using a Markov-chain
generated PRS(t) satisfies the required RIP conditions outlined previously
with very high probability.

These results form the starting point from which we design the simultaneous
sampling and filtering section of our proposed compressive measurement
processing approach presented in this chapter. We expand upon the single
Markov chain sequence generation method proposed in [71] by designing a
dual Markov chain sequence generation method, capable of creating bipolar
sequences with more complex spectra, and prove that sequences created in
this manner can be used to amplify and attenuate the frequency contents of
input signals in addition to simply improving signal recovery performance.

4.3 Compressive Sensing with Spectrally Shaped Bipolar
Sequences
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Fig. 4.1: Signal matching process: both x(t) and PRS(t) have their high amplitude
frequency content to the left of a frequency pivot point at 200 Hz.

4.3.1 Markov Chain-based Generation

Figure 4.2 and Figure 4.3 show a selection of spectrally shaped bipolar
sequence spectra and the diagrams of the corresponding Markov chains used
to create them. The transition probability matrices corresponding to the
2-state and 4-state Markov chains are defined as P1 and P2 respectively:

P1 =
 p 1 − p

1 − p p

 P2 =


0 p 1 − p 0
0 0 1 0

1 − p 0 0 p

1 0 0 0

 (4.1)

We sweep the value of the transition probability p over the range 0 < p < 1.
The higher the value of p, the more likely the 2-state chain is to stay in
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Fig. 4.2: Spectra and corresponding state transition diagram of 2-state Markov
chain-generated bipolar sequences. Each spectrum corresponds to a differ-
ent transition probability p.

4.3 Compressive Sensing with Spectrally Shaped Bipolar
Sequences
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ent transition probability p.
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its current state, and the more likely the 4-state chain is to transition to
a state with the same output. In the case of a 2-state chain, this results
in more of the generated signal’s energy being located towards the lower
end of its bandlimit; and in the case of a 4-state chain this results in the
generated signal’s energy tending towards a narrow peak in the middle of its
bandlimit. Conversely, a lower value of p means that both chains are more
likely to transition to a state with a different output, leading to the energy of
both of the generated signals being located towards the higher end of their
respective bandlimits. It is important to note that this relationship is due
to the way P1 and P2 were designed: permuting the rows and columns of
these matrices would change our state diagram and reverse the relationship
between frequency distribution and transition probability.

4.3.2 Reconstruction Bounds

As stated previously, in our proposed framework we do not reconstruct
the original input signal at any point during its actual operation. When
designing the system, however, it is important to quantify and visualize the
effects of matching PRS(t) and x(t), which can be done most effectively by
reconstructing test signals acquired using spreading sequences generated with
a range of different bipolar sequence generation parameters and examining
the results.

This is done by performing CS using the RD on a set of four test signals whose
spectra are shown in Figure 4.4, varying the Markov chain’s p-value over each
run, and repeating the process for both a 2-state and a 4-state chain. The
test signals each have the same bandlimit but different frequency composi-
tions: a low-frequency xLF signal, mid-frequency xMF signal, high-frequency
xHF signal, and broadband xBB signal. We denote the corresponding recon-
structed versions of these signals as x̂LF , x̂MF , x̂HF and x̂BB (reconstruction is
performed via basis pursuit using the SPGL1 toolbox available from [72]).

The test signal reconstruction parameters are shown in Table 4.1. The
optimal value of M is determined by first establishing a theoretical lower
bound value using (2.9), from which the optimal value of M is obtained
experimentally by repeatedly performing the CS process on our input signals

4.3 Compressive Sensing with Spectrally Shaped Bipolar
Sequences
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while incrementally increasing M and noting the resulting relative error (RE).
Repeating this process enables us to find the values of M after which the
RE levels off for each of the four test signals. We use the largest of the four
values, M = 12000.

Figure 4.5 plots the resulting RE of the original and reconstructed signals, and
the values of p for the optimal reconstruction of each signal are summarized
in Table 4.2. These results confirm that for a constant value of M , match-
ing PRS(t) and x(t) by changing the value of p improves reconstruction
performance.

4.3.3 Single Chain

In addition to improving reconstruction accuracy, a tailored PRS(t) can
amplify or attenuate specific frequency content in a given input signal. Thus,
we can equate the mixing of x(t) and PRS(t) to a simultaneous demodulating
and filtering operation in which the spectrum of the bipolar sequence is
likened to the frequency response of a filter. This property is a key feature of
our proposed system, and again is most effectively quantified and visualized
during the system design process by reconstructing the test signals shown in
Figure 4.4.

Tab. 4.1: Test Signal Reconstruction Parameters

Nyquist Rate 48 kHz
W

Switching Rate 48 kHz
C

ADC Rate 12 kHz
R

Bit Depth 12 bits
B

Signal Length (Time) 1s
Ts

Signal Length (Samples) 48000
N

Signal Sparsity 40
K

Compressive Measurements 12000
M

We visualize the filtering effects of a spectrally tailored PRS(t) on an input
signal by plotting the spectra of test signals x̂LF , x̂MF , x̂HF and x̂BB recon-
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Tab. 4.2: Single Chain Parameters for Optimal Reconstruction

Chain Length Signal p RE [×10−5]
2-state x̂LF 0.999 6.67

x̂MF 0.445 10.0
x̂HF 0.001 6.80
x̂BB 0.555 12.7

4-state x̂LF 0.555 10.7
x̂MF 0.999 8.00
x̂HF 0.001 6.80
x̂BB 0.445 17.2
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Fig. 4.4: Spectra of test signals xLF , xMF , xHF , and xBB: each signal has the
same bandlimit but a different frequency composition (low-frequency,
mid-frequency, high-frequency, and broadband).

4.3 Compressive Sensing with Spectrally Shaped Bipolar
Sequences

49



0.0 0.2 0.4 0.6 0.8 1.0
Transition Probability

10−4

10−3

10−2

10−1

100
R

el
at

iv
e

E
rr

or
x̂HF

x̂BB

x̂MF

x̂LF

(a) Relative error as a function of transition probability for a 2-state
Markov chain-generated PRS(t)

0.0 0.2 0.4 0.6 0.8 1.0
Transition Probability

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
E

rr
or

x̂HF

x̂BB

x̂MF

x̂LF

(b) Relative error as a function of transition probability for a 4-state
Markov chain-generated PRS(t)
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4-state Markov chain-generated PRS(t).

50 Chapter 4 Compressive Measurement Processing



0 4 8 12 16 20 24

0.00

0.01

A
m

p
li
tu

d
e

x̂LF , p =0.001

0 4 8 12 16 20 24

0.0

0.5

1.0
x̂LF , p =0.555

0 4 8 12 16 20 24

0.0

0.5

1.0
x̂LF , p =0.999

0 4 8 12 16 20 24

0.0

0.2

A
m

p
li
tu

d
e

x̂MF , p =0.001

0 4 8 12 16 20 24

0.0

0.5

1.0
x̂MF , p =0.555

0 4 8 12 16 20 24

0.0

0.2

x̂MF , p =0.999

0 4 8 12 16 20 24

0.0

0.5

1.0

A
m

p
li
tu

d
e

x̂HF , p =0.001

0 4 8 12 16 20 24

0.0

0.5

1.0
x̂HF , p =0.555

0 4 8 12 16 20 24

0.00

0.02

x̂HF , p =0.999

0 4 8 12 16 20 24

Frequency (kHz)

0.0

0.5

1.0

A
m

p
li
tu

d
e

x̂BB , p =0.001

0 4 8 12 16 20 24

Frequency (kHz)

0.0

0.5

1.0
x̂BB , p =0.555

0 4 8 12 16 20 24

Frequency (kHz)

0.0

0.5

1.0

x̂BB , p =0.999

(a) x̂LF , x̂MF , x̂HF , x̂BB using 2-state Markov chain-generated PRS(t)
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Fig. 4.6: Reconstructed test signals x̂LF , x̂MF , x̂HF , and x̂BB using a) a 2-state, and
b) a 4-state Markov chain-generated PRS(t) with transition probability p.
Each row represents one of the four test signals presented in Figure 4.4,
and each column represents a different value of p.
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structed using different PRS(t) with Markov chain transition probability
values p = 0.01, p = 0.555, and p = 0.999.

Figure 4.6 shows the test signal spectra reconstructed using a 2-state chain
and a 4-state chain respectively. We can see that the filtering effect a bipolar
sequence has on a test signal depends on the length and p-value of the Markov
chain used to generate it. This is best illustrated by xBB: for a 2-state chain-
generated PRS(t), a value of p = 0.001 suppresses the low frequency content
of x̂BB, and a value of p = 0.999 suppresses the high frequency content; for a
4-state chain-generated PRS(t), a value p = 0.001 again suppresses the low
frequency content of x̂BB, and a value of p = 0.999 suppresses the high and
low frequency content. The filtering effect is consistent with the shape of the
PRS(t) spectra shown in Figure 4.2 and Figure 4.3.

4.3.4 Dual Chain

Tab. 4.3: Dual Chain Parameters for Optimal Reconstruction

Chain Signal p1 p2 RE
1st 2nd [×10−5]

2-state 2-state x̂LF 0.666 0.001 6.64
x̂MF 0.888 0.555 9.20
x̂HF 0.555 0.445 6.64
x̂BB 0.666 0.445 12.2

2-state 4-state x̂LF 0.666 0.233 6.52
x̂MF 0.999 0.999 7.98
x̂HF 0.999 0.001 6.81
x̂BB 0.666 0.888 11.2

4-state 2-state x̂LF 0.223 0.666 6.52
x̂MF 0.999 0.999 7.98
x̂HF 0.001 0.999 6.81
x̂BB 0.888 0.666 11.2

4-state 4-state x̂LF 0.999 0.999 6.68
x̂MF 0.999 0.001 8.12
x̂HF 0.555 0.445 7.00
x̂BB 0.888 0.666 11.3

In order to create PRS(t) with more complex spectra, we design combined
dual Markov chain-generated sequences by mixing two different single chain
sequences, which we define as PRSC(t), PRS1(t), and PRS2(t) respectively,
where PRSC(t) = PRS1(t)PRS2(t).

To fully assess the effects of PRSC(t) on a given input signal, we perform
three reconstruction tests using the xLF , xMF , xHF and xBB signals shown in
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(a) First reconstruction test: PRSC spectra
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(b) First reconstruction test: x̂LF , x̂MF , x̂HF , x̂BB spectra

Fig. 4.7: First reconstruction test: spectra of PRSC and reconstructed test signals
x̂LF , x̂MF , x̂HF , and x̂BB, with the corresponding p1, p2, and respective
chain lengths indicated in parentheses above each subplot.
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(a) Second reconstruction test: PRSC spectra
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(b) Second reconstruction test: x̂LF , x̂MF , x̂HF , x̂BB spectra

Fig. 4.8: Second reconstruction test: spectra of PRSC and reconstructed test signals
x̂LF , x̂MF , x̂HF , and x̂BB, with the corresponding p1, p2, and respective
chain lengths indicated in parentheses above each subplot.
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(a) Third reconstruction test: PRSC spectra
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(b) Third reconstruction test: x̂BB spectra

Fig. 4.9: Third reconstruction test: spectra of PRSC and reconstructed test signal
x̂BB , with the corresponding p1, p2, and respective chain lengths indicated
in parentheses above each subplot.

Figure 4.4, while varying the p-values of PRS1(t), PRS2(t) (p1 and p2 respec-
tively), and chain lengths. The chain lengths are indicated in parentheses
above each subplot, with the first number denoting the first chain’s length,
and the second number denoting the second chain’s length. The purpose
of these three reconstruction tests is to visualize different properties of our
proposed dual chain-generated PRSC(t) approach:

• First reconstruction test: The purpose of the first reconstruction test is
to gauge the improvements in signal reconstruction when using a dual
chain-generated bipolar sequence. This is achieved by determining the
optimal PRSC(t) that minimizes the reconstruction RE for each of the
four test signals and comparing their REs to those of their single chain-
generated counterparts shown in Table 4.2. The spectra of the optimal
dual chain-generated sequences and of the reconstructed test signals
are shown in Figure 4.7, with the optimal dual chain reconstruction
parameters summarized in Table 4.3. These results show that using
dual chain-generated sequences improves reconstruction performance
compared to single chain-generated sequences, even if only marginally.
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• Second reconstruction test: The purpose of the second reconstruction
test is to visualize the effects of any mismatches between the input
signal and dual chain-generated sequence. This is achieved by recon-
structing the four test signals using PRSC(t) designed to maximize
reconstruction RE and comparing the spectra of the original and recon-
structed signals. The spectra of the reconstructed signals and of their
respective sequences are shown in Figure 4.8. These results show the
impact of a mismatched PRSC(t) on signal reconstruction, underlining
the importance of using an appropriately designed PRSC(t).

• Third reconstruction test: The purpose of the third reconstruction test is
to visualize the filtering properties of the PRSC(t). We reconstruct the
broadband signal, xBB, using four PRSC(t) sequences whose spectra
can be likened to a low-pass, band-pass, and high-pass filter for the first
three signals, and with the spectrum of the final signal resembling white
noise. The spectra of the bipolar sequences and of the reconstructed
test signals are shown in Figure 4.9. These results show that in addition
to having a direct impact on reconstruction performance, a tailored
PRSC(t) can attenuate or amplify the frequency content of the input
signal.

4.4 Results and Discussion

The results obtained in this chapter confirm that, with prior knowledge of
the spectral locations of interest in the input signal, using tailored bipolar
sequences during the demodulation process achieves better reconstruction
performance than using a fully random sequence. Conversely, using a mis-
matched sequence can worsen reconstruction accuracy, and that in cases
without prior knowledge of the spectral locations of interest, it is better to
demodulate using a fully random signal. Moreover, we showed that the
spectral makeup of the PRS has a filtering effect on the input signal, allow-
ing us to attenuate and amplify locations of interest, improving subsequent
classification accuracy.

The PRS sequences were generated using a combination of single and dual
Markov chains, whose frequency-domain representations are determined
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by the chains’ lengths and transition probabilities. This ensured that the
resulting Φ and Θ matrices adhered to the strict criteria outlined in CS theory,
thereby allowing the ξ[m] measurements to be considered as a reduced-
dimensionality representation of the input signal.

The Markov chain-based bipolar spreading sequence generation methodology
described in this chapter underpins the two compressive-measurement based
classification systems presented in the following Chapter 5 and Chapter 6.
In both applications, the simultaneous sub-Nyquist filtering and sampling
of input signals is a key factor in making both C-AVDI and C-HAR viable
lightweight alternatives to existing systems.

4.5 Summary

In this chapter, we presented a simultaneous sub-Nyquist sampling and
filtering approach based on the RD architecture. We showed that the fre-
quency spectrum of the demodulating signal PRS(t) has a direct effect on
the frequency spectrum of the reconstructed signal x̂(t), allowing us to si-
multaneously acquire and filter the input signal x(t). Generating the bipolar
sequences using Markov chains ensures that the fundamental underlying
properties of CS remain valid in our approach.

The results presented in this section play a fundamental role in the design
and operation of our C-AVDI and C-HAR systems presented in Chapter 5 and
Chapter 6.
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C-AVDI: Compressive
Measurement-Based
Acoustic Vehicle
Detection and
Identification

5

5.1 Introduction

In this chapter, we present our compressive measurement-based acoustic
vehicle detection and identification system (C-AVDI), the first of our two
proposed compressive measurement-based lightweight classification systems.
We begin by describing the vehicle sound dataset used in our approach,
before giving an overview of C-AVDI’s operation, followed by presenting the
system’s evaluation results.

5.1.1 Background

In recent years, we have seen a rise in the development and adoption of
intelligent transportation systems (ITS) technology. Key applications such
as traffic flow control, navigation systems, and road safety management are
growing ever more sophisticated and gaining increasingly widespread use.
These improvements, however, come at a cost: the increasing amount of data
created, processed, and used requires expensive, power-intensive hardware
to be stored, accessed, and leveraged effectively. Particularly important in ITS
is the vehicle detection and identification (VDI) process, a key functionality
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underpinning a significant number of applications such as traffic flow and
congestion management, electronic toll collection (ETC), and transportation
infrastructure monitoring. Lowering the cost and computational require-
ments associated with the VDI process will have a direct effect on the overall
cost and complexity of many ITS applications.

Various lightweight VDI techniques have been proposed, with acoustic vehicle
detection and identification (AVDI) in particular being the subject of wide-
ranging research. The low price and simple installation process of AVDI
systems make them an attractive alternative to other more expensive and
difficult-to-install VDI systems, such as video camera-, radar-, or induction
loop coil-based systems.

While the installation costs associated with AVDI systems are generally low,
the subsequent analysis and leveraging of data is often relatively costly in
terms of computational requirements, making the use of such systems in
power-critical applications difficult. In current AVDI systems, the computa-
tional costs are incurred due to processes occurring in either the acquisition
and preprocessing stage as in [40] and [43] (successive discrete Fourier
transforms (DFTs) or discrete wavelet transforms (DWTs)), or the classifica-
tion stage as in [73] and in [74] (use of multilayer perceptron (MLP) and
artificial neural network (ANN) respectively).

If we are to fully leverage the advantages of AVDI, it is necessary to find a
way to reduce the computational burden associated with the data processing
and analysis. To this end, we propose C-AVDI, our compressive measurement-
based acoustic vehicle detection and identification system.

5.1.2 Related Work

In Section 3.2.1, we explored some existing VDI approaches, and briefly
explained the operation of some vehicle detection, and speed and direction
estimation systems. In this section, we focus specifically on existing research
that uses supervised learning techniques to detect and identify vehicles using
features extracted from their acoustic signatures.
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The frequency-domain features extracted from vehicle audio signals are
used with a support vector machine (SVM) classifier to identify and classify
vehicles and their associated parameters in [44], and used to detect vehicles
for the purpose of collision avoidance in non-line-of-sight situations in [75].
Mel-frequency cepstral coefficients (MFCCs) are used in conjunction with
machine learning (ML) or deep learning (DL) as features in a number of
existing AVDI systems: in [41] they are used with a modified MLP, in [74]
they are extracted from a specific high energy audio region and used with an
ANN and k-nearest neighbours (KNN) classifier, and in [76] they are used in
a feature set containing the pitch class profile (PCP) and short-term energy
(STE) of vehicle audio signals in a hybrid convolutional neural network (CNN)
containing a long short-term memory (LSTM) layer. In [73], Göksu presents a
system capable of analysing the acoustic signatures of vehicles independently
of any changes in engine sound. Using wavelet packet decomposition (WPD)
and an MLP classifier, the system obtains engine speed-independent features
from the acoustic signals of passing vehicles. On the other hand, the system
in [77] identifies different vehicles based on the sound of their engines
using modulated per-channel energy normalization (Mod-PCEN) features in
tandem with a Siamese neural network (SNN).

All of these aforementioned existing AVDI systems share a common, or very
similar, goal and basic approach, but differ in their implementation, appli-
cations, and performance. While these systems generally all present good
performance metrics, the use of computationally intensive input signal pro-
cessing or a complex supervised learning method offsets the improvements
in system cost, complexity, efficiency and flexibility.

The authors of [47] propose an ultra-low power vehicle detector (ULP-VD)
capable of detecting passing vehicles with minimal computational cost using
logistic regression (LR). This system, however, is only able to detect the
presence of passing vehicles and requires an additional stage to identify
them.

We ourselves have previously presented two AVDI approaches. The first
system is SMBAS [40], our baseline approach covered in Section 3.2. Using
features extracted from an emphasized mono signal produced by combin-
ing the two time-shifted signals of a stereo microphone pair, it obtains an
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Tab. 5.1: Summary of Related AVDI Work

System Can Can Run on Input Signal Detection
Detect Identify MCU Processing /Identification

[39] ✓ ✓ CS RF
[40] ✓ ✓ STFT SVM
[73] ✓ ✓ WPD MLP

[74] ✓ ✓ MFCC KNN
/ANN

[44] ✓ ✓ DFT SVM
[75] ✓ STFT SVM
[41] ✓ ✓ MFCC MLP

[76] ✓ ✓
MFCC CNN

/PCP/STE /LSTM
[77] ✓ ✓ Mod-PCEN SNN
[47] ✓ ✓ DWT LR

accuracy of 95.0% with classification being performed using an SVM classi-
fier. The second is our initial attempt at creating a lightweight compressive
measurement-based AVDI system, presented in [39]. By combining a more
traditional sub-Nyquist sampling architecture with a tailored analogue front-
end filtering section, the system was able to identify and detect vehicles with
an accuracy of 82.6%, and a back-end sampling rate of 3 kHz using a random
forest (RF) classifier. The front-end filtering section is an integral part of the
system; however, its implementation as a separate stage required the use of
additional components, increasing deployment and implementation costs.

The main characteristics of AVDI systems described above are summarized
in Table 5.1. To the best of our knowledge, there is no current AVDI system
capable of performing both detection and identification on an MCU.

5.1.3 Goals and Objectives

Our objective is to create a lightweight alternative to existing AVDI sens-
ing systems that can implemented on a microcontroller (MCU) and whose
performance is comparable to that of currently available systems. This is
achieved first and foremost by reducing the sample rate at which the vehicle
sounds are acquired. Indeed, the biggest limitation of MCUs is the amount of
available volatile and nonvolatile memory, and while this is not a problem
when working with short signals such as in [11], it makes it impossible to use
MCUs in AVDI applications where the signal length is typically on the order of

60 Chapter 5 C-AVDI: Compressive Measurement-Based Acoustic Vehi-
cle Detection and Identification



a few seconds. By reducing the number of samples, we lower the memory re-
quirements required for both the implementation of the classifier (nonvolatile
memory), and the feature extraction process (volatile memory).

We achieve this by expanding on the initial proof of concept system presented
in [39] in a number of ways. We begin by removing the front-end filtering
stage and instead filter the input signal directly during the acquisition process
using a spectrally tailored bipolar pseudo-random sequence, following the
approach outlined in Chapter 4. This reduces the number of components in
the system and allows the filtering parameters to be adjusted by modifying
the spectrum of the sequence rather than the hardware. We then test the
system under adverse weather conditions, and observe their effects on the
detection and identification performance.

Our main contributions can be summarised as follows:

• We propose a C-AVDI architecture capable of operating at sub-Nyquist
rates. Leveraging the inherent structure of vehicle sound signals enables
us to reduce the number of samples required to detect and identify pass-
ing vehicles by a factor of 16 while maintaining an accuracy comparable
to those of existing systems.

• We simultaneously sample and filter incoming vehicle signals using
spectrally shaped bipolar sequences generated from a pair of Markov
chains. Filtering signals in this manner improves the classification
accuracy of our system.

• Demonstrate the viability of C-AVDI as a lightweight sensing archi-
tecture by benchmarking our proposed system against our previous
work.

In this chapter, we focus on creating the C-AVDI architecture by simulat-
ing and optimising the various parameters involved in the system design
process in software. The MCU implementation of the feature extraction
and classification processes of our proposed system is described in-depth in
Chapter 7.

5.1 Introduction 61



5.2 Experimental Data

The audio data used in the design and testing of the system is collected from
vehicles traversing a university campus.

The data acquisition setup in clear, rainy, and windy conditions is shown in
Figure 5.1. A pair of Azden SGM-990 microphones are installed parallel to
a one-lane two-way road and connected to a Sony HDR-MV1 video camera.
The microphones are 1m from the ground, the intra-microphone distance
is 50 cm, the distance between the microphones and the centre of the front
lane is 3 m, and the distance between the microphones and the centre of the
back lane is 6 m. The microphones’ pickup pattern is set to cardioid, and they
record the sound of passing vehicles for a 30-minute duration at a sample
rate of 48 kHz and a bit depth of 16 bits. The signals obtained from the
two microphones are averaged to create a mono signal used in subsequent
analysis.

We obtain 14 different datasets by recording vehicle sounds at the same
location with the same setup on 14 different days; at different times of day;
on different days of the week; and under clear, windy, and rainy weather
conditions. The average vehicle signal plots using data obtained under all
weather conditions are shown in Figure 5.2, and the individual average
vehicle signal plots for each weather condition are shown in Figure 5.3.

The three classes considered for classification are cars, scooters/motorbikes,
and no vehicles. We refer to these as “Car”, “Scooter”, and “NoVeh”, respec-
tively. The time at which a given vehicle passes in front of the middle of
the microphone pair is defined as tp, and the time window for the vehicle
as Tr =

[
tp − Ts

2 ; tp + Ts

2

]
, where Ts = 2s. As we are not seeking to detect

successively or simultaneously passing vehicles in this evaluation, we retain
only the vehicle signals whose Tr does not overlap with those of the preceding
or following signals. The total number of vehicle sounds obtained for each
class on each day can be seen in Table 5.2.
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Tab. 5.2: Weather Conditions and Number of Vehicles for Each Day

Day Weather Car Scooter NoVeh Total
1 Clear 60 8 104 172
2 Clear 21 10 45 76
3 Wind 21 40 64 125
4 Clear 40 57 115 212
5 Clear 52 50 112 214
6 Rain 43 26 77 146
7 Rain 77 30 152 259
8 Clear 177 95 305 577
9 Wind 174 103 267 544

10 Clear 143 99 239 481
11 Wind 129 84 234 447
12 Clear 130 59 197 386
13 Wind 119 51 186 356
14 Rain 228 65 317 610

Fig. 5.1: Experimental setup: two microphones installed on the roadside record the
sounds of passing vehicles in clear, rainy, and windy conditions.
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Fig. 5.2: Average audio signals for three vehicle classes.
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(a) Average signals recorded in clear conditions
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(b) Average signals recorded in windy conditions
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(c) Average signals recorded in rainy conditions

Fig. 5.3: Average audio signals for three vehicle classes recorded in clear, windy,
and rainy conditions.

5.3 System Overview

Our proposed system aims to obtain information from the audio signals of
passing vehicles while sampling at sub-Nyquist rates. Features are extracted
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from the samples obtained in this manner and are used to detect and identify
the vehicles. Some details relating to the operation of specific sections and
blocks of the system have been covered in more detail in previous chapters.
We will indicate in the text when this is the case, and refer to the relevant
chapter or section.

PRS(t)

ξ[m]

LPF

ADC

Feature 

Extraction 
Classifier

Markov 

Chain

Signal 

Generator

Spectral Shaper

Vehicle Sound: x(t)

Random 

Demodulator

Feature Extraction 

and Classification

Analogue 

Domain

Digital 

Domain

Fig. 5.4: C-AVDI system overview: an input signal x(t) is simultaneously sampled
and filtered during the signal acquisition process using a spectrally shaped
bipolar pseudorandom sequence PRS(t) generated by the Spectral Shaper.

An overview of our proposed system is shown in Figure 5.4 and is made up of
three sections: Random Demodulator, Spectral Shaper, and Feature Extraction
and Classification. Input signals are simultaneously filtered and sampled
at a sub-Nyquist rate in the Random Demodulator section using a Markov
chain-generated spectrally shaped bipolar pseudorandom sequence PRS(t)
generated by the Spectral Shaper section. Features are then extracted from
the acquired samples and used to detect and identify vehicles in the Feature
Extraction and Classification section.

In our application, the frequency content that needs to be amplified or
attenuated can be determined by examining the average frequency-domain
plots of the vehicle classes under consideration. Figure 5.2 shows the average
sound signals of passing cars, scooters, and periods without a passing vehicle,
sampled for a duration Ts = 2s at a rate W = 48 kHz. We can see that

5.3 System Overview 65



between 0-3 kHz, the signals are very difficult to distinguish, and that from
3 kHz onwards, the signals show significantly clearer separation. We refer
to this frequency location as the frequency pivot point, and in our work
we will look to attenuate the sub-3 kHz content to the left of the pivot
point, and amplify the rest of the frequency content to the right of the pivot
point. As highlighted in Figure 5.4, in our proposed system, the processes
that constitute the Random Demodulator and Spectral Shaper sections are
performed on continuous-time analogue signals, and the processes that
constitute the Feature Extraction and Classification section are performed on
discrete-time digital signals. These stages will be examined in more detail in
the rest of Section 5.3.
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Fig. 5.5: Sorted DFT coefficients |αn| (rescaled).

Finally, it is necessary to ensure that in our proposed application, the input
signals to the RD are sparse or compressible in the domain defined by Ψ. A
key feature of our proposed system is the simultaneous sampling and filtering
performed during the signal acquisition process using the Spectral Shaper
to match the spectra of the bipolar sequence and input signal; an approach
based on the results presented in [69] and [71]. We therefore consider the
signals in this chapter to be sparse or compressible in the frequency domain
(Ψ = DFT matrix).

Figure 5.5 shows the DFT coefficient distributions of the signals shown in
Figure 5.2. We can see that the signals are compressible as their spectra
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are clearly dominated by a relatively small number K of high magnitude
coefficients.

5.3.1 Random Demodulator

At the heart of our proposed system is the Random Demodulator section,
which is composed of the following sub-blocks: a signal generator, a mixer,
a low-pass filter (LPF), and an analogue-to-digital-converter (ADC). In our
proposed C-AVDI system, we include an additional Markov chain block that
is used in tandem with the signal generator to spectrally shape the PRS.

An in-depth explanation of the RD’s operation was given in Section 2.2.2.

5.3.2 Spectral Shaper

The Spectral Shaper section consists of a signal generator and Markov chain
block. It is used to produce bipolar sequences with specifically tailored, rather
than random, frequency distributions.

The processes and parameters governing the creation of these tailored se-
quences were covered in detail in Chapter 4.

5.3.3 Feature Extraction and Classification

The Feature Extraction and Classification section is composed of a feature
extraction block and a classifier block. In the feature extraction block, we
extract a set of 5 features from the ξ[m] measurements produced by the RD.
We select the 5 most important features out of the 9 used in our preliminary
work [39] to use in our C-AVDI system:

• mean

• standard deviation

• median
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• absolute largest value

• interquartile range

In the classifier block, these extracted features are used as inputs to a mul-
ticlass classifier to detect and identify passing vehicles. Classification is
performed using an RF classifier, chosen for its robustness in the presence
of outliers, inherent suitability for multiclass classification, and minimal
preprocessing requirements (no input data rescaling required). The RF is
implemented using the scikit-learn library [78].

5.4 Evaluation

In this section, we evaluate the system described in Section 5.3 by simulating
its operation in software. Figure 5.6 shows an overview of the software
implementation of the system proposed in Figure 5.4. As previously men-
tioned, our proposed system operates by taking an audio signal emitted from
a passing vehicle as input, sampling it at a sub-Nyquist rate, and outputting a
predicted vehicle type. System performance is evaluated using the accuracy
metric.
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Fig. 5.6: Overview of the C-AVDI software implementation.
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Tab. 5.3: Simulated C-AVDI System Parameters

Nyquist Rate 48 kHz
W

ADC Rate 3 kHz
R

Bit Depth 12 bits
B

Signal Length (Time) 2s
Ts

Signal Length (Samples) 96000
N

Signal Sparsity 400
K

Compressive Measurements 6000
M

1st Chain 4-state

1st Chain Transition Probability 0.001
p1

2nd Chain 2-state

2nd Chain Transition Probability 0.999
p2

5.4.1 System Parameters

We are looking to design a PRS(t) that, when used to demodulate an input
signal, will attenuate the sub-3 kHz frequency content to the left of the
frequency pivot point, and emphasize the frequency content to the right of
the pivot point, as shown in Figure 5.2 and Figure 5.3. This same sequence
will be used when acquiring data under all three weather conditions, as
the location of the pivot point is the same in all three cases. Following the
method described in Section 4.3.2, we determine the optimal value of M
for our system by first establishing a theoretical lower bound value that is
incrementally increased until we obtain the optimal balance between the
smallest number of ξ[m] samples and maximum system prediction accuracy.
We find this value to be M = 6000 and list it, along with the rest of the
parameters used in our system simulation, in Table 5.3.

Based on the results obtained in Section 4.3.4, we create a PRSC [n] ∈
RN from PRS1[n] ∈ RN a 4-state chain with p = 0.001 and PRS2[n] ∈ RN

a 2-state chain with p = 0.999. The spectrum of our PRSC [n] is shown in
Figure 5.7.

Our input signal is represented as a discrete version of the analogue input
signal x(t), defined as x[n] ∈ RN sampled at rate W = 48 kHz during the data
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acquisition process. We approximate the sparsity level of x(t) as K = 400 by
determining the number of DFT coefficient magnitudes shown in Figure 5.5
such that |αn| ≥ 10−1, and rounding to a single significant figure.

The anti-aliasing LPF preceding the ADC is a 2nd order Butterworth filter,
and the measurements ξ[m] ∈ RM are obtained by sampling and quantizing
the combined (using elementwise multiplication) x[n]PRSC [n] signal at rate
R = 3 kHz and bit depth B = 12 Bits. This corresponds to a reduction in
sample rate by a factor of ( N

M
) = (W

R
) = 16.

The discrete-time and frequency-domain representations of the average ξ[m]
measurements for each class obtained by our simulated system are shown in
Figure 5.8.

0 4 8 12 16 20 24
Frequency (kHz)

−70

−60

−50

−40

−30

P
ow

er
(d

B
)

Fig. 5.7: Spectrum of tailored PRSC [n].

5.4.2 Feature Extraction and Classification

Classification is performed on 14 feature sets, which are obtained by extract-
ing the 5 features outlined in Section 5.3.3 from the ξ[m] measurements of
each of the 14 datasets described in Section 5.2. We measure the classifica-
tion performance of our system using leave-one-day-out cross-validation: we
set each one of the 14 feature sets (where each set corresponds to a different
day) as the testing set, and the combined 13 remaining feature sets act as
the training set. This process is performed 14 times in total, with each of the
feature sets acting as the testing set in turn. We set the number of trees and
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Fig. 5.8: Compressive measurements ξ[m] drawn from the average audio signals of
cars, scooters, and periods of time with no passing vehicles, along with
their respective normalised frequency representations.

the minimum number of samples per leaf parameters of the RF classifier as
n_estimators = 1000 and min_samples_leaf = 3 respectively, with the other
parameters left as default. Both the training and testing sets are balanced
using random undersampling prior to classification, and the results obtained
from each of the 14 runs are averaged to obtain the system accuracy. To
account for any potential discrepancies caused by inherent randomness in the
classification process, we perform the full classification process 10 times and
average the obtained results, resulting in our final confusion matrix shown
in Figure 5.9 and the system accuracy scores by weather condition shown in
Table 5.4.

The confusion matrix in Figure 5.9 shows that the most prominent misclas-
sification is that of “Car” as “Scooter”. This can be explained by the similar
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Fig. 5.9: Confusion matrix of C-AVDI’s software implementation results. Average
accuracy is 80.1%.

Tab. 5.4: System Accuracy by Weather Condition

All Conditions Clear Wind Rain
Number of Car 1414 623 443 348

Vehicles Scooter 777 378 278 121
NoVeh 2414 1117 751 546

Metric [%] Accuracy 80.1 84.8 55.2 79.7

variance and amplitude of their ξ[m] samples, which translates to similar
standard deviation and interquartile range features in particular.

This information, along with the results presented in Table 5.4, gives us
insight into how to modify the system to improve performance in future eval-
uations. Most notably, the breakdown of metrics by weather condition sheds
light on one of the principal causes of misclassification: adverse weather
conditions. The design of a system capable of more effectively mitigating the
effects of wind and rain noise on classification accuracy will be the focus of
future work.

5.4.3 Benchmarking

We gauge the computational performance of our proposed C-AVDI system by
benchmarking it against a simplified single-microphone version of SMBAS,
our previous system presented in [40], which we refer to as Mod-SMBAS. For
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Tab. 5.5: Benchmarking Results

C-AVDI Mod-SMBAS
Time Extract Features 1.33 3.65
[s] Classify 0.09 0.28

Total 1.42 3.93
Metric [%] Accuracy 80.1 87.3

benchmarking purposes, we change the classifier from SVM to RF, change
the input signal from stereo to mono by removing one of the microphones,
and remove the signal emphasis process.

Benchmarking is performed by running the systems under test on the same
computer under identical conditions and comparing their runtimes. We use
a computer equipped with an Intel i9-9900K 16-core CPU @ 3.60 GHz with
64GB of memory running Ubuntu 18.04. As in the previous section, the
full process is run 10 times, from which we calculate the respective average
runtimes.

The benchmarking results in Table 5.5 show that there is a link between
computation time and performance: Mod-SMBAS shows the best accuracy,
but is more computationally intensive than C-AVDI by a factor of ≈ 2.8.

5.5 Results and Discussion

We can assess the performance and viability of our C-AVDI system by com-
paring it to SMBAS, our previous system presented in [40]. While SMBAS
presents an accuracy of 95.0%, which is higher than the 80.1% obtained by
our C-AVDI system, there are two key differences to consider when comparing
these results. The first is the weather conditions in which the systems were
tested: SMBAS used only vehicle sounds obtained under clear conditions,
and was therefore not tested for robustness to adverse conditions, whereas
the C-AVDI system has been tested under different weather conditions as
outlined in Table 5.2 and Table 5.4. The second is the computational cost: as
discussed in Section 5.4.3 our C-AVDI system runs approximately 2.8 times
faster than Mod-SMBAS, the simplified version of our previous system.

Taking these factors into consideration makes the difference in performance
between these two systems much less marked, as in clear conditions the
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C-AVDI system obtains an accuracy of 84.8% while running approximately
2.8 times faster than Mod-SMBAS which presents an only marginally higher
accuracy of 87.3%. The similar accuracy score combined with a faster com-
putation time when compared to a system of similar complexity (mono input
signal, limited or no post-sampling processing, use of RF classifier), serves
to demonstrate the viability of our proposed C-AVDI system, particularly
in applications where low-cost, low-complexity sensing is required. On the
other hand, the full implementation of SMBAS is better suited to applications
where a high-cost, high-complexity system is required due to its superior
accuracy performance.

There is a notable limitation in our proposed system that need to be ad-
dressed in any future work: the performance of our proposed C-AVDI system
in adverse weather conditions (windy conditions in particular). This limita-
tion can be mitigated by incorporating an additional passive or active noise
cancellation stage inspired by our previous work [79] [80], by implement-
ing CSP-based interference removal techniques as presented in [65], or by
designing more complex bipolar sequences for more precise filtering during
signal acquisition.

The obtained M values listed in Table 4.1 and Table 5.3 would suggest that in
our particular C-AVDI application, in which we perform classification without
reconstruction, the requirements on the lower bound value of M can be
relaxed. Indeed, we can observe an inconsistency between the two values of
M with regard to the rest of their respective system parameters. According
to Equation 2.9, we would expect the value of M listed in Table 4.1 to be
smaller than the value listed in Table 5.3; however, in our case, the opposite
is true. Given that the purpose of the system described by the parameters in
Table 4.1 is to minimize the RE, and that the purpose of the system described
by the parameters in Table 5.3 is to maximize the classification accuracy,
their respective values of M would seem to indicate that a smaller number
of ξ[m] measurements is required for optimal classification than for optimal
reconstruction. A more rigorous investigation of this phenomenon is left as a
topic for future research.

Finally, the concepts underpinning C-AVDI presented in this chapter can be
used to extend the benefits of sub-Nyquist sampling to a wide variety of
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different acoustic (smart device wake-up-word detection) sensing applica-
tions, further contributing to the democratization of acoustic sensor-based
ML systems.

5.6 Summary

In this chapter, we presented C-AVDI, a method to detect and identify vehicles
from their audio signatures at sub-Nyquist rates using features extracted from
the compressive measurements obtained by a modified random demodulator.
Our system follows the approach described in Chapter 4, and uses Markov
chain-generated spectrally shaped bipolar sequences to target a specific
frequency band in the input signal during the sampling process itself.

The experimental evaluation of a simulated version of our system under a
range of weather conditions produced a classification accuracy of 80.1% for
a back-end ADC sample rate of 3 kHz, with a runtime approximately 2.8
times quicker than Mod-SMBAS, a modified version of the frequency-domain
feature-based method described in Section 3.2.

We cover the MCU implementation of the C-AVDI system in Chapter 7.
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C-HAR: Compressive
Measurement-Based
Human Activity
Recognition

6

6.1 Introduction

In this chapter, we present our compressive measurement-based human
activity recognition system (C-HAR), the second of our two proposed com-
pressive measurement-based lightweight classification systems. We begin
by describing the human activity dataset used in our approach, before giv-
ing an overview of C-HAR’s operation, followed by presenting the system’s
evaluation results.

6.1.1 Background

Lightweight human activity recognition (HAR) is a particular subcategory
of HAR which focuses on maximising system efficiency while presenting
performance metrics comparable to regular, non-lightweight, alternatives. In
our research we are interested in wearable sensor-based lightweight HAR,
and we focus on smartwatches in particular as they strike the optimum
balance between adoption rate, and computational and sensing capabili-
ties. Indeed, smartwatches are becoming more powerful, slowly making
specialized sensors redundant, while also becoming increasingly widespread.
Market analysis conducted by [81] shows that the global smartwatch market

77



volume was 68.59 million units in 2020, and is predicted to reach 230.30 mil-
lion units by 2026, with the adoption rate growing across all demographics.
While smartphones remain more widely used and computationally capable,
they suffer from being placed in locations that are far from optimal for HAR,
such as in pockets or bags, and on tables.

We examined a large selection of smartwatch-based approaches in Sec-
tion 3.4.1, but despite being smartwatch-based, not all of them were in-
trinsically lightweight, as they either required the use of a large amount
of data to operate (such as the system proposed in [63] which obtains a
large amount of sensor data and sends it via Bluetooth Low Energy (BLE) to
a smartphone for off-device processing), or made use of larger-scale more
complex classifiers to identify the various activities (such as the approach pre-
sented in [64] in which the authors perform classification using large-scale
ANNs). It is important to make this distinction, as while some smartwatch-
based HAR systems are lightweight, not all of them are, and their design and
approach to HAR depends on the requirements of a given application.

In particular, lightweight HAR sees extensive use in medical applications due
to two key factors. The first is that low-cost, low-complexity systems can be
worn for longer periods of time, increasing the usage rate of the subjects.
This is made clear in [9] where the authors found that 27% of participants
in a medical trial stopped using their wearable sensing devices due to diffi-
culties ensuring the devices remained powered and operational. The second
is that more complex sensor-based systems often transmit information from
the sensor or sensors to a central sink node or cloud computing node for
processing and storage. This significantly increases the risk of a subject’s per-
sonal information being intercepted and misused by a third-party company
or malicious actor. This also has a significant impact on the adoption rate
of wearable HAR devices, as highlighted in [82], where the authors found
that a significant set of users in a medical devices trial did not feel comfort-
able letting their personal information be transmitted to a remote location
for processing. Lightweight systems capable of performing processing and
classification on-device can help resolve both these limitations.

It follows from the above, that leveraging the inherent dimensionality reduc-
tion properties of compressive sensing (CS) to further reduce the amount
of data used in lightweight HAR systems can have a clear and quantifiable
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benefit on the accessibility, efficiency, and ultimately the adoption of the
technology.

6.1.2 Related Work

We examined a selection of more traditional HAR systems and approaches in
Section 3.4. In this section we focus on lightweight CS-based HAR related
work.

The natural data reduction properties of CS make it particularly suited as
a base on which to create a lightweight HAR architecture. As a result, a
significant amount of research has been conducted with the aim of improving
the efficiency of HAR systems using CS.

The authors of [10] leverage CS to reduce the sampling rates of wearable
sensors used in healthcare monitoring applications, in turn lowering the
required transmission power between the sensors placed on patients and a
central processing computer. Once received, the compressive samples are
reconstructed and used to monitor the patients’ status. While this system
uses CS to acquire input signals at sub-Nyquist rates, it differs majorly from
our proposed system as it recovers the original signal from the compressive
measurements before performing classification.

In [83], the authors present a compressive measurement-based stroke de-
tection system which bypasses the CS reconstruction process entirely, and
performs classification using the information contained on the measurements
prior to reconstruction. While this approach is similar to the one put forward
in our work, there are two key differences between the two. The first dif-
ference is the way in which the compressive-measurements are processed:
in our proposed method, the filtering of the input signal occurs during the
sampling process, so our compressive measurements are “pre-filtered” rather
than being filtered post-sampling. The second difference is the number of
class labels: our proposed method performs multiclass classification, and the
system outlined in [83] performs binary anomaly detection classification.

The authors of [13] present a low-power compressive sensing-inspired sub-
Nyquist sensing device. The system uses Non-Uniform Wavelet Sampling
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(NUWS) to obtain a set of features directly from an electrocardiogram (ECG)
signal, which are then used to detect cardiac arrhythmia. Again, this ap-
proach is similar to C-HAR, however this system does not process or filter
the compressive measurements before classification, and similarly to the ap-
proach described previously in [83], only performs binary anomaly detection
classification.

6.1.3 Goals and Objectives

Our objective is to create a lightweight sub-Nyquist smartwatch-based HAR
system. We are seeking to further reduce the cost and complexity compared
to existing systems while maintaining a comparable performance. This is
achieved using CS to obtain a set of reduced compressive measurements
which we use in tandem with a classifier to identify a selection of general
human activities. Reducing the number of samples enables us to lower the
required system memory by reducing model size and input data storage
requirements, and increase device battery life by lowering the computational
cost. We use the baseline smartwatch HAR approach outlined in Section 3.4.1
as a starting point from which to create a system which uses spectrally tai-
lored bipolar pseudo-random sequences to simultaneously filter and sample
smartwatch sensor readings at sub-Nyquist rates following the approach
outlined in Chapter 4.

Our main contributions can be summarised as follows:

• We present C-HAR, a compressive measurement-based HAR system,
capable of performing multiclass classification across a whole range
of daily human activities while operating at sub-Nyquist rates and
obtaining accuracy comparable to existing approaches.

• We simultaneously sample and filter sensor readings using spectrally
shaped bipolar sequences generated from a pair of Markov chains.
We tailor the choice of bipolar sequence to both the sensor, and the
sensor axis. Adapting our sampling and filtering strategy in this manner
improves the classification accuracy of our system.
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• Demonstrate the viability of C-HAR as a lightweight sensing archi-
tecture by benchmarking our proposed system against a selection of
baseline approaches.

In this chapter, we focus on creating the C-HAR architecture by simulat-
ing and optimising the various parameters involved in the system design
process in software. The MCU implementation of the feature extraction
and classification processes of our proposed system is described in-depth in
Chapter 7.

6.2 Experimental Data

6.2.1 WISDM Dataset

The data used in this proposed system is taken from the WISDM dataset [51].
The dataset is made up of data sampled at a rate of 20 Hz from the accelerom-
eters and gyroscopes of smartphones and smartwatches worn and carried by
a set of 51 subjects, who each performed one of 18 different activities for
a duration of 3 minutes, resulting in a total of 2754 minutes of data. The
activities can be split into 3 categories, which are shown in Table 6.1.

Tab. 6.1: Activities by Category

Category Non-Hand-Oriented Hand-Oriented (General) Hand-Oriented (Eating)
Walking Dribbling (Basketball) Pasta
Jogging Ball Catching Soup

Climbing Stairs Typing Sandwich
Activities Standing Writing Chips

Ball Kicking Brushing Teeth Drinking
Sitting Clapping

Folding Clothes

6.2.2 Preprocessing

The WISDM dataset is subject to a number of preprocessing operations before
being used in the proposed system. The first step is to discard all the data
collected by smartphones, retaining only the data collected by smartwatches.
As alluded to previously, a smartwatch’s placement on a subject’s wrist
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with three degrees of freedom makes the resultant sensor readings more
representative of the activities performed by the subject, and thus particularly
suited to HAR applications. By contrast, a smartphone is usually placed in a
pocket or in a bag, making the obtained sensor readings considerably less
representative of any activities performed by the subject. The second step
is to remove the data of any subjects who did not perform all 18 activities,
bringing the number of subjects down from 51 to 43. The final step is to split
the sensor data by subject and by activity into non-overlapping windows of
length tw . The WISDM dataset comes with a range of features extracted from
10s windows of the raw time-series data, thus for the sake of consistency and
future comparison of results, we set tw = 10s. A detailed breakdown of the
total number of segments per subject and activity are shown in Table 6.2 for
the accelerometer data, and in Table 6.3 for the gyroscope data.

The smartwatch used to collect the data was the LG G Watch running Android
Wear 1.5 1.

6.3 System Overview

An overview of our proposed C-HAR system is shown in Figure 6.1 and is
made up of three sections: Random Demodulator, Spectral Shaper, and Feature
Extraction and Classification. Input signals drawn from the accelerometer
and gyroscope sensor readings of a smartwatch are simultaneously filtered
and sampled at a sub-Nyquist rate in the Random Demodulator section using
a Markov chain-generated spectrally shaped bipolar pseudorandom sequence
PRS(t) generated by the Spectral Shaper section. Features are then extracted
from the acquired samples and used to detect and identify a range of daily
human activities in the Feature Extraction and Classification section. Some
details relating to the operation of specific sections and blocks of the system
have been covered in more detail in previous chapters. We will indicate in
the text when this is the case, and refer to the relevant chapter or section.

Given that a key feature of our proposed system involves matching the spectra
of our input and spreading signals, it is important to visualise the frequency

1https://www.gsmarena.com/lg_g_watch_w100-7718.php
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Tab. 6.2: Accelerometer Data by Subject and Activity
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Tab. 6.3: Gyroscope Data by Subject and Activity
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Fig. 6.1: C-HAR system overview: an input signal x(t) is simultaneously sampled
and filtered during the signal acquisition process using a spectrally shaped
bipolar pseudorandom sequence PRS(t) generated by the Spectral Shaper.

domain representations of the signals we are looking to acquire. The average
frequency domain plots of the accelerometer and gyroscope readings by axis
and activity are shown in Figure 6.2 and Figure 6.3 respectively.

We can see that the spectra vary quite significantly depending on the sensor,
activity, and axis. Whereas in Chapter 5 it was possible to create a single
PRS(t) tailored to the 3 vehicle classes, the variety of different frequency
spectra in the current C-HAR application make this impossible. To address
this problem, we propose a selection of different operating modes for our
system, with each mode offering presenting a different approach to signal
acquisition and feature extraction. The final system will be able to select the
operating mode which yields the best performance for a given set of input
signals. Our C-HAR system presents four different operating modes which
all use the same basic system blocks, but in a different manner and with
different parameters. The four different approaches are shown in Figure 6.4,
and are explained in further detail in Section 6.3.1.

It is necessary to ensure that in our proposed application, the input signals
to the random demodulator (RD) are sparse or compressible in the domain
defined by Ψ, where Ψ = DFT matrix as in Chapter 5.
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Fig. 6.2: Average frequency domain plots of the accelerometer readings by axis and
activity.
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Fig. 6.3: Average frequency domain plots of the gyroscope readings by axis and
activity
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Tab. 6.4: Compressibility Ratios of Sensor Signals by Activity and Axis

Sensor Accelerometer Gyroscope
Activities x-axis y-axis z-axis x-axis y-axis z-axis
Walking 0.35 0.23 0.31 0.33 0.05 0.08
Jogging 0.28 0.1 0.15 0.67 0.14 0.22

Climbing Stairs 0.21 0.36 0.35 0.5 0.35 0.07
Sitting 0.11 0.14 0.16 0.47 0.28 0.25

Standing 0.02 0.19 0.09 0.23 0.29 0.2
Typing 0.5 0.68 0.69 0.73 0.64 0.5

Brushing Teeth 0.34 0.38 0.33 0.59 0.13 0.36
Soup 0.06 0.07 0.08 0.19 0.08 0.16
Chips 0.05 0.12 0.06 0.45 0.25 0.13
Pasta 0.06 0.09 0.08 0.29 0.21 0.2

Drinking 0.03 0.03 0.06 0.28 0.2 0.09
Ball Kicking 0.06 0.08 0.11 0.27 0.23 0.16

Ball Catching 0.15 0.34 0.28 0.42 0.3 0.21
Dribbling 0.45 0.54 0.21 0.46 0.2 0.27
Writing 0.55 0.8 0.65 0.46 0.34 0.47

Clapping 0.71 0.59 0.13 0.66 0.4 0.69
Folding Clothes 0.79 0.84 0.58 0.8 0.41 0.62

Sandwich 0.04 0.44 0.17 0.36 0.36 0.28

We define the compressibility ratio of a signal as K
N

, and list the compress-
ibility ratios of each activity for all axes and both sensors in Table 6.4. The
compressibility ratio serves two purposes: first it gives as idea of the structure
of the signals under test, and their suitability for CS applications. We can
see that apart from some outliers activities such as “Writing”, “Folding”, and
“Clapping”, most sensor readings can be treated as compressible. Second, we
can use the compressibility ratio to derive M , the lower bound on the number
of required compressive measurements. We calculate values of Ma and Mg

heuristically for the accelerometer and gyroscope respectively by taking the
average of the compressibility ratios of each sensor and using the inverse of
the result in Equation 2.9. We obtain values of Ma = 71.14 and Mg = 72.23.
We saw in Chapter 5 that a smaller number of ξ[m] measurements is required
for optimal classification than for optimal reconstruction. This allows us to
relax the lower bound requirements on M in our system. For the sake of
simplicity, we pick M such that the result of N

M
is an integer, which gives us

M = Ma = Mg = 50 and N
M

= 4.

Finally, because the sampling rates of the two sensors are not synchronised,
in the rest of this chapter we perform evaluation using the accelerometer
and gyroscope readings separately, rather than a single, combined sensor
reading.
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Fig. 6.4: System overview of C-HAR system in normed, combined, individual, and
matched operating modes.
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6.3.1 Operating Modes

In our proposed system, we put forward four different operating modes
(referred to normed axis, combined axis, individual axis, and matched axis
respectively) used to perform C-HAR based on both accelerometer and gyro-
scope sensor data:

• The normed axis operating mode consists of taking the L2 norm of the
three axis-data and using the result as input to the rest of the system.
This input signal is then combined with a single PRS(t), before being
low-pass filtered, and sampled at a rate R. A set of 5 features is
extracted from the ξ[m] measurements for activity classification.

• The combined axis operating mode consists of combining the sensor
readings of each of the three axes with a common PRS(t). These
three demodulated signals are then low-pass filtered, and sampled
at a rate R. A set of 15 features (5 from each of the 3 sets of ξ[m]
measurements obtained from the modulated signals) is extracted for
activity classification.

• The individual axis operating mode consists of combining the sensor
readings of each one of the three axes with a PRS(t), in turn. This
demodulated signal is then low-pass filtered, and sampled at a rate R.
A set of 5 features is extracted from the ξ[m] measurements for activity
classification. This process is performed a total of three times, once for
each of three sensor axes.

• The matched axis operating mode consists of combining the sensor
readings of each of the three axes by matching them with the most
suitable PRS(t) based on the results of the individual axis operating
mode. These three demodulated signals are then low-pass filtered, and
sampled at a rate R. A set of 15 features (5 from each of the 3 sets of
ξ[m] measurements obtained from the modulated signals) is extracted
for activity classification.
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6.3.2 Random Demodulator

The Random Demodulator section is central to our system, and is made up of
a signal generator, a mixer, a low-pass filter (LPF), and an analogue-to-digital-
converter (ADC). In our proposed C-HAR system, we include an additional
Markov chain block that is used in tandem with the signal generator to
spectrally shape the PRS. The RD is designed using the same parameters in
each of the operating modes, and acquires a single input signal in the normed
axis and individual axis operating modes, and 3 input signals in the combined
axis and matched axis operating modes.

An in-depth explanation of the RD’s operation was given in Section 2.2.2

6.3.3 Spectral Shaper

The Spectral Shaper consists of a signal generator and Markov chain block. It
is used to produce bipolar sequences with specifically tailored, rather than
random, frequency distributions.

In our application, we are faced with 18 different activities recorded with
2 different sensors over 3 axes, which makes for a total of 108 different
signals whose frequency domain representations are shown in Figure 6.2 and
Figure 6.3. This makes it very difficult to visually determine what frequency
content needs to be amplified or attenuated to ensure the best possible
classification accuracy over all activities. Thus, rather than trying to visually
match the activities with a suitable PRS(t), we create a set of four filter
sequences based on the results of Chapter 4: a low-pass sequence, a band-
pass sequence, a high-pass sequence, and a broadband sequence referred to
as PRSLP , PRSBP , PRSHP , and PRSBB respectively. The spectra of these
sequences are shown in Figure 6.5, and the parameters used to generate
them are shown in Table 6.5.

The processes governing the creation of these tailored sequences were cov-
ered in detail in Chapter 4.
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Tab. 6.5: Filter PRS(t) Parameters

P RS Number of Chains p1 p2 1st Chain Length 2nd Chain Length
P RSLP Single 0.85 - 2 -
P RSBP Dual 0.9 0.9 2 4
P RSHP Single 0.1 - 4 -
P RSBB Single 0.5 - 2 -
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Fig. 6.5: Filter PRS(t) signals. The generation parameters and chain lengths of
each signal are listed above each subplot.

6.3.4 Feature Extraction and Classification

The Feature Extraction and Classification section is composed of a feature
extraction block and a classifier block. We extract a set of 5 features from
each set of ξ[m] measurements produced by the RD, which makes a total of 5
features for the normed axis and individual axis operating modes, and a total
of 15 (3 × 5) for the combined axis and matched axis operating modes.

The 5 features extracted from each set of ξ[m] measurements are:

• mean

• standard deviation
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• median

• absolute largest value

• interquartile range

In the classifier block, these extracted features are used as inputs to a mul-
ticlass classifier to detect and identify passing vehicles. Classification is
performed using a random forest (RF) classifier, a common choice in HAR
applications due to its suitability for multiclass classification, minimal pre-
processing requirements (no input data rescaling required), and good outlier
tolerance. The RF is implemented using the scikit-learn library [78].

6.4 Evaluation

Initial attempts at performing 18-class classification showed it to be an impos-
sible task under our self-imposed lightweight system constraints. Accurately
classifying 18 different activities involves extensive input signal preprocessing
or the use of a consequentially larger classifier, both of which require signifi-
cantly more computational power than what is found in current lightweight
approaches. Indeed, the lightweight HAR systems presented in section 6.1.2
only perform binary anomaly detection. Given that the activities present
in our used dataset are split into 3-categories, we evaluate our C-HAR sys-
tem using successive 3-class classification as this enables us to effectively
and fairly evaluate system performance under the current computational
constraints.

Thus, evaluation is performed by drawing one activity from each of the
three activity categories (Non-hand-oriented, hand-oriented (general), hand-
oriented (eating)) in turn, performing multiclass classification on every
possible 3-activity combination, for a total of 210 combinations. This is
repeated for each operating mode. For the normed axis, combined axis and
individual axis modes the optimal filtering PRS(t) and results are obtained
iteratively. The optimal parameters and results of the matched axis mode
are obtained based on the individual axis mode results. The filter PRS(t)
parameters are the same as defined previously in Table 6.5, the other param-
eters are taken from the WISDM dataset, and the value of M was determined
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previously in Section 6.3. The sample rate R = 5 Hz represents a reduction
of the Nyquist rate W = 20 Hz by a factor of 4. Performance is evaluated
using the accuracy metric.

Overviews for the both the accelerometer and gyroscope matched axis operat-
ing mode systems are shown in Figure 6.6. All parameters are summarized
in Table 6.6.

Tab. 6.6: Simulated C-HAR System Parameters

Nyquist Rate 20 Hz
W

ADC Rate 5 Hz
R

Bit Depth 12 bits
B

Signal Length (Time) 10s
Ts

Signal Length (Samples) 200
N

Signal Sparsity See Table 6.4
K

Compressive Measurements 50
M

1st Chain See Table 6.5

1st Chain Transition Probability See Table 6.5
p1

2nd Chain See Table 6.5

2nd Chain Transition Probability See Table 6.5
p2

6.4.1 Feature Extraction and Classification

We measure the classification performance of C-HAR using leave-one-subject-
out cross-validation: we set each one of the 43 feature sets (where each set
corresponds to a different test subject) as the testing set, and the combined
43 remaining feature sets act as the training set. This process is performed
43 times in total, with each of the feature sets acting as the testing set in
turn.

We set the number of trees and the minimum number of samples per leaf pa-
rameters of the RF classifier as n_estimators = 1000 and min_samples_leaf =
3 respectively, with the other parameters left as default. Both the training
and testing sets are balanced using random undersampling prior to classi-
fication, and the results obtained from each of the 43 runs are averaged
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Fig. 6.6: System overview of final C-HAR system in matched axis operating mode
using the accelerometer, and the gyroscope.
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to obtain the system accuracy. To account for any potential discrepancies
caused by inherent randomness in the classification process, we perform the
full classification process 10 times and average the obtained results.

6.4.2 Results

Tab. 6.7: System Accuracy by Operating Mode

(a) Accelerometer

Operating Mode Normed Axis Combined Axis Individual Axis
x-axis y-axis z-axis

Number of Features 5 15 5 5 5
Accuracy P RSLP 95.4% 98.3% 95.6% 93.7% 93.3%
Accuracy P RSBP 95.3% 98.3% 95.1% 93.5% 93.4%
Accuracy P RSHP 94.3% 98.2% 95.5% 93.8% 94.1%
Accuracy P RSBB 95.1% 98.1% 94.6% 92.9% 92.5%
Accuracy NOCS 96.6% 98.9% 97.2% 95.6% 95.4%

(b) Gyroscope

Operating Mode Normed Axis Combined Axis Individual Axis
x-axis y-axis z-axis

Number of Features 5 15 5 5 5
Accuracy P RSLP 94.6% 97.3% 93.5% 94.5% 94.2%
Accuracy P RSBP 94.5% 97.4% 93.3% 94.9% 94.1%
Accuracy P RSHP 93.8% 97.1% 93.0% 94.3% 94.0%
Accuracy P RSBB 94.4% 97.1% 93.1% 94.6% 94.0%
Accuracy NOCS 95.0% 98.0% 94.0% 95.6% 95.3%

The final classification accuracy results of each of the 210 3-class groups,
obtained for the normed axis, combined axis and individual axis operating
modes, for each filter PRS(t) are averaged and summarised for both sensors
in Table 6.7. The final line of both tables, NOCS, shows the accuracy obtained
using a non-compressive measurement-based approach, i.e: extracting the
same set of features from N = 200 unfiltered samples obtained by sampling
at the Nyquist rate W .

From Table 6.7 we can obtain information regarding the best performing
PRS(t) sequence for each axis for both sensors. We use this information to
design the final matched axis operating mode, which extracts the following
15 features:
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• x-axis

• y-axis

• z-axis

and whose parameters and results are summarised in Table 6.8.

Finally, for the sake of completeness, we include in Figure 6.7 a confusion
matrix for one of the 3-activity selections. We choose the 3-activity com-
bination to be as representative as possible of the system. This is done by
selecting activities with an average compressibility ratio (as to not inflate
performance results by actively cherry-picking particularly sparse activities)
from each of the 3 activity categories as defined in Table 6.1: we choose
“Walking”, “Typing”, and “Pasta”. We then perform classification using the
processes described above using a reduced dataset containing only these
three activities.

Looking at Figure 6.7, we can see that both sensors are able to perfectly
recognise “Typing”, but occasionally misclassify “Pasta” and “Walking”. This
can be explained by the hand and wrist movement during these activities:
when a subject is typing, their wrists remain static, or only move very slightly,
whereas when walking, the hands and wrists swing with the arms, and
when eating pasta they perform a range of different hand- and wrist-based
movements. We speculate that the similarities in range and frequency of
hand and wrist movement between “Pasta” and “Walking” when compared
to “Typing” are the cause of misclassification.

Tab. 6.8: Matched Operating Mode Results

Sensor x-axis P RS(t) y-axis P RS(t) z-axis P RS(t) Number of Features Accuracy
Accelerometer P RSLP P RSHP P RSHP 15 98.5%

Gyroscope P RSLP P RSBP P RSLP 15 97.6%
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Fig. 6.7: Confusion matrices for accelerometer-based system results and gyroscope-
based system results. Average accuracy is 98.8% and 98.0%, respectively.
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Tab. 6.9: Benchmarking Results

System Extract Classify Total Sample Number of Accuracy
Features Rate Features

Accelerometer, Normed Axis 0.55s 59.3s 59.9s 5Hz 5 95.4%
Gyroscope, Normed Axis 0.56s 58.1s 58.7s 5Hz 5 94.6%

Accelerometer, Combined Axis 0.75s 62.3s 63.1s 5Hz 15 98.3%
Gyroscope, Combined Axis 0.75s 63.7s 64.5s 5Hz 15 97.4%

Accelerometer, Individual Axis 0.48s 59.2s 59.7s 5Hz 5 95.6%
Gyroscope, Individual Axis 0.48s 59.5s 60.0s 5Hz 5 94.9%

Accelerometer, Matched Axis 0.75s 61.2s 62.0s 5Hz 15 98.5%
Gyroscope, Matched Axis 0.75s 63.4s 64.2s 5Hz 15 97.6%
Accelerometer, Baseline 0.75s 60.1s 60.9s 20Hz 15 98.9%

Gyroscope, Baseline 0.75s 62.7s 63.5s 20Hz 15 98.0%

6.4.3 Benchmarking

The most straightforward way to determine the viability of our proposed
C-HAR system is to benchmark both the gyroscope- and accelerometer-based
systems in each of the four operating modes against baseline versions of
the systems. These baseline, non-compressive measurement-based systems
operate by sampling each of the 3 axes at the Nyquist rate, extracting 5
features from each axis and combining them into the set of 15 features
outlined in Section 6.4.2.

Benchmarking is performed by running the systems under test on the same
computer under identical conditions and comparing their runtimes. We use
a computer equipped with an Intel i7-11700K 8-core CPU @ 3.60 GHz with
64GB of memory running Ubuntu 20.04. As in the previous section, the
full process is run 10 times, from which we calculate the respective average
runtimes. The benchmarking results are shown in Table 6.9. We can see
that the biggest contributor to computational time is the number of features.
Indeed, the operating modes which use 15 features all present comparable
total runtimes of 63.0 seconds on average, and the operating modes using 5
features all present comparable total runtimes of 59.6 seconds on average,
with no obvious relation between the runtime and sample rate or sensor
type.

We can also compare the accuracy performance of C-HAR to other published
results, such as those examined in this chapter’s literature review. In our
work, the setup presenting the best accuracy for the lowest sample rate is
the accelerometer-based matched axis system, which obtains an accuracy
of 98.5% for a sample rate of 5 Hz. This can be compared to the system
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in [83] which obtains an accuracy of 91.0% for a sample rate of 10 Hz,
and [13] which obtains an accuracy of 98.9% for a wavelet generator clock
rate of 360Hz (for the sake of fair comparison, however, it is important to
note that the authors of this paper focus on reducing power consumption
rather than sample rate, and manage to reduce power consumption by a
factor of 15 compared to similar existing ECG anomaly detection systems).
From these results, we can infer that C-HAR performs similarly to the two
other lightweight C-HAR systems, however it is important to bear in mind the
differences in the signals obtained and identified: C-HAR looks to acquire and
classify relatively low-noise embedded sensor signals, whilst the other two
systems are looking to obtain and identify significantly noisier ECG-signals. It
is reasonable to assume that the relative noise levels of the signals, along with
other factors, have an effect on the accuracy performance of the different
systems.

6.5 Results and Discussion

We have seen that while the exact final accuracy and computational runtime
vary depending on the chosen sensor and operating mode, overall, C-HAR
presents improved performance metrics when compared to the traditional
Nyquist rate baseline approaches. Indeed, our best performing matched axis
operating mode setups for both sensors obtain better accuracy than their
respective baseline approaches (if only marginally), for a sample rate 4 times
lower, and comparable runtimes.

While these results are encouraging, to properly gauge the viability of C-
HAR, it is necessary to compare it to other existing lightweight HAR systems.
We find that its accuracy is marginally higher, and sample rate marginally
lower than the two comparable existing works outlined in Section 6.4.3, the
differences in approach, sensors, and crucially, application, make it difficult
to directly compare the systems.

From this we can conclude further study of C-HAR is required to confirm its
status as a viable compressive measurement-based lightweight HAR archi-
tecture. We can outline two potential ways in which this can be achieved.
The first approach involves refining our current smartwatch-based system
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to further reduce the sampling rate, or more realistically, the computational
runtime, thereby enabling C-HAR to stand alone as a high-accuracy, low-
complexity HAR system. The second approach involves implementing the
underlying RD- and operating mode-based framework proposed in this chap-
ter in an ECG signal-based HAR system, and comparing the results with the
previously outlined related work. This more direct comparison to existing
state-of-art systems would help confirm the viability of C-HAR, particularly
in the field of medical HAR.

6.6 Summary

In this chapter, we presented C-HAR, a method to identify daily human
activities from the sensor readings of a smartwatch’s onboard accelerometer
and gyroscope. Our system follows the approach described in Chapter 4, and
uses Markov chain-generated spectrally shaped bipolar sequences to target
a specific frequency band in the input signal during the sampling process
itself.

We find that with the optimal setup and parameters, C-HAR obtains accura-
cies of 98.5% and 97.6% for the accelerometer-based and gyroscope based
systems respectively, for a back-end ADC sample rate of 5 Hz, which is 4
times smaller the back-end ADC sample rate of 20 Hz used in the baseline
approaches.

We cover the MCU implementation of the C-HAR system in Chapter 7.
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Microcontroller
Implementation

7

7.1 Introduction

The main goal of this research is to create a lightweight classification archi-
tecture capable of operating on resource-limited devices. Thus, it is crucial
to demonstrate that the systems described in the two previous chapters can
be implemented on microcontrollers (MCUs). In this chapter, we present
the MCU implementations of our compressive measurement-based acous-
tic vehicle detection and identification system (C-AVDI) and compressive
measurement-based human activity recognition system (C-HAR). We begin
by explaining our general approach, before describing the two systems and
presenting their respective evaluation results.

7.1.1 Background

The MCU implementation of a classification system can be considered as the
litmus test for determining whether it is lightweight or not. Indeed, while
there exists a range of theoretical systems presenting lightweight classification
pipelines, only a small proportion of these approaches actually have existing
MCU implementations. The biggest design constraint encountered when
creating a classification model for deployment on an MCU is the limited
amount of available memory, which places limits on the both the number
and length of extracted feature vectors used as inputs to the model, and on
the size of the model itself. As a result, we can determine if a model is truly
lightweight if it can operate under these constraints.
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An MCU implementation brings about a number of significant benefits to
a system’s form factor, battery life, and cost. A small form factor ensures
that an acoustic vehicle detection and identification (AVDI) system is easy to
deploy in a variety of environments, and that a human activity recognition
(HAR) device is comfortable to wear with minimal impingement to a user’s
movements. A long battery life ensures that the system can function reliably
over the required operational period (this can range from a full working day,
to several weeks or months depending on the application and environment).
A low cost makes the designed system more readily accessible to a wider
range of individuals, communities, and countries, further democratising the
use of machine learning- (ML) based systems and their associated benefits.

More generally, the concept of MCU-based ML is particularly relevant when
taken in the current context, outlined in the introductory section of our
work in Chapter 1. Creating lightweight classification models whose size is
stringently limited by the MCUs memory stands as a stark contrast to the ever
bigger, more costly, and more energy intensive models seen in both industry
and academic research. Taking into account the potential for a system to be
deployed on an MCU during the conception phase of an ML product, can
help frame and consider the environmental and economical implications of a
system, leading to a more efficient and effective final product.

7.1.2 Related Work

Given the relatively small amount of existing work related to MCU-based
AVDI, we also examine non-vehicle-oriented MCU-based acoustic detection
and identification systems.

The authors of [47] propose an ultra-low power vehicle detector (ULP-VD)
capable of detecting passing vehicles with minimal computational cost using
the discrete wavelet transform (DWT) in tandem with logistic regression
(LR) to detect, but not identify, the presence of passing vehicles. In [11], the
authors present an environment monitoring system which uses FFTs and a
hidden Markov model (HMM) to detect noises in a woodland environment,
which runs on an MCU. The system samples signals at the Nyquist rate, from
which features are extracted and used as inputs to a selection binary anomaly
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detection classifiers. The authors of [84] present a lightweight environmental
sound classification approach for resource constrained MCUs. Using Ten-
sorFlow for Microcontrollers1 they manage to fit a multiclass classification
model onto an MCU and achieve an accuracy of 71.0%.

On the other hand, MCU-based HAR applications are more common given
the inherent form factor constraints imposed by some smaller wearable HAR
devices. In [85] the authors propose a low-power waist-worn HAR device
which uses linear discriminant analysis (LDA) for dimensionality reduction
on the input samples, and a support vector machine (SVM) classifier to iden-
tify a selection of activities. While the system obtains a multiclass accuracy
of 98.0%, it requires a large external power source to function making it
uncomfortable to wear for long periods of time, and its placement on a
subject’s waist limits the activities it can detect to standing, walking and run-
ning. The authors of [58] present an activity recognition framework which
makes use of traditional accelerometer and gyroscope sensor information in
conjunction with a wearable stretch sensor placed on a subject’s leg to obtain
data from multiple sensing modalities. This sensor information is presented
to an MCU-based deep neural network (DNN) whose performance can be
improved through user feedback. This online learning-capable framework ob-
tains a multiclass accuracy of 94.8%, with user-provided feedback improving
accuracy by up to 40% in some cases. This information however, is provided
through a smartphone application which also calculates and transmits the
necessary weight and bias changes of the DNN, and so it can not be said
the entire system back-end is implemented on an MCU. In contrast to the
systems outlined above which all use supervised learning methods to perform
classification, the authors of [86] propose an unsupervised learning approach
using self-organizing maps. The system obtains an unsupervised accuracy
of 84.0%, compared to a benchmark supervised accuracy of 92.0% obtained
using a convolutional neural network (CNN).

The work described above can be broadly separated into two categories:
application-focussed and process-focussed. The first category describes work
such as [11] which focuses on sensing in remote environments, where MCUs
are an integral part of an overall solution, but are not the primary focus
of the research. The second category includes work such as [86] which

1https://www.tensorflow.org/lite/microcontrollers
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focusses on developing an unsupervised learning pipeline for MCUs, where
the MCUs themselves are the main focus of research. Our work falls under
the first category, where MCUs are an integral part of our proposed C-AVDI
and C-HAR architectures, but not the primary focus.

7.1.3 Goals and Objectives

So far, we have presented in our work two systems divided into a clear
front-end section (Random Demodulator and Spectral Shaper sections) and
back-end section (Feature Extraction and Classification sections). While the
work presented in Chapter 5 and Chapter 6 explored in detail the operation
of the entirety of the two systems, and the work presented in Chapter 4
focussed on an integral part of the systems’ front-end, this chapter will focus
on the systems’ back-end.

Our main contributions can be summarised as follows:

• We further demonstrate the viability of C-AVDI and C-HAR as lightweight
alternatives to existing AVDI and HAR systems by successfully imple-
menting them on MCUs.

• We examine the limitations faced by the MCU implementations of the
system and how to address them in future iterations.

The aim of this chapter is to implement the systems’ backend on an MCU,
proving the viability of our proposed approaches. We do not focus on the
front-end as there are existing hardware implementations of the random
demodulator (RD) (most recently in [87]), and creating a custom hard-
ware front-end including both the Random Demodulator and Spectral Shaper
sections is outside the scope of our work.

7.2 General Approach

The first step in the MCU implementation of a system is to select a suitable
device. Table 7.1 shows the specifications of some commonly used MCUs.
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Tab. 7.1: Specifications of Commonly Used Microcontrollers and De-
velopment Boards

MCU
Volatile Non-Volatile ADC Power Unit

Memory Memory Resolution Consumption Price

Teensy 4.1
2

1024 kB 7936 kB 12 bits
10.0 mW

$28.60
(iMX RT1062

3
) at 24 MHz

LaunchPad
4

8 kB 256 kB 12 bits
5.9 mW

$16.99
(MSP-EXP430FR599

5
) at 16 MHz

Arduino Uno
6

2 kB 32 kB 10 bits
26.0 mW

$25.30
(ATMega328P

7
) at 8 MHz

PIC18F452
8 8 kB 32 kB 10 bits

8.0 mW
$8.69

at 4 MHz
2

https://www.pjrc.com/store/teensy41.html
3

https://www.embeddedartists.com/products/imx-rt1062-oem/ based on
iMX RT1060 https://www.nxp.com/docs/en/application-note/AN12245.pdf

4
https://www.ti.com/lit/pdf/slau678

5
https://www.ti.com/lit/ds/slase54d/slase54d.pdf?ts=1626677655975

6
https://www.farnell.com/datasheets/1682209.pdf

7
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.
pdf

8
https://ww1.microchip.com/downloads/en/DeviceDoc/39564c.pdf

We choose the Teensy 4.1 board for our implementation as it has the best
cost-to-memory ratio, as well as the most total available memory.

The compressive measurements ξ[m] are generated in the manner described
in Section 5.4 and Section 6.4, and are saved on an SD card from which they
are sequentially loaded into the MCU for feature extraction. The previously
trained classifiers used in C-AVDI and C-HAR are ported from their software
implementations onto the MCU using the emlearn library [88].

7.3 C-AVDI

7.3.1 System Overview

Figure 7.1 shows the MCU implementation of our proposed C-AVDI system.
The Random Demodulator, and Spectral Shaper sections are implemented in
software, and the Feature Extraction and Classification section is implemented
on the MCU.
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Fig. 7.1: Overview of our C-AVDI system’s MCU implementation.

Both the dataset and system parameters used in this MCU implementation
are the same as used in the software implementation. The dataset and
parameters are displayed in Table 5.2 and Table 5.3 respectively.

7.3.2 Feature Extraction and Classification

After loading the ξ[m] measurements onto the MCU, we extract the same
following five features as in our simulated system:

• mean

• standard deviation

• median

• absolute largest value

• interquartile range

We confirm that the features extracted by the MCU are the same as the fea-
tures extracted in software by outputting the relevant features to the Teensy
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IDE’s serial monitor and comparing them to the feature values generated in
software.

The classifier used is a smaller ported version of the random forest (RF)
classifier trained in the system’s software implementation. We set the number
of trees and the minimum number of samples per leaf parameters of the RF
classifier as n_estimators = 100 and min_samples_leaf = 3 respectively, with
the other parameters left as default.

7.3.3 Evaluation and Discussion

Figure 7.2 shows the resulting confusion matrix. We obtain an accuracy of
71.8%, which is lower than the 80.1% accuracy obtained by the simulated
system in Section 6.4.2. Given that the features extracted from ξ[m] in the
Feature Extraction and Classification section in both the software and MCU
implementations of our system are identical, we can easily infer that the
difference in accuracy between both implementations is due to the difference
in size and complexity between the ported and original versions of the
classifier models. Indeed, the limited memory of the MCU restricts the
number of trees in the RF classifiers to 100, compared to the 1000 used in
the software implementation, while also truncating the size of the various
coefficients, weights and parameters used in the ported version of the RF
classifier, leading to a drop in classification accuracy.

7.4 C-HAR

7.4.1 System Overview

Figure 7.3 shows both the accelerometer and gyroscope variations in matched
axis operating mode of the MCU implementation of our proposed C-HAR
system. In both cases the Random Demodulator, and Spectral Shaper sections
are implemented in software, and the Feature Extraction and Classification
section is implemented on the MCU.
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Fig. 7.2: Confusion matrix of the C-AVDI system’s MCU implementation. Average
accuracy is 71.8%.

Tab. 7.2: C-HAR MCU Implementation Dataset

Accelerometer Gyroscope
Subject Walking Typing Pasta Total Walking Typing Pasta Total

1600 11 13 11 35 11 12 11 34
1602 11 11 15 37 11 11 11 33
1604 11 9 11 31 11 9 11 31
1609 11 11 11 33 11 11 11 33
1610 11 11 11 33 11 11 11 33
1617 11 11 11 33 11 11 11 33
1631 11 11 11 33 10 11 11 32
1634 11 15 11 37 11 11 11 33
1636 11 11 11 33 11 11 11 33
1641 14 14 15 43 14 14 15 43
1645 11 14 15 40 14 14 15 43
1648 15 15 15 45 15 13 15 43
1649 12 13 13 38 12 15 13 40
1650 10 15 14 39 11 15 14 40

The system parameters used in this MCU implementation are the same as
used in the software implementation and are displayed in Table 6.6. The
dataset used is a reduced dataset using 14 of the original 43 subjects chosen
at random, and only a single 3-activity combination, rather than the 210
different combinations used in the software simulation. We choose the same
3-activity combination as in Section 6.4.2 (“Walking”, “Typing”, and “Eating
Pasta”) as the average nature of the compressibility ratios of the 3 activities
in question make them representative of the system as a whole. The resulting
dataset can be seen in Figure 7.2.
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(a) Matched axis operating mode using the accelerometer
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Fig. 7.3: System overview of MCU implementation of C-HAR system in matched
axis operating mode using the accelerometer, and the gyroscope.
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7.4.2 Feature Extraction and Classification

After loading the ξ[m] measurements for each axis onto the MCU, we extract
the following fifteen features:

• mean

• standard deviation

• median

• absolute largest value

• interquartile range

for



• x-axis

• y-axis

• z-axis

We confirm that the features extracted by the MCU are the same as the fea-
tures extracted in software by outputting the relevant features to the Teensy
IDE’s serial monitor and comparing them to the feature values generated in
software.

The classifier used is a smaller ported version of the RF classifier trained
in the system’s software implementation. We set the number of trees and
the minimum number of samples per leaf parameters of the RF classifier as
n_estimators = 100 and min_samples_leaf = 3 respectively, with the other
parameters left as default.

7.4.3 Evaluation and Discussion

We obtain an accuracy of 98.3% for the accelerometer-based system and
97.1% for the gyroscope-based system, and show the corresponding confusion
matrices in Figure 6.7. These results are comparable to the simulation
accuracies of 98.5% for the accelerometer-based system and 97.6% for the
gyroscope-based system obtained in Section 6.4.2. Despite the reduction in
model size from 1000 trees to 100 trees, the system’s accuracy performance
remains stable. This would suggest that the sensors and signals used in our
application are inherently well suited to the C-HAR approach, given the high
accuracy obtained in both the software and MCU implementations of the
system. It is important to note, however, that the MCU implementation of
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the C-HAR uses a reduced dataset, and that system performance may vary if
confronted with a different dataset or the entire original dataset.
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(a) Accelerometer-based MCU implementation results
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(b) Gyroscope-based MCU implementation results

Fig. 7.4: Confusion matrices for accelerometer-based MCU implementation results
and gyroscope-based MCU implementation results. Average accuracy is
98.3% and 97.1%, respectively.

7.5 Results and Discussion

From the results, we can deduce that the model size has the biggest single
effect on the performance of the MCU implementations of our proposed
sensing architectures. Indeed, given that the extracted features are the
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same in both the simulation and MCU implementations of our systems, it is
clear that the discrepancies in results are due to the differences between the
original and ported models.

The difference in performance between the C-AVDI MCU implementation and
the C-HAR MCU implementation in relation to their simulation-based systems
can be explained by the nature of the original systems themselves. C-HAR
uses three-dimensional signals acquired by wearable sensors in environments
where the main potential source of noise is electronic noise produced by the
device circuitry. This leads to a relatively high Signal-to-Noise Ratio (SNR),
which in turn makes classification more straightforward and performable
using a smaller model. In contrast, C-AVDI uses a single-dimensional signal
obtained by a microphone in environments with significant and constant
background noise, whose nature and amplitude vary greatly depending on
the weather conditions. This leads to a significantly lower SNR, which in
turn makes classification more difficult, requiring the use of a larger, more
complex model.

We saw in Section 7.1.2 that there is an increasing amount of research
focussing on developing new approaches to implementing complex classifiers
on resource-constrained MCUs. The performance of the C-AVDI system’s MCU
implementation could conceivably be improved by using these techniques
rather than just using a standard C porting library. The creation of an MCU-
specific classifier which is tailored to accepting compressive measurements
as input is left as a potential avenue for future work.

7.6 Summary

In this chapter, we covered the process of implementing our C-AVDI and
C-HAR systems on an MCU. Both systems were implemented on the same
MCU and the respective classifiers were ported using the same library, which
in both cases required the classifier model to be reduced in size. While
this reduction in size had a negligible effect on the performance of the
MCU implementation of C-HAR, it had a significant impact on the MCU
implementation of C-AVDI, reducing the classification accuracy of the system
from 80.1% to 71.8%.
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Conclusion and Future
Work

8

8.1 Conclusion

In this thesis, we presented a lightweight compressive measurement-based
classification architecture capable of identifying a range of input signals at
sub-Nyquist rates, while presenting accuracy comparable to currently existing
sensing-to-classification systems, all while running on a resource-constrained
device. By reducing the sample rate used to acquire the various signals
encountered by different sensing architectures, we aimed to solve the three-
pronged problem of energy usage, system computational runtime, and model
size at the source.

This was achieved first and foremost by developing a compressive-measurement
based sensing framework capable of simultaneously filtering and sampling
signals at sub-Nyquist rates. We designed a Markov chain-based signal gener-
ation architecture to create spectrally tailored bipolar spreading sequences
which actively attenuate or amplify specific frequency content in an input
signal, and incorporated it into a random demodulator architecture (RD)
to obtain a reduced set of filtered compressive measurements for use in the
subsequent classification stage.

This architecture was then used in two different sensing scenarios to demon-
strate its viability as an application-agnostic sub-Nyquist sensing framework.
We first presented a compressive measurement-based acoustic vehicle de-
tection and identification system (C-AVDI), which classified the sounds of
passing vehicles under a variety of weather conditions. We obtained an
accuracy comparable to that of a baseline acoustic vehicle detection and
identification (AVDI) system, at a significantly reduced sampling rate. We
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then presented a compressive measurement-based human activity recogni-
tion system (C-HAR), which classified a wide range of daily human activities
using data obtained from the sensor readings of a smartwatch-embedded
accelerometer and gyroscope. The system obtained accuracy comparable to
benchmark and other state-of-the-art lightweight human activity recognition
(HAR) systems, at a similar sample rate and computational cost to these
existing systems.

Finally, we provided an insight into the feasibility and viability of implement-
ing both C-AVDI and C-HAR on a microcontroller (MCU). This was achieved
by porting the respective trained classifiers from the software environment
to a resource constrained MCU device. The limited memory meant that the
ported classifiers were smaller in size than the original versions, and while
this difference had a negligible effect on the performance of C-HAR, it had a
significant negative impact on the performance of C-HAR.

Overall, we believe that our results illustrate the potential of our proposed
architecture as an application-agnostic, low-cost, low-complexity sensing to
classification framework. We believe that our approach to low-rate sensing
and reduced dimensionality signal processing can play a significant role in
reducing the financial and environmental costs of machine learning. By
helping to democratise the use and access to these technologies, we hope
to drive innovation, research, and ultimately technological progress. In
the subsequent sections, we present a more detailed description of the
contributions and limitations of our work, as well as any potential directions
for future research

8.1.1 Contributions

In the course of the research presented in this thesis, we made a number of
contributions to help advance the field of lightweight sensing and classifica-
tion. These contributions can be grouped into the following categories:

• Theoretical: in terms of theoretical contributions, in Chapter 4 we
expanded and improved upon the initial Markov chain-based bipolar se-
quence generation method by introducing dual Markov chain-generated
sequences, as well as demonstrating and developing the concept of

116 Chapter 8 Conclusion and Future Work



using signal matching as a way to attenuate or amplify input signal
frequency content. We used these new developments in Chapter 5 to
create the final bipolar sequence used to evaluate our C-AVDI system.
In both Chapter 5 and Chapter 6, we observed that the minimum num-
ber of M measurements required for optimal classification accuracy
is noticeably lower than the minimum number of M measurements
required for signal reconstruction, as seen in Chapter 4. This suggests
that when using compressive measurements for classification rather
than reconstruction, it is possible to relax the lower bound on the
number of measurements dictated by Equation 2.9, further reducing
the system’s sampling rate. It is important to note that this conclusion
is based on observed results obtained in our simulations, and that
further experiments are required before we can definitively draw any
conclusions, or make any further assertions regarding this matter.

• Practical: in terms of practical contributions, we conceptualised, de-
signed, and evaluated two sub-Nyquist compressive measurement-
based sensing-to-classification systems. In Chapter 5, we implemented
our proposed approach in an AVDI system, and in Chapter 6 we imple-
mented our proposed approach in a HAR system. Both these systems
presented a certain number of advantages when compared to existing
approaches, helping to advance the state-of-the-art in their respective
fields. We also presented in Chapter 7 an initial attempt at implement-
ing the aforementioned C-AVDI and C-HAR systems on MCUs. While
this first attempt is successful in porting C-HAR to a smaller device,
it is less successful with C-AVDI, whose MCU implementation shows
a drop in accuracy performance compared to its software implemen-
tation. Despite this, the results are encouraging, and the accuracy
performance is sufficient to prove the viability of MCU implementa-
tions of our proposed sub-Nyquist compressive measurement-based
architectures.

• Data: in terms of data-related contributions, we created a vehicle sound
dataset by recording the sounds of vehicles passing on a two-lane, two-
way road under a variety of weather conditions over the course of 14
days. The recordings were labelled and segmented before being added

8.1 Conclusion 117



to the dataset and used in Chapter 5. Further details regarding the
dataset creation process can be found in Section 5.2.

8.1.2 Limitations and Future Work

We encountered a number of limitations during our research. We believe that
resolving these limitations could present a few potential avenues for future
work. Both are listed below.

• Spreading sequence limitations: while the conceptualisation and imple-
mentation of dual Markov chain-generated spreading sequences is one
of the key contributions of our research, there is still a limit on the
length of the chains themselves. Indeed, the frequency spectrum of a
spreading sequence generated by a more than 4-state Markov-chain
presents significant ripple across the entire spectrum, rendering it unus-
able in our proposed systems. This in turn places a limit on the range
of different usable spreading sequences that can be generated and used
to filter and demodulate input signals. The design of an alternative
spreading sequence generation method capable of producing increas-
ingly complex, but still usable, sequences is left as a subject of future
research.

• Adverse weather conditions: a significant limitation of the proposed
C-AVDI system is the decrease in accuracy performance observed in
adverse weather conditions, particularly in windy conditions where the
accuracy drops significantly. Improving the system’s performance in
these conditions will have a significant effect on the overall average
operating accuracy of the system. This limitation can be mitigated in
future work by incorporating an additional passive or active noise can-
cellation stage as seen in our previous work [79] [80], by implementing
CSP-based interference removal techniques as presented in [65], or by
designing more complex bipolar sequences for more precise filtering
during signal acquisition.

• Microcontroller implementation of classifiers: The limited amount of
available memory on the MCU restricts the size of the random forest
(RF) classifiers used in the estimation process. While this is not a
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problem in C-HAR, the reduction in the number of trees in the ported
C-AVDI RF classifier has a negative impact on the system’s performance.
While there are many inherent factors that explain the difference in
minimum required model size between C-AVDI and C-HAR, such as
the nature of the signals, sensors, and typical resulting signal-to-noise
ratios present in both applications, the most effective and efficient way
to improve the MCU performance of a compressive measurement-based
system is to modify the way in which the classifiers are ported from
software to MCU device. Indeed, in Chapter 7, the classifiers are ported
using a general library which simply converts a trained scikit-learn
model to an MCU-oriented language, which while straightforward and
effective in more typical situations, does not offer any type of model
size optimisation. In our work, we focussed first and foremost on creat-
ing an entire lightweight sensing architecture, and the comparatively
wide scope of our research meant that there were certain components
of our proposed framework that received less attention than others.
Future work could include the creation of a novel approach to imple-
menting compressive measurement-oriented classifiers on MCUs, which
leverages the inherent dimensionality reduction properties of CS to
optimise both model size and performance.
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