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ABSTRACT 

With changing global weather conditions, the occurrences of unpredictable 

heavy rainfall have increased, and with them, rainfall-induced landslide disasters 

have become more common. It was reported the number of rainfall-induced 

landslides in Japan has increased by 50% compared to the last 10 years. Rainfall-

induced landslides pose a huge threat to lives and properties, therefore, many 

researchers have been devoted to analyzing the stability of slopes and mitigating 

such disaster problems. By comparing different methods, such as hard type, 

numerical simulation, and monitoring methods, it was found that the application of 

Early Warning System (EWS) based on real-time data and slope stability 

assessment is a practical approach to mitigating such disasters. In analyzing slope 

stability, existing studies ignore potential deep and shallow slope failure modes 

induced by continuous rainfall. In developing EWS, research has found that the 

current EWS is high cost, not sustainable and lacks an open architecture for 

development and modification by authorities at the local level. 

To reveal the slope failure mechanism and assess the stability of the slope 

under continuous rainfall, the factor of safety (Fs) under different soil parameters 

and rainfall infiltration conditions was determined considering both shallow and 

deep failure modes. 

In order to develop a practical EWS considering SDGs, a low-cost and 

sustainable EWS is presented that integrates the Internet of Things (IoT) and a solar-

powered integrated platform for data collection, transmission and analysis. A series 

of model tests were conducted to check the feasibility of the EWS and research 

proposed effective evaluation indices from various precursor phenomena of slope 

failure based on motion analysis and interpolation analysis. 
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For the stability analysis of the slope, Transient Rainfall Infiltration and Grid-

Based Regional Slope-Stability (TRIGRS) model was used to analyze the shallow 

slope failure and upper bound analysis was used to obtain the critical safety state of 

deep slope failure mode. For the development of EWS, all the sensors used in this 

system, such as soil moisture sensor, pore water pressure sensor and 9-axis 

accelerometer, are low cost and portable. Based on the principle of rainwater 

infiltration and movement of soil particles, important warning indices were 

established in the system. Three stages were proposed to give landslide risk 

classification. For the model test, this study considered two influencing parameters: 

initial moisture content and rainfall intensity. This research revealed the infiltration 

process of the sandy slope, recorded the soil movement by motion analysis, and 

extended the limited experimental data to a global analysis by interpolation methods. 

The main contributions of each chapter in the dissertation are as follows: 

Chapter 1 presents the background, methodology, objective, and original 

contributions of this study. It highlights the threat that rainfall-related disasters pose 

to the social economy and the lives of residents. It compares current approaches to 

disaster mitigation and suggests that EWS is an effective and appropriate approach. 

This chapter presents the improvement points of current IoT-based EWS and 

highlights the important role they play in disaster mitigation. 

Chapter 2 reveals the potential forms of slope failure under rainfall conditions. 

For shallow failure conditions, TRIGRS model was used for stability analysis. For 

deep failure mode, upper bound limit analysis was used. A series of illustrations 

presented the Fs of slope under different soil parameters and rainwater infiltration 

conditions. The results imply that Fs decreases significantly due to the influence of 

rainfall infiltration, while the effect of suction in an unsaturated state can improve 

the stability. Furthermore, the safety assessment results can be used as important 

indicators for early warning work. 
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Chapter 3 presents the composition of the EWS in detail, including the 

software aspects for receiving, transmitting, and processing data. The hardware 

aspect includes sensors, communication devices, Wi-Fi router, and solar battery 

system etc. This chapter also presents the monitoring process, risk determination, 

and timing of signal transmission. This part of the thesis forms the basis for 

experimental verification and field application.  

Chapter 4 presents the performance of the EWS during model tests. It presents 

the test conditions, sensor arrangement, and model test setup. It shows in detail the 

development trend of soil moisture content, pore water pressure, deflection angle, 

and real-time Fs in each test. It defines key warning indices and divides the risk 

levels according to the principle of the EWS. The proposed landslide risk 

classification divides the whole process into three stages: Initial Monitoring State, 

Alert State, and Triggering State to issue alerts at various stages. The accurate 

testing results conducted on sandy slopes enable us to identify the risk stages, send 

warning signals, and predict potential movements to send early warnings so that 

people near the danger zones have enough time to escape and isolate the area. 

Chapter 5 provides the study of the experimental data from the motion 

analysis and interpolation method. Two groups with different rainfall intensities and 

initial moisture contents were considered. The motion analysis is based on 

computer vision-based monitoring technology, which can track extremely small 

displacement, particle trajectories and velocity. Results provided an indication of 

the potential trajectory and movement characteristics when a landslide occurs in 

reality. The interpolation method was used to predict the intermediate data for 

training the EWS model for a wide range of meteorological conditions. It also helps 

predict the sensor data for blind areas where sensors could not be placed. Accurate 

interpolation results can help the EWS provide potential risk levels for larger areas 

and more rainfall conditions. 
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Chapter 6 summarizes all the contributions and results of this research. In this 

chapter, the possibility of further development of EWS with more functions and 

application scenarios is presented. It also proposed that IoT and edge AI can be 

coupled so that the whole process can achieve the goals of full automation. The 

application of Low Power Wide Area (LWPA) in EWS was introduced and some 

sites were considered for EWS deployment in the future. 
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CHAPTER 1 

1. INTRODUCTION 

1.1 Background of the study 

Currently, with changing global weather conditions, the occurrences of 

unpredictable and unprecedented heavy rainfall have increased, and rainfall-

induced landslide disasters have also become frequent. Fig 1.1 shows that there 

were around 4000 rainfall-induced landslides occurred from 2004 to 2016 and Asia 

accounts for 75% of global rainfall-induced landslides, and East Asia is the most 

affected area (Froude and Petley, 2018). Japan is located in the East Asian monsoon 

region, with mountainous landforms and extremely complex geological conditions, 

which makes it extremely prone to landslide disasters. In recent years, Japan is 

suffering a growing risk of natural disasters due to frequent rainfall, which occurs 

almost every year during the rainy and typhoon seasons. Landslide, debris flow and 

slope failure are the most widespread geological hazards that pose significant 

threats to human lives and properties. According to a 2020 Japanese government 

report (Reported by Ministry of Land, Infrastructure, Transport and Tourism, Japan, 

2020), there is a 50% rise in landslide disasters compared to the previous 10 years 

and it was estimated that the number of days with daily rainfall exceeding 200mm 

in the future will double compared to the current situation. Table 1.1 shows the 

typical sediment disasters in Japan in the past decade. It can be seen clearly that 

many people lost their lives or still missing in rainfall-induced disasters. As Fig 1.1 
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(c) and Table 1.1 show, Kyushu Island has always been the most severely affected 

area by rainfall and it caused heavy rainfall disasters almost every year. For example 

in Fig 1.2, during Northern Kyushu Torrential Rainfall Disaster in July 2017, 

localized and torrential rainfall caused massive landslides, debris flows, and 

flooding of rivers, resulting in devastating damage to a lot of areas of Fukuoka and 

Oita prefectures of Kyushu, Japan (Hazarika et al. 2020). The disaster caused 34 

people dead including 4 people still missing. Another extreme rainfall event 

occurred in the Kyushu region in 2020, it caused 82 people died and 4 people 

missing, which is even more serious than the disaster in 2017. Fig 1.2 shows the 

real shots of the scene after two heavy rainfall. It can be clearly seen that the rainfall 

has caused huge disasters. 

 

Fig 1.1 Statistics of landslides around the world and in Japan (source: Froude and Petley, 

2018): (a) Global map of rainfall-induced landslide from 2004-2016; (b) Mean number of 

rainfall-induced landslide every 5 days; (c) Landslide distribution map of Japan (source: 

online) 
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Table 1.1  Sediment disasters in Japan in recent 10 years 

Date Prefecture Cause Death (Missing) 

Sep. 2011 
Wakayama, Nara and Mie 

Prefectures 

Typhoon No. 

12 
72 (16) 

Aug. 2014 Hiroshima prefecture Torrential rain 75 

Sep. 2015 Kanto and Tohoku regions Torrential rain 8 

Aug. 2017 Iwate prefecture 
Typhoon No. 

10 
20 

Jul. 2017 
Fukuoka Prefecture, Oita 

Prefecture 
Torrential rain 34 (4) 

Jul. 2018 

Fukuoka, Saga, Yamaguchi, 

Hiroshima, Okayama, Hyogo, 

Kyoto, Ehime, Kochi, etc. 

Torrential rain 220 (11) 

Oct. 2019 Kanto and Tohoku regions 
Typhoon No. 

19 
66 (13) 

Jul. 2020 Kyushu regions Torrential rain 82 (4) 

 

Therefore, appropriate measures by the national and local governments that 

manage critical infrastructure for early detection of failure have been widely 

mentioned to ensure the safety of the public as well as contribute significantly to 

disaster prevention and mitigation projects, thereby protecting the lives and 

properties (Hazarika et al. 2016; 2020).  

 

  

Fig 1.2 Rainfall Induced Disaster Cases in Kyushu, Japan (source: online): (a) Northern 

Kyushu Torrential Rainfall Disaster in 2017; (b) Extreme Rainfall Event in Kyushu in 2020 
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1.2 Methods to evaluate the stability of slopes under rainfall 

   The stability evaluation of slopes under rainfall conditions has been one of the 

most widely discussed topics in geotechnical engineering. At present, the stability 

analysis of rainfall-induced slope failure mainly adopts the following three methods: 

method of software, analytical method and experimental methods.  

1.2.1 Evaluate the stability by software  

The software method of numerical simulation such as FEM (Finite Element 

Method), SPH (Smoothed-Particle Hydrodynamic) or DDA (Discontinuous 

Deformation Analysis) can provide a dynamic failure process without a preset shape 

or location of slip surface and block movement direction. Any complex slope 

configuration and soil layer conditions can be simulated in the 2D or 3D form to 

handle almost all types of failure mechanisms (Berilgen 2007; Griffiths and 

Marquez 2007; Pinyol et al. 2008; Manenti et al 2019; Su et al 2022). Zhao and You 

(2020) carried out a 3D two-phase FEM to discuss the stability of the monitoring 

object under different rainfall effects. It was found that with the continuous rainfall, 

the slope deformation, and porewater pressure will increase, and it will cause a 

decrease in the matric suction. Han et al., (2019; 2020) has introduced a HBP based 

SPH model to simulate the entrainment behavior of debris flow. The dynamic 

behavior of such disasters has been simulated by SPH scheme, and the Herschel-

Bulkley-Papanastasiou (HBP) rheology model was considered in the analysis as 

well. Guo et al., (2021(a); (b)) considered the effects of matric suction in DDA, and 

completed the simulation of the SWCC curve, then extended the result of seepage 

to the analysis of slope stability. Research carried out the seepage simulation on the 

designated slope, and it expanded the application of the discontinuous deformation 

method in the unsaturated slope. With the rapid development of computer vision 

techniques, optical tracking of particles using PIV (Particle Image Velocimetry) and 

motion analysis is gradually used to conduct real-time monitoring or analysis of 
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failure mechanisms (White et al., 2003; Deng and Haigh, 2022 ). A large number of 

scholars continue to optimize the software to improve the precision of captured 

images (Stanier et al., 2016). research in (Chen et al., 2020) used this technology 

for the deformation monitoring of an underground structure. Some studies have 

taken real-time pictures of the monitoring area by building cameras and used 

computer vision technology to predict and analyze the possibility of landslides 

(Aggarwal et al 2018). However, this study that only observing the deformation 

often leads to untimely predictions, which makes it too late to evacuate people. 

Therefore, a single computer vision technology is not sufficient in the application 

of early warning systems. 

1.2.2 Evaluate the stability by numerical methods 

Analytical methods to obtain the factor of safety (Fs) of a slope are based on 

the theory of limit equilibrium (Vahedifard et al. 2016), slices method (Bishop 

1955), slip line theory (Vo and Russell 2017), and limit analysis (He et al. 

2019(a)(b); 2022), the sliding surface of the slope is assumed to be a straight line, 

polyline or logarithmic spirals, which needs to be preset in advance to build the 

formula. The formula of these methods is mainly based on the balance of soil 

mechanics or bulk energy. The evaluation of Fs for dry and saturated soil slope has 

been discussed detailly; when considering fully saturated soil slope, the effect of 

the pore-water pressure was usually assumed to be coefficient ru, as introduced by 

Bishop & Morgenstern (1960). The bigger value of ru represents more considerable 

pore-water pressure and a smaller Fs of the slope. While for unsaturated slopes 

under rainfall conditions, the effects of matric suction should not be ignored. To 

characterize the shear strength of unsaturated soils, Fredlund et al. (1978) proposed 

an extended Mohr-Coulomb criterion. And the relationship between the increase of 

shear strength and matric suction has been studied thoroughly by introducing 

another material variable, φb. Fredlund and Rahardjo (1993) tested on various types 

of soil, they found that in most cases, φb is less than internal friction angle φ. 
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However, the soil suction was often preset to be a specific value or linearly changes 

with infiltration depth. While the experimental results show that matric suction 

tends to change non-linearly along with the infiltration depth (Lu et al, 2012; 

Bordoni et al, 2015; Dong et al, 2018). Although there is no effective cohesion in 

silica sand, apparent cohesion (capp) is usually used to emulate the behavior of 

unsaturated soil, which presents the mobilization of suction stress to shear 

resistance (Lu and Godt 2008). The value of capp can be defined by soil water 

retention curve (SWRC) proposed by Mualem (1976) and Van Genuchten (1980). 

Vahedifard et al. (2016) conducted the stability analysis of unsaturated engineering 

and natural slopes by combining suction-based effective stress formula with 

classical limit equilibrium methods. The limit equilibrium method based on the log-

helical failure surface proposed in his study involves only two additional 

hydrodynamic parameters for unsaturated soils. Both parameters are used to 

describe seepage and effective stress changes in unsaturated soils. The parametric 

analysis of the study provides stability charts for general use. The effects of 

infiltration and evaporation on slope stability under four hypothetical soil types are 

presented. The results show that the apparent cohesion due to suction has a very 

significant effect on the stability of the slope. In the research of Li et al. (2020;2021), 

kinematic limit analysis methods are used to estimate the stability of slopes 

subjected to vertical unsaturated steady flow in the context of 3D rotational failure 

mechanisms. The shear strength properties of unsaturated soils are revealed. 

According to the function-function balance equation, the critical cohesive force of 

the slope under the limit state is calculated and listed in the form of a stable number. 

Different parameters are graphed in their studies for parametric analysis and 

practical use in slope design.  

Considering the influence of rainfall on the stability of the slope, there are 

mainly two forms of landslides. The first form is deep-seated slope failure which is 

mainly due to the saturation or even erosion of the topsoil by rainwater infiltration, 
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such as the Green-Ampt model (Rawls et al., 1983). The topsoil mainly contains 

the clay layer, weathered soil, tropical residual soil, etc., and the erosion of soil will 

spread to the whole failure zone, resulting in a rapid and destructive landslide 

(Gerscovich et al., 2006; Keaton et al. 2014; Huang et al., 2018). Another form of 

landslide is the occurrence of multiple shallow landslides initiating from slope toe, 

which usually occur on a sandy slope. It appears with the phenomenon that the slope 

gradually tends to be saturated from the bottom due to the rise of the groundwater 

table (Zizioli et al., 2013; Cogan and Gratchev 2019; Wang et al., 2020; Wei et al., 

2020).  

1.2.3 Evaluate the stability by experimental methods 

The experimental method is classic and commonly used, and this method is 

also the closest to the real landslide disasters. In the preceding experiment studies, 

various sensors were inserted inside the slope to monitor the soil moisture content, 

pore-water pressure, slope displacement, etc., and summarize the relevant laws 

(Chueasamat et al 2018; Cogan and Gratchev 2019; Xie et al.2019). Studies often 

focus on multiple preconditional, preparatory, and triggering factors, such as 

rainfall intensity and initial soil moisture content to elucidate the hydrological 

characteristics, failure forms, and mechanisms under rainfall conditions. Cogan and 

Gratchev (2019) conducted model tests under different rainfall conditions, and his 

study considered the rainfall effects of rainfall intensity (40, 70 and 100 mm/h), 

slope angle (45–55°) and initial soil moisture content (5–12%). Finally, the 

experiment data was analyed by Intensity-Duration curve and compared with 

classic results. Xu et al (2022) conducted a series of centrifugal experiments to 

study the effect of continuous heavy rainfall on the slope stability in the case of 

cracks after the earthquake. The results are combined with particle image 

processing and theoretical analysis. This study provides a certain reference for 

similar engineering geological backgrounds. Huang and Yuin (2010) carried out 

model experimental analysis on sand slopes, recorded the volume of different 
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shallow landslides, the time of displacement, drew a series of ID curves, and 

proposed a large number of evaluation expressions. Wang et al (2020) presented the 

results of a centrifuge test of rainfall-induced instability in a variably saturated slope. 

This work elucidated the role of rainfall intensity and initial conditions (eg, slope 

angle, porosity, and soil saturation) on the kinematics of failure onset and after 

failure. The failure modes, infiltration profiles and deformations were characterized 

in the initial and post-failure stages. Following the summary, two failure modes are 

introduced, whose test data are presented in two threshold curves together with 

literature data to define the critical conditions for slope failure under rainfall 

infiltration.  

However, the experimental method has several shortcomings. One of them is 

that only a single soil parameter and external influencing factors are considered in 

each experiment and only a limited number of cases can be obtained, which severely 

limits the evaluation and application value. Another shortcoming is that there is no 

risk quantification for the characteristics of the parameter changes monitored by the 

test, which makes it difficult to quickly grasp the safety of the slope. This study 

attempts to address the shortcomings of the above analysis methods. 

1.3 Approach to landslide disaster reduction 

1.3.1 Evaluation of various disaster reduction methods 

In order to save human lives and protect properties during rainfall events, 

many scholars continue to conduct research to mitigate such disasters. Research 

concluded that methods to mitigate the damage often target the following 

characteristics: (1) it should have a good reinforcement effect; (2) a good 

predictability to carry out evacuations before disasters; (3) easy for users to operate 

without professional skills; (4) cost-effective: making it possible to be widely 

applied in all countries; (5) sustainable enough to reduce energy dependence and 

environmental damage. Of all the features, the most crucial is undoubtedly validity 
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and accuracy, which are the premise of all methods. Because wrong or untimely 

predictions can lead to very serious consequences. Therefore, empirical methods 

and probabilistic methods, which has been widely used in some areas with a large 

number of mountains, such as Sichuan in China, Japan, the United States, etc. These 

methods define thresholds to evaluate the relationship between rainfall intensity and 

duration time and determine the possibility of landslides (Chang and Chiang 2009; 

Peruccacci et al., 2017; Saito et al., 2010; Baum and Godt 2010; Capparelli and 

Tiranti 2010). Due to accuracy limitations, empirical methods and probabilistic 

methods are only suitable for regional monitoring, it will ignore a lot of the fragile 

slopes in the mountainous. The prediction results of some professional tools such 

as geographic information system (GIS), Global Navigation Satellite System 

(GNSS) and InSAR are more accurate than I-D curve method, the cost is much 

higher and professional technology is needed during the operation (Liao et al., 2010; 

Tu et al., 2013; Lee et al., 2016, Yang et al., 2019; Piciullo et al., 2020; Dai C et al., 

2021). Traditional reinforcement methods such as piling or anchor rods can 

effectively prevent slope instability (Li et al., 2010; He et al., 2015; Hazarika et al., 

2016), but it is very expensive to carry out reinforcement equipment on a large scale 

in the mountains, making it impossible for even developed countries to afford. To 

achieve the goal of prediction with easy operation, Early Warning System (EWS) 

has been used as an effective tool to monitor the stability of slopes in many studies, 

and it provides a very good platform for predicting landslides. EWS is based on the 

characteristics of the research object, by collecting relevant data and information, 

monitoring the changing trend of risk factors, and evaluating the degree of deviation 

of various risk states. Finally, EWS will send early warning signals to the decision-

making level and take pre-control countermeasures in advance. In the 

comprehensive comparison of various methods, research finds that the methods 

combined with hardware and software perform better in protection or predictability, 

which can get a very good balance of accuracy, easy operation, cost-effectiveness, 
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and sustainability. In such methods, the application of the landslide Early Warning 

System (EWS) is considered to be a practical approach to mitigating disasters (Tu 

et al., 2013; Lee et al., 2016, Yang et al., 2019; Piciullo et al., 2020; Dai C et al., 

2021) 

1.3.2 Implemented EWS around the world 

Tilt sensor and volumetric water content sensor were used by Uchimura et al. 

(2009) and installed on a real slope in Kobe City, Japan. But the whole system does 

not have the advantage of sustainability because of the high energy consumption of 

sensors. Dikshit et al. (2017) developed EWS using tilt sensors in Himalayan 

regions and determined tilt angle thresholds of the slope empirically. However, if 

only the deformation recorded from the tilt sensor is considered to forecast the 

occurrence of a landslide, the early warning work cannot be timely enough for 

prepare some evacuation work or transfer property, personnel, etc. Research in 

(Chen et al., 2020) used IoT-based monitoring technology for the deformation 

monitoring of an underground structure. It’s mainly about computer vision-based 

sensors for the tilt monitoring, but only monitoring the deformation makes the result 

of prediction is not timely enough as well. Therefore, the Internet of Things 

technology of computer vision can be used as an auxiliary significance for 

monitoring. Gian et al. (2017) proposed an EWS consisting of six sensor nodes and 

one precipitation station In Vietnam, but the prediction work relied on the 

monitoring data to conduct the numerical simulations and the indicators (pore water 

pressure, water content and tilt angle) were not quantified to find the rules in their 

work. Another problem is that their developed EWS cost so much, making it quite 

difficult to afford on a large scale and hard to find so many professional operators 

to run the system. Research from Abraham et al (2020) shows that, in order to 

improve the efficiency of EWS and to evaluate the thresholds of the monitoring 

data, the research used Microelectromechanical systems (MEMS)-based tilt sensors 

and volumetric water content sensors to monitor slopes in the Himalayas. Internet 
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of Things (IoT) based networks used wireless modules to communicate between 

individual sensors and data loggers and from data loggers to internet databases. The 

slopes were continuously monitored during the three monsoon seasons (from 2017 

to 2019) and the sensor data were compared with field observations and rainfall 

data for evaluation. The study explored the relationship between slope change, 

volumetric soil moisture content, and rainfall, with records demonstrating the 

importance of considering long-term rainfall conditions rather than immediate 

rainfall events when developing rainfall thresholds for the region. Although the 

technological innovation is outstanding and the sustainability is strong, the cost is 

still high and the operation is more complicated. Through the above EWS in 

different regions, as Table 1.2 shows, The above mentioned EWS have in general 

the following shortcomings: (1) Relying on a single tilt sensor or image sensor leads 

to the untimely early warning, such as EWS in Japan and China; (2) The 

development cost is still high and most of the mentioned EWS above perform high 

power consumption; (3) These EWS mainly use systems that are industrially 

manufactured, therefore, it is not possible for the users to modify or upgrade the 

hardware or software architecture by themselves. These are all significant defects, 

the large-scale launch of EWS and making it suitable for more application scenarios 

and monitoring requirements, these deficiencies need to be overcome. Currently, by 

the comparison of the mentioned EWS, it is found that the early warning system 

based on the Internet of Things has the greatest advantages in controlling costs, 

improving sustainability, and balancing accuracy. In addition, the IoT-based 

operating platform usually provides open architecture of both hardward and 

software aspects and makes it much more feasible for users to conduct development 

work. Therefore, this study will focus on IoT-based EWS for the monitoring of 

landslides. 
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Table 1.2 Current EWS that applied in different countries 

Countries where 

implemented 
Feature Shortcomings 

Japan 
(Uchimura et al., 2009) 

Tilt sensors and moisture content 

sensors were used in the system 

Only considers two sensors 

and the prediction is not 

timely; 

Not sustainable from the 

view of energy 

consumption 

India 

(Dikshit et al., 2017) 

Sensor data such as rainfall, 

moisture, pore water pressure 

and ground movement is 

wirelessly collected 

High-cost of sensors and 

high energy consumption. 

System does not have open 

architecture, therefore 

indigenous development 

and modification is not 

possible 

China 

(Chen et al., 2020) 

Computer vision–based sensors 

for the tilt monitoring 

Prediction is not timely 

enough and the system is 

not sustainable 

Vietam 

(Gian et al., 2017) 
Wireless communication system 

with six types of sensors 

Relies on numerical 

simulation, system is 

financially not sustainable. 

Germany 

/ Colombia 

(Abraham et al., 

2020) 

IoT-based sensor network for 

communities based on open-

source hardware and software 

High cost of setup and high 

energy consumption 

 

1.4  Current EWS based on IoT 

In recent years, research found that the application of wireless Early Warning 

System (EWS) based on Internet of Things (IoT) is considered an effective 

approach to disaster reduction (Giri et al., 2018; Karunarathne et al., 2020; Gamperl 

et al., 2021; Liu et al., 2021). IoT is a booming technology platform that seamlessly 

connects smart devices, research objects, and transmission machines through the 

Internet (Kanaya et al., 2013; 2021). Compared with above methods, the wireless 

Early Warning System based on IoT has obvious advantages. Research from (Shi et 

al., 2015) showed that EWS based on IoT can provide real-time data monitoring, 
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transmission and storage, which allows remote analysis and gives timely warning. 

Lee et al. (2017) found that power consumption of sensors, transmission machines 

and routers during system operation is not high, which ensures long endurance of 

monitoring. EWS based on IoT can also quickly adapt to various sensors, which 

makes it easy for users to update connected sensors in time according to different 

requirements (Mois et al., 2017). In addition, prediction method that combines 

computer vision with IoT has gradually become a hot topic pursued by researchers. 

Computer vision technology can extract meaningful information from digital 

images and videos, and this information can be used to assess risks, take action or 

provide opinions, etc. Currently, research in (Chen et al., 2020) used this technology 

for the deformation monitoring of an underground structure. Some studies have 

taken real-time pictures of the monitoring area by building cameras and used 

computer vision technology to predict and analyze the possibility of landslides 

(Aggarwal et al 2018). However, this study that only observing the deformation 

often leads to untimely predictions, which makes it too late to evacuate people. 

Therefore, a single computer vision technology is not sufficient in the application 

of early warning systems.  

1.4.1 Sensors used in the system  

Regarding IoT-based EWS with different sensors, research in (Ramesh, 2014; 

Karunarathne et al, 2020) has been introduced in great detail and comprehensively. 

This study organizes their research and lists these common sensors below: 

Capacitance type soil moisture sensors: It is used to monitor the moisture 

content or volumetric moisture content in the slope by converting the resistance 

signal into the moisture content sensor. 

Pore water pressure sensor: it is always used in rainy seasons. The rainwater 

will speard in the pores of the soil, which forms a negative pressure and looses the 

soil strength. Therefore, if research wants to measure the groundwater table by pore 

water pressure, pore water pressure sensor should be considered. 
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Strain gauges: it measures the relative movement of the soil layer, which is 

done by connecting to the Deep Earth Probe. The deflection of the Earth Probe 

needs to be detected every 0.5 mm deep. Therefore, the experiments used strain 

gauges with different resistances of 100X, 350X and 1000X. 

High-precision inclinometers are more useful in research. For example, 

inclinometers are used to measure the movement of soil layers, whether it is very 

slow wriggling or sudden violent movements, and can accurately measure the 

results. 

Geophones: it is often used to analyze deflection, which requires measurement 

frequencies near 250 Hz due to the unique characteristics of landslides. At the same 

time, we should collect the corresponding measurement values in time to control 

the resolution within 0.1 Hz. 

Rain gauges: Rain infiltrating the slope may cause changes in soil suction and 

positive pore pressure, increasing the likelihood of landslide rock and soil shear 

strength lower if the depth of the main groundwater table or soil unit weight 

increases. 

Temperature sensors: Mearings the temperature of the soil, which is usually 

used in frozen soil areas. 

1.4.2 Network Layer in the system 

Network Layer is the middle layer in the IoT architecture, which is also called 

transmission layer. It processes the information provided by the previous layer by 

transmitting relevant data and information to IoT hubs and devices through an 

integrated network. Different communication technologies such as Bluetooth and 

Wi-Fi, and various connection devices, including hubs and gateways are gathered 

in this layer, which makes it necessary. 

For the consideration of Internet,  wireless 3G or 4G provided by a cellular 

modem has been used for Internet access. Information transfer between the local 

computer and sensors can be achieved by three tools, including Bluetooth low 
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energy (BLE), wireless transceivers or serial communication (Giri et al 2018). 

Among them, The maximum communication distance of the first two is shorter, 

theoretically 100 meters, but the latter is longer and can reach nearly 5000 meters. 

With the development of LPWANs technology, the communication landscape 

has been further improved. LPWANs has the ability to cover long-distance 

transfering  by working based on sub-GHz frequencies with high energy efficient. 

The obvious disadvantage of LPWANs is low baud rates, but for long time duration 

of measuring or monitoring, it can meet the needs of most IoT devices. Fig 1.3 

presents the several mainstream communication methods, For example: common 

used 3G, 4G, LTE or 5G, NFC, WIFI, Bluetooth and LPWA. It can be found that 

Low-Power Wide-Area (LPWA) network technology provides additional benefits 

of long-range data communication, low power requirements, and low cost due to 

usage of license-free bands of radio spectrum in the tire of data transmission. 

Although it is shown in Fig 1.3 (b) that the amount of propagating data is very low, 

considering that landslide monitoring is a long-term process, the accumulation of 

displacement, and the increase of water content is developed slowly, so the lower 

amount of data is acceptable in EWS. 

 

 

Fig 1.3 Comparisons of major wireless technologies; (a) Communication distance of each 

technology; (b) Communication data transmit the speed of each technology 
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Sigfox (Hobbs et al. 2020) was among the few first LPWANs to be 

commercially available. The network is organized in cells, each one covering a 

maximum area of 50 km, allowing up to 140 uplinks and 4 downlinks per device, 

per day. The technology operates as a one-hop star topology although the network 

requires a mobile operator to carry the generated traffic. In the Sigfox business 

model, the network access points are owned by the Sigfox company or official 

representatives, and users need to pay a premium per device per day. 

LoRa – abbreviation for Long Range – is another popular LPWAN. Similarly, 

to Sigfox, it operates at low, sub-GHz frequencies at low duty-cycles, thus 

addressing the range-vs-energy trade-off. The main difference to Sigfox lies in the 

business model it assumes. The ownership and operation of LoRaWAN access 

points are open to everyone, and therefore, LoRa supports the operation of private 

IoT networks. Certain initiatives, such as The Things Network , leverage upon this 

model in order to develop crowdsourced IoT networks spanning across entire 

regions (the UK network spans across the entire country and continues to grow). 

Complimentary to Sigfox and LoRa – wireless technologies that rely upon IoT-

specific infrastructure – there are IoT wireless technologies being introduced that 

operate over the existing cellular network. NB-IoT (narrowband IoT) is such a 

technology that focuses specifically on indoor coverage, low cost, long battery life, 

and high connection density. It makes use of the LTE standard but dramatically 

limits the bandwidth, thus achieving energy efficiency. The great advantage of this 

technology is the fact that it makes use of the existing cellular infrastructure that 

already provides good coverage both indoors and outdoors. Fig 1.4 demonstrates a 

comparison of Sigfox, LoRa and NB-IoT. 
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Fig 1.4 Comparisons of Sigfox, LoRa and NB-IoT (Karunarathne et al. 2020) 

1.5 Research objectives 

Through the review of disasters caused by heavy rainfall in Kyushu, the 

evaluation of slope stability under rainfall conditions, the comparison of landslide 

mitigation methods, and the elaboration of the current development of early 

warning systems, this study has identified the following objectives: 

(1) To reveal the failure mechanism and stability analysis of the slope under 

rainfall conditions; 

(2) To develop low-cost and sustainable early warning systems that can meet 

different geological conditions and network communication status; 

(3) To propose an effective evaluation index among various precursory 

phenomena of the landslide; 

(4) To introduce the application of EWS to the actual engineering projects, 

which can ensure the safety of the public as well as contribute greatly to disaster 

prevention, thereby protecting the lives and properties. 

(5) To present how IoT-based EWS can forge new paths for interdisciplinary 

study and generate a positive impact on SDGs. 
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1.6 Original contributions to the knowledge 

The research mainly focuses on the insufficiency of slope stability assessment 

under rainfall conditions and the development of early warning system. The specific 

original contributions include: 

(1) Stability analysis of unsaturated slopes for the early warning system 

considering different soil types and failure modes under continuous rainfall. 

According to the different properties of soil, this work is divided into cohesive (clay, 

loess, silt) and cohesionless soil (sand). Research considers the deep failure mode 

of cohesive soil and the upper bound limit analysis is used to evaluate its stability; 

The shallow failure mode with cohesionless soil was analyzed by the consideration 

of  Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability 

(TRIGRS) model with the nonlinear suction equation (Chapter 2). 

(2) New developed low-cost and sustainable EWS based on IoT. This part 

aims to address the shortcomings of the previous EWS and develops a low-cost and 

sustainable early warning systems based on IoT, which presents the obvious 

advantage of Low cost, low power consumption, open architecture for developers. 

In addition, the proposed EWS also provides the option to option to use both cellular 

networks and freely available radio frequency waves for data transmission through 

Low Power Wide Area (LPWA) connectivity system. (Chapter 3). 

(3) Proposing an effective evaluation index model of landslide through the 

analysis of the model test with motion analysis and interpolation analysis. This 

part conducts a comprehensive study combining experimental, analytical, and 

software methods. The experimental method evaluated the distribution of soil 

moisture content and the migration of groundwater table. A real-time local factor of 

safety (Fs) during continuous rainfall periods was evaluated by the analytical 

technique. Parameters measured from the model test and Fs estimations from the 

analytical technique were utilized to carry out an interpolation analysis to predict 

the data for additional rainfall conditions. Experimental validation and cross-
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validation were used to ensure the feasibility of the interpolation result. Motion 

analysis based on PIV (Particle Image Velocimetry) provide the velocity of particle 

flow and displacement accumulation. Based on the rainwater infiltration trend, 

failure mechanism and soil movement during a landslide, this research classifies 

three stages of Initial Monitoring State, Alert State and Triggerring State to the 

proposed EWS, which can be regarded as an essential guide for the prediction of 

rainfall-induced shallow landslides in the field. (Chapter 4 and 5). 

1.7 Organization of thesis 

The detailed flow chart of this study is shown in Fig 1.5. 

 

Fig 1.5 Flow chart of this thesis 
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CHAPTER 2 

2. STABILITY ANALYSIS OF UNSATURATED 

SLOPES UNDER RAINFALL CONDITIONS 

2.1 Introduction 

Through the geological investigation and engineering project case report, it is 

found that there are mainly two forms of slope failure considering the influence of 

rainfall conditions. One is the shallow slope failure caused by the rise of the 

groundwater table from the bottom to up, and the other is the deep slope failure 

caused by the saturated state from the upon to the bottom. As Fig 2.1 (a) shows, the 

first form is the occurrence of multiple shallow landslides initiating from slope toe, 

which usually occurs on a sandy slope. It appears with the phenomenon that the 

slope gradually tends to be saturated from the bottom due to the rise of the 

groundwater table (Zizioli et al., 2013; Cogan and Gratchev 2019; Wang et al., 2020; 

Wei et al., 2020). Many sandy slopes exist in an unsaturated state in nature and due 

to the existence of matric suction, the factor of safety of these unsaturated slopes is 

higher than that of saturated slopes (Fredlund and Rahardjo., 1993; Vahedifard et 

al., 2016; Li et al., 2018(a,b)). However, when rainfall occurs, pore water pressure 

increases significantly with the increase of soil moisture content, which 

significantly influences the overall stability of the slope. The other form is deep-

seated slope failure which is mainly due to the saturation or even erosion of the 
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topsoil by rainwater infiltration, such as the Green-Ampt model (Rawls et al., 1983). 

As Fig 2.1 (b) shows, the soil initially contains a certain amount of natural water 

content, then the downward infiltration of rainwater into the soil forms a wetting 

front of depth  ΔH from the ground surface, this causes the infiltrated part to change 

to the saturated state. The topsoil mainly contains the clay layer, weathered soil, 

tropical residual soil, etc., and the erosion of soil will spread to the whole failure 

zone, resulting in a rapid and destructive landslide (Gerscovich et al., 2006; Keaton 

et al. 2014; Huang et al., 2018). According to the properties of different soil layers 

and failure modes, the research is mainly carried out through two points: (1) 

considering the shallow failure of non-cohesive soil; (2) considering the deep 

failure of cohesive soil. Both of these two modes will be analyzed the factor of 

safety under rainfall conditions. 

    

(a)   Multiple shallow failures                           (b) Deep failure 

Fig 2.1 Two typical failure modes: (a) Multiple shallow failures; (b) Deep failure 

In order to simplify the analysis in the previous works, the slope is often 

considered to be completely dry or fully saturated (Utili 2013; Michalowski 2017). 

However, in nature, many slopes exist in an unsaturated state. In recent years, the 

stability analysis of unsaturated slopes has gradually become a hot topic of research. 

When analyzing unsaturated slopes, due to the existence of matric suction, the soil 

strength will be improved (Fredlund and Rahardjo, 1993). Therefore, the factor of 
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safety of unsaturated slopes is higher than that of fully saturated slopes (Vahedifard 

et al. 2016; Li et al. 2018), but the dry condition will also present a higher estimated 

value than the actual situation. When considering the effects of rainfall conditions, 

along with the infiltration of rainwater above the wet front or the increase of 

groundwater table, the pore-water pressure of the slope will increase, and there will 

be some incremental increase in the soil moisture content inside the slope, which 

can affect the overall stability of the slope. Sandy slopes have been reported as 

shallow failures (Dai et al. 2003; Zizioli et al. 2013), which occurred form the slope 

toe and spread to the upon part along the slope surface. For this kind of failure, 

research always conducts the local factor of safety and find the most dangerous 

local areas based on the movement of the groundwater table. In fact, deep landslides 

are often found in nature, and this type of failure is often found in cohesive soil 

such as clay, silt and loose. And the disasters caused by deep landslides may produce 

more devastating disasters (Keaton et al. 2014). 

The evaluation of dry slope has been discussed detailly (Chen et al. 1965), and 

when considering fully saturated soil slope, the effect of the pore-water pressure 

was normally assumed to be coefficient ru, as introduced by Bishop & Morgenstern 

(1960). Bigger ru represents lagger pore-water pressure, which will lead to smaller 

factor of safety of the slope. For unsaturated slopes, the consideration of matric 

suction has become a focus. In order to express the shear strength characteristics of 

unsaturated soils, Fredlund et al (1978) proposed an extended Mohr-Coulomb 

criterion. And the relationship between the increase in shear strength and the 

increase of matric suction has been studied thoroughly by introducing another 

material variable φb. Fredlund and Rahardjo (1993) tested on various types of soil 

and they found that in most cases, φb is less than internal friction angle φ. However, 

the soil suction was often preset to be a certain value or linearly changes with 

infiltration depth. While the experimental results show that matric suction tends to 

change non-linearly along the infiltration depth matric suction tends to change non-
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linearly along the infiltration depth. 

As mentioned above, the stability of unsaturated slopes in the previous study 

was only analyzed for a single state, but the dynamic change of slope stability 

during the rainfall process has been ignored. The purpose of this study is to develop 

an improved method that can obtain the stability of unsaturated slopes with different 

infiltration depths and different groundwater table. The result of this study was also 

confirmed with classic literature to ensure the correction. The factor of safety of 

slope under rainfall conditions can be calculated more realistic. 

2.2 Stability analysis of slope under rainfall 

2.2.1 Analysis of shallow failure mode-TRIGER 

Field investigations and previous research have shown that sandy slopes are 

widespread in Japan, and the form of failure is typically characterized by multiple 

shallow landslides caused by infiltration of rainwater as well as rising groundwater 

table (Koizumi et al., 2018; Chueasamat et al., 2018). This study focuses on typical 

sandy soil slopes in Japan. 

Previous studies have mostly focused on obtaining the Fs under a single slip 

surface. However, this is not suitable for sandy soil slopes with multiple shallow 

landslides. As Fig 2.2 shows, due to the increase of volumetric moisture content 

and the rise of the groundwater table due to the rainfall infiltration, the local factor 

of safety Fs under different depths of the sandy slope is inconsistent. In order to 

evaluate the stability of slope during rainfall duration, the local factor of safety (Fs) 

has been calculated at different monitoring times. Although the classical method of 

infinite-slope stability analysis for rainfall-induced shallow landslide will present 

more unfavorable results than the actual situation, this model can also be extended 

to unsaturated conditions by considering the suction stress (Bordoni et al, 2015), in 

which shallow slope failure is controlled by an increase in pore water pressure 

owing to rainfall infiltration. The study combines the Brooks-Corey equation with 
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soil suction and the process of rainfall infiltration, and Fs was obtained by TRIGRS                   

(Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability) as: 
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Here Z refers to the depth below the ground surface (as shown in Fig 2.3), t is 

the measuring time, β (o) is the angle of slope, φ’ (o) is the soil friction angle, while 

for unsaturated conditions, effective friction angle should include the range of 

variation (5o – 6o) and since sand is cohesionless soil, cohesion c’ (kPa) is 0, γ (N/m3) 

is the soil unit weight, γw (N/m3) is the unit weight of groundwater, w is soil moisture 

content, and σs (kPa) defined by (Bishop and Morgenstern, 1960) for the saturated 

state (ua-uw<=0) and (Van Genuchten 1980; Griffiths and Lu 2005) for the 

unsaturated state (ua-uw > 0): 
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ua is pore air pressure, which can be set as 0 in the calculation, uw is pore water 

pressure, а, n are related parameters of soil water characteristic curves. For the 

saturated state, uw can be obtained as 

1=w uu r z                                           (2.3) 

While for the unsaturated state, uw can be obtained as： 
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Here q is vertical specific discharge, the seepage state is negative, ks is the 

saturated hydraulic conductivity, and z1 is the net distance from the general point in 

the slope to the groundwater table, as shown in Fig 2.3, the monitoring point is in 

the opposite direction from the groundwater table under saturated state (Point A and 

B) and unsaturated state (Point C). ru is the coefficient of pore water pressure, which 
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can simplify the calculation of pore water pressure, but it presents an overestimation 

of the pore water in the part of hillslopes (Michalowski 2018). The coefficient ru is 

usually assumed to be smaller than 0.6. The most unfavorable situation of ru is 

considered in this study. As a result, the σs (kPa) used in this research can be 

described as: 
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Fig 2.2 Typical shallow failure model 

 

 

Fig 2.3 Water distribution in an unsaturated slope 
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2.2.2 Analysis of deep landslide by Limit analysis 

 Fig 2.4 shows the idealized distribution of pore water pressure in soil under 

rainfall conditions by Rahardjo et al. (1995). The upper part of the slope is in a 

saturated state due to rainfall infiltration, and the wetting front is the interface 

between the saturated and unsaturated regions. The unsaturated area continues up 

to the groundwater table and below the groundwater table, slope is also in a 

saturated state. Profile in Fig 2.4 presents that the pore water pressures above and 

below the wetting front are diametrically opposite, and the upper pore water 

pressure is positive because the soil is saturated, which can be obtained by: 

uw=rw*Zw                                           (2.6) 

Here rw is the density of water. While below the wetting front, it is negative 

porewater pressure, which is also called matric suction and obtained by Equ. (2.4). 

According to the above derivation, the shear strength of the soil in the unsaturated 

area is: 

' ( ) tan 'f a appc u c  = + − +                         (2.7) 

Here σ-ua is the net stress on the failure plane, c’ is effective cohension and φ’ 

is the effective friction angle, capp is apparent cohesion caused by negative 

porewater pressure in unsaturated areas that can be obtained by: 

 
s tan 'appc  = −                                      (2.8) 
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Fig 2.4 Profile of porewater pressure in residual soil (Modified from Rahardjo et al. 1995) 

Based on rainfall infiltration and the profile of porewater pressure. It’s easy to 

build the deep failure mode of the slope by limit analysis. Limit analysis is generally 

based on three assumptions: (1) Ideal plasticity assumption: the stress-strain curve 

is simplified to two connected straight lines, strain-softening phase in the curve is 

not considered; (2) The yield surface is convex, and the plastic strain of soil is 

calculated by yielding or thogonal rule calculation on the surface; (3) Small 

deformation assumption and virtual work equation. In the study, due to the 

continuous rainfall, it needs to assume uniform rainfall infiltration, that is, the 

distance Zw between the wetting front and the surface of the slope is the same. The 

schematic diagram of the failure mechanism of slope with rainfall infiltration is 

shown in Fig 2.5. The log-spiral failure mechanism is defined as  
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    0 0exp[( ) tan ]r r   = −                                 (2.6) 

where φ is the internal friction angle, and the length O’A is the radius r0 and 

θ0 is the angle between O’A and the horizontal plane. There is a depth of Zw from 

the wetting front to the ground, which intersects the upper part of the sliding surface 

D, and the lower part E. θw1 and θw2 are angles of the radius O’D and O’E to the 

ground. All the figures are illustrated in Fig 2.5 (a).   
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Fig 2.5 Failure mechanism with rainfall infiltration in the slope: (a) failure from slope toe; (b) 

failure below the slope toe 

Based on the mechanism of failure mode in Fig 2.5, The kinematic method of 

limit analysis is an effective approach for the evaluation of unsaturated slope, and 

it is assumed that the slope keeps stable when the rate of internal energy dissipation 

is bigger than all of the external effects. As a result, the internal and external work 

rate balance is used to make the analysis of the critical state for unsaturated soil 

slope, the log-spiral upper bound limit analysis equation can be obtained as: 

. . .

wr u cW W D+ =                                          (2.7) 

Here Wr is the rate of external work by soil weight component, and the Wuw is 

the external work by pore water pressure component. In this case, the block ABCA 

is used to calculate the soil weight work rate Wγ. Block ABCEFDA, with porewater 

pressure in the saturated areas, is considered to obtain the external work Wuw. As Fig 

2.4 shows, internal energy dissipation is along the failure surface AC of logarithmic 

spiral shape, including the saturated part AD and CE, and the unsaturated part DE. 
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The factor of safety is the ratio of internal energy dissipation to external work: 

Fs=(Dc+Ds) /(Wr+Wu- Wu2)                          (2.8) 

Here Dc is the energy dissipation of AC without any porewater pressure or 

matric suction, as shown below: 

2( ) tan2

0' ( 1)
=

2 tan

h o

c

c r e
D

  



−
−

                                          (2.9) 

ω is rotational angular acceleration in the failure process, Ds is the energy 

dissipation of DE with effects of matric suction: 

2
1 0 1

1

2( ) tan 2( ) tan2

s 0= w w
w

app
w

D r e c e d
      − −

                 (2.10) 

Soil weight work rate Wr is： 

3

0 1 2 3 4= ( )rw r f f f f − − −                           (2.11) 

γ is unit weight of soil and f1 to f4 in the formula are the energy dissipation of 

the blocks AOC', AOB, BOC, and COC’ in Fig 2.5 (b) respectively, which can be 

obtained from (Chen 1965; Utili, 2013). 

For the area with porewater pressure, research provides a scheme: the pore 

water pressure of the entire slip surface AC minus the pore water pressure of the 

unsaturated area DE as shown: 
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Here ru is coefficient of pore water pressure, generally set to 0.25, 0.5 or 

greater. Equ. (2.13) is the case that the logarithmic spiral shape crosses the slope 

toe and Equ. (2.14) is the case that the logarithmic spiral shape crosses below the 

slope toe. z1 to z3 is the distance from a point on the slip surface to the top of the 

slope respectively, which can be obtained by the following: 
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                  (2.15) 

For the unsaturated part: 0 0z sin sinwtH H r r = + + −  . Based on the 

discussion above, the factor of safety depends on soil properties: c, γ, φ, a, n, ks; 

slope geometry: β, H, water flow: q, Hw/H; rainfall intensity: Zw/Z (from 0% to 

100 %, where 0% means that all are in a unsaturated state, and 100% means that all 

are in a saturated state). Research on the use of sequential quadratic optimization 

method (SQP - Fmincon) under Matlab to search for the factor of safety Fs. 

2.3 Results of unsaturated slope under rainfall 

The study calculates the factor of safety Fs for two analysis methods under 

different types of soil layers. The sandy slope mainly gives the Fs of the slope under 

the movement of the groundwater table, and the cohesive soil gives the Fs under 



37 
 

different infiltration depths. 

2.3.1 Result of shallow failure by upward of groundwater table  

In Lu and Godt (2008), the study analyzed seepage conditions for infinite 

slopes, and conducts case calculations for sand, clay, loess, etc. This research 

conducted the same analysis as the previous study and considered different kinds 

the sand soil (Coarse sand, Medium sand and Fine sand) to obtain the factor of 

safety. The hydrologic and shear strength properties of the three sand are shown in 

Table 2.1 and three different slope angle (β) is considered in this research. 

Table 2.1 Parameters of three different sand soil considered in this research 

Parameter Symbol 
Coarse 

sand 

Medium 

sand 

Fine 

sand 

Soil cohesion c’ / kPa 0 0 0 

Internal friction angle φ / o 40 40 40 

Soil unit weight γ / kNm-3 14 to 18 14 to 18 14 to 18 

Slope angle β / o 
30, 40 and 

50 

30, 40 and 

50 

30, 40 and 

50 

Initial volumetric moisture 

content 
w / % 18 18 18 

Inverse of the air entry pressure а / kPa−1 0.45 0.14 0.08 

Pore size distribution n 7.5 5.5 4.75 

Vertical specific discharge q / ms-1 -3.14*10-8 -3.14*10-8 -3.14*10-8 

Saturated hydraulic 

conductivity 
ks / ms-1 1*10-6 1*10-6 1*10-6 

Variation in friction angle Δφ / o 6 6 6 

 

As shown in Table 2.1, Research was conducted in three different sand soil 

and three different slope angle (30o, 40 o and 50 o). Fig 2.6 shows the schematic 

diagram of shallow failure calculation. Above the groundwater table (positive value) 
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is unsaturated state, and below the groundwater table (negative value) is the 

saturated state. Fig 2.7 presents three types of sandy slope factors of safety charts. 

It can be clearly seen that when the groundwater table is lower than 0, the factor of 

safety decreases rapidly due to the influence of pore water pressure. Due to the 

nonlinear distribution of matric suction, the obtained factor of safety also exhibits 

nonlinear variation characteristics. It can be seen that the maximum value of the 

factor of safety appears at a distance of 0.5-1.5m above the groundwater table, then 

a longer distance leads to a reduction of the factor of safety and eventually tends to 

a stable state. Compare with the other two sand soil, fine sand presents better 

stability characteristics. The maximum factor of safety is increased by about 20% 

compared with coarse sand and around 10% compared with medium sand. But in 

areas much higher than the groundwater table (above 4 meters) or below the 

groundwater level, the factor of safety of different sand slopes is almost the same. 

Another well-understood phenomenon is that a higher slope angle will result in a 

lower Fs. 

 

Fig 2.6 Schematic diagram of shallow failure calculation 
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Fig 2.7 Three types of sandy slope factor of safety charts: (a) β=30o, (b) β=40 o and (c) β=50 o 

2.3.2 Result of deep failure under different infiltration depths  

   Bofore conducting the analysis of unsaturated slope under rainfall. Research 

needs to verify the correctness of results from imit analysis method. Based on the 

failure mode of 2D log-spiral, research from Vahedifard et al. (2016) presents the 

required cohesion (in kPa) to keep the unsaturated slope in a critical state, and their 

method is based on the equilibrium of moments. Li et al. (2018) also conducted 3D 

analysis of the unsaturated slope, and check the 2D results with the parameters of 

slope angle β = 90°, slope height H = 5 m and soil weight γ = 20 kN/m3. For 

comparison of the result, this study also carried out the analysis when rainfall 

infiltration Zw/Zp =0 based on the same parameters. As Table 2.2 shows, the results 

of the current study are the same as the previous study by Vahedifard et al. (2016) 

and Li et al. (2018), which strongly confirms the correctness of formula derivation 

and numerical calculation. 
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Table 2.2 Results comparasion with the previous study by Vahedifard et al. (2016) and Li et 

al. (2018) under β=90o, γ=20 kN/m3, z0=0m, H=5m 
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Taking the parameters in Table 2.2 of the four soil samples as an example, 

considering the parameters of β=90o, φ=30o, γ=20 kN/m3, c=20 kPa, z0=0 m, H=5 

m, and research assumes the hydrostatic pressure coefficients are ru=0.25 and ru 

=0.5 respectively. Zw/ ZH varies from 0% to 100% presents the degree of rainfall 

infiltration, where 0% means all are in an unsaturated state, 100% means all in a 

saturated state, and from 0% to 100% means the slope reaches saturation from top 

to bottom areas. 

Fig 2.8 shows the factor of safety of the cohesive soil under different rainfall 

infiltration considering the pore-water pressure coefficient ru=0.25 and ru =0.5. It 

is clear that a larger pore water pressure coefficient would lead to a more 

unfavorable condition for the slope. Clay presents the lowest safety factor. Loess 

and Silt show better stability. According to the research in the previous section, the 

sandy slopes are mostly perform shallow failures, so the following part of this study 

will not be carried out for the sandy slopes. The stability of the other three soils in 

the unsaturated state and under rainfall conditions was analyzed. 
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Fig 2.8 Factor of Safety of cohesive soil under different rainfall infiltration  

Fig 2.9 shows Fs of cohesive soil under different unsaturated flow conditions, 

research considers four different flow conditions: infiltration, no flow, evaporation 

and no-suction. The case of no-suction means that research doesn’t consider the 

effects of suction stress in the slope, which is the same condition as the classic 
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results. For the case of infiltration, rainwater will infiltrate into the unsaturated part. 

The value of infiltration (q = −3.14×10−8), no-flow (q = 0) and evaporation (q = 

1.15×10−8) in the formula to obtain the Fs. The research results show that no matter 

what kind of soil it is, the factor of safety Fs, when the suction is not considered, is 

always smaller than that when considering the effects of the suction, and it is also 

confirmed that the stability of the slope will be improved under the suction. 

Different seepage states in Clay have a significant impact on the factor of safety. In 

the initial stage, the Fs gradually decreases from evaporation, no-flow to infiltration. 

However, with the continuous increase of rainfall infiltration, the influence of 

different infiltration states on the factor of safety Fs gradually decreases. 
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Fig 2.9 Factor of Safety of cohesive soil under different unsaturated flow conditions: (a) Clay; 

(b) Silt; (c) Loess 
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Research also conducted the stability analysis of slope under different rainfall 

infiltration and soil types considering the effects of slope angle and firction angle. 

Fig 2.10 shows the Factor of Safety Fs of cohesive soil under different internal 

friction angle φ, the internal friction angle φ of 15o, 20o, 25o, 30o, 35o and 40o was 

used to calculate the Fs and Fig 2.11 presents Factor of Safety Fs of cohesive soil 

under different slope angle. The slope angle of 45o, 60o, 75o and 90o are taken into 

consideration in the analysis. Obviously, a larger internal friction angle will increase 

the stability of the slope, while a higher slope angle will lead to a lower factor of 

safety Fs. 

0 10 20 30 40 50 60 70 80 90 100
0.5

1.0

1.5

2.0

2.5

3.0

(a) Clay

F
ac

to
r 

o
f 

S
af

et
y
 F

s

Zw/ZH (%)

 φ=15o

 φ=20o

 φ=25o

 φ=30o

 φ=35o

 φ=40o

Ru=0.25

Ru=0.5

 

0 10 20 30 40 50 60 70 80 90 100
0.5

1.0

1.5

2.0

2.5

3.0

(b) Silt

F
ac

to
r 

o
f 

S
af

et
y

 F
s

Zw/ZH (%)

 φ=15o

 φ=20o

 φ=25o

 φ=30o

 φ=35o

 φ=40o

Ru=0.25

Ru=0.5

 

0 10 20 30 40 50 60 70 80 90 100
0.5

1.0

1.5

2.0

2.5

3.0

(c) loess

F
ac

to
r 

o
f 

S
af

et
y

 F
s

Zw/ZH (%)

 φ=15o

 φ=20o

 φ=25o

 φ=30o

 φ=35o

 φ=40o

Ru=0.25

Ru=0.5

 

Fig 2.10 Factor of Safety of cohesive soil under different firction angle: (a) Clay; (b) Silt; (c) 

Loess 
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Fig 2.11 Factor of Safety of cohesive soil under different slope angle: (a) Clay; (b) Silt; (c) 

Loess 

To peform the critical state of the unsaturated slope under rainfall infiltration, 

research selects one case as the example. Fig 2.12 shows the critical state (Fs = 1.00) 

of the unsaturated slope under rainfall infiltrationwith two pore water pressure 

coefficient ru = 0.25 and ru = 0.5. It can be seen clearly that bigger pore water 

pressure coefficient will promote the occurrence of landslides faster. For the case 

of ru = 0.25, critical state (Fs = 1.00) will appear when Zw/ZH = 0.55, while for the 

case of ru = 0.5, critical state (Fs = 1.00) will appear when Zw/ZH = 0.23. Beyond 

these two depths, the Fs will be lower than 1.00, and the entire slope will be in an 

extremely dangerous state. The Stability factor ( Ns = γH/c ) of the slope when in 

the fully saturated state (Zw/ZH = 0.23) in the research has also been calculated and 

compared the result with classic results by Michalowski (2017), result shows that 
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the calculation results of the saturated slope are basically the same: when ru=0.25, 

Stability factor Ns is 4.39351 by data from Michalowski (2017) and Ns = 4.401 in 

this research. When ru=0.5, Stability factor Ns is 3.306 by data from Michalowski 

(2017) and Ns = 3.28 in this research. The consistency of the verification results 

once again reflects the accuracy of the calculation results. 

 

Fig 2.12 Critical state (Fs = 1.00) of the unsaturated slope under rainfall infiltrationwith of 

two pore water pressure coefficient: (a) ru = 0.25; (b) ru = 0.5 

2.4 Conclusion of this chapter 

In this chapter, research divides two forms of slope failure considering the 

influence of rainfall. One is the shallow slope failure caused by the rise of the 

groundwater table from the bottom to up, and the other is the deep slope failure 

caused by the saturated state from the upon to the bottom. This chapter also trys to 

develop an improved method that can obtain the stability of unsaturated slopes with 

different infiltration depths and different groundwater table. The conclusions of this 

chapter can be drawed as below: 

(1) For the case of cohesionless soil, research presents an analytical framework 
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for evaluating the local safety factor of slopes under all possible groundwater table 

conditions. When the monitoring point is below groundwater table, Fs decreases 

rapidly due to the influence of pore water pressure. In the terms of the monitoring 

area above the groundwater table, the maximum value of the factor of safety appears 

at a distance of 0.5-1.5m above the groundwater table, then a longer distance leads 

to a reduction of the factor of safety and eventually tends to a stable state. The 

maximum Fs of fine sand is increased by about 20% compared with coarse sand 

and around 10% compared with medium sand. But in areas much higher than the 

groundwater table (above 4 meters) or below the groundwater level, the factor of 

safety of different sand slopes is almost the same. 

(2) For the case of cohesive soil, upper bound limit analysis has been used to 

obtain the Fs, which considers that the upper region is saturated due to rainfall 

infiltration, and the lower region remains unsaturated. A larger pore water pressure 

coefficient would lead to a more unfavorable condition for the slope. Clay presents 

the lowest safety factor. Loess and Silt show better stability. Comparing the 

calculation results of different parameters can be found that a larger internal friction 

angle will increase the stability of the slope, while a higher slope angle will lead to 

a lower factor of safety Fs. Different seepage states in soil have a significant impact 

on the factor of safety. In the initial stage, the Fs gradually decreases from 

evaporation, no-flow to infiltration. However, with the continuous increase of 

rainfall infiltration, the influence of different infiltration states on the factor of 

safety Fs gradually disappears. 
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CHAPTER 3 

3. DEVELOPMENT OF IOT-BASED EWS 

3.1 Introduction 

The newly developed EWS can be divided into two basic components: System 

software configuration and equipment configuration. As Fig 3.1 shows, for 

software aspect, it is mainly about data transmission and processing by IoT. For 

equipment aspect, a series of low-power consumption sensors have been selected, 

they were monitored and transferred by capture server and obtained the power 

sources from off-grid solar photovoltaic system. 

As mentioned before, IoT devices are very dependent on network signals, i.e. 

a wifi system is usually assumed next to the monitoring system. However, these 

systems require wired internet or Wi-Fi to transmit data from sensors to a complex 

network of servers, which are costly and consume a lot of energy. Therefore, there 

is a need to develop a new integrated real-time data-driven monitoring system that 

can handle "instantaneous data”. In addition, transmitting recorded data through 

Wi-Fi or cellular networks is not feasible in many mountainous and underpopulated 

areas. Furthermore, analyzing the data accumulated in the sensor networks on a 

cloud server places an excessive load on the network.  
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Fig 3.1 Architecture of EWS 
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3.2 Architecture of the System 

3.2.1 Data acquisition of the EWS 

Regarding the part of data acquisition, this study conducted the development 

of sensing devices based on IoT to complete the work of collecting and transmitting 

data from the monitoring objects. This section contains not only IoT-based 

hardware devices (sensors and IoT boards) but also IoT networks. As for the 

equipment part, the selection principle is ultra-low power consumption, cost-

effective and easy deployment. For the utilization of wireless communication 

technology, it is first necessary to adapt to the functional requirements of the EWS 

(usually the total amount of data collection and data transmission rate). At the same 

time, the system needs to ensure the applicability and access permission of 

infrastructure, and control operating costs. Taking into account the economic 

benefits and the application of IoT, sensors in this EWS are: 

(1) Soil moisture sensor (SEN0193, DFRobot): this product was used to 

measure the soil moisture content and obtained the moisture distribution in the slope. 

The sensor includes an on-board voltage regulator which gives it an operating 

voltage range of 3.3 to 5.5V. It is compatible with low-voltage MCUs (both 3.3V 

and 5V) and the weight of each sensor is only 15g. 

(2) Pore water pressure sensor (KPG PA): this micromodule equipment was 

chosen to measure the porewater pressure and got the water level by rainwater 

infiltration. The sensor needs to be connected to handle data logger, but data can be 

transmitted to the cloud by mail system. The diameter of the sensor is only 10 mm 

and the weight of each sensor is 50g. 

(3) Accelerometer sensors (MPU 6886): accelerometer sensors were arranged 

to measure the movement of soil, even some small deformation with the accuracy 

of 0.01o. We found that it has been the smallest 9-axis Motion Tracking device 

currently on the market and this product incorporates the latest design innovations, 
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which enables the device to significantly reduce chip size and power consumption, 

further improving performance and reducing costs. The acceleration sensor that can 

replace the expensive displacement sensor in the EWS. 

(4) Image sensors (Sony IMX219PQ CMOS) plugged into the Raspberry Pi-4 

were used to capture real-time image or videos in the monitoring area. Raspberry 

Pi-4 is an ultra-compact computer which is suitable for many kinds of situations. 

To develop more functions, it can be connected with external sensors, such as 

computer vision, voice recognition and other industries. Image Sensors are 

supported by Raspberry Pi-4. Still image resolution of the sensor is 3280*2464 

pixels, it also supports video of 1080p30, 720p60 and 640*480p60/90. The device 

combination has the advantages of low power consumption, portability, low price, 

and good performance. 

All figures of sensor are shown in Fig 3.2. Table 3.1 present the details of the 

equipment used in the EWS, it’s obvious that this research selects the relatively 

lightweight and portable sensors on the market based on good accuracy and 

adaptability. So, whether considering the cost of sensors or the cost of 

transportation and installation, the current EWS is very cost-effective. Compared 

with the price of the some equipment provided in (Gamperl et al., 2021), the entire 

system can even be put into use for one tenth of the cost.  

The capture server is comprised sensor connection devices and Internet 

connection devices. For the measuring areas, LTE devices can be chosen to provide 

wireless 4G or network port to the Raspberry Pi and communication devices 

(M5Stack and Handheld data logger with DMA-ESL). The connection between 

communication devices and sensors can be facilitated by 2.4-GHz low energy with 

a theoretical maximum range of 100 m. As all the data can be sent to cloud, it’s 

easy to check by many portable devices, such as mobile phone, PC and Table. Fig 

3.3 shows the communication device in the data acquisition of EWS. 
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Fig 3.2 Sensors used in the EWS 

 

Fig 3.3 Communication configuration in the system 
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Table 3.1   Device information of early warning system 

Device Type Each Size 
Each 

Weight 

Operating 

Voltage 

Power 

consumption 

Soil moisture Sensor SEN0193 90*25*5mm 15g 3.5V --- 

Porewater pressure 

sensor 
KPG PA Փ8.7mm 25g 2V 

--- 

Acceleration sensor MPU9250 13x11mm 0.45g 2.4-3.6V --- 

Raspberry pi with 

image sensor 
Pi 4 175x145x9.5mm 550g 5.1V 2.2 W 

IoT boards M5Stack  54x54x18mm 50g 5V 1.62 W 

Handheld data logger 

with wireless mail 

IoT 

DMA-ESL 250*150*20mm 1000g 12V 10 W 

Mobile router 
Aterm 

MP02LN 
45*90*10mm 150g 3.8V 2 W 

 

3.2.2 Data transmission of the EWS 

   In terms of data transmission, WIFI communication methods are usually used, 

which is based on WIFI system like 4G or 5G, and it needs Network Station. For 

areas with stable network signals, the research will use M5stack IoT devices to 

connect various sensors, and use wifi to transmit data to the cloud. The schematic 

diagram of the specific connection is as follows in Fig 3.4. One M5stack IoT can 

be connected with two soil moisture sensors and one acceleration sensor. Mail 

system will also be used to transfer the real-time data of porewater pressure sensors 

to the cloud. For areas where the network signal is unstable or there is no 

communication station, the research will use the LoRa-IoT device based on LPWA 

transmission to connect various sensors. Research is dedicated to solving the 

problem that pore water pressure sensors need to rely on data loggers. 
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Fig 3.4 Diagram sensor conection by M5stack 

3.2.3 Data display and analysis of the EWS 

For remote real-time monitoring, this research carried out a visual display on 

the basis of Ambient. Ambient is an IoT data service that receives, stores, and 

visualizes sensor data. This function developed in Arduino compiler/IDE helps to 

make creative designs for IoT as easy as possible. It plots the sensor data in real-

time without the requirement of a detailed initial setup. By adding more settings, 

Ambient can provide powerful customization capabilities, such as giving graphs 

and data names that are easy to understand, changing graph types, and overlaying 

multiple data on one graph. The most important thing is that the monitoring results 

can be observed remotely, and it supports various devices to check, such as mobile 

phones and computers. 

Regarding the data analysis part, this research presents the principle 

considered for handling monitoring data. The data processing tire manages IoT big 

data streams, which will be trained for landslide monitoring by proposed risk 

classification. Based on the trend of rainfall infiltration, key warning indices such 

as soil moisture content, pore-water pressure, and deflection angle are set in the 
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system, and a comprehensive slope stability analysis is carried out to obtain the 

real-time Factor of Safety (Fs) of the slope under various rainfall conditions. The 

whole proposed risk classification has been divided into three stages: Monitoring 

State (Stage I), Alert state (Stage II), and Triggering State (Stage III). And before 

each landslide, at least 3 warning signs will be sent.  

Three main data display methods have been introduced in this thesis. The first 

is the designated software or APP, this is easy to monitor data and set the threshold, 

but it has the limilation of data display form (Shown in Fig 3.5 of the mail system 

software). In general, such methods are less exploitable. The second method is some 

open-source platform, which provides a free website for users to develop. Users 

only need to write the program in the EWS and the system can directly send data to 

the website. This is much easier for user to operate with real-time checking. But the 

data limilation need to be considered. The last is the personal DIY monitoring 

platform that implemented an application to access and visualize the time series 

database. The system correctly collected the sensor data (as shown in Fig 3.7). It 

can provide different kinds of pictures, parameters and other information. However, 

it is difficult to develop and requires budget to maintain. 

 

Fig 3.5 Data display of terminal server 
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Fig 3.6 Data display of open-source platform 

 

Fig 3.7 Visualization of sensor values 

3.2.4 Off-grid solar photovoltaic system 

To make the monitoring sustainable, solar panel will be put near the sensors 

and communication devices for timely power supply. And research applied a 

battery low-consumption infrastructure monitoring sensor platform (Kanaya et al. 

2021). It’s also necessary to ensure the system with continuous power supply for 

around one week without any sunshine, so the solar panel with a large power 
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capacity was considered in this research. The maximum absorption power of the 

solar panel is 200W, and the storage capacity of the battery is over 3000Wh, so in 

theory, 10 hours of continuous absorption of sunshine can ensure that the battery is 

fully charged. In order to ensure the sustainable operation of the whole EWS 

process, research also calculated the battery usage of each device group in the 

Table.3.1. Since sensors will be connected with IoT devices, so this study only 

needs to calculate the power when the IoT devices are all connected to the sensors. 

The monitoring area is usually divided evenly into several groups, and one group 

has around 5 IoT boards, one Raspberry Pi-4, one mail system and one mobile 

router, the whole power consumption for one group is around 20W. Therefore, each 

group only needs to build a solar system, which can guarantee normal operation for 

more than three days even without any solar energy. The Off-grid solar photovoltaic 

system was shown in Fig 3.8. 

 

Fig 3.8 Off-grid solar photovoltaic system 
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3.3 Operation of the early warning system 

Fig 3.9 Diagram of early warning process 
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As Fig 3.9. shows, the proposed Internet of Things (IoT) based EWS will 

provide an operational platform for comprehensive data storage and quantitative 

analysis. First of all, according to the geological conditions of the site, establish the 

suitable EWS, including sensors, IoT devices, communication devices, and Off-

grid solar photovoltaic system. Data collected from embedded sensors such as soil 

moisture sensors and pore water pressure sensors are used to determine the degree 

of rainwater infiltration and change in the groundwater table, and data from 3D 

accelerometers are utilized to measure the deflection angle. Real-time images from 

Raspberry Pi with digital cameras are used to determine landslide time and track 

the displacement of the monitoring points by motion analysis. A sustainable solar 

panel is used to power the entire system. All the data can be stored in the cloud and 

operators can monitor the system remotely. Furthermore, once the monitoring 

parameters reach predetermined threshold limits, the system sends warning signals. 

3.4 Thresholds setting and alarm time in the EWS 

This part just gives an simple example of the early warning process. First of 

all, this study considers the soil moisture sensors, porewater pressure sensors and 

acceleration sensors, so users have to set threshold before staring the EWS work. 

Here, according to the different slope failure modes, the data monitored by the 

sensors will have different magnitude of values at different point to time. The right 

side in Fig 3.10 is the early warning process for shallow failure, while the left side 

is the early warning process for deep failure. Before a landslide occurs, at least three 

warning signals will be issued. This flow chart also provides some references for 

the issuance time of early warning signals. The slope geometry and soil conditions 

will affect the early warning process and the criteria of thresholds. However this 

flowchart intends to present a generalized warning principle for different 

geometrical and geological slope conditions. 
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Fig 3.10 A simple example of early warning process  

3.5 Conclusion of this chapter 

The architecture, operation and comparison of the newly developed EWS are 

discussed in this chapter. The preliminary conclusions are as follows: 

(1) The proposed EWS can monitor the soil moisture content and pore water 

pressure, track the ground deformation and provide real-time Fs during the rainfall. 

The application of IoT and solar battery systems enables the proposed EWS to 

operate cost-effectively and sustainably.  

(2) This system can accommodate and be compatible with any sensor with an 

I2C output, thereby making it possible to be upgraded at any point of time for 

different application scenarios and monitoring requirements. This system has an 

option to use both cellular networks and freely available radio frequency waves for 

data transmission through Low Power Wide Area (LPWA) connectivity system. 

This makes it flexible to be used in areas with good, bad and no cellular networks. 
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(3) This chapter also presents how IoT-based EWS can forge new paths for 

interdisciplinary study and generate a positive impact on disaster mitigation work 

in the future. 
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CHAPTER 4 

4. LABORATORY EXPERIMENT BASED ON 

PROPOSED EWS 

4.1 Introduction 

The method of model test is classic and commonly used, which is also the 

closest to the real scene of landslide disasters. In the preceding experiment studies, 

various sensors were inserted inside the slope to monitor the soil moisture content, 

pore-water pressure, slope displacement, etc., and summarize the relevant laws 

(Chueasamat et al 2018; Cogan and Gratchev 2019; Xie et al.2019). Studies often 

focus on multiple preconditional, preparatory, and triggering factors, such as 

rainfall intensity and initial soil moisture content to elucidate the hydrological 

characteristics, failure forms, and mechanisms under rainfall conditions. Cogan and 

Gratchev (2019) conducted model tests under different rainfall conditions, and his 

study considered the rainfall effects of rainfall intensity (40, 70 and 100 mm/h), 

slope angle (45–55°) and initial soil moisture content (5–12%). Finally, the 

experiment data was analyed by Intensity-Duration curve and compared with 

classic results. Xu et al (2022) conducted a series of centrifugal experiments to 

study the effect of continuous heavy rainfall on the slope stability in the case of 

cracks after the earthquake. The results are combined with particle image 

processing and theoretical analysis. This study provides a certain reference for 
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similar engineering geological backgrounds. Huang and Yuin (2010) carried out 

model experimental analysis on sand slopes, recorded the volume of different 

shallow landslides, the time of displacement, drew a series of I-D curves, and 

proposed a large number of evaluation expressions. Wang et al (2020) presented the 

results of a centrifuge test of rainfall-induced instability in a variably saturated slope. 

This work elucidated the role of rainfall intensity and initial conditions (eg, slope 

angle, porosity, and soil saturation) on the kinematics of failure onset and after 

failure. The failure modes, infiltration profiles and deformations were characterized 

in the initial and post-failure stages. Following the summary, two failure modes are 

introduced, whose test data are presented in two threshold curves together with 

literature data to define the critical conditions for slope failure under rainfall 

infiltration.  

In order to verify the feasibility of the system, a series of model tests were 

carried out in the experiment room. The designed model tests were conducted using 

a rectangular box and rainfall simulator employed for the slope under different 

rainfall intensity and initial soil moisture content. The rainfall intensity considered 

in this research is 45 mm/h, 70 mm/h and 100 mm/h. The initial soil moisture 

content is 8%, 12% and 17%. Experimental method presents the distribution of soil 

moisture content within slope, and the migration of groundwater table calculated 

from the data of the porewater pressure, and small deflection angle of the 

monitoring points. Real-time local factor of safety (Fs) during continuous rainfall 

periods is evaluated by the analytical method.  

This chapter firstly introduces the operation principle of the early warning 

system under different geological conditions, and proposes the thresholds that can 

be applied to this experiment. A series of experiments were subsequently carried 

out, and the warning times of different stages and detailed parameter changes were 

shown. This study can provide a feasibility verification for the launch of the early 

warning system. 
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4.2 Proposed Early Warning Process 

  Considering the effects of rainfall on the monitoring slope, there are two forms 

of landslide, one is deep slope failure which is mainly due to the saturation or even 

erosion of the topsoil by rainfall infiltration, where the topsoil mainly contains the 

clay layer, weathered soil, tropical residual soil, etc. The other kind is multiple 

shallow failures from slope toe, which usually occurs in sandy soil slope. It appears 

with the phenomenon that the slope gradually tends to be saturated from the bottom 

due to the rise of the groundwater table. As a result, research will consider the 

following step to prepare the sensor deployment and threshold setting: (1) Conduct 

preliminary on-site geological surveys to determine specific failure modes; (2) 

Regarding the deployment of sensors under each borehole in the slope, both of 

moisture sensors and acceleration sensors need to be deployed at different depths. 

According to different failure modes, the porewater pressure sensor needs to be 

deployed in the upper layer, while for shallow failure, the porewater pressure sensor 

can be deployed below; (3) Test the critical or saturated water content of the soil to 

define the threshold, set the threshold of deflection angle according to slope 

geometry and set the threshold of the porewater pressure according to the depth of 

sensor location in each borehole. Since the sandy slopes are widely distributed in 

Japan, the failure mode is typically characterized by multiple shallow landslides. 

This study will focus on typical sandy soil slopes to give an example of threshold 

setting and EWS working. 

4.2.1 Rainwater Flow in the Soil 

In designed laboratory test, sand soil has been usually chosen to explore the 

failure mechanism of slope under the condition of heavy rainfall. As a result, the 

system is mainly tested on homogeneous sandy slopes currently. The infiltration of 

rainwater on sandy slope will cause the rise of the groundwater level and the 

decrease of the shear strength. The path of water infiltration, soil moisture 
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distribution and the ground water level can be considered as important indexes for 

the prediction of landslide. The schematic diagram of rainwater infiltration in the 

slope is shown in Fig 2.2. First of all, research needs to clarify the detailed process 

of rainwater infiltration to the sandy slope: 

 (1) rainwater infiltrates and soil moisture increases to a critical value of Mc-t1, 

this is not the saturated moisture content of the sand, and the moisture content will 

keep constant around Mc-t1 for a period;  

(2) Rainwater reaches to the impermeable layer and generates porewater 

pressure, due to the groundwater level rising, the water content increases again until 

the soil reaches fully saturated state Mc-t2.  

(3) The porewater pressure rapidly rises to a critical value Fw-t. After the 

proposed process, some small and obvious deflection angles will be captured (D_t1 

/ D_t2).  

The phenomenon of rainwater infiltration and groundwater increase has also 

been highlighted in Wang et al., (2020). It can be concluded that with the process 

of infiltration, rainwater will run from slope surface to impermeable soil layer and 

accumulate on the interface, finally it will cause the increase of groundwater level. 

According to the result of previous research (Koizumi et al., 2018; Jacob and Ivan 

2019; Chueasamat et al., 2019), for shallow landslide with sandy soil, a landslide 

often occurs when slope reaches saturated or quasi-saturated state. Based on the 

rainwater infiltration into the soil, the soil moisture content at the critical state and 

saturated state can both be used as a threshold reference in the infiltration process, 

and the evolution of porewater pressure can also be used as the threshold evaluation 

standard. When the slope is gradually saturated, particles in the slope will move 

slightly, so sensors will detect some slight deflection angles. In the study of using 

deflection angle to forecast the occurrence of landslide, research found that once 

the internal deflection of the slope exceeds the threshold, a landslide will occur 

rapidly (Uchimura et al., 2015). 
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4.2.2 Flowchart of Early Warning process 

This designed laboratory test is based on a hypothetical homogeneous slope 

and uniform rainfall infiltration, 4 important warning indices: soil moisture content, 

pore-water pressure, soil deflection angle, and safety factor (Fs) are considered to 

evaluate the state of the slope and issue signals of landslides, the flow chart is shown 

in Fig 4.1. As the flowchart shows, first of all, the thresholds of warning indices 

need to be input into the system, which represent the transition of each risk stage. 

All the warning indices are determined by the type of soil and the shape of the slope. 

The thresholds set in this research are as follows: 1. Soil moisture thresholds Mc_t1 

and Mc_t2, which represent the critical value of sand slope before saturation and 

saturated volumetric moisture content respectively; 2. Pore-water pressure: Pw_t1 

and Pw_t2,  Pw_t1 is the state when the pore-water pressure is first captured, which is 

generally 0-0.1 kPa, Pw_t2 is the critical value before landslide; 3. Small deflection 

angle thresholds D_t1 and big deflection angle thresholds D_t2 before landslide; 4. 

Threshold of safety factor Fs_t, which is usually 1.0, and is in a safe state when Fs >1 

and in danger state when Fs <1. After setting all the thresholds, the work will start. 

The first stage is Monitoring State, in which the soil moisture will increase from 

initial volumetric moisture content to Mc_t1 with the rainwater infiltration, since the 

rainwater doesn’t reach to impermeable layer, there is no pore-water pressure in this 

step. So, the 1st warning message will be sent once the pore-water pressure sensors 

detached reaction of rising Pw_t1 or all moisture sensors reach Mc_t1, which also 

means that the system enters to Alert State. Then the soil moisture sensor will 

capture the rapid increase and the slope will become a saturated state as the 

groundwater level moves from bottom to upon. However, in this state, porewater 

pressure doesn’t reach the threshold Pw_t2 and acceleration sensors don’t find any 

fluctuations (less than D_t1). Once the acceleration sensors exceed the small 

deflection threshold D_t1, or porewater pressure reaches the threshold Pw_t2, the 2nd 

warning message will be released, and the state will enter the third stage: Triggering 
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State. Finally, when real-time Fs is smaller than 1.0 or deflection angle is more than 

D_t2, the system will give the last warning message and landslide will occur within 

a very short time. Fig 4.1 describes the whole process and timeline of early warning 

in detail. 

 

Fig 4.1 Flowchart of the proposed EWS 
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4.3 Preparation work before the test 

4.3.1 Soil type  

A model test was carried out to check the feasibility of the system. The soil 

type chosen in this research is Kumamoto silica sand type of K7 (fine sand) which 

is subangular and has uniformity coefficient. The grain size distribution of K7 is 

shown in Fig 4.2 and the specific physical information of soil is shown in Table 

4.1. 

 

Fig 4.2 Grain-size distribution curve for the silica sands K7 

 

Table 4.1 Soil used in this research 

Soil Type Mean grain 

size, D50 

(mm) 

Uniformity 

coefficient 

Uc 

Specific 

gravity, Gs 

Dry 

density 

(g/cm3) 

Void ratio, 

e 

K7 0.17 2.96 2.62 1.4 0.866 
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4.3.2 Experimental facility 

As Fig 4.3 shows, the rectangular box was used to conduct the test, and the 

slope model was designed by a length of 800 mm, a width of 400 mm and a height 

of 450 mm. The rainfall intensity was controlled to produce artificial rainfall by the 

suspended sprinklers with flowmeter. A set of wireless sensor combinations: 6 soil 

moisture sensors, 3 pore-water pressure sensors and 4 MEMS acceleration sensors 

were placed in the slope, 2 raspberry Pi with image sensors took real-time photos 

or videos from the front view and top view. The artificial rainfall simulator and 

model size information are shown in Fig 4.3 (a). Four soil moisture sensors were 

put below the top of the slope, and 2 soil moisture sensors were put below the 

surface. The porewater pressure sensors were located in the bottom and four 

acceleration sensors were arranged along the surface. The layout of test sensors and 

devices information in the early warning test are performed in Fig 4.3 (b). 
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Fig 4.3. Model test overview. (a) artificial rainfall simulator and model size; (b) test sensors 

layout 

4.3.3 Testing constraints 

Model tests were conducted considering rainfall intensity and initial 

volumetric moisture content, which are divided into Group A and Group B in 

Table.4. 2. The rainfall intensity in this research is 45 mm/h, 70 mm/h, and 100 

mm/h, and the initial volumetric moisture content is 8%, 12%, and 17%. Rainfall 

intensity of 60 mm/h was also conducted to verify the accuracy of the interpolation 

calculation in the next chapter. 

Table 4.2 Testing program 

Test Initial soil moisture content Rainfall intensity Description 

A 17% 45 Group A 

B 17% 70 
Group A and B 

C 17% 100 
Group A 

D 12% 70 Group B 

E 8% 70 Group B 

F 17% 60 Verification test 
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4.3.4 Threshold Settings 

This research also conducted some testing work with reference to previous 

studies (Wang et al. 2020) to obtain the moisture evolution of sand soil K7. Results 

from labortory tests show that the critical value of sand slope before saturation state 

is around 28%, and saturated volumetric moisture content is 36%-38%. So, research 

set MC_t1=28% and MC_t2=36%. Since the P1 was located below the hillslopes, it 

was the first sensor to react, Pw_t1 is set to 0.1kPa. The vertical distance between P1 

and slope surface is 20 cm, so 1.5 kPa was set as the Pw_t2 in this model. According 

to the previous study on deflection angle (Uchimura et al., 2010; 2015), it was 

concluded that operators need to be cautious when deflection angle reaches 0.005 

degrees per hour and waning level enters to Alert / Evacuation state once deflection 

angle is more than 0.1 degrees per hour. Since the system in this research will give 

3 warning messages and each test usually lasts 1-2 hours. Deflection angle index is 

set to D_t1=0.1o, which is one of the weathervanes that state changes from Alert 

State to Triggering State, and this study also set that D_t2=1o, which means the 

landslide will occur soon. Since this study uses the most unfavorable pore-water 

pressure coefficient to calculate the safety factor, the obtained FS is always lower 

than the actual situation, so setting FS to 1 is an early warning of landslide 

occurrence. 

As a result, the threshold set in this research is: (1) MC_t1=28% and 

MC_t2=36%; (2) Pw_t1=0±0.1 kPa and Pw_t2=1.5 kPa; (3) D_t1=0.1o and D_t2=1o; (4) 

Fs_t=1.000. 

4.4 Results and Discussion of the test based on EWS 

4.4.1 Model test based on EWS under different rainfall intensities 

All real-time data will be transmitted to the cloud and displayed visually. Fig 

4.4 to Fig 4.6 present the time history of volumetric moisture content, pore-water 
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pressure, soil deflection angle and factor of safety (Fs) under three rainfall 

intensities. It’s obvious that greater rainfall intensity results in faster landslides. 

Monitoring results show that moisture sensor S2 was always the last sensor that 

detached reaction because it was located at the deepest part of the slope and it also 

stayed away from the slope surface. Therefore, when S2 reaches the threshold, it is 

considered that the entire monitored slope reaches the threshold MC_t1. In addition, 

Pore-water pressure sensor P1 was always the fastest sensor to monitor pore water 

pressure, because it had the shortest distance from the slope. Comparing the time 

of MC_t1 and Pw_t1, it is found that the time of MC_t1 is usually smaller than Pw_t1, 

for example, time for S2 to reach MC_t1 in three cases was around 48min, 40min 

and 35min respectively, but the response time for P1 in the three cases was 65min, 

42min and 35min. Therefore, the first signal will be sent at an earlier time. Before 

the first warning, the slope was in Stage I - Monitoring State. With the infiltration 

of rainwater, the soil moisture content kept stable for a short time near the threshold 

MC_t1. On the contrary, S1 and S2 re-increased faster than other sensors because 

the groundwater table went up from impermeable soil layer, and all the sensors 

raised to MC_t2 in turn as soil slope gradually became a saturated state. Research 

found that S1 was always the first sensor that reached MC_t2, time for the area near 

S1 to become a saturated state in three cases was 81min, 62min and 48min, which 

was considered to be one important index for the 2nd warning. After entering to 

Stage II - Alert State, porewater pressure increased rapidly. The time for pore-water 

pressure sensor to reach MC_t2 was 92min, 65min and 50min in three cases. As the 

pore-water pressure increased, it’s obvious that there was some fluctuation from the 

data of MEMS acceleration sensors. D_t1 was set to evaluate the intensity of 

fluctuation, research found that M1 near the slope toe was the first MEMS sensor 

to detach rection and the time of D_t1 in three cases was 93min, 70min and 50min. 

According to the principle of early warning, compare the time when the three 

parameters reach the threshold, the second warning signal will be released at time 
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of 92min, 65min and 50min. After 2nd warning was sent, the whole slope was in 

danger state and it entered Stage III -Triggering State. Obvious deflection angle was 

captured by the sensor from M1 to M4, because sandy soil slopes often cause 

multiple shallow landslides. When in Triggering State, the deflection angle of M1 

increased from D_t1 to D_t2 at time of 106min, 80min and 57min. At this time, the 

Fs also dropped rapidly until reaching the critical value of 1.00. Under the three 

rainfall cases, Fs reached the critical value in 99 min, 76 min and 56 min 

respectively, which are all less than the time of deflection angle D_t2. Therefore, the 

3rd message was sent when Fs reaches the critical value. Research also finds that it 

cost only 3-12 min for the occurrence of the landslide after 3rd message. Table 4.3 

records the time of each indicator threshold, warning signal, and the occurrence 

time of multiple landslides in detail. The experimental results were in line with 

expectations, that is, the three warnings were sent before the landslide occurred. 

 



77 
 

 

 

 

Fig 4.4 Model test result of Test A: (a) Volumetric moisture content; (b) Pore water pressure; 

(c) Deflection angle; (d) Factor of Safety 
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Fig 4.5. Model test result of Test B: (a) Volumetric moisture content; (b) Pore water pressure; 

(c) Deflection angle; (d) Factor of Safety 
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Fig 4.6 Model test result of Test C: (a) Volumetric moisture content; (b) Pore water pressure; 

(c) Deflection angle; (d) Factor of Safety 
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Table 4.3 Time of each indicator, signal, and the occurrence time of multiple landslides 

Cas

e 

No. 

Rainfall 

intensity 

(mm/h) 

Time of warning indices (min) Time of warning 

(min) 

Time of each 

landslide (min) Stage 1 Stage II Stage III 

MCt1 Pwt1 MCt2 Pwt2 Dt1 Fs_t Dt2 1st* 2nd 3rd 1st 2nd 3rd 

A 45 52 65 81 92 93 99 106 52 81 99 111 122 135 

B 

C 

70 

100 

40 

35 

42 

35 

62 

48 

65 

50 

70 

50 

76 

56 

80 

57 

40 

35 

62 

48 

76 

56 

82 

59 

91 

65 

98 

73 

 

To evaluate the accuracy of the test results, research conducted a comparison 

with representative Intensity-Duration thresholds with similar soils types (Chien et 

al., 2005; Dahal and Hasegawa 2008; Jacob and Ivan 2019). I-D thresholds explain 

time to collapse against different rainfall intensities, which has been widely used 

around the world as an early warning system. As shown in Fig 4.7, in this study, 

two important times were used to compare, namely, the first shallow landslide on 

the slope surface and the final deep landslide. It was found that most of the result 

in the test is between the upper bound (Chien et al., 2015) and lower bound (Dahal 

and Hasegawa 2008), which verifies the rationality of the system. But test result of 

the first shallow landslide is a bit lower than the average value of previous studies 

because the slope in this research was considered to be whole homogeneous and 

this study set a big initial water content (12%) and large slope angle (45o). The 

rainfall intensity-duration thresholds were developed using data and the function of 

thresholds are:   

I_1st=98.78*D-1.228                                       (6) 

I_final=128.4*D-1.252                                                       (7) 

Here I is rainfall intensity (mm/h) and D is the duration (h). The I-D obtained 

in this study can also provide certain reference values for similar soil sample slopes. 
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Fig 4.7 Results of I-D thresholds compared with previous research 

          

Fig 4.8 and Fig 4.9 shows the sand slopes always induce multiple shallow 

landslides from both side view and front view. Research presents the front view at 

different duration times during rainfall intensity 100 mm/h. As the initial state is 

shown in Fig.8, from the side view, 7 tracking points were marked in the slope, of 

which 4 points (Point 1-Point 4) are along the slope and 3 points (Point 5-Point 7) 

are inside the slope. Research defines three slope failures based on obvious 

movement captured by motion analysis (next chapter), which occurred successively 

from bottom to top. Research also can provide real-time displacement of monitoring 

points, motion trajectory and deflection of monitoring point coordinates, etc. Fig.10 

shows that point 1 and point 5 have the fastest response, while point 1, point 2 and 

point 3 have longer displacement than other points. Because point 1 and point 5 are 

located in the first shallow landslide area, prompting them to move the fastest. Since 

point 1- point 3 are close to the slope surface and are in the landslide area, the 

resulting displacement is longer. Motion analysis also record the tilt angle а of 

recorded point coordinates, it’s different from that of data from MEMS acceleration 
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sensor. The tilt angle а of recorded point coordinates is the angle between the final 

position and the initial position with respect to the horizontal plane. It is also easy 

to understand that the tilt angle а generated in the upper part will be significantly 

larger than that in the lower area because the slope is steep with 45o and the 

landslide mass is accumulated at the slope toe, so it is more likely to generate a 

larger tilt angle. Especially Point 3 and Point 4 at the top area, resulting in nearly 2 

times the tilt angle of Point 5. It can be clearly seen that after the first landslide 

occurs, it will quickly spread to multiple landslides, and eventually produce 

extremely violent long-distance landslides. According to the results in the figure, 

more than 50% of the sliding distances of the monitoring points are derived from 

the last deep landslide. 

 

 

Fig 4.8 Side view of slope failure at different landslide stage 

 

Fig 4.9  Front view of slope failure at different landslide stage 
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Fig 4.10 Particle coordinate motion trajectory 

4.4.2 Model test based on EWS under different initial moisture content 

In order to analyze the influence of the initial volumetric water content, 

experimental simulations with initial volumetric water content of 8%, 12%, and 17% 

are carried out at a fixed rainfall intensity of 70 mm/h. Fig 4.11 and Fig 4.12  present 

the results of Test D and Test E. It can be found that the results of Test D and Test 

E present the same trend as the results of Test A to Test C. But the lower initial water 

content leads to a longer time to trigger the landslides. Result in Table 4.4 shows 

the time of the three different states of three cases. The time for the first landslide 

from Test D, E is 115 min and 131 min, respectively, while the time for the final 

landslide from Test D and E is 131 min, and 148 min. 
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(a) Soil moisture content 

0 20 40 60 80 100 120 140
0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
o

re
-w

at
er

 p
re

ss
u

re
 (

k
P

a)

Time (min)

 P1

 P2

 P3

 

(b) Pore-water pressure  

 

(c) Deflection angle 
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(d) Factor of Safety 

Fig 4.11 Model test result of Test D: (a) Volumetric moisture content; (b) Pore water pressure; 

(c) Deflection angle; (d) Factor of Safety 
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(a) Soil moisture content 
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(b) Pore-water pressure  

 

(c) Deflection angle 
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(d) Factor of Safety 

Fig 4.12 Model test result of Test E: (a) Volumetric moisture content; (b) Pore water pressure; 

(c) Deflection angle; (d) Factor of Safety 
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Table 4.4 Time of each indicator, signal, and the occurrence time of multiple landslides 

Cas

e 

No. 

Initial 

moisture 

content 

Time of warning indices (min) Time of warning 

(min) 

Time of each 

landslide (min) Stage 1 Stage II Stage III 

MCt1 Pwt1 MCt2 Pwt2 Dt1 Fs_t Dt2 1st* 2nd 3rd 1st 2nd 3rd 

B 17% 40 42 62 65 70 76 80 40 62 76 82 91 98 

D 

E 

12% 

8% 

52 

77 

56 

82 

84 

92 

95 

117 

98 

118 

102 

119 

108 

124 

52 

77 

84 

92 

102 

119 

115 

131 

124 

140 

131 

148 

    

Table 4.4 presents each indicator time, signal time, and the occurrence time of 

multiple landslides, which shows the same trend as the trend in Table 4.3. The first 

landslide time in the three cases is: 82 min, 115 min and 131 min, the last landslide 

time is 98 min, 131 min and 148 min. While the alarm time for the three cases is 76 

min, 102 min and 119 min respectively. These results all confirm the rationality of 

EWS.  

4.5 Conclusion of this chapter 

In order to evaluate slope stability under rainfall conditions and carry out early 

warning analysis for landslides. This research proposed a new EWS based on 

multiple sensors with IoT to monitor and forecast rainfall-induced landslides. The 

process of rainwater infiltration, porewater pressure change and the deflection angle 

of soil at different early warning stages were introduced in this research and model 

tests under typical geological conditions in Japan have been conducted to verify 

EWS feasibility. Here are some conclusions of this study: 

(1) The newly developed real-time EWS is composed of cost-effective and 

portable sensor units, the entire sensor combination requires ultralow-power during 

operation and an off-the-grid solar energy-powered integrated sensor platform is 

used to optimize the sustainability of the system. The low cost and standalone 

energy harvesting feature of the EWS, allows it to be applicable across the world. 

(2) Under rainfall conditions, the sandy slope model goes through five stages: 
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the volumetric moisture content increases, the groundwater table rises, the slope 

gradually saturates, Fs≤1.00, and the landslide occurs. The sequence of these five 

stages can be used as an important reference for the landslide prediction model. 

According to the important monitoring indicators and Fs calculated in real-time, the 

whole early warning process is divided into three stages: Monitoring State, Alert 

State and Tiggering State. In this study, factor of safety Fs, which is lower than the 

actual situation is used for risk assessment and landslide prediction. Research found 

that Fs has been significantly reduced under continuous rainfall, and It will drop 

below 1.00 just before the landslide. 

(3) In this study, the system presents accurate predictions and three warning 

times are all before the occurrence of the landslide. The model test based on EWS 

can provide the distribution characteristics of rainwater, the evolution trend of the 

groundwater table, which verifies the feasibility of the EWS. 

Although the current experimental analysis is only carried out on a 

homogeneous indoor model slope, the concept for equipment assembly, landslide 

monitoring, risk classification, and warning message releasing has been proposed 

as a framework, which can be considered as a representative case for developing 

low-cost and sustainable early warning system in the future. 
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CHAPTER 5 

5. COMPUTER VISION-BASED MONITORING 

TECHNOLOGY AND METHOD OF 

INTERPOLATION 

5.1 Introduction 

Traditional sensors such as acceleration sensors mentioned above, 

extensometers and strain gauges (Dunnicliff, 1988; Malet et al., 2002; Corsini et al., 

2005; Ramesh and Vasudevan, 2012) have always been used for the monitoring of 

ground movement and some deformation. For example, the exciter was used to give 

elastic waves to provide information on soil moisture and shear deformation (Tao 

et al, 2019). The current popular Micro-electro-mechanical systems (MEMS)-

based equipment has be developed for remote monitoring with real-time data 

uploading functions (Meng and Ansari, 2013; Lin et al., 2015). However, 

Traditional sensors require professional techniques such as drilling, and they often 

only provide monitoring data information, which still has certain deficiencies in 

restoring the damage form (Su et al. 2009; Brückl et al., 2013). Thus, at present, 

due to the rapid development of computer science, more and more researchers have 

been using an instrument for real-time deformation or displacement monitoring 

based on the technology of computer vision, which presents the significant 

advantages of automatically identifying certain hazardous structures in the 
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monitored area. Existing studies have shown that the variable monitoring of tunnels, 

the displacement of bridges, the expansion of cracks, and the inclination of 

landslides can all be applied by computer version based image processing (Saada 

et al., 1999; Miura et al., 2005; Lee and Shinozuka, 2006; Khuc and Catbas, 2017; 

Stark et al., 2017). A large number of scholars continue to optimize the software to 

improve the precision of captured images (Stanier et al., 2016). 

In this study, several groups of experiments were carried out for the 

verification of the early warning system. However, the experimental method has 

several shortcomings. One of the most obvious problems is that only a single soil 

parameter and external influencing factors are considered in each experiment and 

only a limited number of cases can be obtained, which severely limits the evaluation 

and application value. Therefore, this chapter is also devoted to solving such 

problems and will use interpolation analysis to expand the limited data to the global, 

which improves a wider application. Research also carries out corresponding 

verification about the interpolation results. 

5.2 Computer version-based particle tracking technology 

When the slope is gradually saturated, particles in the slope will move slightly, 

so sensors will detect some slight deflection angles. In the study of using deflection 

angle to forecast the occurrence of landslide, research found that once the internal 

deflection of the slope exceeds the threshold, a landslide will occur rapidly 

(Uchimura et al., 2010) Fig 5.1 (a) presents the direction of the deflection angle in 

this research. Computer vision – based device will capture the movement of the 

targeted particles and define the time of the landslide, the soil point trajectory is 

shown in Fig 5.1 (b). In model tests, it can be used to track the movement of 

particles on the entire slope. When used in the field, it can be placed in the most 

dangerous areas for targeted monitoring, such as cracks or potential sliding surfaces. 

For the image or video data, motion analysis will also give the displacement of each 
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tracking point and forecast the potential displacement of the landslide. DIPP-

Motion, a full spec off-line motion analysis software for all needs based on 

normalized cross correlation, binarization of gray-scale, HLS color, and checker-

marker tracking. All kinds of charts can be available for DIPP-Motion such as point 

trajectory, distance from the starting point, average point, rotation angle. In this 

research, point trajectory and displacement (distance from the starting point) will 

be obtained from the software. As Fig 5.1 (b) shows, the research marked the 

tracking points in the intended area before each test. Subsequently, a raspberry pi 

with image sensor was used to take a picture in every 5 seconds and uploaded 

images to the cloud. The motion analysis will be carried out once getting the new 

picture from the field so that the movement of the soil will be recorded in real time. 

Considering the displacement of each tracking point is also a very important 

reference index, because the time of landslide will be identified according to the 

movement of each tracking point. In addition, the deflection angle-displacement 

relationship can be used to predict the scope of the landslide in the future to make 

targeted protective measures (Xie et al., 2019). The specific calculation principle 

and calculation formula are also shown in the Fig.5.1. The calculation principle, 

tracking method and error analysis of particle tracking, research in (Take 2015; 

Stanier et al., 2016) has been introduced in detail. 
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Fig 5.1. Soil flow in motion analysis: (a) Particle movement direction determination; (b) 

Displacement determination by motion analysis 

5.2.1 PIV analysis of rainfall-induced landslide experiments 

As shown in Fig 5.2, two cameras are placed on the side and front of the model 

to capture particle movement during the sliding, which are also used to identify the 

occurrence time of each landslide. Since the landslide occurs at the stage when the 

slope gradually reaches saturation, the initial moisture content has less influence on 

the failure mode and particle flow, while the rainfall intensity has a significant effect 

on the particle flow velocity and the movement trajectory. Therefore, the motion 

analysis of sandy slopes is mainly carried out on the effects of different rainfall 

intensities. 
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Fig 5.2 Cameras setup in the experiment and monitoring points disturbtion 
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As already explained in the above, three shallow landslides induced by rainfall 

are recorded in each case. Fig 5.3 to 5.5 show the characteristics of shallow 

landslides on sandy slopes, the upper picture of each figure shows the particle 

motion trajectory and velocity information, and the lower picture shows the cloud 

map of the particle motion velocity. Occurrence time of the three shallow landslides 

in each case was shown in the figures. It can be clearly found that the three shallow 

landslides spread from the slope toe to the upper part. The results for Test A in Fig 

5.3 show that the third landslide did not even reach the top of the slope, which is 

inconsistent with Test B and Test C. It can be implied that the low rainfall intensity 

causes the groundwater level to rise slowly, and the rainwater impact is weaker. The 

maximum particle motion velocity vectors in the three cases are 0.126 mm/s, 0.138 

mm/s and 0.235 mm/s, respectively. According to the velocity result under rainfall 

intensity 100 mm/h obtained by Chueasamat (2018), the particle motion velocity 

given in this study is lower, because the previous study considered relative density 

Dr=0, while the relative density in this study is 50%. Greater relative density will 

undoubtedly make the slope more stable and thus the flow of particles will be slower 

in the event of a landslide. From the results in the cloud map, it can be seen that 

with greater rainfall intensity, the sliding volume of the slope is larger and the peak 

velocity coverage is wider within the slope. Fig 5.6 to 5.8 show the characteristics 

of shallow landslides from the top view. A notable phenomenon is that the sliding 

velocity of the slope observed from the top is greater than that of the side. 

Movement velocity increased by about 20%. A reasonable explanation is that 

although we have done lubrication, it is still difficult to suppress the reduction effect 

of boundary friction on soil motion. 
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Fig 5.3 Result of PIV on Test A (Side view) 
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Fig 5.4 Result of PIV on Test B (Side view) 

 



99 
 

 

 

Fig 5.5 Result of PIV on Test C (Side view) 
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Fig 5.6 Result of PIV on Test A (Front view) 
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Fig 5.7 Result of PIV on Test B (Front view) 
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Fig 5.8 Result of PIV on Test C (Side view) 
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5.2.2 Displacement of monitoring points  

The left corner of Fig 5.2 shows the information of tracking points in both the 

side view and front view. From the side view, 3 tracking points (Ta, Tb, and Tc) were 

marked along the slope surface. Ta always reacts faster and has longer displacement 

than other points, because Ta is located in the first shallow landslide area, prompting 

it to move the most immediately. Fig 5.9 (a) shows that the maximum landslide 

displacement Ta in the three cases is almost the same. The reason is that the three 

shallow landslides all promote the sliding of the Ta area close to the slope toe, and 

the sliding trend is consistent. However, the sliding displacement of Tc at the top 

regions in the three cases is quite different; most notably, the sliding distance for 

Test A is even lower than 10 cm. In Test A, there is no final large-scale landslide 

near Tc area, and the displacement comes from the sliding of the bottom part, which 

promotes Tc small-scale sliding. 

From the front view, 3 tracking points (T1, T2, and T3) were marked from the 

slope bottom to upward. The distribution of monitoring points is roughly the same 

as the side view, the displacement produces a similar trend. However, two 

significant differences can be found. One is that the sliding start time of the 

monitoring point of the front view is faster than that of the side view. The same 

situation was also observed in the experiment, that is, there will be cracks on the 

slope surface before the landslide occurs, and the cracks generally expand from the 

center to both sides, which causes the middle area to slide faster than the two sides 

from the front view. The second is that the displacement monitoring from the front 

view is larger, the maximum displacement is 25.05 cm, 28.11 cm, and 30.41 cm, 

while the maximum displacement of the side view is 23.05 cm, 21.32 cm, and 20.71 

cm respectively. The research thinks that this is because of the boundary force on 

both sides. Although the research has lubricated the glass on both sides to reduce 

unnecessary resistance, there is still a small force that hinders sliding. 

The position of three monitoring points on each side is relatively consistent 
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with the sliding range of the three shallow landslides. Therefore, it can also be found 

from Fig 5.9 that the time of rapid displacement accumulation of the three 

monitoring points on each view is quite close to the occurrence time of each shallow 

landslide defined by real-time image observation. For example, the time of the first 

shallow landslide in three cases is 58 min, 82 min, and 110 min, the time for more 

than 1 cm displacement of Ta is 61 min, 84 min, and 113min from the side view, 

while time for more than 1 cm displacement of T1 is 60 min, 83 min and 111 min 

from the front view. 

 

 

Fig 5.9 Displacement of tracking points under different rainfall intensity: (a) Side view; (b) 

Front view 
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5.3 Interpolation analysis 

In order to predict the results for intermediate cases, for which the experiments 

were not performed,  an interpolation of the observed results is performed based on 

the limited experimental data. For this, a linear polynomial function is used to 

predict new data points for curve fitting within a discrete set of known data points 

(Hogben, 2006). The interpolation results cover the entire range within the rainfall 

intensity of 45 mm/h - 100 mm/h and the initial moisture content of 8%-17%. The 

interpolation analysis of volumetric moisture content and factor of safety Fs is 

carried out for locations S1 and S6. The main reason for selecting these two points 

is that S1 is one of the fastest responding monitoring points to the  5 stages classified 

in this study. While S6 is the last sensor to detect the rise of the groundwater table. 

The points P1 and P3, which are the fastest and slowest monitored pore water 

pressure rises, are also used for interpolation analysis. These two points are located 

on the same vertical line as S1 and S6, respectively. 

5.3.1 Interpolation result on experimental data 

3D surface plots can cover a wider range of parameter-changing information 

and facilitate the presentation of more conditions. Fig 5.10 shows the 3D surface 

plots from interpolation analysis under different rainfall intensity. The abscissa 

records the rainfall elapsed time (0-140min) and rainfall intensity (45-100mm/h), 

and the ordinate records the moisture content, factor of safety Fs and pore water 

pressure respectively. Fig 5.11 presents the 3D interpolation surface under different 

initial moisture content. The difference from Figure 10 is that the rainfall intensity 

on the abscissa is replaced by the initial moisture content (8%-17%). 3D results 

from interpolation analysis cover a wider area, which effectively solves the 

limitations of the case samples in the experimental method. However, it is very 

necessary to judge the accuracy of the interpolation results, so this study carried out 

verification work. 
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(a) Interpolation results in soil moisture content 
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(b) Interpolation results in Factor of Safety 
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(c) Interpolation results in Pore water pressure 

Fig 5.10 Interpolation results under different rainfall intensity: (a) Interpolation results in soil 

moisture content; (b) Interpolation results in Factor of Safety; (c) Interpolation results in Pore 

water pressure 
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(a) Interpolation results in soil moisture content 
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(b) Interpolation results in Factor of Safety 
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(c) Interpolation results in Pore water pressure 

Fig 5.11 Interpolation results under different initial moisture content: (a) Interpolation results 

in soil moisture content; (b) Interpolation results in Factor of Safety; (c) Interpolation results 

in Pore water pressure 
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5.3.2 Verification of interpolation results 

This study is supplemented by an additional case of Test F (60mm/h, 17% 

initial moisture content) in Table 3, and it is compared with the interpolation results. 

To quantify the deviation value, the relative error norm ɛ has been evaluated by the 

following formula: 
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                                            (6) 

where Dm is the measured data of verification points in the model test, and Di 

is the interpolation result data of verification points. / Dm - Di / is the deviation of 

monitoring and interpolation results. N is the number of the monitoring objects. Fig 

5.12 shows the volumetric moisture content and pore water pressure and compares 

the results with the interpolation results. Each set of images presents a graph of the 

data results on the left and the relative error norm ɛ on the right. It is obvious that 

most of the relative error norms are below 20%. Therefore, it can be concluded that 

the model proposed in this work can basically predict the distribution of moisture 

content and evolution of pore water pressure at different rainfall duration. Research 

summarizes the time information of the five stages under the interpolation results 

in Table 5.1. It can be found that the interpolation results also show an increasing 

trend, which is quite similar to the experimental results. Although the result 

obtained by interpolation takes less time to reach each state, which presents a more 

unfavorable value than experimental results, these values are within a reasonable 

range, and a lower value will provide an earlier warning, and it will avoid the 

problems such as lag in early warning work and untimely crowd evacuation.  
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Fig 5. 12 Comparison of interpolation results and relative error norm under 60 mm/h: (a) 

Moisture content; (b) Porewater pressure 

Table 5.1  Test and interpolation time of each Stage during rainfall  

Data 

Sources 
Sensor 

Time of each Stage (min) 

Stage I Stage II Stage III Stage IV Stage V 

Model test 
S1 40 46 77 94 92 

S6 49 69 103 116 --- 

Interpolation 

analysis  

S1 37 45 72 85 92 

S6 42 67 96 107 --- 
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As mentioned that the factor of safety Fs is obtained from the monitoring result 

of moisture content and pore water pressure. The research proposes a cross-

validation method: moisture content and pore water pressure obtained by 

interpolation are used to calculate the Fs by Eq. (1), then calculated results of Fs are 

compared with the Fs obtained by the interpolation method to verify the accuracy 

of the interpolation results. Results in Fig 5.13 show that most of the interpolated 

results are also lower than the actual calculated Fs because of the underestimation 

of the groundwater table and moisture content. Since the variation range of Fs is 

very small, the relative error norm of the obtained Fs is all less than 4%, which is 

much lower than the value of a single parameter.  

It should be worth noting that the interpolation result was proposed based on 

the monitoring data of sandy soil, so it makes sense to predict the soil moisture 

distribution, groundwater table migration and local factor of safety level on the 

sandy slope. However, it has to be clarified that the data obtained by the 

interpolation method in this study can only be used as a reference for constant 

continuous rainfall. 

 

Fig 5.13 Result of cross-validation 
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5.3.3 Groundwater table migration by interpolation results 

 The previous analysis is mainly carried out on the limited experimental data 

monitored by sensors, but the sensor distribution is limited and cannot achieve 

global coverage. Therefore, it is necessary to perform interpolation analysis on 

monitoring blind spots. As Fig 5.14 shows, research considers the interpolation 

analysis on porewater pressure. Research set the point P1 as the start point, and P3 

as the end point, the distance of the interpolation range is 25cm. In this part, research 

choose Curved Interpolation, which has a better performance than the liner 

interpretation. Fig 5.15 shows the 3D interpolation results of sensor position. The 

results only show the values between the interval of P1 to P3, and the values outside 

the interval can also be predicted through the existing interpolation results. This 

part of the work increases the predictability of the system. 

 

Fig 5.14 Sensor location of porewater pressure sensor 
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Fig 5.15 3D interpolation results of sensor position 

Based on the interpolation results and analytical results mentioned in sections 

3.1 and 3.2, this section discusses the migration of groundwater tables at different 

time duration. The progression of the groundwater table is a computed value based 

on the volumetric water content and pore water pressure. In addition, for each 

monitoring point, irrespective of the soil moisture content points or the pore water 

pressure points, real-time Fs analysis has been also performed. The results of typical 

time characteristics selected for each group of experiments are shown in Fig 5.16 

to Fig 5.18, the soil below the water table is in a saturated state. Fig 5.18 also shows 

a schematic diagram of the first shallow landslide and the last deep landslide. 

Research found that when the slope is failure under bigger rainfall intensity, the 

elevation of the groundwater table sometimes is even lower than that at smaller 

rainfall intensity, which leads to a relatively higher safety factor. For example, for 
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monitoring point S2, when the first landslide occurs, the pore water pressure is 2.29 

kPa, 2.25 kPa, and 2.21 kPa respectively, while the corresponding safety factor is 

0.967, 0.969, and 0.978. From the observations, it can be ascertained that this 

phenomenon is due to the higher impact of heavy rainfall on the slope surface which 

makes the condition more convenient for slope erosion, resulting in the triggering 

of landslides in a shorter time period. Another observation is that, all the shallow 

slip surfaces are located below the groundwater level, which also confirms that the 

groundwater level has a very significant triggering effect on shallow landslides. 

And larger rainfall intensities also produce significantly larger landslide volumes 

than low intensities. 

 

 

Fig 5.16 Moisture distribution and groundwater immigration of Test A：(a) 82min; (b) 

110min; and (c) 135 min 
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Fig 5.17  Moisture distribution and groundwater immigration of Test B: (a) 55min; (b) 82min; 

and (c) 98 min 
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Fig 5.18  Moisture distribution and groundwater immigration of Test C：(a) 48min; (b) 58 

min; and (c) 76 min 

 

Fig 5.19 and Fig 5.20 show the moisture distribution and groundwater 

immigration of Test D and Test E. 

 

 

Fig 5.19 Moisture distribution and groundwater immigration of Test D：(a) 90 min; (b) 115 

min; and (c) 131 min 
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Fig 5.20  Moisture distribution and groundwater immigration of Test E：(a) 108 min; (b) 131 

min; and (c) 148 min 

 

5.4 Conclusion of this chapter 

In this chapter, research used computer version-based image analysis to 

present the various precursor phenomena of slope failure. In addition, interpolation 

analysis was also carried out to provide global parameter distribution characteristics 

of slope under different rainfall intensities. The main conclusions are as follows: 

(1) The time that motion analysis captures the extremely small displacement 

can be considered as the occurrence time of the landslide, which is much more 

accurate than observations. The various precursor phenomena of slope failure from 

motion analysis, such as sliding velocity, displacement and sliding volume, can 

provide the potential motion trajectory, movement characteristics and disaster range 

when a real landslide occurs. Motion analysis can be used as an alternate method to 

validate the prediction model of our EWS. 

(2) 3D results from interpolation analysis can effectively predict the 
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intermediate data for training the EWS model for a wide range of meteorological 

conditions and monitoring areas. Additional validation experiments show that the 

relative error norm for a single rainfall condition is less than 20%, and for the 

calculated Fs is less than 5%. The accurate interpolation results can assist EWS in 

providing potential risk levels for wider ranges and more rainfall conditions.. 
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CHAPTER 6 

6. CONCLUSIONS AND FUTURE SCOPE 

6.1 Conclusion of this study 

The application of the Landslide Early Warning System (EWS) based on real-

time rainfall data and geotechnical parameters of slopes is considered to be a 

practical approach to mitigate rainfall-induced landslide disasters. This study 

develops a low-cost and sustainable EWS that integrates the Internet of Things (IoT) 

and an off-the-grid solar energy-powered integrated sensor platform for data 

collection, monitoring, analysis, and alerting.  A series of model tests performed on 

slopes allow us to identify the risk levels, send warning signals, and predict 

potential movement to issue alerts at an early stage with sufficient time for people 

to escape in the vicinity of danger zones and isolate the area.  

The objective of this study is: (1) to reveal the failure mechanism and stability 

analysis of the slope under rainfall conditions; (2) to develop low-cost and 

sustainable early warning systems that can meet different geological conditions and 

network communication status; (3) to propose an effective evaluation index among 

various precursory phenomena of the landslide; (4) to introduce the application of 

EWS to the actual engineering projects, which can ensure the safety of the public 

as well as contribute greatly to disaster prevention, thereby protecting the lives and 

properties; (5) to present how IoT-based EWS can forge new paths for 
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interdisciplinary study and generate a positive impact on SDGs. 

Based on the experiment method, analytical calculation method, and software 

method, the main contributions of this study can be obtained as: 

(1) By analytical calculation method for natural unsaturated slope with 

shallow failure mode under rainfall infiltration, factor of safety Fs below the 

groundwater table decreases rapidly due to the influence of pore water pressure. 

The maximum value of the Fs appears at a distance of 0.5-1.5m above the 

groundwater table, then a longer distance leads to a reduction of the factor of safety 

and eventually tends to a stable state. The maximum Fs of fine sand is increased by 

about 20% compared with coarse sand and around 10% compared with medium 

sand in the unsaturated area. 

(2) By analytical calculation method for natural unsaturated slope with deep 

failure mode under rainfall infiltration, clay presents the lowest Fs, while Loess and 

Silt show better stability. A larger internal friction angle will increase the stability 

of the slope, while a higher slope angle will lead to a lower Fs. In the initial stage, 

the Fs gradually decreases from evaporation, no-flow to infiltration. However, with 

the continuous increase of rainfall infiltration, the influence of different infiltration 

states on Fs gradually disappears. 

(3) This study introduces IoT-based EWS with advantages of low-cost and 

low power consumption. In addition, This system can accommodate and be 

compatible with any sensor with an I2C output, thereby making it possible to be 

upgraded at any point of time for different application scenarios and monitoring 

requirements. 

(4) This newly developed EWS can monitor the soil moisture content and pore 

water pressure, track the ground deformation and provide real-time Fs during the 

rainfall. The application of IoT and solar battery systems enables the proposed EWS 

to operate cost-effectively and sustainably.  

(5) In terms of the experimental methods, under rainfall conditions, the sandy 
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slope model goes through five stages: the volumetric moisture content increases, 

the groundwater table rises, the slope gradually saturates, Fs≤1.00, and the landslide 

occurs. The sequence of these five stages can be used as an important reference for 

the landslide prediction model. According to the important monitoring indicators 

and Fs calculated in real-time, the whole early warning process is divided into three 

stages: Monitoring State, Alert State and Triggering State. In this study, factor of 

safety Fs, which is lower than the actual situation is used for risk assessment and 

landslide prediction. Research found that Fs has been significantly reduced under 

continuous rainfall, and it will drop below 1.00 just before the landslide. 

(6) This system presents accurate predictions and three warning times are all 

before the occurrence of the landslide. The model test based on EWS can provide 

the distribution characteristics of rainwater, the evolution trend of the groundwater 

table, which verifies the feasibility of the EWS. 

(7) 3D result from interpolation analysis effectively solves the limitations of 

the experimental method and expands the limited data to the global. Additional 

experiments are used for validation and cross-validation based on interpolation 

calculations to confirm the feasibility of the method. Result shows that the relative 

error norm for a single rainfall condition is less than 20%, and for the calculated Fs 

is less than 5%. 

(8) In terms of software methods, The time that motion analysis captures the 

extremely small displacement of the slope can be considered as the occurrence time 

of the landslide, which is much more accurate than observations. The sliding 

velocity, displacement and sliding volume from motion analysis can provide the 

potential motion trajectory, movement characteristics and disaster range when a real 

landslide occurs. Motion analysis can be used as an alternate method to validate the 

prediction model of our EWS. 
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6.2 Future scope of this study 

6.2.1 Application of LPWA 

Low-power Wide-area (LPWA) is a wide approach for IoT devices 

communication at present. As introduced above, the current LPWA has a lot of 

standards, like LoRa, LoRaWAN and Sigfox. Since this research focus on the most 

cost-effective and susitainable method to to complete specialized communications 

infrastructure suitable for disaster prevention work, LoRa technology was used in 

this study. Communication devices was chosen by LoRa-modulated solutions to 

design and implement protocols to control related systems to provide timely and 

effective communications during disasters. The connection of LPWA has shown as 

below: 

 

Fig 6.1 Diagram sensor conection by LoRa 

 

Based on the analysis above, the advantages and disadvantages of the two 

transmission methods are shown in Table 6.1. It can be found that the biggest 
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difference lies in the communication method. The WIFI system is more expensive, 

but it has faster transmission; although the LPWA system reduces the cost, the data 

transmission volume is very low and it can only support little amount of data 

transfer (15 bytes every time).  

As a result, an EWS conbines both the two EWS could be much more 

effectively, that is That is to use LPWA in the data acquisition layer, but to set up a 

wifi system within its transmission data range (5KM), only one system can meet 

the conditions. In this way, the data can be effectively transmitted to the terminal, 

and it is also convenient for remote practice monitoring. 

Table 6.1 Comparison of two EWS 

 EWS with WIFI system EWS with LPWA 

Advantages 

1. Remote data transferring, real-

time data checking. 

2. Communication speed is faster. 

3. Large amount of data transfer. 

1. Avoid network usage. 

2. Less power consumption. 

3. Long communication 

distance. 

Disadvantages 

1. Need stable network signal 

(Network Station). 

2. Need to apply for Sim card. 

3. High cost. 

1. Little amount of data 

transfer (15 bytes every time) 

2. Low speed of data 

 

6.2.2 DNN-FL-IoT based EWS 

Although the development, validation, and deploymet of early warning 

systems have been described in detail. Moreover, with the development of advanced 

sensor technology and a large number of landslides, monitoring data are becoming 

more extensive and comprehensive. Therefore, the development of a new integrated 
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data-driven real-time monitoring and early warning system to deal with 

"instantaneous data" is crucial. 

Most of the current landslide early warning models use rainfall duration and 

intensity as a parameter for triggering of the landslide, however it may provide false 

alarms as the site geology significantly influences the triggering time under various 

rainfall conditions. Furthermore, many systems currently installed around the world 

use high-precision professional equipment to provide more accurate data, but this 

makes it more complex and non-sustainable in terms of cost and it requires 

continuous monitoring by experts. Moreover, the transmission of data from the 

sensors through Wi-Fi or cellular network is not feasible in most of the remote 

mountainous regions around the world.  In addition to it, analysis of accumulated 

data from the sensor network will create computational burden and load the network 

with unnecessary data at the fusion center or the cloud server. 

In the following part, research will propose a low-cost, adaptable and dispersed 

landslide early warning system based on an Edge AI-Federated Learning (FL)-

Internet of Things (IoT) architecture. First of all, the data received from the sensors 

will be transmitted to the Edge server with the help of a LoRa module which uses 

low-power wide-area (LPWA) network modulation technique. The grid of LoRa 

modules eliminates the need for costly, power intensive data loggers but also 

transmit the data in real time without any requirement of internet or cellular network. 

At each edge server, a Deep Neural Network (DNN) will be constructed using the 

data available at that edge device. The DNN will also filter and preprocess the data 

before training it for time series forecasting. The edge servers in the system will 

exchange the DNN model with each other, instead of exchanging the whole data. A 

Federated Learning (FL) method will be developed so that all the edge servers will 

come up with a common, robust model for prediction. The computation will be 

calculated at each edge server/device instead of sending all the data to a fusion 

center, which reduces the network loading and computational burden at the center 
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when the data is collected constantly 24/7. 

 

Fig 6.2 Architecture of the proposed landslide early warning system  

6.2.3 More development functions and applicable scenarios 

In the future, research will consider strain gauges, water table sensor, and rain 

gauges to add more function of the EWS. 

In addition, different geology condition such as slope with crack, slope with 

different soil layers will also be considered to deploy EWS. 
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Appendix  

A.1 Site geological investigation in Chikushino, Fukuoka 

  The survey project is being constructed in Chikushino City, Fukuoka 

Prefecture. Fig A.1 shows the diagram of the cutting and embankment. The facility 

will have two modern warehouses. The construction work started in the year 2012. 

The construction area was hills originally, the construction site was prepared by a 

cutting and filling approach. The hills were excavated and cut to the desired 

elevation, while the valley part was filled with the cut material. The filling part of 

the site consists of an embankment whose depth varies from 5 m to 33 m. It was 

observed that the road constructed on the embankment towards the deeper side of 

the embankment experienced cracks and differential settlement.  

On a detailed evaluation of the design, it was found that the length of geotextile 

provided for reinforcement in the deeper side of the embankment was not long 

enough to cover the slip surface of the embankment slope. This caused crack 

formation in the road, above the location where the length of geotextile is coming 

to be short as per the required design specifications. The consultant has therefore 

decided to excavate the affected area and place high-strength geogrid in the soil for 

reinforcement and further settlement mitigation.  

Currently, the settlement of the ground is being monitored by an automated 

total station which monitors the change ground elevation at various locations in the 

site at specific time intervals from a reference point. Furthermore, boreholes are 

dug and sensors like strain gauge, groundwater level transducer as well as inflatable 

pressure meter are placed at various locations to monitor the underground soil 

conditions. 
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Fig A.1 Digram of Cutting and Embankment 

There are already 2 boreholes in the site with a standard penetration test to 

check the soil properties and compaction of the embankment. Result in Fig A.2 

show the borehole survey and standard penettarion test. It can be found that from 

0-13m or 14 m in the monitoring areas, the soil layers mainly contain layers of 

sandy and clayey soil, resulting in a loose state of the embankment. The average N-

value of Boring No.1 from 0-14 m is 6, and N-value of Boring No.2 from 0-13 m is 

9. While the average N-value of Boring No.1 from 14-33 m is 13, and N-value of 

Boring No.2 from 13-31 m is 13 as well, both of which are in medium state. The 

maximum N-value for Boring No.1 and Boring No.2 is 40 and 35 respectively, both 

are in a dense state. Through the test of PDCPT, the research carried out soil sample 

collection, and focus on the properties of soil layers. 
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Fig A.2 Results of  Standard Penetration Testing 

In order to determine the physical properties and soil strength of the 

embankment material. Research conducted a lot of laboratory tests on the soil 

sample collection from Boring 1, and the first collection was carried out at 4.50-

5.50 m below the ground surface, and the secondary collection was carried out at 

9.50-10.50 m under the ground surface. Fig A.3 shows the grain-size curve of the 

soil at the monitoring site. It is obvious that the particle size distributions of the soil 

under two different depths are quite similar. Table A.1 presents the results of the 

laboratory soil tests, typical parameters such as density, specific gravity, void ratio 

as well as strength parameters cohesion c and internal friction angle φ are all shown 

in the table. Due to the soil layer information, particle size characteristics and soil 

parameters in the tests, this research can give some reference to the sensors 

deployment work and the determination of the threshold value in the EWS, so as to 
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carry out effective early warning work. Similarly, the strength parameters c and φ 

of the soil can be used as an important reference when calculating the factor of 

safety Fs.  

 

Fig A.3 Grain size curve of the soil 

Table A.1 Results of laboratory soil test 

Test No. No.1 4.5m-5.5m No.1 9.5m-10.5m 

Wet density  (g/cm3) 1.957 1.774 

Dry density (g/cm3) 1.618 1.338 

Specific 

Gravity Gs 
2.676 2.641 

Void ratio e 0.655 0.974 

Saturation (%) 85.6 88.4 

D50 (mm) 0.43 0.52 

D10 (mm) 0.0072 0.0027 

c (kN/m2) 10.8 12.65 

φ (o) 37.62 32.07 
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A.2 EWS deployment in Chikushino, Fukuoka 

       Since there are already two large-scale monitoring stations on-site, the 

monitoring results show that the obvious rise of the groundwater table and the 

deflection or deformation of the soil have not been detected for several months. 

Therefore, this study only considers the middle area of the two sites, Fig A.4 shows 

EWS deployment in Chikushino. The purpose of putting the newly developed EWS 

in this area is to compare with the data of the existing monitoring sites and lay a 

solid foundation for the large-scale deployment in dangerous areas in the future. 

 

Fig A.4 EWS deployment in Chikushino 

Result from the existing monitoring station shows that the groundwater table 

is around 15 meters below the ground surface, and there is no significant change 

within half a month of monitoring. For ground motion monitoring, as Fig A.5 shows, 

the existing system installed a deformation sensor every one meter below the 

ground, accumulating more than 30 sensors per borehole. But there was also no 

movement was captured during the monitoring period. Due to low pore water 

pressure fluctuations in the monitoring, and the bottom of the whole embankment 
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is compacted, which is more stable than the upper part. In order to reduce costs and 

make it easy to deploy, this study only considers the most vulnerable area with a 

depth of 2 meters under the ground surface and the current scheme does not deploy 

any pore water pressure sensors. The profile of the EWS deployment is shown in 

Fig A.5, and the middle part is the newly developed EWS. It can be found that every 

0.25 meters, we set a soil moisture sensor and every 0.75 meters we set a 3D 

acceleration sensor. So there will be six soil moisture sensors and two 3D 

acceleration sensors totally in the design borehole, and one solar battery system 

with 200 Wh is enough for the whole operation. 

 

Fig A.5 Profile of the EWS deployment 

It has been monitoring for two weeks, the moisture sensor data shows that the 

soil moisture content has decreased, it's easy to understand, because there is no 

heavy rainfall during these days, and the data of the acceleration sensor presents 

that a certain deflection angle is generated, but the difference is less than 1 degree 

than the data one week before, so the deformation is around 0.1 degree per day, 

which is a reasonable range. As a result, now the monitoring area is in a safe state. 
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