
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

On TFNP Classes: Approaches from Fixed Point
Theory and Algorithmic Game Theory

石塚, 天

https://hdl.handle.net/2324/5068170

出版情報：Kyushu University, 2022, 博士（数理学）, 課程博士
バージョン：
権利関係：

KYUSHU UNIVERSITY

DOCTORAL THESIS

On TFNP Classes: Approaches from
Fixed Point Theory and Algorithmic

Game Theory

Author:
Takashi ISHIZUKA

Supervisor:
Naoyuki KAMIYAMA

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy [Mathematics]

in the

Graduate School of Mathematics

July 11, 2022

https://www.kyushu-u.ac.jp
https://researchmap.jp/t-ishizuka
https://researchmap.jp/read0149503
https://www.math.kyushu-u.ac.jp

iii

KYUSHU UNIVERSITY

Abstract
Graduate School of Mathematics

Doctor of Philosophy [Mathematics]

On TFNP Classes: Approaches from Fixed Point Theory and Algorithmic
Game Theory

by Takashi ISHIZUKA

While NP-hardness has played a crucial role in guaranteeing the intractability of many
fascinating problems, there still are left many natural problems that are seemingly
not effortless to solve and are not known to be NP-hard. The complexity class TFNP
captures the complexity of such problems. This class is made up of total search
problems, and the correctness of solutions is polynomial-time verifiable. The TFNP

classes, like PLS (Polynomial Local Search) and PPAD (Polynomial Parity Argument
for Digraphs), constitute an essential and fascinating complexity-theoretical research
field. This thesis provides new results for search problems belonging to TFNP classes.

In the first part, we consider the complexity of search problems on an exponentially-
large graph whose vertices have positive values. We show the robustness of the
definition of EOPL by END OF POTENTIAL LINE. Furthermore, we provide new
PPA∩PLS-complete problems.

The rest of this thesis focuses on the computational aspects of some search prob-
lems from the viewpoints of Fixed Point Theory and Algorithmic Game Theory. In
the second part, we consider the complexity of finding a fixed point whose existence
is guaranteed by Caritsti’s fixed point theorem. We prove the PLS completeness of
this problem. Thus, Caristi’s fixed point theorem characteries the complexity class
PLS. Furthermore, we discuss the complexity of computing a fixed point whose ex-
istence is guaranteed by Brøndsted’s fixed point theorem.

The final part deal with the complexity of equilibrium computation. First, we
consider the hardness of distinguishing the existence of uniform Nash equilibria on
a two-player strategic-form game. Second, we consider the complexity of finding
a pure Nash equilibrium on a discrete preference game and a network coordination
game; it is well known that these graphical games always have a pure Nash equi-
librium. Finally, we study the complexity of finding a stable fractional matching on
a hypergraphic preference system, a generalization of a roommate matching model.
We provide a tractable-intractable boundary for this problem.

HTTPS://WWW.KYUSHU-U.AC.JP
https://www.math.kyushu-u.ac.jp

v

Acknowledgements
I wish to thank my supervisor, Naoyuki Kamiyama, who collaborated with me on
much of this research. After I proposed that I wanted to study the computational
complexity around PPAD, he led me into the wonderful TFNP world with careful guid-
ance.

I want to express gratefulness to the members of the Quantum Information Sci-
ence Subgroup of Computing Theory Research Group of NTT Communication Sci-
ence Laboratories, especially Seiichiro Tani and Yuki Takeuchi. It has been a great
pleasure to discuss with Dr. Tani and Dr. Takeuchi for the past two years, which was
an excellent inspiration for me. It was Dr. Tani who hosted my internship and ac-
companied my (slow and awkward) first steps in exploring the quantum algorithm
and complexity theory.

I would also like to express my appreciation for the staff at the department of
my university, who were always very helpful with various administrative tasks. I
received the fellowship from JSPS; my research projects were supported by JSPS
KAKENHI Grant Numbers JP21J10845 and JST ACT-X Grant Number JPMJAX2101,
Japan.

I wish to thank Christos Papadimitriou, who hosted my visit supported by JSPS
Research Fellowship for Young Scientists, which was not realized due to the COVID-
19 situation.

I am grateful to my examiners, Yoshihiro Mizoguchi, Koji Nuida, and Yukiko
Yamauchi, for carefully reading my dissertation and providing some comments and
suggestions that helped improve its presentation.

To make my college-life marvelous, I am deeply thankful to everyone I came to
an acquaintance with via enjoying Go and other tabletop games, especially members
of the Kyushu University Go Club and my local board-game friends. Finally, my
Ph.D. graduation would not have been realized without the love and support from
my family.

vii

Contents

Abstract iii

Acknowledgements v

I Overview 1

1 Introduction 3
1.1 Total Search Problem in NP . 4
1.2 Outline of the Thesis and Main Contributions 5

1.2.1 Oganization . 5
1.2.2 Main Contributions . 6

1.3 List of Papers . 8

2 Preliminaries 9
2.1 Notation . 9

2.1.1 Standard Notation . 9
2.1.2 Metric Spaces . 9
2.1.3 Languages and Relations 10
2.1.4 Implicit Graphs . 10

II Fundamental Theory of Computational Complexity 13

3 Theory of Computation 15
3.1 What is Computation? . 15
3.2 What is a Search Problem? . 16
3.3 Complexity Classes of Search Problems 17

3.3.1 Class PLS . 17
3.3.2 Class PPAD . 19
3.3.3 Class PPA . 21
3.3.4 Class PPP . 22
3.3.5 Class PPAD∩PLS . 24
3.3.6 Class EOPL . 24
3.3.7 Further Classes for Search Problems Outside of NP 26

4 On the Complexity of Parity Argument with Potential 29
4.1 Basics . 29

4.1.1 Our Contribution . 31
4.2 Preliminaries . 32

viii

4.2.1 Normalization . 33
4.2.2 The Problem: EITHER SOLUTION(A ,B) 34
4.2.3 Class PPA∩PLS . 36

4.3 Multi Source Problems . 37
4.3.1 The Problem: kS-EOPL 37
4.3.2 Higher Degree Problem: IMBALANCE with Potential . . . 45
4.3.3 Looking for Multiple Solutions 47

4.4 The Hardness of Parity Argument with Potential 53
4.4.1 The Problem: POTENTIAL LEAF 53
4.4.2 The Problem: POTENTIAL ODD 55
4.4.3 Variants of ODD with Potential 57

4.5 Conclusions and Open Problems 65

III Fixed Point Theory 67

5 The Complexity of Fixed Point Computation 69
5.1 Arithmetic Circuits . 69

5.1.1 Alternative Definition of PLS 70
5.1.2 Complexity Class CLS . 71

5.2 Complexity of Computing a Fixed Point 72
5.2.1 Brouwer’s Fixed Point Theorem 72
5.2.2 Banach’s Fixed Point Theorem 73
5.2.3 Caristi’s Fixed Point Theorem 73
5.2.4 Brøndsted’s Fixed Point Theorem 74
5.2.5 Tarski’s Fixed Point Theorem 75

5.3 On the Complexity of Strong Approximation 76
5.3.1 Complexity Class FIXP 76
5.3.2 Complexity Class BU . 76

6 On the Complexity of Caristi’s Fixed Points 77
6.1 Computing a Caristi’s Fixed Point 77

6.1.1 Discrete Domain . 78
6.1.2 Continuous Domain . 79

6.2 Computing a Brøndested’s Fixed Point 81
6.2.1 Comupting a Brøndested’s Fixed Point is in PPAD 82
6.2.2 Computing a Brøndested’s Fixed Point is CLS-hard 82

6.3 Conclusions . 83

IV Algorithmic Game Theory 85

7 Nash Equilibrium Computation 87
7.1 Essence of Game Theory . 87
7.2 On the Complexity of Equilibrium Computation 88

7.2.1 Succinct Representation of Games 88
7.2.2 Other Computational Aspects of Game Theory 93

ix

8 Uniform Nash on Planar Bimatrix Games 95
8.1 Basics . 95

8.1.1 Our Results . 95
8.2 Preliminaries . 96

8.2.1 Bimatrix Games and Uniform Nash Equilibria 96
8.2.2 Problem Formulation . 97

8.3 On the Complexity of Planar Bimatrix Games 98
8.3.1 Proof of Lemma 8.7 . 99
8.3.2 Proof of Lemma 8.8 . 99
8.3.3 Proof of Lemma 8.9 . 102

8.4 Types of Non-Zero Elements . 105
8.5 Conclusion . 107

9 Discrete Preference Games and Network Coordination Games 109
9.1 Basics . 109

9.1.1 Our Results . 110
9.2 Preliminaries . 111
9.3 Discrete Preference Games on the Discrete Metric 112
9.4 Discrete Preference Games on Grid Graphs 113

9.4.1 Cartesian Products of Discrete Preference Games 114
9.4.2 Polynomial-time Solvability of Discrete Preference Games . 116
9.4.3 Properties of Discrete Preference Games on Product Metric

Spaces . 117
9.5 Relationship between Discrete Preference Games and Network Co-

ordination Games . 120
9.5.1 Reduction from Discrete Preference Games to Network Co-

ordination Games . 121
9.5.2 Reduction from Network Coordination Games to Discrete

Preference Games . 122
9.6 Conclusion . 125

10 On the Complexity of Stable Fractional Hypergraph Matching 127
10.1 Basics . 127
10.2 Problem Formulation and Main Results 128
10.3 PPAD-completeness . 129

10.3.1 Proof of Lemma 10.7 . 130
10.4 Polynomial-Time Computability 133
10.5 Approximate . 135
10.6 Conclusions . 137

V Conclusions and Open Problems 139

11 Open Problems 141

Bibliography 143

xi

Dedicated to the benefactors for my degree.

1

Part I

Overview

3

Chapter 1

Introduction

An algorithm has become one of the fundamental concepts indispensable to our lives.
We cannot imagine a world without algorithms (at least the author thinks so). Al-
gorithms represent how to compute problems we want to solve; anyone can find a
solution according to a suitable algorithm. Usually, algorithms are carried out on
computers. Hence, it is an essential quest to explore an algorithm that efficiently
solves a problem appearing in the real world.

Unfortunately, we do not precisely catch the notion of computation or algorithms,
although computers are widely utilized. An excellent example is the “P versus NP”
problem1, which is an unsolved problem listed in the million-dollar prize problems
of the Clay Math Institute2. Some researchers claim that “This is the most important
open problem for mathematics and computer sciences.” Interestingly, Scott Aaron-
son has formed an opinion of this open problem in his book [Aar13] as follows:

Look, this P versus NP question, what can I say? People like to describe
it as “probably the central unsolved problem of theoretical computer sci-
ence.” That’s a comical understatement. P vs. NP is one of the deepest
questions that human begins have ever asked.

Hence, the “P versus NP” problem is a significant open problem worth consider-
ing. It is an essential and fascinating issue to discuss the existence of efficient al-
gorithms to solve practical problems. Computational Complexity Theory is a realm
that treats the “P versus NP” problem as a central topic. Both terms P and NP are the
set of decision problems. Experts on Computational Complexity Theory primarily
have paid attention to the complexity of decision problems, a problem that can be
answered with YES or NO.

Have we forgotten something crucial? Obviously, we can envision a variety of
computational tasks which can be answered with neither YES nor NO in the prac-
tical world. For example, we want to search for the shortest route to arrive at the
destination; we need to allocate students to their desired courses; we wish to divide a
positive integer into some primes; and so on. We call such problems, which require
finding an actual solution that is not necessarily YES or NO, search problems.

Most of the physical world’s problems we are interested in are total search prob-
lems. A search problem is total if every instance has at least one solution. For
instance, the shortest route to arrive at a destination always exists; every positive

1Note that the class P is the set of polynomial-time solvable decision problems. On the other hand,
the class NP contains many decision problems that are concerned hard to compute.

2See http://www.claymath.org/millennium-problems/p-vs-np-problem.

http://www.claymath.org/millennium-problems/p-vs-np-problem

4 Chapter 1. Introduction

integer greater than one can be factorized into prime factors. Many natural prob-
lems with at least one solution are seemingly not NP-hard. Moreover, it is unknown
an efficient algorithm for these problems. The complexity class TFNP, introduced
by Megiddo and Papadimitriou [MP91], captures the complexity of such computa-
tional problems. It is widely known that computational problems that are important
in applied fields belong to TFNP.

Economics is known as a major application of TFNP. Equilibrium is an important
and key concept in economics. Their field has a motive to compute an equilibrium
when their existence is guaranteed. These computational problems, often called equi-
librium computation, have been widely studied in our realm [CD07; Das09; Yan09].
A Nash equilibrium is a basic example of equilibrium theory. However, we had long
been puzzled about how to capture the computational complexity of finding it. Nash’s
theorem [NJ50] made it unsuitable for handling in the context of decision problems;
furthermore, any efficient algorithm to compute a Nash equilibrium is unknown.

Some TFNP classes resolve such an obstacle. Papadimitriou [Pap94b] has proven
that computing a Nash equilibrium on a strategic-form game is a PPAD-complete
problem; the complexity class PPAD is a set of total search problems that the exis-
tence of solutions is guaranteed by the parity argument for digraphs. Various other
equilibria (e.g., pure Nash equilibria, market equilibria, stable solution, etc.) are
characterized by TFNP classes such as PPAD, PPA, and PLS. These proofs are based
on Fixed Point Theory; some fixed point theorems guarantee the existence of equi-
libria. Thus, we use the problem of computing a fixed point to clarify the complexity
of equilibrium computation.

The complexity class TFNP and its subclasses have been a game-changer for dis-
cussing problems that we want to deal with in the real world in computer science.
However, the complexity of TFNP classes also remains elusive; the hardness of han-
dling TFNP is closely related to the “P versus NP” problem [MP91; Pap94b].

We will anatomize the complexity of TFNP classes from the perspective of Fixed
Point Theory and Algorithmic Game Theory.

1.1 Total Search Problem in NP

Total search problems in NP are not unfamiliar to us. In fact, they are all around
us in our daily lives. For example, cryptography, stable configuration of neural net-
works, stable allocations, and equilibria on economic models. The computational
complexity aspect of total search problems has widely been utilized.

Primarily, Johnson, Papadimitriou, and Yannakakis [JPY88] defined the class PLS
as a class of search problems that can be solved by a local search method. A local
search method is a procedure: While there is an improvement among the current
neighbor, we change the current candidate to it.

A few years later, Megiddo and Papadimitriou [MP91] formulated the complex-
ity class TFNP, consisting of total search problems in NP. Search problems in TFNP

have the following properties: (i) Every input instance always has a solution; (ii) their
correctness is efficiently verifiable. The class TFNP contains some of the most fun-
damental, elegant, and intriguing computational problems: factoring, computing a
Nash equilibrium, finding a local optimum, etc. These problems have no known

1.2. Outline of the Thesis and Main Contributions 5

efficient algorithms, but it seems to be not NP-hard either. If TFNP has an NP-hard
problem, then we have NP= coNP [MP91; Pap94a].

Unfortunately, TFNP is a semantic class3. Generally, such classes seem to have
complete problems like language classes RP, ZPP, and BPP [Pap94b]. Thus, we focus
on syntactic subclasses of TFNP. The following four classes formulated by existence
proofs are best-well known:

PLS: Every acyclic digraph has a sink (Local Search).

PPP: Every function mapping {0,1,2, . . . ,N} to {1,2, . . . ,N} must have a collision
(Pigeonhole Principle).

PPA: Every graph with an odd-degree vertex must have another odd-degree node
(Parity Argument).

PPAD: Every digraph with a vertex whose in-degree and out-degree are different
must have another such vertex (Parity Argument for Digraph).

These Papadimitriou’s classes make it possible to classify total search problems ac-
cording to existence proofs.

This thesis will discuss the complexity of TFNP classes from the three aspects.
First, we consider the fundamental theory of computation. We deal with the problem
belonging to both PPA and PLS. Second, we consider the complexity of fixed-point
computation, a computational problem that lies at the interface of Theoretical Com-
puter Science and Pure Mathematics. Finally, we focus on the complexity of equi-
librium computation, a computational problem located at the interface of Theoretical
Computer Science and Economics.

1.2 Outline of the Thesis and Main Contributions

1.2.1 Oganization
Chapter 2 presents notations that are used throughout this thesis. The rest of this
thesis is made up of three parts:

Part II Fundamental Theory of Computational Complexity,

Part III Fixed Point Theory,

Part IV Algorithmic Game Theory,

In Part II, we organize central results around TFNP classes. Chapter 3 presents
some classes contained in TFNP and briefly reviews recent research streams of TFNP
complexity classes. After that, we consider the complexity of the problems on an
exponentially large graph that every vertex has a potential value in Chapter 4. We
prove the robustness of END OF POTENTIAL LINE and provide a PPA∩PLS-complete
problem.

3We say that a complexity class is semantic if there is no easy way of identifying non-deterministic
Turing machines that define problems in that class (see page 255 of the Papadimitriou book [Pap94b]).

6 Chapter 1. Introduction

Part III considers the complexity of finding a fixed point. Chapter 5 surveys the
results of fixed-point computation4. In order to think about the real-valued problems,
we introduce the arithmetic circuit in Section 5.1. To deal with TFNP problems, we
use the well-behaved notion introduced by Fearnley, Goldberg, Hollender, and Savani
[Fea+21]. Chapter 6 shows the complexity of computing a Caristi’s fixed point; we
prove that Caristi’s fixed point theorem [Car76] characterizes the complexity class
PLS.

Finally, we consider the computational problems related to Game Theory in Part
IV. The first chapter of this part, Chapter 7, presents the research interaction between
Computational Complexity Theory and Game Theory. This chapter presents a list of
some studies on the interface of these two fields. Chapter 8 shows a connection be-
tween two-player strategic-form games and graph-theoretical techniques. We prove
that checking the existence of uniform Nash equilibria is NP-complete even in the
two-player setting. Chapter 9 considers a succinctly represented multi-player game
called a discrete preference game. It is known that this game always has a pure Nash
equilibrium [CKO18; Lol+19]. However, finding it is not easy. We provide an unfa-
miliar tractable case of computing a pure Nash equilibrium on a discrete preference
game. We consider, in Chapter 10, a problem of finding a stable fractional matching
on a hypergraphic preference system, which is a generalization of a roommate match-
ing model. It is known that this problem is PPAD-complete [Kin+13]. We present a
computational boundary for this search problem; we show that the low degree of a
hypergraph setting is easy, but the high degree setting is very hard.

Remark that we have organized this thesis so that the first chapter of each part,
Chapters 3, 5, and 7, will present us with a mainstream of this realm. The other
parts summarize our contributions; detailed contributions are given in the following
section.

1.2.2 Main Contributions
Part II: Fundamental Theory of Computational Complexity

We relax the problem called LEAF (see Definition 3.15), which is a canonical PPA-
complete problem. In Section 4.4.1, we introduce the new problem called POTEN-
TIAL LEAF (see Definition 4.31). This problem is the simplest generalization variant
of END OF POTENTIAL LINE. We prove that this problem is also EOPL-complete.

We also relax the problem called ODD (see Definition 3.17), a generalization of
LEAF. Informally speaking, LEAF is associated with undirected graphs with a degree
of at most two. On the other hand, ODD is associated with undirected graphs which
possibly contain a vertex with a degree more than two. The parity argument also
works for undirected graphs with a higher degree, i.e., ODD is also PPA-complete
[Pap94b]. We introduce the new problem called POTENTIAL ODD and show that
this problem is EOPL-complete. However, if there is a vertex with a degree of at
least four, then POTENTIAL ODD is PPA∩PLS-complete. Roughly speaking, we
deal with the complexity of the problem of finding an unknown odd-degree vertex
or a local maximum or minimum vertex on an exponentially large undirected graph

4Chapter 5 is a revised version of the author’s survey in Japanese (see here: https://doi.org/
10.14943/101654).

https://doi.org/10.14943/101654
https://doi.org/10.14943/101654

1.2. Outline of the Thesis and Main Contributions 7

with potential. The PPAD-completeness of IMBALANCE is proved by Goldberg and
Hollender [GH19]. In Chapter 4, we expand their elegant result to END OF POTEN-
TIAL LINE, and we show that multiple source variants of END OF POTENTIAL LINE

are also EOPL-complete. From this fact, we can immediately show that POTENTIAL

IMBALANCE is an EOPL-complete problem. Therefore, we obtain an important and
fascinating complexity gap.

Part III: Fixed Point Theory

We focus on the computational aspects of Caristi’s fixed point theorem. In other
words, we consider the complexity of computing a Caristi’s fixed point. It is math-
ematically known that Caristi’s fixed point theorem is an order-theoretic fixed point
theorem and a generalization of Banach’s fixed point theorem. In fact, we can prove
the existence of Banach’s fixed points by using Caristi’s fixed point theorem [GD03].

Chapter 6 presents that Caristi’s fixed point theorem characterizes PLS. Specif-
ically, we show that the problem of finding a Caristi’s fixed point is PLS-complete.
Remark that the complexity class PLS has been known since the 1980s, but a fixed
point theorem that characterizes this class was not known.

Furthermore, we consider a variant of computing a Caristi’s fixed point. The
existence of a solution to this problem is guaranteed by Brøndsted’s fixed point the-
orem. We provide, in Chapter 6, an upper bound and a lower bound for the problem
of finding a Brøndsted’s fixed point. More specifically, we show that this problem is
CLS-hard and belongs to PPAD.

Part IV: Algorithmic Game Theory

In this part, we compile the three papers which are closely related to Algorithmic
Game Theory. First, Chapter 8 focuses on uniform Nash equilibria for a two-player
strategic-form game. We study the complexity of computing a uniform Nash equilib-
rium on a bimatrix game. In general, it is known that such a problem is NP-complete
even if a game is a win-lose bimatrix game [BIL08]. However, if the bipartite di-
graph defined by a win-lose bimatrix game is planar, then there is a polynomial-time
algorithm to find a uniform Nash equilibrium [AOV07]. It is still open how hard it
is to compute a uniform Nash equilibrium on a bimatrix game that is planar but not
win-lose. This paper presents the NP-hardness for the problem of deciding whether a
given planar bimatrix game has uniform Nash equilibria even if every component of
both players’ payoff matrices consists of three types of non-zero elements.

Second, Chapter 9 considers two types of graphical games which always have
pure Nash equilibria. We present the polynomial-time computability of equilibrium
computation for discrete preference games and network coordination games beyond
O(logn)-treewidth and tree metric spaces. The first result shows that we can effi-
ciently find a pure Nash equilibrium for a discrete preference game on a grid graph
and a product metric of some metric spaces. On a tree metric space, it is known that
we can find it in polynomial time regardless of the structure of a players’ network.
To prove our polynomial-time computability, we provide a new characterization of
a discrete preference game and slightly generalize the recent result in [Lol+19]. We
also discuss the complexity of finding a pure Nash equilibrium for a two-strategic
network coordination game whose cost functions satisfy submodularity. In this case,

8 Chapter 1. Introduction

if every cost function is symmetric, then the games are reducible to a discrete prefer-
ence game on a path metric.

Finally, Chapter 10 studies the complexity of computing a stable hypergraphic
fractional matching in a hypergraphic preference system. Aharoni and Fleiner [AF03]
have proven that there exists a stable fractional matching in every hypergraphic pref-
erence system. Furthermore, Kintali, Poplawski, Rajaraman, Sundaram, and Teng
[Kin+13] have shown that the problem of finding a stable fractional matching in a
hypergraphic preference system is PPAD-complete. In Chapter 10, we consider the
complexity of the problem of finding a stable fractional matching in a hypergraphic
preference system whose maximum degree is bounded by some constant. Note that
the proof by Kintali, Poplawski, Rajaraman, Sundaram, and Teng [Kin+13] implies
the PPAD-completeness of the problem of finding a stable fractional matching in a
hypergraphic preference system whose maximum degree is five. We prove that this
problem is PPAD-complete even if the maximum degree is three in Section 10.3, this
problem can be solved in polynomial time if the maximum degree is two in Sec-
tion 10.4, and the problem of finding an approximate stable fractional matching in a
hypergraphic preference is PPAD-complete in Section 10.5.

1.3 List of Papers
The results presented in this thesis can be found in the following papers:

Chapter 4 is based on Takashi Ishizuka. “The complexity of parity argument with
potential,” Journal of Computer and System Sciences, 2021 [Ish21b].

DOI: https://doi.org/10.1016/j.jcss.2021.03.004

Chapter 6 is based on Takashi Ishizuka.“On the complexity of Caristi’s fixed point
theory,” Information Processing Letters, 2021 [Ish21a].

DOI: https://doi.org/10.1016/j.ipl.2021.106119

Chapter 8 is based on Takashi Ishizuka and Naoyuki Kamiyama. “NP-hardness of
Computing Uniform Nash Equilibria on Planar Bimatrix Game,” arXiv:2205.
03117, 2022 [IK22a].

DOI: https://doi.org/10.48550/arXiv.2205.03117

Chapter 9 is based on Takashi Ishizuka and Naoyuki Kamiyama. “On Finding Nash
Equilibria of Discrete Preference Games and Network Coordination Games,”
arXiv:2207.01523, 2022 [IK22b].

DOI: https://doi.org/10.48550/arXiv.2207.01523

Chapter 10 is based on Takashi Ishizuka and Naoyuki Kamiyama. “On the Com-
plexity of Stable Fractional Hypergraph Matching,” Proceedings of the 29th
International Symposium on Algorithms and Computation, 2018 [IK18].

DOI: https://doi.org/10.4230/LIPIcs.ISAAC.2018.11

9

Chapter 2

Preliminaries

We now present the notations that are used throughout this thesis.

2.1 Notation

2.1.1 Standard Notation
We denote by Z and R the sets of integers and real numbers, respectively. Further-
more, we denote by Z≥0,Z>0, and R≥0 the sets of non-negative integers, positive
integers, and non-negative real numbers, respectively. For each positive integer n,
we define [n] := {1,2, . . . ,n}. For each finite set X , we denote by |X | the number of
elements contained in X .

2.1.2 Metric Spaces
A space (L,d) is a metric space if the function d : L×L→R≥0 satisfies the following
conditions: for all x,y,z ∈ L

(i) d(x,y) = 0 if and only if x = y;

(ii) d(x,y) = d(y,x);

(iii) d(x,y)≤ d(x,z)+d(z,y).

Specifically, we refer to a metric space (L,d) whose distance satisfies that d(x,y)=
1 whenever x ̸= y as a discrete metric.

A graph metric is represented by an edge-weighted undirected graph. The dis-
tance between any pair of points is the weight of the minimum weight path in the
graph between the corresponding vertices. A graph metric is a tree or path metric if
the graph is a tree or a path, respectively.

For some ℓ ∈ Z>0 ∪{∞}, a strategy space M = (L,d) is the ℓ-product metric
space of k metric spaces M1 = (L1,d1), . . . ,Mk = (Lk,dk) if L = L1 ×·· ·×Lk and
for any two points x = (x1, . . . ,xk) and y = (y1, . . . ,yk) in L, the distance d(x,y) is
defined as ∥(d1(x1,y1), . . . ,dk(xk,yk))∥ℓℓ, where ∥ · ∥ℓ means the ℓ-norm if ℓ ∈ Z>0;
otherwise we define d(x,y) = maxt∈[k]{dt(xt ,yt)}.

Let (M,d) and (M′,d′) be metric spaces. A sequence {xn}n∈Z≥0 over M is called
a Cauchy sequence if for every ε > 0, there exists a number N(ε) ∈ Z≥0 such that
d(xn,xm) < ε whenever n,m ≥ N(ε). A metric space (M,d) is complete if every

10 Chapter 2. Preliminaries

Cauchy sequence converges in M. A function f : M → R≥0+ is lower semicontin-
uous if for each a ∈ R≥0, {x ∈ M ; f (x) ≤ a} is closed. A function f : M → M′

is λ -Lipschitz continuous with respect to (d,d′) if for every pair of points x,y ∈ M,
d′(f (x), f (y))≤ λd(x,y). It is easy to see that every function f : M → R≥0 which is
λ -Lipschitz continuous is a lower semicontinuous function.

2.1.3 Languages and Relations
We denote by Σ the finite set of symbols. Each finite sequence of symbols in Σ is
called a string. That is, for each string s with respect to Σ, there exists a positive
integer n such that s = s1s2 . . .sn where si ∈ Σ for all i ∈ [n]. Here, we define by Σ∗ a
set of all finite strings and define by Σn a set of all strings of length n. Throughout this
thesis, let Σ = {0,1}. The Hamming distance between two strings of equal length is
the number of positions at which the corresponding symbols are different. For each
pair of strings x, y in Σn, we denote by ∥x− y∥ the Hamming distance between x and
y. A language is defined as a subset of Σ∗, and a relation is defined as a subset of
Σ∗×Σ∗.

An instance of a search problem typically contains a few functions. Specifically,
a problem on a graph is presented via a function that computes the neighbors of
a given vertex. Here, we consider mostly the white-box model; this is an explicit
computational model in which each function f : Σn → Σm is given explicitly by a
Boolean circuit with n inputs and m outputs. Throughout this thesis, we assume
that each function given by an instance is represented by a Boolean circuit, and each
Boolean circuit is encoded by a binary representation.

2.1.4 Implicit Graphs
We consider a graph produced by some Boolean circuits that compute the neighbor-
hood of a given vertex. In an implicit graph, we can effortlessly obtain only local
property around each given vertex, and it probably takes exponential effort to obtain
the whole structure of the graph.

We consider mostly graphs with potential in this thesis. Each vertex in such a
graph has a non-negative value as a potential. A function computing the potential of
a given vertex is called a potential function.

Directed Graphs

We consider the given two functions S,P : Σn → Σdn, where d and n are positive
integers. Here, for each vertex x in Σn, we view as S(x) = {y1, . . . ,yd}, where each
string yi is in Σn, similarly P do. Thus, two functions S and P output the set of at most
d vertices1. Then we consider the implicit digraph G(S,P) = (Σn,E). Each element
of Σn is called a vertex, and the set Σn is called a vertex set. The functions S and
P are called a successor function and a predecessor function, respectively. For each
pair of vertices (x,y) in Σn ×Σn, (x,y) is called a valid arc if it holds that y ∈ S(x)
and x ∈ P(y). Furthermore, a vertex x in Σn is called a self-loop if S(x) = {x} and

1We suppose that when a vertex has a degree strictly less than d, two functions S and P output the
remaining points as itself without loss of generality.

2.1. Notation 11

P(x) = {x}. The set E consists of all valid arcs with respect to S and P, i.e., we define
E := {(x,y)∈ Σn×Σn;x ̸= y, y ∈ S(x), and x ∈ P(y)}. For each vertex v in Σn, an arc
(u,v) in E is called an incoming arc of v, and an arc (v,w) in E is called an outgoing
arc of v. Furthermore, we denote by E−(v) the set of all incoming arcs of v, and
denote by E+(v) the set of all outgoing arcs of v. For every vertex v in Σn, we define
the in-degree of v as δ−(v) = |E−(v)|, the out-degree of v as δ+(v) = |E+(v)|, and
the degree of v as δ (v) = δ−(v)+δ+(v). Finally, we define the degree of the implicit
graph G(S,P) as deg(G) = maxv∈Σn δ (v).

In particular, when d = 1, the implicit graph G(S,P) is a directed graph with in-
degree/out-degree at most one. Then every valid arc (x,y) in E satisfies that S(x) = y
and P(y) = x. Furthermore, a vertex s in Σn is called a source if it satisfies that
S(P(s)) ̸= s, and a vertex t in Σn is called a sink if it satisfies that P(S(t)) ̸= t.

Undirected Graphs

When we are given a function N : Σn → Σdn, we consider the implicit graph G(N) =
(Σn,E), where d and n are positive integers. For each string x in Σn, we view as
N(x) = {y1, . . . ,yd}, where each string yi is contained in Σn. The function N is called
the neighborhood function, and the set Σn is called the vertex set. A set {x,y} ⊆ Σn

satisfying that x ̸= y is called a valid edge if it holds that y ∈ N(x) and x ∈ N(y). A
vertex x in Σn is called an isolated vertex if it holds that N(x)⊆ {x}. Then the set E
consists of all valid edges with respect to N, i.e., we define E := {{x,y} ⊆ Σn;x ̸=
y,y ∈ N(x), and x ∈ N(y)}. For each vertex v in Σn, the degree of x is defined as
degG(x) = |{y ∈ Σn;{x,y} ∈ E}|. Furthermore, the degree of the graph G is defined
as deg(G) = maxv∈Σn deg(v).

In particular, when d = 2, the implicit graph G(N) is an undirected graph with
a degree at most two. Then the vertex x with degree one is called a leaf. It is well
known that the total number of all leaves on G(N) is always even [Pap94b].

13

Part II

Fundamental Theory of
Computational Complexity

15

Chapter 3

Theory of Computation

3.1 What is Computation?
We begin with a brief overview of various computational complexity-theoretical no-
tions that will be needed for the remainder of this thesis. We assume that the reader
has sufficient knowledge about the theory of computation. So, we intend only that
this overview will establish our notation and highlight the main concepts we will
need. Readers not familiar with the theory of computation are referred to the books
such as [AB09; Sip97; Pap94a].

A decision problem associated with a language L ⊆ Σ∗ is defined as follows:

Definition 3.1. The decision problem L:
Input:

• a string x ∈ Σ∗.

Task: Decide whether

• x belongs to L.

We say that a decision problem L belongs to the complexity class NP if there
is a polynomial-time bounded non-deterministic Turing machine that distinguishes
whether every input string is in L. We say that a decision problem L belongs to
the complexity class P if there is a polynomial-time bounded deterministic Turing
machine that distinguishes whether every input string is in L. Remark that we often
say that a problem L is efficiently solvable if L ∈ P.

Let A,B be two problems. A polynomial-time reduction from A to B consists of
a polynomial-time computable function f : Σ∗ → Σ∗ satisfying that x ∈ A if and only
if f (x) ∈ B. Here, a function f : Σ∗ → Σ∗ is said to be polynomial-time computable
if we have a polynomial-time bounded deterministic Turing machine that halts after
outputting a string f (x) for every input string x ∈ Σ∗. When two problems A and B
are polynomial-time reducible to each other, we say that A and B are polynomially
equivalent.

A decision problem L is said to be NP-hard if every decision problem in NP is
polynomial-time reducible to L. A language L is NP-complete if L is in NP and NP-
hard. Note that the problem 3-SAT (see Definition 3.2) is one of the well-known
NP-complete problems [Coo71; Lev73].

Definition 3.2. 3-SAT:
Input:

16 Chapter 3. Theory of Computation

• a 3-CNF formula φ : {0,1}n →{0,1}.

Task: Decide whether

• there exists an assignment x ∈ {0,1}n such that φ(x) = 1.

In other words, decision problems in NP always have a concise witness to every
yes-instance while it may be no succinct witness for a no-instance. The complexity
class coNP is defined as the complement of the class NP. Thus, every no-instance for
a decision problem in coNP always has a brief witness certificating it is a no-instance.
The problem UNSAT is a coNP-complete problem.

Definition 3.3. UNSAT:
Input:

• a 3-CNF formula φ : {0,1}n →{0,1}.

Task: Decide whether

• there exist no assignments x ∈ {0,1}n such that φ(x) = 1.

Therefore, decision problems in NP have succinct witnesses, whereas decision
problems in coNP have succinct disqualifications. These facts imply that the class
NP∩coNP is the set of all decision problems that have both: for every yes-instance,
there is a concise witness; on the other hand, there is a short disproof for every
no-instance. Examples of decision problems that are known as the membership of
NP∩coNP but unknown as polynomial-time computability are the problem Simple
Stochastic Game [Con92] and the problem Arrival [Doh+17].

The complexity class TFNP is a functional analog of NP∩coNP [MP91]. From
the above observation, each instance of a problem in NP∩coNP always has a short
indication that convinces us it is a yes- or no-instance. We consider the problem of
finding such an indication as a total search problem.

3.2 What is a Search Problem?
A computational search problem is defined by using a relation. Let R ⊆ Σ∗×Σ∗ be
a relation. R is said to be polynomial-time computable if we can decide whether
(x,y) ∈ R in polynomial time for each pair of strings (x,y) ∈ Σ∗×Σ∗. We call that
R is a polynomial-balanced relation if there exists some polynomial p such that for
each pair of strings (x,y) ∈ R, |y| ≤ p(|x|). Throughout this thesis, we assume that
every relation is polynomial-time computable and a polynomial-balanced relation.
We define a search problem with respect to a relation R as follows [Pap94b].

Definition 3.4. A search problem R:
Input:

• a string x in Σn.

Task: Return

• a string y in Σ∗ such that (x,y) is in R if such a y exists

3.3. Complexity Classes of Search Problems 17

TFNP

PLS PPA PPP

PPA∩PLS PPAD

PPAD∩PLS

CLS

EOPL

UniqueEOPL

FP

FIGURE 3.1: The relationship of TFNP classes.

• a string “no” otherwise.

Here, to simplify notation, a search problem with respect to R is referred to as
a problem R. The class of all search problems that are polynomial-time computable
and polynomial-time balanced relations is called the class FNP. We denote by FP

subclass of FNP that contains all search problems which can be solved in polynomial
time. Class TFNP is the subclass of FNP containing all search problems with totality.
We say that a search problem R has totality if for every instance x ∈ Σ∗, there always
exists a string y ∈ Σ∗ such that (x,y) ∈ R. It is clear that FP⊆ TFNP⊆ FNP [Pap94b].
However, it is still open whether these inclusions are strict. Megiddo and Papadim-
itriou [MP91] have shown that there is an FNP-complete problem in TFNP if and only
if NP= coNP.

A polynomial-time reduction from problem A to problem B is a polynomial-time
computable function f which maps an instance x of A to an instance f (x) of B, plus
another polynomial-time computable function g which maps every solution y of f (x)
to a solution g(y,x) of x.

3.3 Complexity Classes of Search Problems
The following subsections introduce several subclasses of TFNP. See Figure 3.1 for
their relationship.

3.3.1 Class PLS
The complexity class PLS is the class of all search problems whose totality is proved
by local search algorithms. This class was introduced by Johnson, Papadimitriou,

18 Chapter 3. Theory of Computation

and Yannakakis [JPY88]. The formal definition of this class is defined as the set of
all problems which are reducible to the problem LOCALOPT in polynomial time.

Definition 3.5. LOCALOPT
Input:

• two Boolean circuits computing f : Σn → Σn and p : Σn →{0,1, . . . ,2m −1}.

Task: Find

• a string x in Σn such that p(x)≥ p(f (x)).

Definition 3.6 (Class PLS). The complexity class PLS consists of all search problems
that are reducible to LOCALOPT in polynomial time.

It is well known that the class PLS contains many essential and fascinating search
problems. In particular, the following two problems, MINFLIP and MAXFLIP, are
the first PLS-complete problems [JPY88].

Definition 3.7. MINFLIP

Input:

• a Boolean circuit C with n inputs and m outputs that computes a function f :
Σn →{0,1, . . . ,2m −1}.

Task: Find

• a string x in Σn such that for every y ∈ Σn with ∥x− y∥= 1, C(x)≤C(y)

Definition 3.8. MAXFLIP

Input:

• a Boolean circuit C with n inputs and m outputs that computes a function f :
Σn →{0,1, . . . ,2m −1}.

Task: Find

• a string x in Σn such that for every y ∈ Σn with ∥x− y∥= 1, C(x)≥C(y).

Theorem 3.9 (Johnson, Papadimitriou, and Yannakakis [JPY88]). MINFLIP and
MAXFLIP are PLS-complete.

The complexity class PLS has been widely studied. It is known that PLS contains
some search problems related to a local search method as complete problems. See
[Bor16] for a detailed list of PLS-complete problems.

3.3. Complexity Classes of Search Problems 19

3.3.2 Class PPAD
The complexity class PPAD is the class of all search problems whose totality is guar-
anteed by the parity argument for digraphs. This class is also introduced by Papadim-
itriou [Pap94b].

Definition 3.10. END OF LINE

Input:

• two Boolean circuits S,P : Σn → Σn

• a standard source π ∈ Σn, i.e., P(π) = π ̸= S(π).

Task: Find a vertex x in Σn satisfying at least one of the following:

(R1) P(S(x)) ̸= x, i.e., x is a sink, and

(R2) S(P(x)) ̸= x ̸= π , i.e., x is a non-standard source

Definition 3.11 (Class PPAD). The complexity class PPAD consists of all search prob-
lems that can be reduced to END OF LINE in polynomial time.

Note that the problem END OF LINE is a total search problem because every
finite path has a sink and a source. An input instance attaches a known source, so
a sink must exist on the given digraph. Moreover, the correctness of solutions is
polynomial-time checkable; END OF LINE is a TFNP problem. These facts imply
that the class PPAD is a subclass of TFNP.

For every valid instance of END OF LINE, we are given a digraph G(S,P) with
in-degree/out-degree at most one and a standard source π ∈ Σn, i.e., S(P(π)) ̸= π .
Of course, the principle that guarantees the totality of END OF LINE also works for
higher degree digraphs. Every digraph with an unbalanced vertex must have an-
other unbalanced vertex. Here, a vertex is unbalanced if its out-degree and in-degree
are different. Such a problem is called IMBALANCE, and Hollender and Goldberg
[HG18] have shown that IMBALANCE is polynomially equivalent to END OF LINE.
Thus, IMBALANCE is PPAD-complete.

Definition 3.12. IMBALANCE

Input:

• a successor circuit S : Σn → Σdn

• a predecessor circuit P : Σn → Σdn

• an unbalanced vertex π in Σn such that δ+(π) ̸= δ−(π).

Task: Find

• another unbalanced vertex x on the implicit digraph G(S,P), i.e., it satisfies
that δ+(x) ̸= δ−(x) and x ̸= π .

Theorem 3.13 (Hollender and Goldberg [HG18]). IMBALANCE is PPAD-complete.

20 Chapter 3. Theory of Computation

0 1 1 0 1 1

0

2

2

0

0

2

2

2

2

2

0

2

2 1

0

1

FIGURE 3.2: An Example of Sperner’s lemma.

The complexity class PPAD has many complete problems related to various fields
(e.g., Fixed Point Theory, Game Theory, and Graph Theory). The first natural PPAD-
complete problem is SPERNER, a computational problem based on Sperner’s lemma.

Now, we describe the two-dimensional case of Sperner’s lemma [Spe28]. Con-
sider a coloring to a triangulation on a triangle; this coloring assigns one of 0, 1,
and 2 as a color to each vertex. A coloring is admissible if it satisfies the following
conditions: (i) The three vertices on the original triangle have different colors; and
(ii) every a-b edge has only a or b, where a,b ∈ {0,1,2} and a ̸= b. Here, we call
an edge on the original triangle an a-b edge if its endpoints are a vertex with a and
a vertex with b on the original triangle. A small triangle is said to be trichromatic if
each vertex has a different color from the other. Sperner [Spe28] has shown that any
admissible coloring of any triangulation of a simplex contains at least one trichro-
matic simplex. We illustrate an example of a two-dimensional admissible coloring
in Figure 3.2. Every gray triangle in this figure is trichromatic.

The problem SPERNER is formally defined as follows:

Definition 3.14. SPERNER

Input:

• a Boolean circuit that computes an admissible coloring.

Task:

• Find a trichromatic simplex.

It is not hard to see that SPERNER belongs to TFNP; the existence of solutions
is guaranteed by Sperner’s lemma [Spe28]. Papadimitriou [Pap94b] proved that

3.3. Complexity Classes of Search Problems 21

the computational problem based on Sperner’s lemma is PPAD-complete even in the
three-dimensional setting. Chen and Deng [CD06] have shown that SPERNER is
PPAD-complete. Note that solving SPERNER in polynomial time is trivial by using a
binary search method for the one-dimensional setting.

Other known PPAD-complete problems include the following: finding a fixed
point of Brouwer’s and Kakutani’s fixed point theorems [Pap94b], computing a va-
riety of equilibria, for example, Nash equilibria [Pap94b], Fisher market equilibria
[OPR16], Arrow-Debreu equilibria [Che+09], and approximate competitive equi-
librium from equal incomes [OPR16], finding a core of balanced games [Kin+13],
finding a stable path [Kin+13], computing a fractional stable hypergraphic matching
[Kin+13], and finding a fractional stable kernel [Kin+13].

Remark that the problem END OF LINE can be naturally generalized to the prob-
lem on an undirected graph. Such a problem makes up the complexity class PPA

which contains PPAD. The next section explains the complexity class PPA.

3.3.3 Class PPA
Papadimitriou [Pap94b] introduced the complexity class PPA. This class consists of
all search problems whose totality is guaranteed by the parity argument. Formally,
we define the class PPA as the set of all search problems that are reducible to LEAF

in polynomial time.

Definition 3.15. LEAF

Input:

• a Boolean circuits N : Σn → Σ2n

• a known leaf π ∈ Σn on G(N).

Task: Find

• another leaf x on G(N), i.e., it satisfies that degG(x) = 1 and x ̸= π .

Definition 3.16 (Class PPA). The complexity class PPA consists of all search prob-
lems that are reducible to LEAF in polynomial time.

Let G(N) be an implicit graph given by a valid instance of LEAF. Notice that
every vertex on the graph G(N) has a degree at most two. The parity argument guar-
antees that there must exist an unknown leaf when we have a known leaf. This princi-
ple also works for higher degree graphs: A graph that has a known odd-degree vertex
must have at least one unknown odd-degree vertex. We consider the search problem
ODD, a natural generalization of LEAF. Furthermore, Papadimitriou [Pap94b] has
shown that ODD is also a PPA-complete problem.

Definition 3.17. ODD

Input:

• a Boolean circuits N : Σn → Σdn

• an odd-degree vertex π on G(N).

Task: Find one of the following:

22 Chapter 3. Theory of Computation

• another odd-degree vertex on G(N), i.e., it satisfies that x ̸= π and degG(x) =
2k−1 for some k ∈ N.

Theorem 3.18 (Papadimitriou [Pap94b]). ODD is PPA-complete.

The complexity PPA has been widely studied. It is well known that PPA has many
complete problems. For example, CONSENSUSHALVING, NECKLACESPLITTING,
DISCRETEHAMSANDWICH, and OCTAHEDRALTUCKER [FRG18; FRG19; DFK17;
ABB20].

In the previous section, we mentioned that the computational problem SPERNER

is PPAD-complete. Deng, Edmonds, Feng, Liu, Qi, and Xu [Den+21] have proven that
the problems related to Sperner’s lemma on an orientable and a non-orientable two-
dimensional spaces are PPAD- and PPA-complete, respectively. They also provided
oracle model complexity; both problems require Θ(Nd−1) queries.

3.3.4 Class PPP
The pigeonhole principle is a well-known combinatorial existence principle. This
principle states that every function f : [N +1]→ [N] must have a collision, i.e., there
exist two distinct points x,y ∈ [N + 1] such that f (x) = f (y), where N is a positive
integer.

For the computational purpose, we assume that a function f is polynomial-time
computable and mapping from Σn to Σn for some positive integer n. In order to
guarantee the totality of the search problem, we usually use the following statement:
For every polynomial-time computable function f : Σn → Σn \{0n}, there must exist
two distinct strings x,y ∈ Σn such that f (x) = f (y). However, it is hard to check
whether there are strings x ∈ Σn such that f (x) = 0n in polynomial time. Therefore,
we consider every string x ∈ Σn satisfying that f (x) = 0n as an additional solution.
Such a principle is called a polynomial pigeonhole principle.

The class PPP is a class for problems whose totality is guaranteed by the polyno-
mial pigeonhole principle. The formal definition is as follows:

Definition 3.19. PIGEONHOLE CIRCUIT

Input:

• a Boolean circuits C : Σn → Σn

Task: Find one of the following:

(R1) two distinct strings s,y ∈ Σn such that C(x) =C(y)

(V1) a string x ∈ Σn such that C(x) = 0n.

Definition 3.20. The complexity class PPP consists of all search problems that are
reducible to PIGEONHOLE CIRCUIT in polynomial time.

The complexity class PPP was introduced by Papadimitriou [Pap94b]. It is easy
to see that PPP is contained in TFNP.

Papadimitriou [Pap94b] has shown that PPP is closely related to much more fa-
miliar issues. For each positive integer n, a one-way permutation is defined as a

3.3. Complexity Classes of Search Problems 23

polynomial-time function π : Σn → Σn satisfying that π(x) ̸= π(y) whenever x ̸= y,
such that for every probabilistic polynomial-time computable function τ : Σn → Σn,
every non-negative integer k, and sufficiently large integer n, if we pick a string
w ∈ Σn at random, then it holds that

Pr[τ(π(w)) = w]≤ n−k,

where Pr[τ(x) = y] means the probability that τ outputs y ∈ Σn if it is given a string
x ∈ Σn as an input (see Section 10.6 of [Sip97]). Roughly speaking, it seems to be
required exponential time to compute a string x ∈ Σn for a given string π(x).

The definition of the PPP implies that there are no one-way permutations if PI-
GEONHOLE CIRCUIT can be solved in polynomial time.

Theorem 3.21 (Papadimitriou [Pap94b]). If PPP = FP, then there are no one-way
permutations.

It is believed that PPP has worked to progress our knowledge of algorithmic as-
pects of Cryptography, just as PPAD has played a crucial role in advancing our algo-
rithmic understanding of Game Theory [Ban+19].

Ban, Jain, Papadimitriou, Psomas, and Rubinstein [Ban+19] have proven that the
problems MINKOWSKI and DIRICHLET belong to PPP, and the problems EQUAL

SUMS and DIRICHLET are reducible to MINKWOSKI. Sotiraki, Zampetakis, and
Zirdelis [SZZ18] have shown that the problems BLICHFELDT and CSIS are PPP-
complete.

There is another complexity class based on the pigeonhole principle, called PWPP

(Polynomial Weak Pigeonhole Principle). This class is defined as the set of total
search problems that are reducible to WEAK PIGEON [Jeř16].

Definition 3.22. WEAK PIGEON

Input:

• a Boolean circuits C : Σn → Σm, where n > m.

Task: Find one of the following:

• two distinct strings s,y ∈ Σn such that C(x) =C(y)

Definition 3.23. The complexity class PWPP is a class of search problems that are
polynomial-time reducible to WEAK PIGEON.

It is not hard to see that PWPP is contained in PPP. Jeřábek [Jeř16] have shown that
FACTORING lies in PPA and PWPP under randomized reductions. Komargodski, Naor,
and Yogeev [KNY19] have proven that the problem based on Ramsey’s theorem,
called RAMSEY, is PWPP-hard. Sotiraki, Zampetakis, and Zirdelis [SZZ18] have
proven that the problem WC-SIS is PWPP-complete. Recently, Huváček and Václavek
[HV21] have shown that the complexity of the discrete logarithm problem, called
DLOG, is PWPP-complete.

24 Chapter 3. Theory of Computation

3.3.5 Class PPAD∩PLS
We describe in this section the complexity class PPAD∩PLS. To define this class,
we define the problem EITHER SOLUTION(A ,B), introduced by Daskalakis and
Papadimitriou [DP11] to consider the complexity of the problems belonging to both
PPAD and PLS. Furthermore, Daskalakis and Papadimitriou [DP11] defined the com-
plexity class CLS (see Definition 5.4) contained in PPAD∩PLS. Informally speaking,
the goal of EITHER SOLUTION(A ,B) is to find a solution to either IA or IB when
we are given instances IA of A and IB of B. The formal definition is as follows:

Definition 3.24. EITHER SOLUTION(A ,B)
Input:

• a valid instance IA of A and

• a valid instance IB of B.

Task: Find either

• a solution to IA or

• a solution to IB.

Daskalakis and Papadimitriou [DP11] showed that if A is a PPAD-complete prob-
lem and B is a PLS-complete problem, then the problem EITHER SOLUTION(A ,B)
is PPAD∩PLS-complete. Thus, they proved the following theorem.

Theorem 3.25 (Daskalakis and Papadimitriou [DP11]). EITHER SOLUTION(END

OF LINE, LOCALOPT) is a PPAD∩PLS-complete problem.

3.3.6 Class EOPL
The complexity class EOPL is introduced by Fearnley, Gordon, Mehta, and Savani
[Fea+20]. This class consists of all search problems that are reducible to END OF

POTENTIAL LINE.

Definition 3.26. END OF POTENTIAL LINE

Input:

• two Boolean circuits S,P : Σn → Σn

• a Boolean circuit V : Σn →{0,1, . . . ,2m −1}

• a standard source π in Σn such that P(x) = x ̸= S(x) and V (π) = 0.

Task: Find a vertex x in Σn satisfying at least one of the following:

(R1) P(S(x)) ̸= x, i.e., x is a sink, and

(R2) S(P(x)) ̸= x ̸= π , i.e., x is a non-standard source

(V1) S(x) ̸= x, P(S(x)) = x, and V (S(x))−V (x)≤ 0

3.3. Complexity Classes of Search Problems 25

0
π

2

3

4 5

(R1)

7
46

(R1)
0

4

(V1)

0

(R2)

3

2

4

9

(V1)

7

FIGURE 3.3: An example of the instance of END OF POTENTIAL

LINE. This figure shows all solutions in red, and the correspond-
ing solution form is labeled. Furthermore, the blue vertex implies
the standard source, and it has the label “π .” The green vertices are
isolated (or self-loops); that is, these are not solutions for END OF

POTENTIAL LINE. In this example, we have two lines and one cy-
cle. The mainline starts at the vertex labeled “π” and ends at the red
vertex that has weight five and the label (R1). Every valid arc on this
line is strictly increasing. Therefore, the mainline does not contain
violating solutions. On the other hand, another line starts at the red
vertex which was a weight of zero and the label (R2) and ends at the
red vertex which has a weight of 6, and the label (R1). This line con-
tains a non-increasing valid arc, and thus, there is a violating solution,
that has the label (V1). Finally, every cycle on the instance of END OF

POTENTIAL LINE always has a non-increasing arc. This implies that
a cycle has a violating solution.

Definition 3.27 (Class EOPL). The complexity class EOPL consists of all search prob-
lems that can be reduced to END OF POTENTIAL LINE in polynomial time.

Notice that END OF POTENTIAL LINE has violating solutions. Let (n,m,S,P,V,π)
be a valid instance of END OF POTENTIAL LINE, and let G(S,P) = (Σn,E) be the
implicit digraph produced by S and P. Each vertex x on G(S,P) has a potential as-
signed by the potential function V . Then this problem requires that for every valid arc
(x,y) in E, it holds that V (x)<V (y), i.e., every valid arc on G(S,P) is an increasing
arc. Therefore, any non-increasing valid arc is a violation. We illustrate an example
of END OF POTENTIAL LINE in Figure 3.3.

By definition, it is easy to see that END OF POTENTIAL LINE is polynomial-time
reducible to END OF LINE. This implies that EOPL is contained in PPAD. Notice that
every valid arc is strictly increasing; we can apply a local search method to find a
solution of END OF POTENTIAL LINE, which implies that EOPL also lies on PLS.
Therefore, the following statement follows:

Proposition 3.28. EOPL⊆ PPAD∩PLS.

Surprisingly, Göös, Hollender, Jain, Mayster, Pires, Robere, and Tao [Göö+22]
have shown that the inverse reduction follows, that is, EOPL is equal to PPAD∩PLS.

26 Chapter 3. Theory of Computation

Theorem 3.29 (Göös, Hollender, Jain, Mayster, Pires, Robere, and Tao [Göö+22]).
EOPL= PPAD∩PLS.

Furthermore, Fearnley, Gordon, Mehta, and Savani [Fea+20] considered the vari-
ant of END OF POTENTIAL LINE. They add extra properties to an instance of END

OF POTENTIAL LINE. In the original problem, see Definition 3.26, every instance
has one form of violating solution, meaning that the promise is unsatisfying.

Definition 3.30. UNIQUE END OF POTENTIAL LINE

Input:

• two Boolean circuits S,P : Σn → Σn

• a Boolean circuit V : Σn →{0,1, . . . ,2m −1}

• a standard source π in Σn such that P(x) = x ̸= S(x) and V (π) = 0.

Task: Find a vertex x in Σn satisfying at least one of the following:

(R1) P(S(x)) ̸= x, i.e., x is a sink,

(V1) S(P(x)) ̸= x ̸= π , i.e., x is a non-standard source

(V2) S(x) ̸= x, P(S(x)) = x, and V (S(x))−V (x)≤ 0

(V3) two strings x,y ∈ Σn such that x ̸= y, x ̸= S(x) ̸= y, and either V (x) = V (y) or
V (x)<V (y)<V (S(x)).

Definition 3.31. The complexity class UNIQUE END OF POTENTIAL LINE is the set
of all search problems that are reducible to UNIQUE END OF POTENTIAL LINE in
polynomial time.

3.3.7 Further Classes for Search Problems Outside of NP
Hitherto, we deal with the complexity classes inside NP, more precisely TFNP classes.
In this section, we briefly mention the classes outside of FNP. First and foremost,
Etessami and Yannkakis [EY10] focused on the complexity of search problems that
seemed to be not in FNP. They considered the complexity of finding an exact or a
strong approximate solution to a real-valued search problem and introduced the class
FIXP, which will be discussed in Section 5.3.1.

Here, we consider the complexity class defined by Boolean circuits. First, Klein-
berg, Korten, Mitropolsky, and Papadimitriou [Kle+21] introduced a new complexity
class called PEPP (Polynomial Empty Pigeonhole Principle). The existence of solu-
tions to search problems belonging to PEPP is guaranteed by the pigeonhole princi-
ple: For every function f : [n]→ [n+1], there must exist a point x such that f (y) ̸= x
for every y ∈ [n+1]. The complexity class PEPP is formally defined by the problem
EMPTY [Kle+21]:

Definition 3.32. EMPTY

Input:

• a Boolean function C : Σn \{0n}→ Σn

3.3. Complexity Classes of Search Problems 27

Task:

• Find a string y ∈ Σn such that C(x) ̸= y for every x ∈ Σn \{0n}.

Definition 3.33. The complexity class PEPP is the set of search problems that are
polynomial-time reducible to EMPTY.

Naturally, it is unknown how to check the correctness of a solution efficiently.
It is not a realistic approach to find an efficient method for verifying the correct-
ness of a solution to EMPTY; this is an FNP-complete problem. Kleinberg, Korten,
Mitropolsky, and Papadimitriou [Kle+21] also provided some total search problems
belonging to PEPP. For example, REMOTE POINT, REMOTE VERTEX, δ -RIGID

MATRIX COMPLETION, and RAMSEY-ERÖS COMPLETION. Furthermore, they also
introduced the parameterized analog of PEPP.

Another research line around the outside of FNP is quantum computational com-
plexity. Recently, Massar and Santha [MS21b; MS21a] have studied a quantum
counterpart of TFNP. They introduced the complexity class FQMA and TFQMA and
have shown some quantum total search problems belonging to TFQMA. However,
the following open questions have remained: (i) subclasses that contain complete
problems, and (ii) the classes for quantum search problems whose witness can be
represented by classical.

In the rest of this section, we discuss the complexity of problems that the cor-
rectness of a solution is efficiently checkable by a randomized algorithm. Thus,
we consider it a functional analog of the classical Merlin-Arthur model. Informally
speaking, we focus on the class of search problems having the following properties:

(a) There is some polynomial p such that the length of a witness for every input
instance x is bounded by p(|x|) if it exists;

(b) we have a polynomial-time bounded randomized algorithm to verify the cor-
rectness of an outputted solution.

Note that we usually consider promise problems when we deal with probabilistic
computational models. First, we define an (a,b)-classical verification procedure.
Here, let a,b : Z≥0 → [0,1] be polynomial-time computable functions satisfying that
a(n)− b(n) ≥ 1/q(n) for every n ∈ Z≥0, where q is a strictly positive polynomial.
Let M be a polynomial-time bounded probabilistic Turing machine that takes x ∈ Σ∗

and y ∈ Σp(|x|) as inputs, where p is some polynomial. We call M an (a,b)-classical
verification procedure if for every input x ∈ Σ∗, it holds one of the following:

(i) There exists y ∈ Σp(|x|) such that Pr[M(x,y) = 1]≥ a(|x|);

(ii) for every y ∈ Σp(|x|), Pr[M(x,y) = 1]≤ b(|x|).

Second, we define accepting and rejecting subsets. Let M be an (a,b)-classical
verification procedure. For an input x ∈ Σ∗, the accepting subset

R≥a(x) = {y ∈ Σ
p(|x|) ; Pr[M(x,y) = 1]≥ a(|x|) ;

and the rejecting subset

R≤b(x) = {y ∈ Σ
p(|x|) ; Pr[M(x,y) = 1]≤ b(|x|)}.

28 Chapter 3. Theory of Computation

Finally, we define the complexity class FMA(a,b) as the class made up of the
set R =

{(
R≥a(x),R≤b(x)

)}
. A search problem with respect to R is formulated as:

given an input x ∈ Σ∗, find y ∈ R≥a(x) if R≥a(x) ̸= /0; otherwise report “no.” The
complexity class TFMA is the subset of FMA satisfying that R≥a(x) ̸= /0 for every input
string x ∈ Σ∗.

It is not hard to see the following property:

Proposition 3.34. FMA(a,b) = FMA(1,1/2).

Proof. Apply the same technique provided by [GZ11; ZF87] to show the perfect
completeness of the Merlin-Arthur protocol.

The complexity class TFΣP
2, defined by Kleinberg, Korten, Mitropolsky, and Pa-

padimitriou [Kle+21], is the class for R ⊆ Σ∗×Σ∗ satisfying the followings: There is
some polynomial p : Z≥0 → Z≥0 such that (i) for every x ∈ Σ∗, there exists a string
y ∈ Σp(|x|) such that (x,y) ∈ R; and (ii) there is a polynomial-time Turing machine M
such that (x,y) ∈ R if and only if M(x,y,z) = 1 for every z ∈ Σp(|x|).

Theorem 3.35. The following property holds:

(1) FMA⊆ FMA(a,1/2)⊆ FMA(1,< 1)⊆ TFΣP
2.

(2) EMPTY ⊆ FMA(1,< 1).

Here, the complexity class FMA(1,< 1) is defined by a (1,< 1)-classical verification
procedure.

Proof. The first property immediately follows from the definition.
We present a (1,< 1)-classical verification procedure to prove the second result.

Let a Boolean circuit C : Σn \ {0n} → Σn be an instance of EMPTY. When we are
given a string y ∈ Σn, we execute the (1,< 1)-classical verification procedure shown
in Algorithm 1 to check the correctness of y. It is easy to see that Algorithm 1 verify
the correctness of the outputting solution.

Algorithm 1 A (1,< 1)-classical verification procedure for EMPTY

1: Pick a string x ∈ Σn \{0n} uniformly at random.
2: if Is C(x) ̸= y then
3: Return accept
4: else
5: Return reject
6: end if

Finally, we mention the gapped class of FMA. The complexity class gapFMA(a,b)
is the set of search problems in FMA(a,b) satisfying that R≥a(x)∪R≤b(x) = Σp(|x|) for
every x ∈ Σ∗. Moreover, the class gapTFMA(a,b) is the class of search problems in
TFMA(a,b) satisfying that R≥a(x)∪R≤b(x) = Σp(|x|) for every x ∈ Σ∗. An interesting
open question is that MA= ∃BPP when FMA(a,b) = gapFMA(a,b).

29

Chapter 4

On the Complexity of Parity
Argument with Potential

4.1 Basics
We are interested in the complexity class TFNP: a set of total search problems be-
longing to FNP [MP91; Pap94b]. Every problem in TFNP satisfies the following two
properties: Every instance always has a solution, and we can verify whether a solu-
tion is correct in polynomial time. The class TFNP contains some of the most funda-
mental, elegant, and intriguing computational problems. The most famous examples
are factoring, computing a Nash equilibrium, and finding a local optimum. These
problems have no known polynomial-time algorithms, but it seems to be not NP-hard
either. In fact, if TFNP has an NP-hard problem, then we have NP= coNP.

Unfortunately, TFNP is a “semantic” class. Generally, such classes are unlikely to
have complete problems, as are language classes such as RP, ZPP, and BPP [Pap94b].
Thus, we study “syntactic” subclass of TFNP. The best-well known such subclasses
are PLS, PPP, PPA, and PPAD [Pap94b]. These are classes of search problems whose
totality is guaranteed by the corresponding mathematical lemma.

The subclasses of TFNP have been studied productively and extensively and have
been shown to have many interesting search problems as complete problems. Section
3.2 gives details of some complexity classes contained in TFNP.

The above subclasses of TFNP are usually defined in terms of the corresponding
search problem on an exponentially-large graph, which is represented by functions.
Note that a graph in a problem is presented via a function that computes the neighbors
of a given vertex on the graph1, not an adjacency matrix. Hence, we need exponential
effort to get the structure of the entire graph.

For example, the class PPA is defined as a set of problems that are reducible to
LEAF, in which an undirected graph on 2n vertices with a degree at most two is pre-
sented via a function computing neighbors of a given vertex. It is known that PPA
has the following complete problems: CONSENSUS HALVING, NECKLACESPLIT-
TING, DISCRETE HAMSANDWICH, and OCTAHEDRAL TUCKER [FRG18; FRG19;
DFK17; ABB20]. Similarly, the class PPAD is defined as a set of problems that are re-
ducible to END OF LINE, in which a digraph on 2n vertices with in-degree/out-degree
at most one is given by two functions that compute a successor and a predecessor of

1If a given graph is a digraph, it is represented via two functions, a function that computes outgoing
arcs and a function that computes incoming arcs. We call the former a successor function/circuit and
the latter a predecessor function/circuit.

30 Chapter 4. On the Complexity of Parity Argument with Potential

a given vertex. PPAD includes a search problem that seems easier than PPA. The
most famous PPAD-complete problem is the problem of finding a Nash equilibrium
[DGP09; Pap94b].

Fearnley, Gordon, Mehta, and Savani [Fea+20] introduced search problems on
digraphs with potential and produced the new computational complexity class EOPL
(see Definition 3.27). Recently, Göös, Hollender, Jain, Maystre, Pires, Robere, and
Tao [Göö+22] have shown a surprising collapse: EOPL = PPAD∩PLS. It is known
that EOPL contains some fascinating total search problems, e.g., solving the Linear
Complementarity Problem for P-matrices, solving parity games, and solving simple
stochastic games [Fea+20].

As mentioned in Section 3.3.6, the canonical EOPL-complete problem can be
viewed as a weighted relaxation of a PPAD problem. A natural question worth con-
sidering is: How easier the problem is by adding a potential condition to a problem
known as a PPA-complete problem.

Recently, Hollender and Goldberg [HG18] have studied the robustness of the
classification by END OF LINE, a problem of finding a sink or an unknown source
when we are given a successor circuit, a predecessor circuit, and one standard source,
find a sink or a non-standard source. The problem END OF LINE characterizes the
class PPAD. Thus, this problem is a canonical PPAD-complete problem. Hollender
and Goldberg [HG18] considered combinatorial principles related to PPAD, leading
to the following problems, on digraphs with a degree at most two:

• given k sources and l ̸= k sinks, find another sink or source;

• given k sources and l < k sinks, find k− l other sinks; and

• given k sources, find k sinks or k other sources.

They proved that these above problems are also PPAD-complete. Moreover, they
showed that the problem IMBALANCE, in which given a digraph and an unbalanced
vertex, i.e., a vertex with in-degree ̸= out-degree, find another unbalanced vertex, is
also PPAD-complete. These facts imply that the classification by END OF LINE is
very robust.

Hollender and Goldberg [HG18] left an open question: Is a multiple-source vari-
ant of END OF POTENTIAL LINE also EOPL-complete? We resolve this question
in this thesis, and we show that the definition of the class EOPL based on END OF

POTENTIAL LINE is robust.
In this thesis, we extend their results to END OF POTENTIAL LINE. In this prob-

lem, given a successor circuit, a predecessor circuit, a potential function, and one
standard source, the objective is to find one of a sink, a non-standard source, and a
non-increasing arc. We first consider combinatorial principles related to EOPL, lead-
ing to the following problems, on the graphs with potential with a degree of at most
two:

• given k sources, find another degree-1 vertex or a non-increasing arc; and

• given k sources, find k distinct vertices that are at least one of a sink, other
source, and a non-increasing arc.

4.1. Basics 31

TFNP

PLS PPA

PPA∩PLS

PPAD

PPAD∩PLS

CLS

EOPL

FPMS-EOPL

POTENTIAL IMBALANCE

POTENTIAL LEAF ALMOST BALANCED ODD

DEGREE-3 POTENTIAL ODD

DEGREE-4 POTENTIAL ODD

Corollary 4.19Theorem 4.25

Theorem 4.32 Lemma 4.42

Lemma 4.39 Lemma 4.41

Theorem 4.37

FIGURE 4.1: The relationship of search problems and complexity
classes.

We show that these variants of END OF POTENTIAL LINE can be classified in terms
of the original problem; that is, these problems are also EOPL-complete. Furthermore,
we consider the problem of generalizing END OF POTENTIAL LINE to higher degree
digraphs. In this problem, given a digraph with potential and one unbalanced vertex,
the objective is to find another unbalanced vertex or a non-increasing arc. Naturally,
this problem also belongs to EOPL.

Finally, we prove that the problem, in which we are given a graph with potential
on [2n] with a degree at most three and an odd-degree vertex, and the goal is to seek
another odd-degree or a local optimum vertex, is also EOPL-complete. However, even
if the problem for a given graph with potential and the maximum degree at most four
is not always EOPL-complete. Probably, such problems are much harder than END

OF POTENTIAL LINE.

4.1.1 Our Contribution
An overview of our results and the known relationship of complexity classes is
depicted in Figure 4.1. In this figure, each arrow α → β denotes that there is a
polynomial-time reduction from α to β .

In Section 4.2.1, we introduce the notion called the normalization to simplify ar-
guments in this thesis. Some search problems require that every instance has several
properties. The best-known example of such a problem is BROUWER. In this prob-
lem, the function given by the instance is required Lipschitz continuous. Generally,
it seems hard to decide whether a given function is Lipschitz continuous. However,
given a witness, it is easy to check it. We often add every witness as a solution called
a violation. Informally speaking, our normalization is to transform from an instance
that has violations to another instance satisfying the required conditions. The formal
definition is given in Section 4.2.1.

32 Chapter 4. On the Complexity of Parity Argument with Potential

Directed Graphs with Potential In Section 4.3, we extend the elegant results by
Hollender and Goldberg [HG18] to END OF POTENTIAL LINE, and we show the
robustness of EOPL. We introduce the new variant of END OF POTENTIAL LINE. We
call this problem MULTIPLE-SOURCE END OF POTENTIAL LINE. We prove that
this problem is also EOPL-complete. Furthermore, we introduce the new problem of
generalizing END OF POTENTIAL LINE to higher degree digraphs, which is called
POTENTIAL IMBALANCE. We also prove that this problem is EOPL-complete.

Undirected Graphs with Potential In Section 4.4, to study the hardness of the
parity argument with potential, we introduce the complexity class PPA∩PLS. This
class consists of all search problems belonging to both PPA and PLS (see Section
4.2.3). We define POTENTIAL ODD; this problem is a generalization of POTENTIAL

IMBALANCE to an undirected graph with potential. We show that POTENTIAL ODD

is, generally, PPA∩PLS-complete. Specifically, if the maximum degree on the given
graph is at most three, then POTENTIAL ODD belongs to EOPL, i.e., this problem is
EOPL-complete. However, even if the maximum degree on the graph is four, then
POTENTIAL ODD is PPA∩PLS-complete.

4.2 Preliminaries
Generally, every search problem has a solution set O(I) for each instance I . In this
thesis, we consider that every problem has two types of solutions (possibly empty).
One is called a regular solution, and the other is called violating a solution. Some
search problems require their instance to satisfy some conditions. While it is easy to
decide whether a given instance is valid, it is hard to check whether a given instance
satisfies the required conditions most of the time. However, it is effortless to verify
whether a given instance violates the required conditions if we obtain a witness. We
often add a witness as a solution, and such a solution is called a violating solution.
On the other hand, a regular solution means a desired solution to the search problem
originally. For instance, CONTINUOUS LOCALOPT (see Definition 5.3) requires
that two functions f and p are λ -Lipschitz continuous. It seems to be hard that
we efficiently verify whether f and p are λ -Lipschitz continuous. Therefore, we
treat the violation as a solution. Note that this configuration ensures the totality of
CONTINUOUS LOCALOPT.

Formally, when we are given an instance I of the search problem R that has
violating solutions, the solution set O(I) to I is denoted as follows.

O(I) = OR(I)∪OV (I),

where OR(I) is a set of all regular solutions and OV (I) is a set of all violating
solutions. For instance, the set of solutions for CONTINUOUS LOCALOPT consists
of all ε-approximate local optima and all witnesses of λ -Lipschitz continuity for
given functions. The set OR(·) contains all ε-approximate local optima, and the set
OV (·) contains all witnesses of non-λ -Lipschitz continuity for given functions.

4.2. Preliminaries 33

4.2.1 Normalization
In this section, we introduce a normalization of search problems. Informally speak-
ing, a normalization of a search problem that has both regular solutions and violating
solutions is defined as a transformation from a given valid instance to another valid
instance that satisfies the required conditions. Formally, it is defined as follows.

Definition 4.1 (Normalization). A search problem R has both regular solutions and
violating solutions. A normalization of the problem R is a polynomial-time com-
putable function f which maps an instance I of R to another instance f (I) of
R which has no violations, i.e., OV (f (I)) is empty, plus another polynomial-time
computable function g which maps every solution y of f (I) to a solution g(y,I) of
I .

The rest of this section gives us an example of a normalizable search problem.
We show that END OF POTENTIAL LINE can be normalized.

Proposition 4.2. END OF POTENTIAL LINE can be normalized.

Proof. Let I = (n,m,S,P,V,π) be a valid instance of END OF POTENTIAL LINE.
Without loss of generality, we assume that the standard source π is not a solution of
I because we can check it in polynomial time. Now, we construct another instance
J = (n,m,S′,P′,V ′,π) that has no violations.

First, we construct a successor circuit S̄ and a predecessor circuit P̄ such that they
always compute valid arcs or self-loops. For each vertex x in Σn, we define

S̄(x) :=

{
S(x) if S(x) ̸= x and P(S(x)) = x,
x otherwise,

and

P̄(x) :=

{
P(x) if P(x) ̸= x and S(P(x)) = x,
x otherwise.

From the above construction, if y= S̄(x) ̸= x, then P̄(y) = x for each x ∈ Σn, similarly,
if y = P̄(x) ̸= x, then S̄(y) = x for each x ∈ Σn.

Next, we construct a successor circuit S′ and a predecessor circuit P′. For each
vertex x in Σn, we define

S′(x) :=

{
S̄(x) if S̄(x) ̸= x and V (S̄(x))>V (x),
x otherwise,

and

P′(x) :=

{
P̄(x) if P̄(x) ̸= x and V (P̄(x))<V (x),
x otherwise.

By the definitions of S′ and P′, if S′(x) ̸= x, then S′(x) = S̄(x) ̸= x and V (S̄(x))>V (x).
This implies that it satisfies that P̄(S̄(x)) = x. Since V (S′(x)) = V (S̄(x)) > V (x), it

34 Chapter 4. On the Complexity of Parity Argument with Potential

holds that P′(S′(x)) = P′(S̄(x)) = P̄(S̄(x)) = x. Similarly, if P′(x) ̸= x, then it holds
that S′(P′(x)) = x and V (x) > V (P̄(x)) = V (P′(x)). Therefore, every valid arc with
respect to S′ and P′ is always a strictly increasing arc.

Finally, we define the new potential function V ′ as follows.

V ′(x) :=

{
0 if S′(x) = x = P′(x),
V (x) otherwise.

From the above constructions, it is easy to see that the standard source π in Σn sat-
isfies that P′(π) = π ̸= S′(x) and V ′(π) = 0. Hence, the tuple J = (n,m,S′,P′,V ′,π)
is a valid instance of END OF POTENTIAL LINE. Furthermore, it is not hard to see
that J has no violating solutions. In the rest of this proof, we show that when we
obtain a solution of J , we can convert it to a solution of I in polynomial time.

We first consider when we obtain a solution x such that P′(S′(x)) ̸= x. Then it
must satisfy that S′(x) = x. Therefore, it holds that P′(S′(x)) = P′(x) ̸= x. If S̄(x) ̸= x,
then V (S̄(x)) ≤ V (x) by the definition of S′. Hence, x is a violating solution for
the original instance since V (S̄(x)) = V (S(x)). On the other hand, if S̄(x) = x, then
P̄(S̄(x)) ̸= x since P′(x) ̸= x. This implies that x satisfies P(S(x)) ̸= x, and thus, x is
a sink of the original instance.

Next, we consider when we obtain a solution x such that S′(P′(x)) ̸= x ̸= π . Then
it must satisfy that P′(x) = x. Therefore, it holds that S′(P′(x)) = S′(x) ̸= x. If P̄(x) ̸=
x, then V (x) ≤ V (P̄(x)). Therefore, it satisfies that S(P(x)) ̸= P(x), P(S(P(x))) =
P(x), and V (x) ≤ V (P(x)) since P̄(x) = P(x) ̸= x. This implies that the vertex P̄(x)
is a violating solution for the original instance. On the other hand, if P̄(x) = x, then
S̄(P̄(x)) ̸= x. Therefore, it holds that S(P(x)) ̸= x ̸= π . This implies that x is a non-
standard source of the original instance.

From the above arguments, we complete the normalization of END OF POTEN-
TIAL LINE.

By definition, any normalization is polynomial-time computable. Without loss
of generality, we assume that every given instance is already normalized if it can be
normalized.

Applying Proposition 4.2, without loss of generality, we assume that every in-
stance of END OF POTENTIAL LINE satisfies the following properties:

• if S(x) ̸= x, then P(S(x)) = x and V (S(x))>V (x);

• if P(x) ̸= x, then S(P(x)) = x and V (x)>V (P(x)).

4.2.2 The Problem: EITHER SOLUTION(A ,B)
In this section, we describe the problem EITHER SOLUTION(A ,B) to formulate the
complexity class PPA∩PLS (see Section 4.2.3 for details). This search problem is
introduced by Daskalakis and Papadimitriou [DP11] to consider the complexity of
the class PPAD∩PLS2. Informally speaking, in this problem, given two instances that

2The complexity class PPAD∩PLS is defined as a set of all search problems belonging to both
PPAD and PLS.

4.2. Preliminaries 35

one is an instance of A , and the other is an instance of B, then find a solution for
either A or B.

Daskalakis and Papadimitriou [DP11] have shown that if A is a PPAD-complete
problem and B is a PLS-complete problem, then the problem EITHER SOLUTION(A ,
B) is PPAD∩PLS-complete, and thus, they proved the following theorem.

Theorem 4.3 (Daskalakis and Papadimitriou [DP11]). EITHER SOLUTION(END OF

LINE, LOCALOPT) is a PPAD∩PLS-complete problem.

Now, we present a more general statement than the result of Daskalakis and Pa-
padimitriou [DP11] mentioned above. Specifically, we show that the problem EI-
THER SOLUTION(A ,B) is an CA ∩CB-complete problem if A is CA-complete, and
B is CB-complete.

Theorem 4.4. Let CA and CB be subclasses of FNP which have complete problems.
EITHER SOLUTION(A, B) is CA ∩CB-complete if A is a CA-complete problem, and
B is a CB-complete problem.

Proof. First, we show that EITHER SOLUTION(A, B) belongs to both CA and CB.
We assume that we are given a valid instance IA of A and a valid instance IB of B.
Immediately, the problem A belongs to CA; we can obtain a polynomial-time reduc-
tion to A. Similarly, we can construct a polynomial-time reduction to B. Therefore,
EITHER SOLUTION(A, B) is contained in CA and CB.

To show the hardness, we consider any problem C belonging to CA∩CB. There is
a polynomial-time reduction f from C to A since A is a CA-complete problem. Thus,
we can generate a valid instance f (x) of A from a given instance of C. Similarly,
there is a polynomial-time reduction g from C to B, that is, we can produce a valid
instance g(x) of B from a given instance of C. Hence, the tuple (f (x),g(x)) is a valid
instance of EITHER SOLUTION(A, B), that is, we have a polynomial-time reduction
from C to EITHER SOLUTION(A, B).

From Theorem 4.4, the following statement straightforwardly follows.

Lemma 4.5. EITHER SOLUTION(MAXFLIP, MINFLIP) is PLS-complete.

In the problem EITHER SOLUTION(MAXFLIP, MINFLIP), when we are given
two Boolean circuits C and D, we find either a local maximum of C or a local mini-
mum of D. A natural question arises. Next, we consider the complexity when C = D.
That is, we consider the problem, which is called FLIP, of finding a local maximum
or a local minimum for a given Boolean circuit C. Furthermore, we show that FLIP

is also PLS-complete. The formal definition of FLIP is as follows.

Definition 4.6. FLIP

Input:

• a Boolean circuit C with n inputs and m outputs computing a function f : Σn →
{0,1, . . . ,2m −1}.

Task: Find a bit-string x ∈ Σn satisfying at least one of the following:

(R1) C(x)≥C(y) for every y ∈ Σn with ∥x− y∥= 1, and

36 Chapter 4. On the Complexity of Parity Argument with Potential

(R2) C(x)≤C(y) for every y ∈ Σn with ∥x− y∥= 1.

Theorem 4.7. FLIP is a PLS-complete problem.

Proof. Assume that two Boolean circuits C and D as an instance of EITHER SOLU-
TION(MAXFLIP, MINFLIP), where C and D compute functions f : Σn1 →{0,1, . . . ,
2m1 − 1} and g : Σn2 → {0,1, . . . ,2m2 − 1}, respectively. Furthermore, the Boolean
circuit C with n1 inputs and m1 outputs is an instance of MAXFLIP, and the Boolean
circuit D with n2 inputs and m2 outputs is an instance of MINFLIP.

Now, we define the new Boolean circuit E : Σn1+n2 → Σm1+m2 as follows. We
consider the first n1-bits of input x in Σn1+n2 to E as input to C, and the remaining
n2-bits as input to D. Furthermore, we define the first n1-bits as x1 and the remaining
n2-bits as x2, and thus, denote x as (x1,x2). Similarly, we denote y in Σm1+m2 as
(y1,y2), where y1 is the first m1-bits of y and y2 is the remaining m2-bits of y. Then
for every bit-string x = (x1,x2) in Σn1+n2 , we define as E(x1,x2) = (C(x1),D(x2)). In
particular, the circuit E computes 2m2 f (x1)+ g(x2) for every bit-string x = (x1,x2)
in Σn1+n2 . It is easy to see that E is polynomial-time computable. Here, the Boolean
circuit E is a valid instance of FLIP.

What remains is to show that we can obtain an original solution from a solution
for E. In the rest of this proof, we denote by N(x1,x2) = N1(x1,x2)∪N2(x1,x2) the
neighborhood of x = (x1,x2) ∈ Σn1+n2 , where N1(x1,x2) = {(y1,x2) ∈ Σn1+n2 ;∥x1 −
y1∥ = 1} and N2(x1,x2) = {(x1,y2) ∈ Σn1+n2 ;∥x2 − y2∥ = 1}. Here, the function N1
outputs the neighbors of a given bit-string x1 in Σn1 , and the function N2 outputs the
neighbors of a given bit-string x2 in Σn2 . Notice that for every bit-string x = (x1,x2)
in Σn1+n2 , the neighbors of x agree with the union of N1(x1) and N2(x2).

First, we consider when we obtain a local maximum solution (x1,x2) ∈ Σm1+m2

for E, i.e., it satisfies that E(x1,x2)≥ E(y1,y2) for every (y1,y2)∈ N(x1,x2). Then x1
is a local maximum solution for C because it holds that C(x1)≥C(y1) for every y1 ∈
N(x1,x2). Second, we consider when we obtain a local minimum solution (x1,x2) ∈
Σm1+m2 for E, i.e., it satisfies that E(x1,x2)≤ E(y1,y2) for every (y1,y2) ∈ N(x1,x2).
Then x2 is a local minimum solution for D because it holds that D(x2) ≤ D(y2) for
every y2 ∈ N(x1,x2). Hence, we can extract a solution of the original instance from
a solution of the new instance.

From the above arguments, we complete the polynomial-time reduction from
EITHER SOLUTION(MAXFLIP, MINFLIP) to FLIP. Therefore, the theorem follows.

4.2.3 Class PPA∩PLS
In this section, we introduce the computational complexity class PPA∩PLS. This
class is defined as a set of all search problems that are contained in PPA and PLS.

Definition 4.8 (Class PPA∩PLS). The complexity class PPA∩PLS consists of all
search problems that belong to both PPA and PLS.

Clearly, this class has following relationship with other well-known classes:

(a) EOPL⊆ PPAD∩PLS⊆ PPA∩PLS.

(b) PPA∩PLS⊆ PPA.

4.3. Multi Source Problems 37

(c) PPA∩PLS⊆ PLS.

(d) PPAD⊆ PPA∩PLS if and only if PPAD⊆ PLS.

Furthermore, the next theorem straightforwardly follows from Theorem 4.4.

Theorem 4.9. EITHER SOLUTION(ODD, FLIP) is PPA∩PLS-complete.

4.3 Multi Source Problems
In this section, we discuss the new variants of END OF POTENTIAL LINE. The most
typical modification worth considering is perhaps the following: what if the implicit
digraph associated END OF POTENTIAL LINE has two or more standard sources
instead of one. The objective remains the same: Find either a sink, a non-standard
source, or a non-increasing arc. The existence of at least two standard sources implies
that there must exist at least two sinks. Such a problem has more candidate solutions
than the original problem. Hence, a new problem might seem more effortless.

As mentioned in the introduction, Hollender and Goldberg [HG18] studied and
showed that the multiple-source variants of END OF LINE also belong to PPAD.
Surprisingly, these problems are PPAD-complete. Thus, the classification by END OF

LINE is robust. The natural question worth considering is whether a similar statement
holds for END OF POTENTIAL LINE. Throughout this section, we prove that this
claim is mostly correct.

4.3.1 The Problem: kS-EOPL
We consider the following variant of END OF POTENTIAL LINE that the goal is to
find one solution when we are given k standard sources, where k is some constant.

Definition 4.10. kS-END OF POTENTIAL LINE (abbreviated kS-EOPL)
Input:

• two Boolean circuits S,P : Σn → Σn

• a Boolean circuit V : Σn →{0,1, . . . ,2m −1}

• a set of k standard sources Π = {π1, . . . ,πk} such that P(π) = π ̸= S(π) and
V (π) = 0 for each π in Π.

Task: Find a vertex x in Σn satisfying at least one of the following:

(R1) P(S(x)) ̸= x, i.e., x is a sink

(R2) S(P(x)) ̸= x /∈ Π, and

(V1) S(x) ̸= x, P(S(x)) = x, and V (S(x))−V (x)≤ 0

Immediately, we can see that kS-EOPL is EOPL-hard. For every given instance of
END OF POTENTIAL LINE, we create k copies of it. Therefore, the following lemma
straightforwardly follows.

38 Chapter 4. On the Complexity of Parity Argument with Potential

0

1

3

4

7

2

3

4

0

2

5

6

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

FIGURE 4.2: The left digraph is the original instance. The right di-
graph is a metered line based on the left digraph. A vertex of a rect-
angle represents a dummy. Note that each source and each sink on the

right digraph have the same potential 0 and 7, respectively.

Lemma 4.11. kS-EOPL is EOPL-hard.

Next, we prove that kS-EOPL belongs to EOPL. To prove this, we construct a
polynomial-time reduction from kS-EOPL to END OF POTENTIAL LINE. Our re-
duction is via an instance of END OF METERED LINE as an intermediate instance.
The problem END OF METERED LINE is introduced by Hubáček and Yogev [HY17].
Every END OF METERED LINE instance has an excellent property: the potential in-
crease exactly one along each valid arc. In other words, the potential on a vertex
means the distance from some source. This property plays a crucial role in our re-
duction.

To construct a polynomial-time reduction from kS-EOPL to END OF POTENTIAL

LINE, we have to settle the following two issues:

(1) the bundling of k standard sources into one standard source;

(2) computing the potential of each point efficiently.

In the multiple source variant of END OF LINE, we only had to resolve the issue
(1). Hollender and Goldberg [HG18] resolved this problem and showed the con-
tainment of MULTIPLE-SOURCE ENDOFLINE in PPAD. They bundled k standard
sources into one source by regarding a set of some vertices as one vertex. Recall that
the digraph given by an instance has an exponential number of vertices; it seems that
we can not efficiently determine whether vertices that make up a new vertex are on
the same path. Furthermore, not all paths have the same length. For example, look at
the path on the left of Figure 4.2; the length is different for each path. To settle this
problem, Hollender and Goldberg [HG18] simulated k paths by retracing the paths
sometimes backward. However, their exciting technique did not establish that we can
efficiently compute the potential because the turn back the path became an obstacle.

4.3. Multi Source Problems 39

The straightforward way to settle the above two issues (1) and (2) is to make all
paths the same length and ensure each vertex that makes up a new vertex is always at
the same distance from its source. It is possible in the kS-EOPL because the instance
has a potential function. Recall that every instance of END OF METERED LINE has
an excellent property: The potential increase exactly one along each path. Fearnley,
Gordon, Mehta, and Savani [Fea+20] gave us a polynomial-time reduction from END

OF POTENTIAL LINE to END OF METERED LINE. We realize a polynomial-time
reduction from kS-EOPL to END OF POTENTIAL LINE via an END OF METERED

LINE instance. Moreover, we add some additional vertices to make the length of all
paths the same.

The outline of our reduction is as follows. This reduction consists of two steps.
In the first step, we construct an intermediate instance like END OF METERED LINE,
see Figure 4.2. In the second step, we create a valid instance of END OF POTENTIAL

LINE from the intermediate instance. We regard a list of k distinct vertices as a
single vertex. Specifically, all k vertices that make up a valid vertex on the END OF

POTENTIAL LINE instance have the same potential. This configuration allows us to
compute the potential of the new vertex efficiently. The new standard source is the set
of all k standard sources of the intermediate instance. This completes the illustration
of our reduction from kS-EOPL to END OF POTENTIAL LINE. We can efficiently
extract a solution from a solution to the new instance. Details are given in the proof
of Lemma 4.12.

Lemma 4.12. kS-EOPL is reducible to END OF POTENTIAL LINE in polynomial
time.

Proof. Let I = (n,m,S,P,V,Π) be a valid instance of kS-EOPL. Applying Proposi-
tion 4.2, we assume that this instance is already normalized without loss of generality,
that is, I satisfies the following conditions:

• if S(x) ̸= x then P(S(x)) = x and V (S(x))>V (x);

• if P(x) ̸= x then S(P(x)) = x and V (x)>V (P(x)).

In this proof, we denote the set of k distinct standard sources as Π = {π1,π2, . . . ,πk}.
First, we construct an intermediate instance IM = (2n+h,h,S′,P′,V ′,Π′), where

h = 2n+m. Let U := Σn ×Σn ×{0,1, . . . ,2h −1} be the new vertex set. The inter-
mediate instance IM is also an valid instance of kS-EOPL satisfying the following
properties:

• if S′(u) ̸= u, then P′(S′(u)) = u and V ′(S′(u)) =V ′(u)+1;

• if P′(u) ̸= u, then S′(P′(u)) = u, and V ′(u) =V ′(P′(u))+1;

• every self-loop vertex u, i.e., S′(u) = u = P′(u) has V ′(u) = 0;

where u is a vertex in U . Furthermore, we can efficiently convert a solution to I
from a solution to IM.

We show the algorithms of the successor circuit S′ : U →U and the predecessor
circuit P′ : U → U , in Algorithm 2, and Algorithm 3, respectively. Our algorithm
is based on the reduction from END OF POTENTIAL LINE to END OF METERED

40 Chapter 4. On the Complexity of Parity Argument with Potential

Algorithm 2 Compute S′(x,y,z)

1: If x = y then

1. if S(x) ̸= x and P(S(x)) = x then

(a) if V (S(x))−1 >V (x) = z then return (x,S(x),z+1),
(b) if V (S(x))−1 =V (x) = z then return (S(x),S(x),z+1),

2. if S(P(x)) ̸= x, i.e., x is a source, then

(a) if z <V (x) then return (x,x,z+1).

3. if P(S(x)) ̸= x, i.e., x is a sink, then

(a) if 2h −1 > z ≥V (x) then return (x,x,z+1).

2: If x ̸= y then

1. if S(x) = y, P(y) = x, and V (x)<V (y) then

(a) if V (x)+1 ≤ z <V (y)−1 then return (x,y,z+1),
(b) if V (x)< z =V (y)−1 then return (y,y,z+1).

3: In all other cases, then return (x,y,z).

Algorithm 3 Compute P′(x,y,z)

1: If x = y then

1. if P(y) ̸= y and S(P(y)) = y then

(a) if V (P(y))+1 <V (y) = z then return (P(y),y,z−1),
(b) if V (P(y))+1 =V (y) = z then return (P(y),P(y),z−1),

2. if S(P(y)) ̸= y, i.e., x is a source, then

(a) if V (y)≥ z > 0 then return (y,y,z−1).

3. if P(S(y)) ̸= y, i.e., x is a sink, then

(a) if V (y)< z then return (y,y,z−1)

2: If x ̸= y, S(x) = y, and P(y) = x then

1. if V (x)+1 < z ≤V (y)−1 then return (x,y,z−1),

2. if V (x)+1 = z <V (y) then return (x,x,z−1).

3: In all other cases, then return (x,y,z).

4.3. Multi Source Problems 41

LINE by Fearnley, Gordon, Mehta, and Savani [Fea+20]. Here, we add additional
processing to make the length of all paths the same.

Finally, for each vertex (x,y,z) ∈ U , we define

V ′(u) :=

{
0 if S′(u) = (u) = P′(u),
z otherwise.

It is easy to see that the circuits S′, P′, and V ′ are constructed in polynomial
time, and they can be polynomial-time computable. Now, we denote the new set of k
distinct standard sources by Π′ := {(πi,πi,0) ∈ U ; i = 1,2, . . . ,k}. We complete the
construction of the intermediate instance IM.

Before completing the first step, we verify that we can extract a solution to I
from a solution to IM in polynomial time. First, we show that each valid arc on S′

and P′ is increased by exactly one.

Claim 4.13. Let u = (x,y,z) ∈ U . If S′(u) ̸= u, then it satisfies that P′(S′(u)) = u
and V ′(S′(u)) =V ′(u)+1. Similarly, if P′(u) ̸= u, then it satisfies that S′(P′(u)) = u
and V ′(u) =V ′(P′(u))+1.

Proof. It is clear from our construction. If a vertex u = (x,y,z) satisfies that S′(u) ̸=
u, then V ′(u) = z. Therefore, we have V ′(S′(u)) = z+ 1. Similarly, it holds that
V ′(u) =V ′(P′(u))+1 when P′(u) ̸= u.

Next, we show that if a vertex u = (x,y,z) ∈ U is a sink or a source, x = y holds.
The next claim states the contraposition of this.

Claim 4.14. For each vertex u = (x,y,z) ∈ U , if x ̸= y then S′(P′(u)) = u and
P′(S′(u)) = u.

Proof. We only consider when S(x) = y and P(y) = x hold because x is a self-loop
in all other cases. From Algorithm 3, we have

P′(u) =

{
(x,y,z−1) if V (x)+1 < z <V (y)−1,
(x,x,z−1) if V (x)+1 = z <V (y).

Hence, S′(P′(u)) = u holds. Similarly, we can see that P′(S′(u)) = u holds if x ̸= y.
Therefore, the claim follows.

So far, we have shown the properties that the intermediate instance IM satisfies.
We prove that we can efficiently convert a solution to the original instance I from a
solution to the intermediate instance IM. First, we show that every sink u=(x,y,z)∈
U on S′ and P′ includes an original solution, specifically, x is a sink for I . This fact
appears in the proof of the next claim. The following claim is useful in the second
step; a vertex u is a sink if and only if u has potential 2h −1.

Claim 4.15. Let u= (x,y,z)∈U . A vertex u is a sink on S′ and P′, i.e., P′(S′(u)) ̸= u,
if and only if V ′(u) = z = 2h −1.

Proof. First, we prove that V ′(u) = z = 2h − 1 when a vertex u is a sink on S′ and
P′. From Claim 4.14 and Claim 4.13, it satisfies that x = y and S′(u) = u ̸= P′(u).
We show that P(S(x)) ̸= x holds. For the sake of contradiction, we suppose that

42 Chapter 4. On the Complexity of Parity Argument with Potential

P(S(x)) = x. It is clear that S′(u) = u = P′(u) if S(x) = x. This is contradiction from
P′(u) ̸= u. Therefore, we have S(x) ̸= x and P(S(x)) = x. It satisfies that V (x) ̸= z
since S′(u) = u. This implies that P′(u) = u, which contradicts. Hence, P(S(x)) ̸= x
holds, and thus, x is a sink on the original instance. Notice that P′(u) ̸= u, we have
V (x)< z, and it satisfies that z = 2h −1 by S′(u) = u.

Conversely, we prove that if V ′(u) = z = 2h − 1, then P′(S′(u)) ̸= u holds. It is
easy to see that at least one of S′(u) ̸= u and P′(u) ̸= u since V ′(u) = z = 2h −1 > 0.
By definition, every u ∈U has V ′(u)< 2h. This implies that S′(u) = u and P′(u) ̸= u
hold.

Next, we show that we can efficiently take an original solution from each source
u = (x,y,z) ∈ U on S′ and P′. This fact appears in the proof of Claim 4.16. In this
claim, we show that if a vertex u is a source, u has potential 0. Conversely, if a vertex
u has a potential 0 and it is not self-loop, u is a source. Notice that assuming u ̸∈ Π′

in Claim 4.16, we obtain a non-standard source on S and P, that is, we get a solution
to I efficiently.

Claim 4.16. We assume that a vertex u = (x,y,z) ∈ U is not a self-loop for S′ and
P′. The vertex u is a source, i.e., S′(P′(u)) ̸= u, if and only if V ′(u) = z = 0.

Proof. From Claim 4.14, we have x = y. Applying Claim 4.13, it satisfies that
P′(u) = u ̸= S′(u). First, we prove that S(P(x)) ̸= x holds. For the contradiction,
we suppose that S(P(x)) = x. We obviously see that S′(u) = u if P(x) = x. This is a
contradiction from S′(u) ̸= u. Therefore, we have P(x) ̸= x and S(P(x)) ̸= x. Since
P′(u) = u, it satisfies that V (x) ̸= z. and thus, we have S′(u) = u, which contradicts.
Hence, S(P(x)) ̸= x holds, i.e., x is a source on the original instance. Notice that
S′(u) ̸= u, we have V (x)> z, and it satisfies that z = 0 by P′(u) = u.

Conversely, we prove that if V ′(u) = z = 0, then S′(P′(u)) ̸= u. Notice that u
is not a self-loop for S′ and P′, we have at least one of S′(u) ̸= u and P′(u) ̸= u.
Furthermore, for every vertex in U , the potential function V ′ has a non-negative
value. It must hold that P′(u) = u from Claim 4.13, and thus we have S′(u) ̸= u. This
implies that the vertex u is a source for S′ and P′.

We complete the first step, construction of the intermediate instance IM. Note
that this instance is also a valid instance of kS-EOPL. From now on, we start the
second step. In the second step, we construct a polynomial-time reduction from kS-
EOPL to END OF POTENTIAL LINE. Specifically, we transform IM to the instance
J of END OF POTENTIAL LINE in polynomial time. Note that we can extract
an original solution from a solution to J if we efficiently extract an intermediate
solution from a solution to J since we can convert an original solution from a
solution to the intermediate solution in polynomial time.

First, we define the set Γk :=
⋃2h−1

α=0 Γk(α), where

Γk(α) := {{u1 . . . ,uk};∀i ̸= j,ui ̸= u j,∀i,V ′(ui) = α, and ui ∈ U }.

It is easy to see that we can decide whether a given string v = {u1, . . . ,uk} is in Γk
in polynomial time. Moreover, the bit-length of v = {u1, . . . ,uk} in Γk is bounded by
some polynomial in n. We need (2n+h)-bits to represent each ui, so k(2n+h)-bits

4.3. Multi Source Problems 43

are sufficient to represent v. Notice that k is a constant number, this is a polynomial
in n.

For each vertex v = {u1, . . . ,uk} in Γk, we define the successor circuit Sk and the
predecessor circuit Pk as follows. If there exists an element ui such that S′(ui) =
ui = P′(ui), then Sk(v) = v, otherwise Sk(v) = {S′(u1), . . . ,S′(uk)}. Similarly, if there
exists an element ui such that S′(ui) = ui = P′(ui), then Pk(v) = v, otherwise Pk(v) =
{P′(u1), . . . ,P′(uk)}.

It satisfies that Sk(v) is also in Γk for each vertex v = {u1, . . . ,uk} in Γk. It is clear
that when there is an element ui such that S′(ui) = ui = P′(ui). Therefore, we show
when there are no such elements. It suffices to prove that S′(ui) ̸= S′(u j) for each
pair of ui and u j with ui ̸= u j. If ui is a sink on S′ and P′, i.e., S′(ui) = ui ̸= P(ui),
then V ′(ui) = 2h − 1. From Claim 4.15, it follows that V ′(u j) = 2h − 1 for every
j, and thus, u j is also a sink. We have that S′(ui) = ui ̸= u j = S′(u j). Next, we
show when ui is not a sink on S′ and P′. Note that u j is also not a sink. Suppose
for the sake of contradiction that S′(ui) = S′(u j). From Claim 4.13, it satisfies that
P′(S′(ui)) = ui. We get the following ui = P′(S′(ui)) = P′(S′(u j)) = u j, getting a
contradiction. Finally, we can easily see that V ′(S′(ui)) =V ′(S′(u j)) for each pair of
ui and u j with ui ̸= u j from Claim 4.13. Similarly, we can see that P′(v) is also in Γk
for each vertex v = {u1, . . . ,uk} in Γk.

We define the new potential function Vk as follows.

Vk(v) =

{
0 if Sk(v) = v = Pk(v),
V (u1) otherwise.

By definition, the above function Sk, Pk, and Vk can be constructed in polynomial
time, and they are polynomial-time computable. Finally, the new standard source
is defined as π∗ = {(π1,π1,0),(π2,π2,0), . . . ,(πk,πk,0)} ∈ Γk. It is easy to see that
Pk(π

∗) = π∗ ̸= Sk(π
∗) and Vk(π

∗) = 0 hold. Therefore, the tuple J = (k(2n +
h),h,Sk,Pk,Vk,π

∗) is a valid instance of END OF POTENTIAL LINE. In the rest of
this proof, we show that when we obtain a solution of J , we can convert to an
original solution in polynomial time.

First, we show that there are no violating solutions for J . Suppose that Sk(v) ̸=
v = {u1, . . . ,uk}. Then v is not a self loop with respect to Sk and Pk. Furthermore,
if there is an element ui in v such that S′(ui) = ui ̸= P′(ui), then it satisfies that
zi = 2h − 1 from Claim 4.15. This implies that z j = 2h − 1 for every j ∈ [k]. This
is a contradiction from Sk(v) ̸= v because it satisfies that S′(u j) = (u j) for every
j ∈ [k]. Therefore, it holds that S′(ui) ̸= ui for every i ∈ [k]. Therefore, we obtain that
P′(S′(ui)) = ui by the definitions of S′ and P′. From our normalization assumption for
I , it satisfies that V (S(x)) =V (x)+1 unless S(x) = x. This implies that V ′(S′(x))>
V ′(x) holds, and thus, there are no violating solutions for J .

Second, we consider that we obtain a solution v = {u1, . . . ,uk} satisfying that
Pk(Sk(v)) ̸= v. Then v has no elements which are self-loops. Hence, it holds that

{P′(S′(u1)), . . . ,P′(S′(uk))} ̸= {u1, . . . ,uk}.

Therefore, there exists at least one element ui such that P′(S′(ui)) ̸= ui holds. From
Claim 4.15, it must hold that V ′(ui)= 2h−1, and thus, V ′(u1)= · · ·=V ′(uk)= 2h−1
since v ∈ Γk. For every element u j = (x j,y j,z j) in v, it holds that P′(S′(u j)) ̸= u j.

44 Chapter 4. On the Complexity of Parity Argument with Potential

This implies that it satisfies that P(S(x j)) ̸= x j for every x j. Therefore, we can extract
one solution for the original instance in polynomial time.

Finally, we consider that we obtain a solution v = {u1, . . . ,uk} satisfying that
Sk(Pk(v)) ̸= v ̸= π∗. Then v has no elements which are self-loops. Hence, it holds
that

{S′(P′(u1)), . . . ,S′(P′(uk))} ̸= {u1, . . . ,uk}.

Therefore, there exists at least one element ui such that S′(P′(ui)) ̸= ui holds. From
Claim 4.16, it holds that V ′(ui) = 0. Hence, V ′(u1) = · · ·=V ′(uk) = 0 since v ∈ Γk.
Note that for every j ∈ [k], u j = (x j,y j,z j) is not a self-loop, and thus, this implies
that S′(P′(u j)) ̸= u j holds. Therefore, it satisfies that S(P(x j)) ̸= x j for every x j.
Since v ̸= π∗, there exists at least one string x j′ such that x j′ /∈ Π. Such a string x j′

corresponds to an original solution. Therefore, we can extract one solution for the
original instance in polynomial time.

From the above arguments, we complete the polynomial-time reduction from kS-
EOPL to END OF POTENTIAL LINE, and this implies that the problem kS-EOPL is
a member of the class EOPL.

The following theorem follows from Lemma 4.11 and Lemma 4.12.

Theorem 4.17. kS-EOPL is EOPL-complete.

Note that the proof of Lemma 4.12 works even if k is not constant. Indeed, our
proof works for a multiple-source variant that has at most polynomially numbers
of sources. We consider the following problem, and we immediately see that this
problem is an EOPL-complete problem.

Definition 4.18. MULTIPLE-SOURCE END OF POTENTIAL LINE (abbreviated MS-
EOPL)
Input:

• two Boolean circuits S,P : Σn → Σn

• a Boolean circuit V : Σn →{0,1, . . . ,2m −1}

• a set of k standard sources Π = {π1, . . . ,πk} such that P(π) = π ̸= S(π) and
V (π) = 0 for each π in Π.

Task: Find a vertex x in Σn satisfying at least one of the following:

(R1) P(S(x)) ̸= x, i.e., x is a sink

(R2) S(P(x)) ̸= x /∈ Π, and

(V1) S(x) ̸= x, P(S(x)) = x, and V (S(x))−V (x)≤ 0

Lemma 4.19. MS-EOPL is EOPL-complete.

Remark 4.20. Another variant of END OF POTENTIAL LINE worth considering is
finding a non-standard source, a sink, or a non-increasing arc when we are given k
standard sources and l standard sinks, where l < k. In the case of END OF LINE,
it can be easily reduced to (k− l)S-EOL in polynomial time [HG18]. We can add

4.3. Multi Source Problems 45

a valid arc from each of l standard sinks to some corresponding known source, and
thus, we obtain a valid instance with (k− l) standard sources and no standard sinks.
Unfortunately, this simple technique does not work for a variant of END OF POTEN-
TIAL LINE. Recall that every source/sink given by our reduction from kS-EOPL to
END OF POTENTIAL LINE contains k sources/sinks. Furthermore, the vertex con-
sisting of k standard sources is a standard source of the new instance. Therefore, we
can extract a non-standard source from an obtained non-standard source. Notice that
l < k, we can extract a non-standard sink from an obtained sink for the new instance.
That is, this variant is also EOPL-complete.

4.3.2 Higher Degree Problem: IMBALANCE with Potential
Up to this point, we have only considered implicit graphs where every vertex has
in-degree/out-degree at most one. However, the principle that guarantees the totality
of END OF POTENTIAL LINE can be generalized to higher degree implicit graphs.
If we are given an implicit digraph with potential and an “unbalanced” vertex, i.e., a
vertex with in-degree ̸= out-degree, then there must exist another unbalanced vertex
or a non-increasing arc.

In this section, we consider the new variant of the problem END OF POTENTIAL

LINE that corresponds to a higher degree digraph. We define this problem as follows.

Definition 4.21. POTENTIAL IMBALANCE

Input:

• an implicit digraph G(S,P) = (Σn,E)

– defined by two Boolean circuits S,P : Σn → Σdn

• a Boolean circuit V : Σn →{0,1, . . . ,2m −1}

• an unbalanced vertex π ∈ Σn such that δ+(π)> δ−(π).

Task: Find a vertex x ∈ Σn satisfying at least one of the following:

(R1) δ+(x) ̸= δ−(x) and x ̸= π ,

(V1) there exists a valid arc (x,y) ∈ E such that V (y)≤V (x)

By definition, it is not hard to see that the problem POTENTIAL IMBALANCE is
EOPL-hard. Surprisingly, this problem also belongs to EOPL, and thus POTENTIAL

IMBALANCE is EOPL-complete. To prove this, we show that there is a polynomial-
time reduction from POTENTIAL IMBALANCE to MS-EOPL in Lemma 4.22.

Lemma 4.22. POTENTIAL IMBALANCE is reducible to MS-EOPL in polynomial
time.

Proof. Our proof relies on the proof in Hollender and Goldberg [HG18]. The reduc-
tion constructed by this proof is the same as their technique, except for defining the
potential function. Indeed, our proof is completed simply by adding the construction
of a natural potential function to a polynomial-time reduction from IMBALANCE to
MS-EOPL constructed by Hollender and Goldberg [HG18].

46 Chapter 4. On the Complexity of Parity Argument with Potential

Let (n,m,d,S,P,V,π) be a valid instance of POTENTIAL IMBALANCE, and let
G(S,P) = (Σn,E) be the implicit digraph produced by S and P, where E is a set of
all valid arcs with respect to S and P.

To construct a reduction to MS-EOPL, we apply the “chessplayer algorithm”
used to prove that ODD reduces to LEAF by Papadimitriou [Pap94b]. We fix a label
function λ+

x : E+(x) → [δ+(x)] and λ−
x : E−(x) → [δ−(x)] for each vertex x ∈ Σn.

The function λ+
x (y) is the index of y in successor list of x, ordered in lexicographi-

cally. Similarly, the function λ−
x (z) corresponds to the index of z in predecessor list

of x, ordered in lexicographically. Note that both functions λ+
x and λ−

x are bijective
and polynomial-time computable. This means that there exists an algorithm com-
puting the label λ+

x ((x,y)) for given vertex x in Σn and valid arc (x,y) in E+(x) in
polynomial time. Similarly, there exists an algorithm computing the label λ−

x ((y,x))
for a given vertex x in Σn and a valid arc (y,x) in E−(x) in polynomial time.

To show the reduction to MS-EOPL, we consider the following vertex set,

K =
⋃

x∈Σn

{(i,x); i ∈ [d(x)]},

where d(x) = max{δ+(x),δ−(x)}. Furthermore, we define a successor S′ and a
predecessor P′ over K as follows.

For each vertex (i,x) ∈ K , if i > δ+(x), then define S′(i,x) = (i,x), else define
S′(i,x) = (j,y), where y∈ Σn satisfies that λ+

x ((x,y)) = i and the label j = λ−
y ((x,y)).

Since the label function is a bijection, such a string y and a label j are unique for each
vertex (i,x).

Similarly, for each vertex (i,x)∈K , if i> δ−(x), then P′(i,x)= (i,x), else define
P′(i,x) = (j,y), where y∈ Σn satisfies that λ−

x ((y,x)) = i and the label j = λ+
y ((y,x)).

Since the label function is a bijection, such a string y and a label j are unique for each
(i,x).

It is easy to see that the functions S′ and P′ can be constructed in polynomial
time. Straightforwardly, following two claims hold.

Claim 4.23. For each vertex (i,x) ∈ K , if S′(i,x) ̸= (i,x), then P′(S′(i,x)) = (i,x).

Proof. Since S′(i,x) ̸= (i,x), it satisfies that i ≤ δ+(x). We can uniquely write
S′(i,x)= (j,y) since the label function is a bijection. Now, it satisfies that (λ+

x)−1(i)=
(x,y) ∈ E and j = λ−

y ((x,y)). Therefore, P′(j,y) = (i,x) holds, and thus, it satisfies
that P′(S′(i,x)) = (i,x).

Lemma 4.24. For each vertex (i,x) ∈K , if P′(i,x) ̸= (i,x), then S′(P′(i,x)) = (i,x).

Proof. Since P′(i,x) ̸= (i,x), it satisfies that i ≤ δ−(x). We can uniquely write
P′(i,x) = (j,y). Now it satisfies that (λ−

x)−1(i) = (y,x) ∈ E and j = λ+
y ((y,x)).

Therefore, we obtain that S′(j,y) = (i,x), and thus, this implies that S′(P′(i,x)) =
(i,x) holds.

Furthermore, we define by Π′ = {(i,π);δ−(π)< i ≤ δ+(π)} the set of all stan-
dard sources. It is easy to see that every element of Π′ is a souse. For every vertex

4.3. Multi Source Problems 47

(i,x), we define

V ′(i,x) :=

{
0 if (i,x) ∈ Π′,

V (x) otherwise.

From the above arguments, the tuple (m+ n,m,S′,P′,V ′,Π′) is a valid instance
of MS-EOPL, and these constructions can be in polynomial time. In the rest of this
proof, we show that when we obtain a solution of (m+ n,m,S′,P′,V ′,Π′), we can
convert it to an original solution in polynomial time.

First, we consider the case that we obtain a solution (i,x) ∈ K satisfying that
P′(S′(i,x)) ̸= (i,x). Then it holds that S′(i,x) = (i,x) from Claim 4.23. Hence, it
satisfies that δ+(x) < i. Since S′(i,x) = (i,x), it holds that P′(S′(i,x)) = P′(i,x) ̸=
(i,x). Therefore, it satisfies that i ≤ δ−(x), and thus, δ+(x) < δ−(x) holds. This
implies that x is a solution for the original instance.

Second, we consider the case that we obtain a solution (i,x) ∈ K satisfying that
S′(P′(i,x)) ̸= (i,x) /∈ Π′. Then it holds that δ−(x) < i from the definition of P′.
This implies that x ̸= π since (i,x) /∈ Π′. Furthermore, it holds that S′(P′(i,x)) =
S′(i,x) ̸= (i,x) since P′(i,x) = (i,x), and thus, i ≤ δ+(x) holds. Hence, it satisfies
that δ−(x)< δ+(x), and this implies that x is a solution for the original instance.

Finally, we consider the case that we obtain a solution (i,x) satisfying that S′(i,x)
̸= (i,x), P′(S′(i,x)) = (i,x), and V ′(S(i,x)) ≤ V ′(i,x). Since S′(i,x) ̸= (i,x), there is
a valid arc (x,y) ∈ E such that S′(i,x) = (j,y). Furthermore, it holds that V (y) =
V ′(S′(i,x)) ≤ V ′(i,x) = V (x) by the definition of V ′. Hence, x is a solution to the
original instance.

We complete the construction of the polynomial-time reduction form POTEN-
TIAL IMBALANCE to MS-EOPL.

Straightforwardly, we obtain the following theorem from the above lemma.

Theorem 4.25. POTENTIAL IMBALANCE is EOPL-complete.

Remark 4.26. In the definition of the problem POTENTIAL IMBALANCE (see Defi-
nition 4.21), we assume that the standard unbalanced vertex π satisfies that δ+(π)>
δ−(π) on the implicit digraph G(S,P) with the potential function V . In fact, the
proof of Lemma 4.22 works even if we assume that the standard vertex π satisfies
that δ+(π)< δ−(π) on the implicit digraph G(S,P) with the potential function V by
making a simple modification. Specifically, we define the new potential function as
(2m −1)−V (x) for each vertex x in Σn, and change the direction of every valid arcs.
Therefore, without loss of generality, we assume that the standard unbalanced vertex
π given by an instance of POTENTIAL IMBALANCE satisfies that δ+(π) ̸= δ−(π).

4.3.3 Looking for Multiple Solutions
As mentioned in the Introduction, Hollender and Goldberg [HG18] also proved that
the problem, in which given k sources, find k distinct sources or sinks, is also PPAD-
complete. Now, we consider a generalized problem of END OF POTENTIAL LINE

that is similar to this problem. The principle that guarantees the existence of solutions
for END OF POTENTIAL LINE implies that if there are k sources, then there must

48 Chapter 4. On the Complexity of Parity Argument with Potential

exist at least k distinct sinks. Clearly, this problem is EOPL-hard. In this section, we
show that this problem also belongs to EOPL. The new variant of the problem END

OF POTENTIAL LINE is defined as follows.

Definition 4.27. k-END OF POTENTIAL LINE

Input:

• two Boolean circuits S,P : Σn → Σdn

• a Boolean circuit V : Σn →{0,1, . . . ,2m −1}

• a set of k standard sources Π = {π1, . . . ,πk} such that P(π) = π ̸= S(π) and
V (π) = 0 for each π in Π.

Task: Find a vertex x ∈ Σn satisfying at least one of the following:

(R1) xi ̸= P(S(xi)),

(R2) S(P(xi)) ̸= xi /∈ Π, and

(V1) S(xi) ̸= xi and P(S(xi)) = xi, and V (S(xi))−V (xi)≤ 0.

By definition, it is easy to see that kS-EOPL is EOPL-hard. For every given
instance of END OF POTENTIAL LINE, we create k copies it.

Lemma 4.28. k-EOPL is EOPL-hard.

Surprisingly, the complexity is the same as in EOPL; this problem is reducible to
END OF POTENTIAL LINE in polynomial time. We show this result in Lemma 4.29.
Our technique is an extension of the technique by Hollender and Goldberg [HG18]
to END OF POTENTIAL LINE. Their technique has a weak point: It possibly can not
efficiently compute a potential for each vertex. Our method shown in Lemma 4.12
gets over this weak point, i.e., we can efficiently compute a potential for each vertex.

Lemma 4.29. k-EOPL is reducible to END OF POTENTIAL LINE in polynomial time.

Proof. Let I = (n,m,S,P,V,Π) be a valid instance k-EOPL. First, we assume that
I is already normalized by applying the method Proposition 4.2. Notice that our
method also works for multiple-source variants. Hence, in this proof, we assume that
the following properties holds:

• if S(x) ̸= x then P(S(x)) = x and V (S(x))>V (x);

• if P(x) ̸= x then S(P(x)) = x and V (x)>V (P(x)).

Note that we might be able to extract strictly fewer than k solutions to the original
instance when we are given k solutions to the normalized instance. In the normaliza-
tion method shown in Proposition 4.2, we remove a non-increasing arc, and we make
two new solutions; a sink and a non-standard source. If we get these two solutions,
we can only extract a single solution to the original instance.

Our reduction from k-EOPL to END OF POTENTIAL LINE constructed in this
proof avoids this. A solution to the new instance consists of either k′ distinct sinks
or k′ distinct sources for the normalized instance, where k′ ≥ k. Notice that every

4.3. Multi Source Problems 49

solution of the new instance does not mix the sinks and sources of the normalized
instance. Therefore, we always extract the k distinct solutions to the original instance.

Let U = Σn ×Σn ×{0,1, . . . ,2h − 1} and h = 2n+m. First, we construct three
polynomial-time computable and constructive circuits S′,P′ : U →U and V ′ : U →
{0,1, . . . ,2h −1} that are constructed in the proof of Lemma 4.12.

Hereafter, the same construction as Lemma 4.12 is continued. However, only the
vertex set is different. For each l = 0,1, . . . ,k and each α = 0,1, . . . ,2h−1, we define
Γk+l :=

⋃2h−1
α=0 Γk+l(α), where

Γk+l(α) := {{u1, . . . ,uk+l};∀i ̸= j,ui ̸= u j and ∀i,V ′(ui) = α,ui ∈ U }.

Notice that k is constant. For every given string v = {u1, . . . ,uk+l}, we can check
whether v is in Γk+l in polynomial time. Moreover, the bit-length of string v =
{u1, . . . ,uk+l} ∈ Γk+l is bounded by polynomial in n. We need (2n+h)-bits to rep-
resent each ui, and thus, (2k+1)(2n+h)-bits are sufficient to represent v.

For each l = 0,1, . . . ,k, we define a successor Sk+l and a predecessor Pk+l over
Γk+l as follows.

• If l is even, then for each v = {u1, . . . ,uk+l}, we define

Sk+l(v) :=

{
{(u1, . . . ,uk+l} if there exists ui that is a self-loop,
{S′(u1), . . . ,S′(uk+l)} otherwise,

and

Pk+l(v) :=

{
{u1, . . . ,uk+l} if there exists ui that is a self-loop,
{P′(u1), . . . ,P′(uk+l)} otherwise.

• If l is odd, then for each v = {u1, . . . ,uk+l}, we define

Sk+l(v) :=

{
{u1, . . . ,uk+l} if there exists ui that is a self-loop,
{P′(u1), . . . ,P′(uk+l)} otherwise,

and

Pk+l(v) :=

{
{u1, . . . ,uk+l} if there exists ui that is a self-loop,
{S′(u1), . . . ,S′(uk+l)} otherwise.

Note that the direction of the valid arc is different when l is even and odd. Further-
more, we define the potential function Vk+l depending on the parity of l as follows.
For each vertex v = {u1, . . . ,uk+l} in Γk+l , if v is a self loop with respect to S′ and
P′, then we define Vk+l(v) = 0, else we define

Vk+l(v) :=

{
V ′(u1) if l is even,
(2h −1)−V ′(u1) if l is odd.

Finally, we define by Π′ = {(π1,π1,0), . . . ,(πk,πk,0)} the standard source, where πi
is in Π for each i ∈ [k].

50 Chapter 4. On the Complexity of Parity Argument with Potential

FIGURE 4.3: The paths consisting of rounded vertices is a path where
l is odd. On the other hand, the paths consisting of square vertices
is a path where l is even. The red vertices are bad solutions. The
blue vertex is a standard source. The red arcs represent the new arc

introduced by the method of Hollender and Goldberg [HG18].

We denote by Gk+l(Sk+l,Pk+l)= (Γk+l,Ek+l) the implicit digraph that are derived
from Sk+l , Pk+l for each l = 0,1, . . . ,k. Moreover, the implicit graph Gk+l(Sk+l,Pk+l)
has the potential function Vk+l for each l = 0,1, . . . ,k. To simply the notation, we
denote by Gk+l(Sk+l,Pk+l,Vk+l) this implicit digraph with potential. It is easy to see
that Gk+l(Sk+l,Pk+l,Vk+l) has the following sinks and sources:

• Let t1, . . . , tk+l be distinct k+ l sinks with respect to S′ and P′. Then the vertex
{t1, . . . , tk+l} in Γk+l is a sink of Gk+l if l is even, and {t1, . . . , tk+l} in Γk+l is
a non-standard source of Gk+l if l is odd. Therefore, we can extract at least k
original solutions.

• Let s1, . . . ,sk+l be distinct k + l sources with respect to S′ and P′. Then the
vertex {s1, . . . ,sk+l} in Γk+l is a source of Gk+l if l is even, and {s1, . . . ,sk+l}
in Γk+l is a sink of Gk+l if l is odd. However, it might contain strictly less than
k non-standard sources of the original instance, and thus, we can not extract k
distinct original solutions. In this case, we call {s1, . . . ,sk+l} a bad solution.

To complete our reduction from k-EOPL to END OF POTENTIAL LINE, we
need to remove every bad solution. Hollender and Goldberg [HG18] established
the method of removing every bad solution from a sink and a non-standard source of
Gk+l . They made a one-to-one correspondence between bad solutions that are sinks
and bad solutions that are sources and connected two bad solutions. Thereby, their
technique removed bad solutions from sinks and non-standard sources. See Figure
4.3. Notice that a bad solution is a sink when l is odd, and a bad solution is a source
when l is even, we can efficiently compute the potential without generating violating
solutions.

Our reduction heavily relays on the elegant technique of Hollender and Goldberg
[HG18]; in the following, we apply their method to construct the new successor
circuit Ŝ and the new predecessor circuit P̂.

First, we fix a strict order on the set of standard sources Π. Here, we suppose that
an order such π1 ≺ π2 ≺ ·· · ≺ πk is given. Then we consider the set Γ̂ =

⋃k
l=0 Γ̂k+l ,

where Γ̂k+l := {(v,(a1, . . . ,al)); v ∈ Γk+l , ai ∈ Π for all i ∈ [l], and a1 ⪯ a2 ⪯ ·· · ⪯
al}. In particular, for l = 0, the elements of Γ̂k+l are the form (v,()), where ()
denotes the empty tuple. Furthermore, the bit-length of a string (v,(a1, . . . ,al)) ∈ Γ̂

is bounded by some polynomial in n. We need at most (2k + 1)(2n + h)-bits to

4.3. Multi Source Problems 51

({s,π1,π2},(π2))

({s,π1,π2},(π1))

({π1,π2},())

({s,π1},())

({s,π2},())

FIGURE 4.4: An example of removing bad solutions when k = 2. An
element s is any source, and πi is a standard source for each i = 1,2.
The paths consisting of rounded vertices is a path where l = 1. On
the other hand, the paths consisting of square vertices is a path where
l = 0. The red vertices are bad solutions. The blue vertex is a standard
source. Note that when l = 2, every sink and every source are solution

that we can extract two original solutions.

represent v, (2n+ h)-bits to represent each al , and (log2(l)+ 1)-bits to express the
value l. Hence, ((2k + 1)(2n+ h) + k(2n+ h) + log2(k) + 1)-bits are sufficient to
represent (v,(a1, . . . ,al)). This is a polynomial in n since k is a constant number.

We define the new successor circuit Ŝ and the new predecessor circuit P̂ for this
vertex set Γ̂ as follows. First, we consider the case of that l is even. For each ver-
tex (v,(a1, . . . ,al)) in Γ̂, if v is not a source, then we define Ŝ(v,(a1, . . . ,al)) :=
(Sk+l(v),(a1, . . . ,al)) and P̂(v,(a1, . . . ,al)) := (Pk+l(v),(a1, . . . ,al)). On the other
hand, if v is a source, i.e., it satisfies that Sk+l(Pk+l(v)) ̸= v, then we can write v =
K∪U , where K ⊆ Π′ and U ⊆ Γk+l \Π′. Note that K∩U = /0 holds. If |U | ≥ k, then
we can extract k distinct original solutions, and thus, we define Ŝ(v,(a1, . . . ,al)) :=
(Sk+l(v),(a1, . . . ,al)) and P̂(v,(a1, . . . ,al)) := (Pk+l(v),(a1, . . . ,al)). However, if |U |
< k, then we can not extract k distinct original solutions. Hence, we introduce the
new valid arc to remove the vertex (v,(a1, . . . ,al)) from a non-standard source.

Here, let K̄ = Π′ \K, and define max(X) := argmax≺X for every subset X ⊆ Π′;
specifically, let a1 ≻ max(/0). For vertex v = K ∪U , if al ≻ max(K̄), then we define

Ŝ(v,(a1, . . . ,al)) := (Sk+l(v),(a1, . . . ,al))

and

P̂(v,(a1, . . . ,al)) := ((K \{al}∪U),(a1, . . . ,al−1)).

On the other hand, if al ⪯ max(K̄) =: j and l > 0, then we define

Ŝ(v,(a1, . . . ,al)) := (Sk+l(v),(a1, . . . ,al))

and

P̂(v,(a1, . . . ,al)) := ((K ∪{ j})∪U),(a1, . . . ,al, j)),

52 Chapter 4. On the Complexity of Parity Argument with Potential

else if al ⪯ max(K̄) =: j and l = 0, the define as follows.

Ŝ(v,()) := (Sk+l(v),())

and

P̂(v,()) :=

{
((K ∪{ j})∪U),(j)) if |U |> 0,
(v,()) if |U |= 0.

Next, we consider the case that l is odd. For each vertex (v,(a1, . . . ,al)) ∈ Γ̂, if
v is not a sink, then Ŝ(v,(a1, . . . ,al)) = (Sk+l(v),(a1, . . . ,al)) and P̂(v,(a1, . . . ,al)) =
(Pk+l(v),(a1, . . . ,al)). On the other hand, if v is a sink, i.e., it satisfies that P′(S′(v)) ̸=
v, then we can write v = K ∪U , where K ⊆ Π′ and U ⊆ Γk+l \Π′ with K ∩U =
/0. If |U | ≥ k, then we can extract k distinct original solutions. Hence we define
Ŝ(v,(a1, . . . ,al))= (Sk+l(v),(a1, . . . ,al)) and P̂(v,(a1, . . . ,al))= (Pk+l(v),(a1, . . . ,al)).
However, if |U |< k, then we can not extract k distinct original solutions. Hence, we
introduce the new valid arc to remove the vertex (v,(a1, . . . ,al)) from a sink.

For vertex v = K ∪U , if al ≻ max(K̄), then we define

Ŝ(v,(a1, . . . ,al)) := ((K \{al})∪U),(a1, . . . ,al−1))

and

P̂(v,(a1, . . . ,al)) := (Pk+l(v),(a1, . . . ,al)).

On the other hand, if al ⪯ max(K̄) =: j and l > 0, then we define

Ŝ(v,(a1, . . . ,al)) := ((K ∪{ j})∪U),(a1, . . . ,al, j))

and

P̂(v,(a1, . . . ,al)) := (Pk+l(v),(a1, . . . ,al)).

From the above definitions Ŝ and P̂, the every bad solution is removed from a sink
and a standard source. This completes the application of the technique by Hollender
and Goldberg [HG18]. We can immediately see that their method removes every bad
solution. In Figure 4.4, we show an example of their method for k = 2. What remains
is to define the potential function.

Finally, we define the new potential function V̂ to complete the reduction. For
each vertex (v,(a1, . . . ,al)), we define

V̂ (v,(a1, . . . ,al)) := 2h
χeven(l)+Vk+l(v),

where χeven(l) is 1 if l is even, and is 0 if l is odd. Exceptionally, we define
V̂ (Π′,()) = 0.

It is easy to see that this construction is polynomial-time computable. The tuple
(Ŝ, P̂,V̂ ,Π′) is a valid instance of END OF POTENTIAL LINE. Moreover, we can
efficiently extract an original solution from a sink and a non-standard source on Ŝ
and P̂.

4.4. The Hardness of Parity Argument with Potential 53

What remains is to verify that each valid arc added to remove a bad solution
is an increasing arc. We prove that each bad solution is not a violating solution
for (Ŝ, P̂,V̂ ,Π′), and we complete the polynomial-time reduction from k-END OF

POTENTIAL LINE to END OF POTENTIAL LINE.
First, if l is even, then every bad solution (v,(a1, . . . ,al)) is a non-standard source

for Sk+l and Pk+l . In particular, it satisfies that Vk+l(v) = 0. Therefore, the vertex
(v,(a1, . . . ,al)) is assigned the potential V̂ (v,(a1, . . . ,al)) = 2h. Now, let (w,τ) =
P̂(v,(a1, . . . ,al)). By the definition of V̂ , it holds that V̂ (w,τ) = 2h − 1 < 2h =
V̂ (v,(a1, . . . ,al)). Moreover, it satisfies that (w,τ) = P̂(v,(a1, . . . ,al)) and Ŝ(w,τ) =
(v,(a1, . . . ,al)). That is, the vertex (v,(a1, . . . ,al)) is not a solution.

Next if l is odd, the every bad solution (v,(a1, . . . ,al)) is a sink for Sk+l and Pk+l .
In particular, it satisfies that Vk+l(v) = 2h −1. Thus, it holds that V̂ (v,(a1, . . . ,al)) =
2h−1. Now, let (w,τ) = Ŝ(v,(a1, . . . ,al)). By the definition of V̂ , it holds that V̂ (w,τ)
= 2h > 2h−1= V̂ (v,(a1, . . . ,al)). Moreover, it satisfies that (w,τ)= Ŝ(v,(a1, . . . ,al))
and P̂(w,τ) = (v,(a1, . . . ,al)). Hence, the vertex (v,(a1, . . . ,al)) is not a solution.

Immediately, we get EOPL-completeness of k-END OF POTENTIAL LINE by com-
bining the above lemmas.

Theorem 4.30. k-EOPL is EOPL-complete.

4.4 The Hardness of Parity Argument with Potential
In this section, we study the complexity of the parity argument with potential. As
mentioned in Section 3.3.6, the class EOPL is characterized by END OF POTENTIAL

LINE. Up to this point, we show that the classification by this problem is robust.
Recall the definition of END OF POTENTIAL LINE. This problem can be viewed as
the problem that each instance of END OF LINE relaxed by a potential condition,
in which every valid arc is an increasing arc. Incidentally, every undirected graph
with potential can be introduced to a natural orientation by its potential. The natural
question arises. How hard is a PPA-complete problem which is given a potential
condition, e.g., the problem POTENTIAL LEAF (see Definition 4.31)? Also, is the
classification based on such a problem robust? In Section 4.4.1, we show that the
problem, in which every instance of LEAF is given a potential condition, is EOPL-
complete. However, the problem, in which every instance of ODD is given a potential
condition, is much harder than END OF POTENTIAL LINE, specifically, this problem
is PPA∩PLS-complete (see Section 4.4.2 for details).

4.4.1 The Problem: POTENTIAL LEAF
In this section, we introduce a new problem called POTENTIAL LEAF. This problem
is the most simple generalization of END OF POTENTIAL LINE. Informally speak-
ing, this problem is defined as: given an implicit undirected graph that every vertex
has degree at most two, a potential function, and a known leaf, find at least one of
another leaf and a local optimum solution. Intuitively, this problem is EOPL-hard.
We can construct a polynomial-time reduction by replacing every valid arc on an
instance of END OF POTENTIAL LINE by an undirected edge. Not surprisingly, the

54 Chapter 4. On the Complexity of Parity Argument with Potential

problem POTENTIAL LEAF is polynomially equivalent to the problem END OF PO-
TENTIAL LINE; we can introduce a natural direction to each edge on an instance of
POTENTIAL LEAF.

Definition 4.31. POTENTIAL LEAF

Input:

• an implicit graph with potential G(N,V) = (Σn,E) defined by

– a Boolean circuit N : Σn → Σ2n and

– a Boolean circuit V : Σn →{0,1, . . . ,2m −1}

• a vertex π ∈ Σn such that degG(π) = 1 and V (π) = 0.

Task: Find a non-isolated vertex satisfying at least one of the following:

(R1) x ̸= π and degG(x) = 1,

(R2) x ̸= π and V (x)≤V (y) for every valid edge {x,y} in E, and

(R3) V (x)≥V (y) for every valid edge {x,y} in E

Theorem 4.32. POTENTIAL LEAF is an EOPL-complete problem.

Proof. By the definition of POTENTIAL LEAF, it is straightforward to see that this
problem is EOPL-hard. Therefore, it suffices to prove that POTENTIAL LEAF is
polynomial-time reducible to END OF POTENTIAL LINE.

Let (n,m,N,V,π) be a valid instance of POTENTIAL LEAF. Without loss of gen-
erality, we assume that the neighborhood function N always computes valid edges,
i.e., it satisfies that for each pair of vertices x and y in Σn, y ∈ N(x) if and only if
x ∈ N(y).

We construct the successor circuit S and the predecessor circuit P as follows. Let
N(π) = {ρ}, where ρ ̸= π . We first define S(π) := ρ and P(π) = π . For every
vertex x ∈ Σn with x ̸= π , we define S(x) := argmax{y ∈ N(x);V (y) > V (x)} and
P(x) := argmax{y ∈ N(x);V (y)<V (x)}. However, select exactly one that is lexico-
graphically small if there are two vertices that have the same potential. Furthermore,
if argmax{y ∈ N(x);V (y) > V (x)} is empty, then the successor circuit S outputs x,
similarly if argmax{y ∈ N(x);V (y) < V (x)} is empty, then the successor circuit P
outputs x.

From the above definitions, it holds that P(π) = π ̸= S(π) and V (π) = 0. There-
fore, the tuple (n,m,S,P,V,π) is a valid instance of END OF POTENTIAL LINE. In
the rest of this proof, we show that when we obtain a solution of (n,m,S,P,V,π), we
can convert to an original solution in polynomial time.

First, we consider when we obtain a solution x ∈ Σn satisfying that P(S(x)) ̸=
x. If S(x) = x, then for every y ∈ N(x), it holds that V (y) ≤ V (x) by definition.
Thus, x is a local maximum solution. Otherwise, i.e., S(x) ̸= x, then it satisfies
that V (S(x)) > V (x). Since P(S(x)) ̸= x, there is a vertex z ∈ N(S(x)) such that
V (z)≤V (x)<V (S(x)) and z ̸= x. Note that x ∈ N(S(x)), and thus, N(S(x)) = {x,z}.
Hence, S(x) is a local maximum solution since V (S(x))>V (x) and V (S(x))>V (z).

Second, we consider when we obtain a solution x in Σn satisfying that S(P(x)) ̸=
x ̸= π . If P(x) = x, then for every y ∈ N(x), it holds that V (y) ≥ V (x) by definition.

4.4. The Hardness of Parity Argument with Potential 55

This implies that x is a local minimum solution. Otherwise, i.e., P(x) ̸= x, then it
satisfies that V (P(x)) < V (x). Furthermore, there exists a vertex z ∈ N(P(x)) such
that V (P(x))<V (x)≤V (z) and z ̸= x since S(P(x)) ̸= x. Note that x ∈ N(P(x)), and
thus, N(P(x)) = {x,z}. Hence, P(x) is a local minimum solution since V (P(x)) <
V (x) and V (P(x))<V (z).

Finally, it is easy to see that there are no violating solutions for the instance
(n,m,S,P,V,π). From the above arguments, we complete the polynomial-time reduc-
tion from POTENTIAL LEAF to END OF POTENTIAL LINE. Therefore, the problem
POTENTIAL LEAF is an EOPL-complete problem.

4.4.2 The Problem: POTENTIAL ODD
In Section 4.4.1, we have only considered graphs where every vertex has degree
at most two. Now, we generalize the problem POTENTIAL LEAF to a new search
problem on higher degree graphs, called POTENTIAL ODD. This problem is defined
as follows.

Definition 4.33. POTENTIAL ODD

Input:

• an implicit graph with potential G(N,V) = (Σn,E) defined by

– a Boolean circuit N : Σn → Σdn and

– a Boolean circuit V : Σn →{0,1, . . . ,2m −1}

• an odd-degree vertex π ∈ Σn on G(N,V).

Task: Find a non-isolated vertex x ∈ Σn satisfying at least one of the following:

(R1) x ̸= π and degG(x) = 2k+1 for some non-negative integer k,

(R2) V (x)≥V (y) for every y ∈ N(x) with {x,y} ∈ E, and

(R3) V (x)≤V (y) for every y ∈ N(x) with {x,y} ∈ E.

It is clear to see that POTENTIAL ODD belongs to the class PPA∩PLS. Recall that
the parity argument guarantees that every finite graph has an even number of odd-
degree vertices, that is, at least one unknown odd-degree vertex exists when we have
a known odd-degree vertex. Naturally, this principle works for every finite graph with
potential. Moreover, we can find a local minimum or maximum vertex by applying
a local search method.

Therefore, in the rest of this thesis, we focus on the hardness of this problem.
First, we show that POTENTIAL ODD is, generally, PPA∩PLS-hard, and thus, this
problem is a PPA∩PLS-complete problem.

Theorem 4.34. POTENTIAL ODD is a PPA∩PLS-complete problem.

Proof. We first show that POTENTIAL ODD belongs to PPA∩PLS. Let I = (n,m,d,
N,V,π) be a valid instance of POTENTIAL ODD. Then, the tuple (n,d,N,π) is a
valid instance of ODD. Furthermore, every solution of (n,d,N,π) is also a solution
to I . Hence, POTENTIAL ODD is in PPA.

56 Chapter 4. On the Complexity of Parity Argument with Potential

We prove that POTENTIAL ODD also belongs to PLS. To prove this, we construct
a polynomial-time reduction from POTENTIAL ODD to LOCALOPT. Without loss
of generality, we assume that the known odd-degree vertex π has positive potential,
i.e., V (π) > 0. If V (π) = 0, then π is obviously a solution to I . We consider the
implicit graph with potential G(N,V) = (Σn,E) produced by N and V , where E is a
set of all valid edges for N. Then, the function f : Σn → Σn is defined as follows. For
every vertex x ∈ Σn,

f (x) = argmax{V (y);y ∈ N(x) and {x,y} ∈ E}.

Specifically, select exactly one lexicographically small if there are some vertices with
the same potential. If a vertex x ∈ Σn is an isolated vertex, we define f (x) = π and
replace its potential by 0, i.e., V (x) = 0. Note that an isolated vertex x is not a local
maximum for f from our assumption that V (π) > 0. The tuple (f ,V) is a valid
instance of LOCALOPT. Every solution x ∈ Σn to (f ,V) satisfies that V (f (x)) ≤
V (x). We have that V (y)≤V (x) for each y ∈ N(x) with {x,y} ∈ E, and thus, x is also
a solution to I . Therefore, POTENTIAL ODD belongs to PLS.

From the above arguments, POTENTIAL ODD is in PPA∩PLS.
To prove that POTENTIAL ODD is PPA∩PLS-hard, we show that EITHER SO-

LUTION(ODD, FLIP) is reducible to POTENTIAL ODD in polynomial time. Let
I = (n1,d,N,π,n2,m1,C) be a valid instance of EITHER SOLUTION(ODD, FLIP).
Then, the tuple (n1,d,N,π) is a valid instance of ODD. Here, we denote by G(N) =
(Σn1,E) the implicit graph produced by N, and let k0 be a non-negative integer
such that degG(π) = 2k0 + 1. The tuple (n2,m1,C) is a valid instance of FLIP,
where the given Boolean circuit C computes a polynomial-time computable func-
tion f : Σn2 → {0,1, . . . ,2m1 − 1}. Without loss of generality, we assume that n2 is
even.

From now on, we construct a valid instance J = (n1 +n2,m1,n2 +d,N′,V ′,π ′)
of POTENTIAL ODD. We first denote by U = Σn1 ×Σn2 the new vertex set. For each
x = (x1,x2) ∈U , we define

N′(x) := {(x1,y2) ∈U ;∥x2 − y2∥= 1}∪{(y1,x2) ∈U ;x2 = 0n2 and {x1,y1} ∈ E}.

Note that |N′(x)| ≤ n2 + degG(x) ≤ n2 + d for every vertex x ∈ U , and thus, it is
bounded by some polynomial in n1 and n2. This implies that the function N′ is
polynomial-time computable. Furthermore, we define the potential function as V ′(x1,
x2) =C(x2) for every (x1,x2) ∈U , and let π ′ = (π,0n2). We denote by H(N′,V ′) =
(U,F) the implicit graph with potential induced by N′ and V ′, where F is a set of
all valid edges defined by N′. Then, it satisfies that degH(π

′) = n2 +2k0 +1. Since
n2 is even and k0 is a non-negative integer, π ′ is an odd-degree vertex on the graph
H. Therefore, the tuple J = (n1 + n2,m1,n2 + d,N′,V ′,π ′) is a valid instance of
POTENTIAL ODD. What remains is to prove that we can extract a solution to I in
polynomial time when we obtain a solution to J .

We first consider when we obtain a vertex x = (x1,x2) ∈U \{π ′} satisfying that
degH(x) = 2k+1, where k is a non-negative integer. For every vertex z = (z1,z2)∈U
satisfying that z2 ̸= 0n2 , it holds that degH(z) = n2 since N′(x) = {(z1,y2) ∈U ;∥z2 −
y2∥ = 1}. Assuming that n2 is even, z is an even-degree vertex. Therefore, it must
hold that x2 = 0n2 . Then, it satisfies that degH(x) = n2+degG(x1), and thus, degG(x1)

4.4. The Hardness of Parity Argument with Potential 57

is odd since n2 is even and degH(x) is odd. This implies that the vertex x1 has odd
degree. Furthermore, it holds that x1 ̸= π since x = (x1,0n2) ̸= π ′ = (π,0n2). Hence,
the vertex x1 is a solution to I .

Next, we consider when we obtain a vertex x=(x1,x2)∈U satisfying that V ′(x)≤
V ′(y) for every vertex y = (y1,y2) ∈ N′(x). By the definition of V ′ and N′, it holds
that C(x2)≤C(y2) for every y2 with ∥x2 − y2∥= 1. Hence, x2 is a solution for FLIP,
and it is a solution to I . Similarly, when we obtain a vertex x = (x1,x2) ∈U satisfy-
ing that V ′(x)≥V ′(y) for every vertex y = (y1,y2) ∈ N′(x), the string x2 is a solution
to I .

From the above arguments, we complete the polynomial-time reduction from
EITHER SOLUTION(ODD, FLIP) to POTENTIAL ODD. Therefore, POTENTIAL ODD

is PPA∩PLS-hard.

4.4.3 Variants of ODD with Potential
In this section, we scrutinize the complexity classification of these problems in more
detail. In the previous sections, we show that POTENTIAL LEAF, which is associated
with graphs whose every vertex has degree at most two, is an EOPL-complete prob-
lem. However, POTENTIAL ODD, which is associated with higher degree graphs, is
a PPA∩PLS-complete problem.

The most natural question is where the boundaries of the complexity of POTEN-
TIAL ODD lie. We focus on the maximum degree of a given implicit graph. Now,
we consider the constant degree variant of POTENTIAL ODD. In this problem, the
maximum degree of the implicit graph is bounded by some constant. We prove that
even if the maximum degree 4, then POTENTIAL ODD is PPA∩PLS-complete, but if
the maximum degree is at most 3, then POTENTIAL ODD is EOPL-complete.

Definition 4.35. DEGREE-d POTENTIAL ODD

Input:

• a Boolean circuit N : Σn → Σdn

• a Boolean circuit V : Σn →{0,1, . . . ,2m −1}

• an odd-degree vertex π ∈ Σn on G(N,V).

Task: Find a non-isolated vertex x ∈ Σn satisfying at least one of the following:

(R1) x ̸= π and degG(x) = 2k+1 for some non-negative integer k,

(R2) V (x)≥V (y) for every y ∈ N(x) with {x,y} ∈ E, and

(R3) V (x)≤V (y) for every y ∈ N(x) with {x,y} ∈ E.

In order to simplify the following arguments, we prove the following proposition.

Proposition 4.36. Without loss of generality, we assume that for every instance of
POTENTIAL ODD, each vertex has a different potential.

58 Chapter 4. On the Complexity of Parity Argument with Potential

Proof. To prove this, we show that when we are given a valid instance I =(n,m,d,N,
V,π) of POTENTIAL ODD, we can construct the another instance I ′ = (n,m +
n,N,V ′,π) that satisfies that V ′(x) ̸= V ′(y) for each pair of vertices x,y ∈ Σn with
x ̸= y. Moreover, we can convert from a solution from I ′ to a solution of I in
polynomial time.

For every string x in Σn, we define

V ′(x) := 2nV (x)+
n

∑
i=1

2i−1xi,

where let x = x1x2 . . .xn. Clearly, it satisfies that V ′(x) ̸= V ′(y) for each pair of ver-
tices x,y ∈ Σn with x ̸= y. Furthermore, for each pair of x,y ∈ Σn, if V ′(x) < V ′(y)
then V (x) ≤ V (y). Therefore, if a vertex x in Σn satisfying that V ′(x) ≥ V ′(y) for
every y ∈ N(x) with {x,y} ∈ E, then x is a solution of I . Similarly, if a vertex x
in Σn satisfying that V ′(x) ≤ V ′(y) for every y ∈ N(x) with {x,y} ∈ E, then x is a
solution of I . Also, a vertex x is an odd-degree vertex for I ′ if and only if x is an
odd-degree vertex for I .

Notice that our proof of Proposition 4.36 also works for DEGREE-d POTENTIAL

ODD. Without loss of generality, we assume that for every instance of DEGREE-d
POTENTIAL ODD, every vertex on the given implicit graph has a different potential.

First, we show that DEGREE-4 POTENTIAL ODD is a PPA∩PLS-complete prob-
lem.

Theorem 4.37. DEGREE-4 POTENTIAL ODD is PPA∩PLS-complete problem.

Proof. It is easy to see that DEGREE-4 POTENTIAL ODD belongs to PPA∩PLS.
Therefore, it suffices to prove that DEGREE-4 POTENTIAL ODD is PPA∩PLS-hard.
To prove this, we show that there exists a polynomial-time reduction from POTEN-
TIAL ODD to DEGREE-4 POTENTIAL ODD.

The fundamental idea of our proof is that we simulate every vertex with degree
> 4 by some vertices with degree ≤ 4. Before beginning our proof, we illustrate the
main idea. See Figure 4.5 for an illustration of the construction. In this figure, the
vertex v has degree > 4 on the left graph, and we assume that the original potential
function V satisfies that V (x1) < V (x2) < V (x4) < V (x5). We construct the right
graph from the left one. The red vertices on the right graph simulate the vertex v.
All adjacent vertices of v are placed adjacent to v0, v1, and v2 in order of increasing
potential. We define the new potential function V ′ such that V ′(v0)<V ′(v1)<V ′(v2)
and V ′(v0) < V ′(v∗) < V ′(v2). Furthermore, V ′ follows that V ′(v j) > V ′(xi) if and
only if V (v) > V (xi) for all i and j. From our construction, it is easy to see that the
following three properties hold:

• v is a local minimum if and only if v0 is a local minimum,

• v is a local maximum if and only if v2 is a local maximum, and

• v has an odd degree if and only if v2 has an odd degree.

We do this for all vertices on the original graph. Notice that every red vertex has
degree at most 4. This construction allows us to simulate a vertex with degree > 4

4.4. The Hardness of Parity Argument with Potential 59

v

x1

x2

x3

x4

x5

v0

v1

v2

v∗
x3

x2

x4

x5

x1

FIGURE 4.5: Illustration of construction

by some vertices with degree ≤ 4. In the rest of this proof, we show that the above
construction is polynomial-time computable.

Let I = (n,m,d,N,V,π) be a valid instance of POTENTIAL ODD. Without loss
of generality, we assume that every vertex of the instance I has a different poten-
tial, i.e., V (x) ̸= V (y) for each pair of vertices x,y ∈ Σn with x ̸= y. We denote by
G(N,V) = (Σn,E) the implicit graph with potential produced by N and V , where E
is a set of all valid edges defined by N.

We consider the following vertex set

U := Û ∪{(∗,x);x ∈ Σ
n and degG(x)≥ 3},

where ∗ is a special symbol, and the set Û is defined as follows:

Û := {(i,x);x ∈ Σ
n and 1 ≤ i ≤

⌈
degG(x)

2

⌉
}.

We construct the new neighborhood function N′ : U →U4d and the new potential
function V ′ : U → {0,1, . . . ,22m+d}. Before we construct these two functions, we
define the following three functions. First, for each vertex x in Σn and each valid
edge {x,y} in E, we define

rankx({x,y}) := 1+ |{{x,z} ∈ E;V (z)<V (y)}|.

Note that this function is bijective. Second, for each vertex x in Σn and each vertex y
in Σn with {x,y} in E, we define

λx(y) =
⌈

rankx({x,y})
2

⌉
.

Finally, for each vertex (i,x) in Û , we define

N̂(i,x) := {(j1,y1),(j2,y2)},

where it satisfies that λx(y1) = λx(y2) = i and jk = λyk(x) for each k = 1,2. If there is
only one vertex y in Σn such that λx(y) = i, then we define N̂(i,x) := {(j,y)}, where

60 Chapter 4. On the Complexity of Parity Argument with Potential

it satisfies that j = λy(x). If there are no vertices y in Σn such that λx(y) = i, we define
that N̂(i,x) is empty. However, for each (∗,x) in U , we define N̂(∗,x) := /0. By using
the function N̂, for each vertex (i,x) in U , the neighborhood function N′ is defined as

N′(i,x) = N̂(i,x)∪{(i+1,x); i < Mx}∪{(i−1,x); i > 0}
∪{(∗,x); i ∈ {1,Mx}}∪{(1,x),(Mx,x);Mx ̸= 1, i = ∗},

where Mx =
⌈

degG(x)
2

⌉
. Next, for each (i,x) in U , we define

V ′(i,x) :=

{
22mV (x)+2(i−1) if i ∈ [Mx],

22mV (x)+1 if i = ∗.

It is easy to see that given a string (i,x) in [deg(G)]×Σn then we can check whether
(i,x) is in U in polynomial time. Hence, the neighborhood function N′ and the po-
tential function V ′ is polynomial-time computable and constructed. Furthermore, it
is not hard to see that every vertex (i,x) in U has degree at most 4, i.e., it satisfies
that |N′(i,x)| ≤ 4.

From the construction of N′, the following claim holds.

Lemma 4.38. A vertex (i,x) in U is an odd-degree vertex on H if and only if it
satisfies that i = Mx and x is an odd-degree vertex on G.

Proof. We first show that if a vertex (i,x) in U is an odd-degree vertex on the graph
H, then x is an odd-degree vertex on G by using a contradiction. Assume that x has
even degree on G, i.e., there is a non-negative integer k such that degG(x) = 2k. Then
for each i′ ∈ [k], there exist two distinct vertices z1 and z2 such that rankx({x,z1}) =
2i′− 1 and rankx({x,z2}) = 2i′. Hence, it holds that N′(i′,x) = {(j1,z1),(j2,z2)},
where λzl(x) = jl for each l = 1,2. This is a contradiction from (i,x) has odd degree
on H.

Therefore, x is an odd-degree vertex on G, and thus, there is a non-negative inte-
ger k′ such that degG(x) = 2k′+1. Then it satisfies that Mx = k′+1. Assuming that
i < Mx, there exist two distinct vertices z1 and z2 such that rankx({x,z1}) = 2i− 1
and rankx({x,z2}) = 2i. This implies that (i,x) has even degree on H. This is a con-
tradiction. Hence, it satisfies that i = Mx. Then there is only one vertex z such that
rankx({x,z}) = 2k′+1.

Next, we show that if i = Mx and a vertex x in Σn is an odd-degree vertex on
G, then a vertex (Mx,x) in U is an odd-degree vertex on H. Since x is an odd-
degree vertex on G, there is a non-negative integer k′′ such that degG(x) = 2k′′− 1.
Therefore, it holds that⌈

(2k′′−1)−1
2

⌉
<

⌈
2k′′−1

2

⌉
= k′′ = Mx.

Therefore, there is only one vertex y in Σn such that λx(y) = k′′. This implies that the
vertex (Mx,x) is an odd-degree vertex on H.

Immediately, it is easy to see that π ′ := (Mπ ,π) has odd degree on the graph H
from the above claim. Hence, the tuple J = (n+d+1,2m+d,N′,V ′,π ′) is a valid

4.4. The Hardness of Parity Argument with Potential 61

instance of DEGREE-4 POTENTIAL ODD. In the rest of this proof, we show that
when we obtain a solution of J , we can extract an original solution.

We first consider when we obtain an odd-degree vertex (i,x) ̸= π ′ on the graph
H. From the above claim, it is easy to see that i = Mx, x ̸= π , and x is an odd-degree
vertex on the graph G. Therefore, x is a solution for the original instance J .

Next, we consider when we obtain a vertex (i,x) that is a local minimum so-
lution on H, i.e., it satisfies that V ′(i,x) ≤ V ′(j,y) for every vertex (j,y) ∈ U with
{(i,x),(j,y)}∈F . Note that i ̸= ∗ since it satisfies that V ′(1,x)<V ′(∗,x)<V ′(Mx,x)
and N′(∗,x) = {(1,x),(Mx,x)}. Similarly, we can see that i = 1. We denote by
ymin the vertex in U that has the minimum potential among vertices satisfying that
λx(y) = 1. Since the vertex (i,x) is a local minimum solution on H, it holds that
V ′(i,x)≤V ′(jmin,ymin). Thus, V (x)≤V (ymin) holds. Therefore, it holds that V (x)≤
V (ymin)≤V (y) for every vertex y in Σn with {x,y} ∈ E since ymin has the minimum
potential among neighbors of x on the graph G. This implies that the vertex x is a
solution of the original instance.

From the similar argument, we show that if a vertex (i,x) is a local maximum
solution on H, i.e., it satisfies that V ′(i,x)≥V ′(j,y) for every vertex (j,y) ∈U with
{(i,x),(j,y)} ∈ F , then the vertex x is a local maximum solution on G, and thus, x is
a solution of the original instance.

Therefore, we complete the polynomial-time reduction from POTENTIAL ODD

to DEGREE-4 POTENTIAL ODD. Since POTENTIAL ODD is a PPA∩PLS-complete
problem, this implies that DEGREE-4 POTENTIAL ODD is PPA∩PLS-hard. Hence,
this problem is also PPA∩PLS-complete.

Next, we prove that DEGREE-3 POTENTIAL ODD is EOPL-complete. We firstly
show the EOPL-hardness of this problem. Our proof gives a polynomial-time re-
duction from POTENTIAL LEAF to DEGREE-3 POTENTIAL ODD. Although every
instance of POTENTIAL LEAF is also an instance of DEGREE-3 POTENTIAL ODD,
the known leaf π given an instance of POTENTIAL LEAF is a local minimum vertex,
i.e., π is a solution for DEGREE-3 POTENTIAL ODD. Therefore, it is necessary to
avoid the known leaf becoming a solution for DEGREE-3 POTENTIAL ODD. For
this, we make three-copies of the original instance, and we add a vertex with degree
three as a known odd-degree vertex.

Lemma 4.39. POTENTIAL LEAF is reducible to DEGREE-3 POTENTIAL ODD in
polynomial time.

Proof. To prove EOPL-hardness, we construct a polynomial-time reduction from PO-
TENTIAL LEAF to DEGREE-3 POTENTIAL ODD. Our reduction is simple. Let
I = (n,m,N,V,π) be a valid instance of POTENTIAL LEAF. Without loss of gener-
ality, we assume that the neighborhood function N always computes valid edges, i.e.,
it satisfies that for each pair of vertices x and y in Σn, y ∈ N(x) if and only if x ∈ N(y).

We make three copies of the instance I ; I1, I2, and I3, respectively. We
denote by π j the known leaf of I j, where j = 1,2,3. We invert the potential of all
vertices on I1, i.e., we define it as (2m − 1)−V (x) for every vertex x. In the other
two instances, we redefine the potential as 2m+2 ·V (x) for every vertex x. Moreover,
we add a vertex π∗. The potential of this vertex is 2m+1. The vertex π∗ is adjacent
to the known leaves of each copied instance π1, π2, and π3. That is, π∗ is a vertex
with degree three. Note that the known leaf on the original instance is not a solution.

62 Chapter 4. On the Complexity of Parity Argument with Potential

4
v

23

1 5

4
v

23

1 5

FIGURE 4.6: Left: An original undirected graph. Right: A directed
graph which naturally induced from the left one. This figure shows
that x is an even-degree vertex on the left graph but x is an unbalanced

vertex on the right graph.

Furthermore, π∗ is a known odd-degree vertex on the new instance, and it is not
a local optimum. It is easy to see that we can extract an original solution from a
solution to the new instance.

It is easy to see that DEGREE-3 POTENTIAL ODD belongs to EOPL; we can apply
the same technique used in the proof of Theorem 4.32. We naturally define every
valid arc depending on the potential function. Note that, in the case of degree three,
each unbalanced vertex is an odd-degree vertex, and thus, our simple technique works
well. Unfortunately, this simple technique does not work to show that DEGREE-4
POTENTIAL ODD belongs to EOPL. See Figure 4.6. The digraph in the right of this
figure is naturally induced from the left one. In the right graph, the vertex v is an
unbalanced vertex, that is, v is a solution for POTENTIAL IMBALANCE. However, v
has an even degree on the left one, that is, v is not a solution for POTENTIAL ODD.
Therefore, new ideas seem necessary to prove that DEGREE-4 POTENTIAL ODD

belongs to EOPL.
In the rest of this thesis, we consider the more general potential condition and its

complexity. In other words, we provide a potential condition for POTENTIAL ODD

belonging to EOPL. This condition gives us a limitation that the natural orientation
works well for proving that the problem on undirected graphs with potential belongs
to EOPL. Informally speaking, the potential condition introduced in the following
means that we can well-pair the neighbors of every even-degree vertex that is not
local optimum.

Let G(N,V) = (Σn,E) be an implicit graph with potential produced by a neigh-
borhood function N and a potential function V . We define E+

V (x) := {y ∈U ;{x,y} ∈
E and V (y) > V (x)} and E−

V (x) := {y ∈ U ;{x,y} ∈ E and V (y) < V (x)} for each
vertex x in Σn. A vertex x in Σn is said to be well balanced if x satisfies that

|E+
V (x)|= |E−

V (x)|.

We say that the graph G(N,V) is almost balanced if every even-degree vertex that
is not local optimum on G(N,V) is well balanced. In Figure 4.6, the vertex v is not
well balanced. We consider the problem involving such vertices as violations. Hence,

4.4. The Hardness of Parity Argument with Potential 63

the problem called ALMOST BALANCED ODD requires that the implicit graph with
potential given by instance is almost balanced. This problem is defined as follows.

Definition 4.40. ALMOST BALANCED ODD

Input:

• an implicit graph with potential G(N,V) = (Σn,E) defined by

– a Boolean circuit N : Σn → Σdn and

– a Boolean circuit V : Σn →{0,1, . . . ,2m −1}

• an odd-degree vertex π ∈ Σn on G(N,V).

Task: Find a non-isolated vertex x ∈ Σn satisfying at least one of the following:

(R1) x ̸= π and degG(x) = 2k+1 for some non-negative integer k,

(R2) V (x)≥V (y) for every y ∈ N(x) with {x,y} ∈ E, and

(R3) V (x)≤V (y) for every y ∈ N(x) with {x,y} ∈ E.

(V1) |E+
V (x)| ̸= 0 ̸= |E−

V (x)| ̸= |E+
V (x)|, and degG(x) = 2k for some integer k.

We shall prove that ALMOST BALANCED ODD is EOPL-complete. First, in
Lemma 4.41, we show that a polynomial-time reduction from DEGREE-3 POTEN-
TIAL ODD to this problem, that is, we show EOPL-hardness of ALMOST BALANCED

ODD. After that, in Lemma 4.42, we show that ALMOST BALANCED ODD be-
longs to EOPL by constructing a polynomial-time reduction to POTENTIAL IMBAL-
ANCE. Of course, our proof implies that DEGREE-3 POTENTIAL ODD is also EOPL-
complete.

Lemma 4.41. DEGREE-3 POTENTIAL ODD is reducible to ALMOST BALANCED

ODD in polynomial time.

Proof. Each valid instance I = (n,m,N,V,π) of DEGREE-3 POTENTIAL ODD is
also a valid instance of ALMOST BALANCED ODD. We denote by G(N,V) = (Σn,E)
the implicit graph with potential produced by N and V . We can easily see that every
odd-degree vertex and every local optimum vertex on G(N,V) are a solution to I .
Therefore, it is sufficient to show that I has no violating solutions. We consider an
even-degree vertex x that is not local optimum on G(N,V). It satisfies that |E+

V (x)| ̸=
0 ̸= |E−

V (x)|. Notice that x has even degree and I is an instance of DEGREE-3
POTENTIAL ODD, we have |E+

V (x)|+ |E−
V (x)|= 2, and thus, |E+

V (x)|= 1 = |E−
V (x)|.

Hence, the vertex x is a well-balanced vertex.

Lemma 4.42. ALMOST BALANCED ODD is reducible to POTENTIAL IMBALANCE

in polynomial time.

Proof. Assume that we are given an instance I = (n,m,d,N,V,π) of ALMOST

BALANCED ODD. We denote by G(N,V) = (Σn,E) the implicit graph with potential
that is produced by N and V . For every vertex x in Σn, we define S(x) := E+

V (x)
and P(x) := E−

V (x). Furthermore, we denote δ+(x) = |E+
V (x)| and δ−(x) = |E−

V (x)|
for each vertex x in Σn. Then the vertex π satisfies that δ+(π) ̸= δ−(π) since

64 Chapter 4. On the Complexity of Parity Argument with Potential

π has odd degree on the implicit graph with potential G(N,V). Thus, the tuple
J = (n,m,d,S,P,V,π) is a valid instance of POTENTIAL IMBALANCE.

By definition, there are no violating solutions to J . Therefore, we only obtain a
solution x in Σn satisfying that δ+(x) ̸= δ−(x) and x ̸= π . If δ+(x) = 0, then it holds
that V (x)≥V (y) for every vertex valid edge {x,y} ∈ E. This implies that the vertex
x is a local maximum solution of the original instance I . Similarly, if δ−(x) = 0,
then the vertex x is a local minimum solution of I .

In the following, we consider the case where δ+(x) ̸= 0 ̸= δ−(x). If x is an odd-
degree vertex on the original instance, it is obviously a solution to I . Otherwise, we
obtain a violating solution to I because |E+

V (x)| ̸= 0 ̸= |E−
V (x)| ̸= |E+

V (x)| and x is
an even-degree vertex.

Immediately, the following two theorems follow.

Theorem 4.43. DEGREE-3 POTENTIAL ODD is EOPL-complete.

Theorem 4.44. ALMOST BALANCED ODD is EOPL-complete.

Finally, we show that ALMOST BALANCED ODD can be normalized.

Lemma 4.45. ALMOST BALANCED ODD is normalizable.

Proof. Let I = (n,m,d,N,V,π) is a valid instance of ALMOST BALANCED ODD.
For each vertex x ∈ Σn, we add d additional vertices (x, i) where i = 1,2, . . . ,d.

First, we define the new neighborhood function N′ as follows. If a vertex x ∈
Σn is a violating solution, N′(x) = N(x)∪{(x, i); i = 1,2, . . . ,

∣∣|E+
V (x)|− |E+

V (x)|
∣∣}.

Otherwise, we define N′(x) = N(x). Furthermore, for each additional vertex (x, i),
we define N′(x, i) = {x} if i ≤

∣∣|E+
V (x)|− |E+

V (x)|
∣∣, otherwise N′(x, i) is empty. Next,

we define the new potential function V ′ as follow. For each original vertex x ∈ Σn,
we define V ′(x) =V (x). For each additional vertex (x, i), we define

V ′(x, i) =

V (x)+1 if |E+

V (x)|< |E−
V |,

V (x)−1 if |E+
V (x)|> |E−

V |,
V (x) if |E+

V (x)|= |E−
V |.

Every violating solution x is adjacent to
∣∣|E+

V (x)|− |E+
V (x)|

∣∣ additional vertices.
Furthermore, the vertex x is well balanced from the definition of the new potential
function V ′. Therefore, the new instance has no violating solutions. Every additional
vertex adjacent to x is an odd-degree vertex, and thus, we can extract a solution to the
original instance efficiently. Moreover, each regular solution for the original instance
is also a regular solution for the new instance. Hence, we get a normalization of
ALMOST BALANCED ODD.

Remark 4.46. Recall the definition of ALMOST BALANCED ODD. We require that
every even-degree vertex which is not local optimum is well balanced. From this
requirement, we can remove the non-local optimum condition; that is, we require
that every even degree vertex is well balanced. Notice that the solution set of the new
search problem is the same as the original problem. Therefore, the complexity of this
problem is also EOPL-complete. Note that every regular solution to this new variant
is an odd-degree vertex.

4.5. Conclusions and Open Problems 65

4.5 Conclusions and Open Problems
We have studied the complexity of several variants of END OF POTENTIAL LINE

based on previous exciting work by Hollender and Goldberg [HG18]. Their tech-
nique can be extended to END OF POTENTIAL LINE. We have shown that several
variants of END OF POTENTIAL LINE are also EOPL-complete. Our results imply that
the classification of search problems based on END OF POTENTIAL LINE is robust.

We have extended this argument to a similar problem on an undirected graph
with potential. We have proved that the undirected variant of END OF POTENTIAL

LINE is generally not EOPL-complete. Specifically, DEGREE-3 POTENTIAL ODD

is EOPL-complete, but DEGREE-4 POTENTIAL ODD is PPA∩PLS-complete. These
facts leave an intriguing issue about the relationship between EOPL and PPA∩PLS.
Are EOPL and PPA∩PLS separated? We conjecture that is true.

There are some open problems left in this thesis. The question worth considering
is equivalence between PPA∩PLS and EOPL. Specifically, if PPA∩PLS= EOPL, then
EOPL = CLS. Hence, that would resolve an important open question presented by
Fearnley, Gordon, Mehta, and Savani [Fea+20]. Furthermore, we should also con-
sider the relationship between PPA∩PLS and PPAD. Naturally, if PPAD⊆ PPA∩PLS,
then PPAD is a subset of PLS; this is an important open question that has been un-
solved for a quarter-century. On the other hand, the containment of PPA∩PLS in
PPAD implies that PPA∩PLS= PPAD∩PLS.

Another question worth considering is to verify whether UNIQUE END OF PO-
TENTIAL LINE can be normalized. The problem UNIQUE END OF POTENTIAL LINE

is introduced by Fearnley, Gordon, Mehta, and Savani [Fea+20]. This problem con-
siders an instance of END OF POTENTIAL LINE that contains a “single” line that
starts at the standard source.

67

Part III

Fixed Point Theory

69

Chapter 5

The Complexity of Fixed Point
Computation

We have discussed the complexity class TFNP in Part II. Total search problems com-
pose interesting computational complexity classes. However, the class TFNP is a
semantic class; it is unlikely to have complete problems. As mentioned in Chapter
3, Papadimitriou [Pap94b] introduced some syntactical subclasses of TFNP based on
Combinatorics Theory. These classes provide a way to characterize the complexity of
discrete problems whose solutions are guaranteed by a combinatorial proof method.

This chapter aims to make known another approach to formulate syntactical sub-
classes of TFNP, which capture real-valued search problems. Let us focus on Fixed
Point Theory. Consider the problem of computing a fixed point, which is guaranteed
by a fixed point theorem, and its complexity. A fixed point theorem is one of the
mathematical lemmata that guarantee the existence of a solution to a search problem.
It is known that some fixed point theorem characterizes some complexity classes.
The best well-known example is Brouwer’s fixed point theorem. In fact, the problem
of finding a Brouwer’s fixed point is PPAD-complete [Pap94b; CD09].

Recently, in addition to Brouwer’s fixed point theorem, a few fixed point theo-
rems have been studied from the viewpoint of computational complexity. Daskalakis,
Tzamos, and Zampetakis [DTZ18] have shown that the problem of finding a Ba-
nach’s fixed point is complete for the class CLS (see Definition 5.4). Etessami,
Papadimitriou, Rubinstein, and Yannakakis [Ete+20] have proven the problem of
finding a Tarski’s fixed point belongs to PPAD∩PLS. This problem is in CLS be-
cause Fearnley, Goldberg, Hollender, and Savani [Fea+21] have shown that CLS =
PPAD∩PLS. Although a fixed point theorem that characterizes PLS had been previ-
ously unknown, the author has shown that Caristi’s fixed point theorem does.

In the remaining chapter, we define an arithmetic circuit, which needs to formu-
late continuous search problems in Section 5.1. After that, we survey the complexity
of computing a fixed point in Section 5.2.

5.1 Arithmetic Circuits
An arithmetic circuit representing a function f : Rn → Rm consists of an acyclic
digraph having the following propeties: (i) There are n input gates that are labeled
with a variable; (ii) there are some input gates that are labeled with a rational number;
(iii) there are m output gates; and (iv) every internal node is a binary gate and labeled
with one of the operators +, −, ×, max, min, and >. Here, the operator > takes a

70 Chapter 5. The Complexity of Fixed Point Computation

pair of real numbers (x,y) as an input and outputs 1 if x > y, and otherwise outputs
0. A binary gate is a gate with fan-in two. An input and output gates are a gate with
fan-in and fan-out zero, respectively.

We restrict the inputs and outputs on an arithmetic circuit into the interval [0,1].
When the output returns negative, the arithmetic circuit redefines it to 0, and when
the output returns a value greater than 1, the arithmetic circuit redefines it to 1. For
an arithmetic circuit C, we denote by size(C) the size of C, i.e., the bit-length needed
to describe the arithmetic circuit C, including the rational constant used in C.

The above definition of an arithmetic circuit is based on [DP11]. It seems to
be very natural, but this original model causes a subtle issue that was overlooked in
[DP11].

Recently, Daskalakis and Papadimitriou have noticed this issue (see [DP20]) and
proposed a way to correct it. Note that their original definition allows that an arith-
metic circuit uses multiplication gates where both inputs are non-constant nodes. By
exploiting this property, a circuit can function repeated squaring and produce an ex-
ponentially large number for the size of the circuit and its input. Unfortunately, it is
unknown that such a circuit lies on FNP. Therefore, we must restrict the ability of an
arithmetic circuit to ensure that it belongs to FNP.

While Daskalakis and Papadimitriou [DP20] proposed a restriction to achieve
this, we adopt an alternative restriction introduced by Fearnley, Goldberg, Hollender,
and Savani [Fea+21] to resolve the above issue in this thesis. They restricted arith-
metic circuits as an instance of an FNP continuous search problem to well-behaved
arithmetic circuits.

An arithmetic circuit C is well-behaved if, on any directed path that leads to an
output, there are at most log(size(C)) true multiplication gates; let a true multiplica-
tion gate be one where both inputs are non-constant nodes in the arithmetic circuit.
As mentioned in [Fea+21], this model has two advantages over the modification by
Daskalakis and Papadimitriou [DP20]: (a) There is no need to add the additional in-
put and the extra violation solution; and (b) we can efficiently check whether a given
arithmetic circuit is well-behaved.

There are some known TFNP classes defined by arithmetic circuits. Primarily,
Daskalakis and Papadimitriou [DP11] presented an alternative definition of PLS.
Moreover, they introduced the complexity class CLS. In the following, we describe
these definitions and related works.

5.1.1 Alternative Definition of PLS
Recall that a total search problem with polynomial balance and polynomial-time ver-
ifiable restrictions is a problem in which every instance has a solution and the cor-
rectness of a solution can be verified in polynomial time in the length of the input
instance (see Chapter 3). Usually, the class consisting of total search problems is
called TFNP. We are interested in whether there is an efficient method to seek a
solution to a problem in TFNP since such a problem has the nice property of always
having a solution. Over the past decades, many total search problems have been clas-
sified by a method of finding a solution. The complexity class PLS, which Johnson,
Papadimitriou, and Yannakakis [JPY88] introduced, consists of search problems that
can be solved by using a local search method.

5.1. Arithmetic Circuits 71

Remember that we have exhibited the formal definition of PLS based on Boolean
circuits in Section 3.3.1. Now, we describe the alternative formulation of PLS based
on arithmetic circuits. Consider the following computational problem, called REAL

LOCALOPT:

Definition 5.1. REAL LOCALOPT
Input:

• two parameters ε,λ > 0,

• two well-behaved arithmetic circuits computing f : [0,1]3 → [0,1]3 and p :
[0,1]3 → [0,1]2

Task: Find one of the following:

• a point x ∈ [0,1]3 such that p(x)≤ p(f (x))+ ε;

• two points x,y ∈ [0,1]3 such that |p(x)− p(y)|∞ > λ∥x− y∥∞.

Daskalakis and Papadimitriou [DP11] have shown that REAL LOCALOPT is
polynomially equivalent to LOCALOPT, i.e., REAL LOCALOPT is PLS-complete.

Theorem 5.2 (Daskalakis and Papadimitriou [DP11]). The problem REAL LOCAL-
OPT is a PLS-complete problem.

5.1.2 Complexity Class CLS
Now, we explain the complexity class CLS. This class was introduced by Daskalakis
and Papadimitriou [DP11]; they pointed out that many natural problems belong to
both PPAD and PLS. For instance, computing a fixed point of a contraction map,
called CONTRACTION MAP (see Definition 5.6), solving the linear complementarity
problem for P-matrices, called P-LCP, finding a stationary point of a polynomial,
and a computing a mixed Nash equilibrium on a network coordination game, which
see also Chapter 7.

Daskalakis and Papadimitriou [DP11] defined the complexity class CLS for “Con-
tinuous Local Search” in order to understand the complexity of search problems be-
longing to both PPAD and PLS. As mentioned in Chapter 3, several typical complexity
classes, such as PPAD and PLS, were defined by using Boolean circuits. On the other
hand, CLS is defined by using arithmetic circuits. The formal definition of CLS is
a formulation based on the problem CONTINUOUS LOCALOPT, which is a total
search problem; and hence, the class CLS is a set of total search problems that are
polynomial-time reducible to CONTINUOUS LOCALOPT.

Definition 5.3. CONTINUOUS LOCALOPT
Input:

• two parameters ε,λ > 0,

• two well-behaved arithmetic circuits computing f : [0,1]3 → [0,1]3 and p :
[0,1]3 → [0,1]2

Task: Find one of the following:

72 Chapter 5. The Complexity of Fixed Point Computation

• a point x ∈ [0,1]3 such that p(x)≤ p(f (x))+ ε;

• two points x,y ∈ [0,1]3 such that ∥ f (x)− f (y)∥∞ > λ∥x− y∥∞.

• two points x,y ∈ [0,1]3 such that ∥p(x)− p(y)∥∞ > λ∥x− y∥∞.

Definition 5.4. The complexity class CLS is the set of all search problems that are
reducible to CONTINUOUS LOCALOPT in polynomial time.

Of course, we are able to generalize CONTINUOUS LOCALOPT to the same
problems with other dimensions.

Recently, Fearnley, Goldberg, Hollender, and Savani [Fea+21] have shown that
CLS = PPAD∩PLS. They proved that the problem of finding a KKT point is CLS-
complete. Furthermore, Göös, Hollender, Jain, Mayster, Pires, Robere, and Tao
[Göö+22] have proven that the class EOPL contains CLS. The definition based on
CONTINUOUS LOCALOPT is an alternative formulation of the class EOPL.

5.2 Complexity of Computing a Fixed Point
The fixed point computation, which is a problem whose task is to find a fixed point
guaranteed by some fixed point theorem, is a fascinating problem among computa-
tional problems based on arithmetic circuits. Basically, a fixed point computation is
formulated as follows: We are given an arithmetic circuit that computes a transition
function f : [0,1]3 → [0,1]3 and an approimate parameter ε > 0 as an input, and seek
a point x ∈ [0,1]3 such that ∥ f (x)− x∥∞ ≤ ε . Normally, we attach some “violations”
as solutions for guaranteeing the totality. For example, the set of solutions to the
problem BROUWER (see Definition 5.5) contains a pair of two points that reveals the
transition function is not Lipschitz continuous.

In this section, we introduce the research stream of the complexity of fixed-point
computation.

5.2.1 Brouwer’s Fixed Point Theorem
The problem of finding a Brouwer’s fixed point is the most famous fixed point com-
putation problem. This problem aims to compute a fixed point whose existence is
guaranteed by Brouwer’s fixed point theorem [Bro11]. The formal definition is as
follows:

Definition 5.5. BROUWER

Input:

• two paramters ε,λ > 0;

• a well-behaved arithmetic circuit computing f : [0,1]3 → [0,1]3.

Task: Find one of the following:

• a point x ∈ [0,1]3 such that ∥ f (x)− x∥∞ ≤ ε;

• two points x,y ∈ [0,1]3 such that ∥ f (x)− f (y)∥∞ > λ∥x− y∥∞.

5.2. Complexity of Computing a Fixed Point 73

Note that we employ the Lipschitz continuous to undertake the continuity of a
transition function. This is a condition to meet the totality of BROUWER. We can
straightforwardly see that BROUWER is a total search problem from Brouwer’s fixed
point theorem and the second type of solution, which reports the violation of the
Lipschitz continuity.

Papadimitriou [Pap94b] proved that BROUWER is PPAD-complete. It is easy
to see that we have a polynomial-time algorithm solving BROUWER in the one-
dimensional case. Unfortunately, this problem is PPAD-complete even if the dimen-
sion is two [CD09].

The complexity of BROUWER has been applied to a wide range of fields to
prove the PPAD-completeness of various computational problems. For instance, the
fact that it is PPAD-complete to compute a Nash equilibrium is based on the PPAD-
completeness of BROUWER [CD09; Pap94b].

5.2.2 Banach’s Fixed Point Theorem
Next, we will introduce the computational problem, which is related to Banach’s
fixed point theorem [Ban22], and its complexity. Informally speaking, the problem
BANACH is a restricted case of BROUWER; we require that the Lipschitz constant λ

holds that 0 < λ < 1. The formal definition is as follows:

Definition 5.6. BANACH (also known as CONTRACTION MAP)
Input:

• two paramters ε > 0

• a parameter λ with 0 < λ < 1;

• a well-behaved arithmetic circuit computing f : [0,1]3 → [0,1]3.

Task: Find one of the following:

• a point x ∈ [0,1]3 such that ∥ f (x)− x∥∞ ≤ ε;

• two points x,y ∈ [0,1]3 such that ∥ f (x)− f (y)∥∞ > λ∥x− y∥∞.

Daskalakis and Papadimitriou [DP11] have proven that the problem BANACH

belongs to the complexity class PPAD∩PLS. However, it is still open that BANACH

is a complete problem for PPAD∩PLS. More precisely, it is an unsolved problem
whether BANACH is PPAD∩PLS-hard for ℓp-norm [Fea+21]. The reason why we
mention the ℓp-norm is that it has proven that the variant of BANACH that has an
additional well-behaved arithmetic circuit representing a distance as an input and
an extra solution noticing the violation of the metric notion is PPAD∩PLS-complete
[DTZ18; Fea+20].

5.2.3 Caristi’s Fixed Point Theorem
It is mathematically known that Caristi’s fixed point theorem is a generalization of
Banach’s fixed point theorem. The fixed-point computation related to this theorem is
formulated as follows:

74 Chapter 5. The Complexity of Fixed Point Computation

Definition 5.7. CARISTI

Input:

• three parameters ε,η ,λ > 0;

• two well-behaved arithemetic circuits computing

– f : [0,1]3 → [0,1]3 and

– ϕ : [0,1]3 → [0,1].

Task: Find one of the following:

• a point x ∈ [0,1]3 such that ∥ f (x)− x∥∞ ≤ ε;

• a point x ∈ [0,1]3 such that η∥x− f (x)∥∞ > ϕ(x)−ϕ(f (x));

• two points x,y ∈ [N]3 such that |ϕ(x)−ϕ(y)|> λ∥x− y∥∞.

The computational problem CARISTI takes a potential function ϕ : [0,1]3 → [0,1]
in addition to a transition function f : [0,1]3 → [0,1]3. Note that it requires the potan-
tial function is Lipschitz continuous while the transition fucntion does not require.
It is easy to see that CARISTI is a total search problem from Caristi’s fixed point
theorem.

We prove that the problem CARISTI is PLS-complete in Chapter 6.
In the previous work, Chang and Lyuu [CL10] considered the query complexity

of Banach’s and Caristi’s fixed point theorems. They have shown the query lower
bounds for the problems BANACH and CARISTI. In the black-box oracle model, we
can query a finite metric space (M,c) and a given function f : M → M. Chang and
Lyuu [CL10] have proven that every randomized algorithm for finding a Banach’s
fixed point makes an expected Ω(

√
|M|) oracle queries. Furthermore, they proved

that every randomized algorithm for finding a Caristi’s fixed point makes an expected
Ω(|M|) oracle queries.

5.2.4 Brøndsted’s Fixed Point Theorem
Brøndsted’s fixed point theorem is a variant of Caristi’s fixed point theorem; we
can also regard that theorem as a generalization of Banach’s fixed point theorem.
Remember that the statement of Caristi’s fixed point theorem requires that a potential
function is continuous, but a transition function is not necessarily continuous. On the
other hand, Brøndsted’s fixed point theorem requires that a transition function is
continuous, but a potential function is not necessarily continuous.

The computational problem BRØNDESTED is formulated as follows:

Definition 5.8. BRØNDESTED

Input:

• three parameters ε,η ,λ > 0;

• two well-behaved arithemetic circuits computing

– f : [0,1]3 → [0,1]3

5.2. Complexity of Computing a Fixed Point 75

– ϕ : [0,1]3 → [0,1].

Task: Find one of the following:

• a point x ∈ [0,1]3 such that ∥ f (x)− x∥∞ ≤ ε;

• a point x ∈ [0,1]3 such that η∥x− f (x)∥∞ > ϕ(x)−ϕ(f (x));

• two points x,y ∈ [N]3 such that | f (x)− f (y)|> λ∥x− y∥∞.

As we will discuss in Chapter 6, It is trivial that BRØNDESTED belongs to the
class PPAD. Furthermore, we can straightforwardly see that this computational prob-
lem is CLS-hard. However, whether BRØNDESTED is PPAD-complete or CLS-complete
is still open.

5.2.5 Tarski’s Fixed Point Theorem
Finally, we will introduce the previous works related to Tarski’s fixed point theo-
rem. Etessami, Papadimitriou, Rubinstein, and Yannakakis [Ete+20] formulated the
fixed-point computation problem based on Tarski’s fixed point theorem, and they
considered the complexity of such a problem. Tarski’s fixed point theorem [Tar55]
is also an order-theoretic fixed point theorem. While we explained fixed-point com-
putation problems defined by arithmetic circuits from the previous subsection, the
computational problem TARSKI can be formulated by Boolean circuits.

Definition 5.9. TARSKI

Input:

• a Boolean circuit computing f : [N]d → [NN]d .

Task: Find one of the following:

• a point x ∈ [N]d such that f (x) = x;

• two points x,y ∈ [N]d such that x ⪯ y and f (x) ̸⪯ f (y).

Here, x ⪯ y implies that for every i ∈ [d], xi ≤ yi holds; usually, this property is called
by the component-wise order.

Etessami, Papadimitriou, Rubinstein, and Yannakakis [Ete+20] have shown that
TARSKI is in PPAD∩PLS. However, it is still open whether TARSKI is PPAD∩PLS-
hard. They also considered the query complexity of finding a Tarkis’s fixed point.

In the black-box oracle model of TARSKI, we can query the function f : [N]d →
[N]d . Dang, Qi, and Ye [DQY11] established the O(logd N) upper bound for this
problem. Etessami, Papadimitriou, Rubinstein, and Yannakakis [Ete+20] have shown
a lower bound for the query model of TARSKI on a two-dimension Euclidian grid
space; we need Ω(log2 N) to find a Tarski’s fixed point. Their results have given
us the tight bound for the two-dimensional TARSKI problem. Recent studies [FS21;
FPS20; CL22] have been improving the upper bound for the query complexity of
TARSKI. Fearnley and Savani [FS21] showed an O(logd−1 N)-queries algorithm.
Fearnley, Pálvögyi, and Savani [FPS20] provided an O(log2⌈d/3⌉N)-queries algo-
rithm. The most recent result by Chen and Li [CL22] has shown an O(log⌈(d+1)/2⌉N)-
queries algorithm for TARSKI. Combining the lower bound for TARSKI by Etessami,

76 Chapter 5. The Complexity of Fixed Point Computation

Papadimitriou, Rubinstein, and Yannakakis [Ete+20], we have the tight bound for
TARSKI when the dimension d ≤ 3. However, it is still unknown the tight bound for
the TARSKI instance with four or more dimensions.

5.3 On the Complexity of Strong Approximation
Up to present, we have considered the notion of weak solution. An ε-approximate
fixed point of a function f : [0,1]3 → [0,1]3 is a point x ∈ [0,1]3 such that ∥ f (x)−
x∥∞ ≤ ε . Nevertheless, such a point may be far from actual exact fixed point.

In this section, we consider the complexity of computing an exact fixed point.

5.3.1 Complexity Class FIXP
The complexity class FIXP captures the complexity of computing an exact fixed point
of a function mapping the unit cube into itself that is computed by an arithmetic
circuit; not this arithmetic circuit is not necessarily well-behaved.

Consider the following problems: Given an algebraic circuit (straight-line pro-
gram) over basis {+,×,−,/,max,min} with rational constants, having n input vari-
ables and n outputs, such that the circuit represents a continuous function f : [0,1]n →
[0,1]n, find a fixed point of f or a strong ε-approximate fixed point of f .

Etessami and Yannakakis [EY10] have shown that the problem of computing an
exact or strong approximate mixed Nash equilibrium of a three-player strategic-form
game is FIXP-complete. Thus, computing a strong approximate Nash equilibrium for
a three-player game is as hard as computing a strong approximate Brouwer’s fixed
point given by an arithmetic circuit. Remark that Chen, Deng, and Teng [CDT09]
have proven that every two-player strategic-form game always has a rational Nash
equilibrium, which implies that the problem of computing one is PPAD-complete.

Goldberg and Hollender [GH19] have shown that the Hairy Ball problem is FIXP-
hard. However, it is still open whether this problem is FIXP-complete. They men-
tioned that we should try to reduce Hairy Ball to Borsuk-Ulam as a first step to obtain
the completeness result, even though no such mathematical seems to be known.

5.3.2 Complexity Class BU
The complexity class BU was introduced by Deligkas, Fearnley, Melissourgos, and
Spirakis [Del+21]. This class is formulated as the set of search problems that are the
problem of computing an exact or a strong approximation solution to the Borsuk-
Ulam problem. By definition, the complexity class BU captures an exact variant of
PPA-complete problems, and thus, BU contains the class FIXP.

Deligkas, Fearnley, Melissourgos, and Spirakis [Del+21] have proven that the
problem of computing an exact solution to the CONSENSUS HALVING problem is
FIXP-hard and the LinearBU has the same complexity with PPA.

77

Chapter 6

On the Complexity of Caristi’s Fixed
Points

As we introduced in the previous chapter, fixed-point computation problems com-
prise a large and important class of total search problems, i.e., some fixed point
theorems make up exotic subclasses of TFNP. It is well-known that some problems
of computing a fixed point capture the complexity features of a few fascinating sub-
classes of TFNP, such as PPAD and CLS.

This chapter focuses on Caristi’s fixed point theorem and proves that this fixed
point theorem characterizes the class PLS, which is a class of search problems that
can be solved by a local search method. Specifically, we show that the problem of
finding a Caristi’s fixed point is PLS-complete. Caristi’s fixed point theorem is an
order-theoretic fixed point theorem, and this theorem is often said to be a general-
ization of Banach’s fixed point theorem [GD03]. In fact, we can find Banach’s fixed
point theorem by using Caristi’s fixed point theorem.

Furthermore, we consider a variant of computing a Caristi’s fixed point. The exis-
tence of a solution to this problem is guaranteed by Brøndsted’s fixed point theorem.
We provide, in this chapter, an upper bound and a lower bound for the problem of
finding a Brøndsted’s fixed point. More specifically, we show that this problem is
CLS-hard and belongs to PPAD.

Here, we discuss the complexity of computing a Caristi’s point and computing a
Brøndsted’s fixed point. Let (M,d) be a complete metric space and η > 0 be some
positive value. To formulate the basic problem, we consider a potential function
ϕ : M →R≥0 and a function f : M →M satisfying that ηd(x, f (x))≤ ϕ(x)−ϕ(f (x))
for each x ∈ M; when M is discrete, we assume that the functions are presented by
Boolean circuits; when M is continuous, we assume that the functions are presented
by arithmetic circuits.

6.1 Computing a Caristi’s Fixed Point
Let (M,d) be a complete metric space. We assume that ϕ : M → R≥0 is lower semi-
continuous and η is some positive real number. We say that a function f : M → M
satisfies Caristi’s condition if it holds that ηd(x, f (x)) ≤ ϕ(x)−ϕ(f (x)) for every
point x ∈ M. Caristi’s fixed point theorem states that every function f : M → M
satisfying Caristi’s condition always has a fixed point [Car76]. In this section, we
consider the complexity of computing a fixed point of f . We shall formally define

78 Chapter 6. On the Complexity of Caristi’s Fixed Points

this as a total search problem, using a standard construction to avoid the “promise"
that φ is lower semicontinuous and f satisfies Caristi’s condition.

Firstly, we fix the metric notion used throughout this chapter. When we consider
the discrete domain, the complete metric space (Gk

n,d1) is defined as for each pair of
x and y in Gk

n,
d1(x,y) = ∑

i∈[k]
|xi − yi|,

where n and k are some positive integers. On the other hand, when we consider the
continuous domain, the complete metric space ([0,1]3,d∞) is defined as for each pair
of x and y in [0,1]3,

d∞(x,y) = max{|x1 − y1|, |x2 − y2|, |x3 − y3|,}.

In this chapter, we discuss separately when the domain M is discrete and contin-
uous. In the discrete domain, we consider the finite discrete Euclidian metric space
(Gk

n,d1). Note that, in this case, any function ϕ : Gk
n →Z≥0 is always lower semicon-

tinuous. Furthermore, (Gk
n,d1) is a complete metric space. Section 6.1.1 shows that

the problem of comuputing a Caristi’s fixed point on (Gk
n,d1) is PLS-complete. On

the other hand, in the continuous domain, we consider the unit cube ([0,1]3,d∞). In
order to avoid semicontinuous, we require that ϕ is λ -Lipschitz continuous. Section
6.1.2 shows that the problem of finding a Caristi’s fixed point on ([0,1]3,d∞) is also
PLS-complete.

6.1.1 Discrete Domain
In this subsection, we consider the complexity of computing a Caristi’s fixed point
on a finite discrete Euclidian grid space (Gk

n,d1). Thus, we consider the complexity
the problem such as: Given a positive integer η and two functions ϕ : Gk

n → Z≥0
and f : Gk

n → Gk
n satisfying that ηd(x, f (x))≤ ϕ(x)−ϕ(f (x)) for each x ∈ Gk

n, find
a fixed point of f . Notice that it is unlikely that there will be a polynomial-time
algorithm verifying whether the given functions satisfy Caristi’s condition. Now, we
formally define the problem of finding a Caristi’ fixed point as a discrete total search
problem by adding a witness showing that f violates Caristi’s condition.

We are interested in the complexity of the following total search problem. In the
rest of this section, we prove that this problem is PLS-complete.

Definition 6.1. DISCRETE CARISTI

Input:

• a positive integer η and

• two Boolean circuits computing f : Gk
n → Gk

n and ϕ : Gk
n → Gm.

Task: Find on of the following:

• a point x ∈ [N]d such that f (x) = x;

• a point x ∈ Gk
k such that ηd1(x, f (x))> ϕ(x)−ϕ(f (x)).

6.1. Computing a Caristi’s Fixed Point 79

Note that DISCRETE CARISTI is a total search problem: If for every point x ∈Gk
n,

the given function f satisfies Caristi’s condition, then there exists a fixed point, and
otherwise, we obtain a point which violates Caristi’s condition.

Theorem 6.2. DISCRETE CARISTI is PLS-complete.

Proof. First, we show that DISCRETE CARISTI is in PLS. To prove this, we con-
struct a polynomial-time reduction from DISCRETE CARISTI to LOCALOPT. Our
construction is very easy. When we are given an instance of (f ,ϕ,η) of DISCRETE

CARISTI, we define p(x) = ϕ(x) for each x ∈ Gk
n and construct the instance (f , p) of

LOCALOPT.
Assume that we obtain a point x ∈ Gk

n satisfying that p(x) ≤ p(f (x)). If f (x) =
x, then it is a fixed point of f . On the other hand, if f (x) ̸= x, then it holds that
p(x)− p(f (x)) ≤ 0 < 1 ≤ ηd1(x, f (x)). Therefore, x is a solution to the original
instance.

Hence, DISCRETE CARISTI belongs to PLS.
Next, we prove that DISCRETE CARISTI is PLS-hard. To prove this, we construct

a polynomial-time reduction from LOCALOPT to DISCRETE CARISTI. Given an
instance (f , p) of LOCALOPT, we define π = k · 2n and the function ϕ(x) = π p(x)
for each x ∈ Gk

n. Moreover, we define η := 1. It is easy to see that every fixed
point of f is a solution to LOCALOPT. What remains is to prove that a point x ∈ Gk

n
satisfying that d1(x, f (x)) > ϕ(x)−ϕ(f (x)) is a solution to LOCALOPT. Suppose
that we obtain such a point x. Then it satisfies that d1(x, f (x)) > ϕ(x)−ϕ(f (x)) =
π(p(x)− p(f (x))). Notice that d1(x, f (x)) =∑i∈[k] |xi−yi| ≤∑i∈[k](2n−1)< k ·2n =
π , and hence, it hollows that

p(x)− p(f (x))<
1
π

d1(x, f (x))<
1
π
·π = 1.

Rcall that p returns a non-negative integer for each point. This implies that p(x) ≤
p(f (x)). Thus, we obtain a solution to LOCALOPT. Therefore, DISCRETE CARISTI

is PLS-hard.

6.1.2 Continuous Domain
In this section, We consider the complexity of computing a Caristi’s fxied point on
a unit cubit ([0,1]3,d∞). Thus, we consider the problem such as: Given two positive
numbers η and ε and two functions ϕ : [0,1]3 → [0,1] which is λ -Lipschitz continu-
ous and f : [0,1]3 → [0,1]3 satisfying Caristi’s condition, find an ε-approximate fixed
point of f , i.e., a point x ∈ [0,1]3 such that d∞(f (x),x) ≤ ε . However, as in the dis-
crete domain, there seem to be no polynomial-time algorithms that decide whether,
for every pair of points, ϕ is λ -Lipschitz continuous and satisfies Caristi’s condi-
tion. Therefore, we formally define the problem of finding an approximate Caristi’s
fixed point as a continuous total search problem by adding a witness showing that f
violates Caristi’s condition or ϕ is not λ -Lipschitz continuous.

Now, we are interested in the complexity of the following total search problem.
In the rest of this subsection, we prove that this problem is also PLS-complete.

Definition 6.3. CONTINUOUS CARISTI

Input:

80 Chapter 6. On the Complexity of Caristi’s Fixed Points

• three positive parameters ε , η , and λ

• two well-behaved arithmetic circuits computing f : [0,1]3 → [0,1]3 and ϕ :
[0,1]3 → [0,1].

Task: Find on of the following:

• a point x ∈ [0,1]3 such that d∞(x, f (x))≤ ε;

• a point x ∈ [0,1]3 such that ηd∞(x, f (x))> ϕ(x)−ϕ(f (x));

• two points x,y ∈ [0,1]3 such that |ϕ(x)−ϕ(y)|> λd∞(x,y).

Note that CONTINUOUS CARISTI is a total search problem: If the given function
ϕ is λ -Lipschitz continuous and f satisfies Caristi’s condition, then there exists at
least one fixed point by Caristi’s fixed point theorem, and otherwise, we obtain a wit-
ness which shows that ϕ is not λ -Lipschitz continuous or f does not satisfy Caristi’s
condition.

Theorem 6.4. CONTINUOUS CARISTI is PLS-complete.

Proof. First, we prove that CONTINUOUS CARISTI is PLS-hard. Thus, we construct
a polynomial-time reduction from REAL LOCALOPT to CONTINUOUS CARISTI.
We assume that we are given an instance (f , p,ε,λ) of REAL LOCALOPT. Then,
we define ϕ(x) := p(x) for every x ∈ [0,1]3, ε ′ := ε/(1+λ), and η := ε . Thus, we
consider the instance (f ,ϕ,ε ′,η ,λ) of CONTINUOUS CARISTI. It is easy to see that
a two points x,y satisfying that |ϕ(x)−ϕ(y)|> λd∞(x,y) are a solution of the original
instance (f , p,ε,λ). Henceforth, we suppose that each obtained solution x ∈ [0,1]3

of (f ,ϕ,ε ′,η ,λ) satisfies that |ϕ(x)−ϕ(f (x))| ≤ λd∞(x,y). Next, we assume that
we obtain a point x ∈ [0,1]3 satisfying that d∞(x, f (x))≤ ε ′. By definition, it follows
that

|p(x)− p(f (x))|= |ϕ(x)−ϕ(f (x))|
≤ λd∞(x, f (x))
≤ λ · ε ′

≤ λ · ε

1+λ

< ε.

This implies that x is a solution to REAL LOCALOPT since p(x) ≤ p(f (x)) + ε .
Finally, we suppose that we obtain a point x ∈ [0,1]3 satisfying that ηd∞(x, f (x)) >
ϕ(x)−ϕ(f (x)). By definition, it is not difficult to see that

ε = η ·1 ≥ ηd∞(x, f (x))
> ϕ(x)−ϕ(f (x))
= p(x)− p(f (x)).

This implies that x is a solution to REAL LOCALOPT. Therefore, CONTINUOUS

CARISTI is PLS-hard.

6.2. Computing a Brøndested’s Fixed Point 81

Next, we prove that CONTINUOUS CARISTI belongs to PLS. To prove this,
we construct a polynomial-time reduction from CONTINUOUS CARISTI to REAL

LOCALOPT. We assume that we are given an instance (f ,ϕ,ε,η ,λ) of CONTIN-
UOUS CARISTI. Then we construct the tuple (f ,ε,η · ε,λ); this is the instance
of REAL LOCALOPT. It is easy to see that this instance can be constructed in
polynomial time. What remains is to show that we can convert from every solu-
tion of (f ,ε,η · ε,λ) to a solution of (f ,ε,ε,η ,λ) in polynomial time. It is not
difficult to see that every pair of points which violates λ -Lipschitz continuously
of ϕ is an original solution. Now, we assume that we obtain a point x such that
ϕ(x)≤ ϕ(f (x))+η ·ε . If x satisfies that d∞(x, f (x))≤ ε , then x is an ε-approximate
fixed point of f , and otherwise, it follows that

ηd∞(x, f (x))> η · ε ≥ ϕ(x)−ϕ(f (x))

This implies that x is a solution to CONTINUOUS CARISTI.
Therefore, CONTINUOUS CARISTI belongs to PLS.

6.2 Computing a Brøndested’s Fixed Point
In this section, we consider the complexity of a continuous total search problem that
the existence of a solution is guaranteed by Brøndsted’s fixed point theorem. This is
a variant of CONTINUOUS CARISTI.

Let (M,d) be a complete metric space. We assume that ϕ : M → R≥0 is any (not
necessarily lower semicontinuous function and η is some positive number. Brønd-
sted’s fixed point theorem states that every continuous function f : M → M satisfying
that ηd(x, f (x))≤ ϕ(x)−ϕ(f (x)) for each x ∈ M, that is, f satisfies Caristi’s condi-
tion, has at least one fixed point [Brø74]. From now on, we consider the complexity
of the problem of finding a Brøndsted’s fixed point. As same as the problem of find-
ing a Caristi’s fixed point, we shall formally define this problem as a total search
problem, using a standard construction to avoid the “promise" that f is continuous
and satisfies Caristi’s condition.

Notice that this problem on a finite discrete Euclidian metric space is the same
problem as DISCRETE CARISTI because a function g : Gk

n → Gk
n is continuous on

(Gk
n,d1). Hence, we consider the problem on the continuous unit cube ([0,1]3,d∞).

Thus, we are interested in the complexity of the following total search problem.

Definition 6.5. BRØNDESTED

Input:

• three positive rational numbers ε , η , and λ

• two well-behaved arithmetic circuits computing f : [0,1]3 → [0,1]3 and ϕ :
[0,1]3 → [0,1].

Task: Find on of the following:

• a point x ∈ [0,1]3 such that d∞(x, f (x))≤ ε ,

• a point x ∈ [0,1]3 such that ηd∞(x, f (x))> ϕ(x)−ϕ(f (x)),

82 Chapter 6. On the Complexity of Caristi’s Fixed Points

• two points x,y ∈ [0,1]3 such that d∞(f (x), f (y))> λd∞(x,y).

Note that BRØNDESTED on ([0,1]3,d∞) is a total search problem: If the given
function f is λ -Lipschitz continuous and satisfies Caristi’s condition, then there ex-
ists at least one fixed point, and otherwise, we obtain two points which exhibit that f
is not λ -Lipschitz continuous or a point which exhibit that f does not satisfy Caristi’s
condition.

In the rest of this section, we provide the upper bound and lower bound for BRØN-
DESTED. Section 6.2.1 shows that this problem belongs to PPAD. In Section 6.2.2,
we prove that BRØNDESTED is CLS-hard, that is, every search problem belonging to
CLS is polynomial-time reducible to BRØNDESTED.

6.2.1 Comupting a Brøndested’s Fixed Point is in PPAD

Recall that the complexity class PPAD is defined as the set of all search problems that
are polynomial-time reducible to the problem of finding a Brouwer’s fixed point:
Given a λ -Lipschitz continuous function f : [0,1]3 → [0,1]3 and a positive number
ε > 0, find an ε-approximate fixed point of f . To avoid the “promise" that the given
function f is λ -Lipschitz continuous, the problem BRØNDESTED is defined as fol-
lows.

For each instance (f ,ϕ,ε,η ,λ) of BRØNDESTED, the tuple (f ,ε,λ) is an in-
stance of BROUWER from the definition. Then it is very easy to see that every ob-
tained solution to BROUWER is a solution to BRØNDESTED. This implies that there
exists a polynomial-time reduction from BRØNDESTED to BROUWER. Therefore,
the following statement immediately follows.

Theorem 6.6. BRØNDESTED belongs to PPAD.

6.2.2 Computing a Brøndested’s Fixed Point is CLS-hard
The complexity class CLS, introduced by Daskalakis and Papadimitriou [DP11], is
the first important subclass of PPAD∩PLS. Recall that CLS is defined by the following
search problem called CONTINUOUS LOCALOPT (see Definition 5.3).

In the rest of this subsection, we show the CLS-hardness of BRØNDESTED. Thus,
we construct a polynomial-time reduction from CONTINUOUS LOCALOPT to BRØN-
DESTED. The construction of our reduction is basically the same as the reduction
from REAL LOCALOPT to CONTINUOUS CARISTI shown in Theorem 6.4.

Theorem 6.7. BRØNDESTED is CLS-hard.

Proof. Now, we assume that we are given an instance I = (f , p,ε,λ) of CONTIN-
UOUS LOCALOPT. Then we define the instance J = (f ′,ϕ,ε ′,η ,λ) of BRØN-
DESTED as ϕ(x) := p(x) for every x ∈ [0,1]3, ε ′ := ε/(1+λ), and η := ε . It is easy
to see that this instance can be constructed in polynomial time.

From now on, we prove that we can convert a solution of I from an obtained
solution of J . By definition, it is not difficult to see that two points x,y∈ [0,1]3 such
that d∞(f (x), f (y)) > λd∞(x,y) are immediately a solution of I . In the rest of this
proof, we suppose that every obtained point x∈ [0,1]3 satisfies that d∞(f (x), f (f (x)))
≤ λd∞(x, f (x)).

6.3. Conclusions 83

We assume that we obtain a point x ∈ [0,1]3 such that d∞(x, f (x)) ≤ ε ′. If
|p(x)− p(f (x))| > λd∞(x, f (x)), then two points x and f (x) imply that p is not λ -
Lipschitz continuous, that is, we obtain a solution to CONTINUOUS LOCALOPT,
and otherwise, it follows that

|p(x)− p(f (x))| ≤ λd∞(x, f (x))
≤ λ · ε ′

= λ · ε

1+λ

≤ ε.

This implies that p(x)≤ p(f (x))+ε . Hence, x is a solution of I . Finally, we asume
that we obtain a point x ∈ [0,1]3 such that ηd∞(x, f (x)) > ϕ(x)−ϕ(f (x)). It holds
that

ε = η ·1 ≥ η ·d∞(x, f (x))
> ϕ(x)−ϕ(f (x)) = p(x)− p(f (x)).

Thus, x is a solution to CONTINUOUS LOCALOPT.
Therefore, BRØNDESTED on ([0,1]3,d∞) is CLS-hard.

6.3 Conclusions
We have studied the complexity of finding a Caristi’s fixed point on a discrete domain
and a continuous domain, and we have proved that this problem is a PLS-complete
in both domains. We have also provided the upper bound and the lower bound for
the problem of finding a Bøndsted’s fixed point. Specifically, we have proved that
this problem is in PPAD and is a CLS-hard problem. We illustrate, in Figure 6.1, the
relationship of the complexity around the problems of finding a fixed point obtained
in our and the previous results.

There are open problems worth considering left by our work. It would be fasci-
nating to clarify whether BRØNDESTED is a complete problem for PPAD or CLS. In
particular, to show the PPAD-completeness of BRØNDESTED, we need to establish a
method proving Brouwer’s fixed point theorem on ([0,1]3,d∞) by using Brøndsted’s
fixed point theorem. To show the CLS-completeness of BRØNDESTED, it is sufficient
to prove that this problem is in PLS since CLS = PPAD∩PLS [Fea+21], and BRØN-
DESTED is CLS-hard by Theorem 6.7. Brøndsted’s fixed point theorem is an order-
theoretic fixed point theorem, and hence, we can find a Brøndsted’s fixed point by
using a local search method. It seems that BRØNDESTED also belongs to PLS. Recall
that a potential function, p, given by an instance of REAL LOCALOPT, is required
λ -Lipschitz continuous for some positive number λ . Furthermore, Daskalakis and
Papadimitriou [DP11] have proven that REAL LOCALOPT is PLS-complete by rely-
ing on λ -Lipschitzness of the given potential function. On the other hand, a potential
function, ϕ , given by an instance of BRØNDESTED, is not necessarily continuous.
Therefore, we need more ideas to prove that BRØNDESTED belongs to PLS.

84 Chapter 6. On the Complexity of Caristi’s Fixed Points

TFNP

PPADPLS

CLS= PPAD∩PLS

BROUWERCARISTI

BANACH

TARSKI

BRØNDESTED

FIGURE 6.1: Overview of the complexity of problems of finding a
fixed point belonging to TFNP from our and previous studies [Pap94b;
CD09; DTZ18; Ete+20; Fea+21]. Problems which are known to be

complete for some class are drawn above a dotted line.

Another interesting open question is the complexity of CONTINUOUS CARISTI

with η = 1: Is CONTINUOUS CARISTI PLS-complete even if η = 1? The origi-
nal statement of Caristi’s fixed point theorem does not use the positive number η

[Car76]. The claims are mathematically equivalent even if η > 0 is added. Nat-
urally, we can define the problem of finding a Caristi’s fixed point without η , but
our to prove the PLS-hardness of CONTINUOUS CARISTI in the proof of Theorem
6.4. In contrast, we can straightforwardly see that DISCRETE CARISTI with η = 1 is
PLS-complete.

85

Part IV

Algorithmic Game Theory

87

Chapter 7

Nash Equilibrium Computation

So far, we have reviewed the complexity of total search problems from mathematical
perspectives. Now, we discuss such topics from the outlook on applied realms. This
thesis focuses on the computational aspects of Nash equilibria, which are one of the
most fascinated mathematical notions for the author.

The research interaction between Game Theory and Theoretical Computer Sci-
ence has helped to study the computational issues underlying fundamental game-
theoretic notions deeply. A seminal topic of these research streams is to clarify
the complexity of computing Nash equilibria in multi-player non-cooperative games.
A Nash equilibrium is an intuitive and essential concept of rationality in which no
player could unilaterally deviate from her selected strategy to improve her reward.

7.1 Essence of Game Theory
We first define basic notations. A finite game G = ([N],{Si},{pi}) consists of a finite
set of players [N], a finite set of pure strategies Si for each player i ∈ [N], and a payoff
function pi : ×i∈[N]Si → R≥0 for each player i ∈ [N]. In the following, we denote S
as ×i∈[N]Si and S−i as × j∈[N]\{i}S j for simplicity.

A list of pure strategies (s1,s2, . . . ,sN) ∈ S is called a pure strategy profile. When
each player i ∈ [N] plays a pure strategy si ∈ Si, we interpret it as a pure strategy
profile s = (s1,s2, . . . ,sN) are selected and each player i ∈ [N] obtains a payoff pi(s).

Consider the setting when every player tries to maximize their payoff. A pure
strategy profile s = (s1,s2, . . . ,sN) ∈ S is a pure Nash equilibrium if for each player
i ∈ [N] and each strategy ti ∈ Si, it satisfies that pi(si,s−i)≥ pi(ti,s−i). When players
select a pure strategy profile s = (s1,s2, . . . ,sN) ∈ S, the best response for a player
i ∈ [N] is argmaxti∈Si p(ti,s−i). Here, we denote by s−i by the list of pure strategies
of all players except i.

Next, we describe mixed strategies. A mixed strategy is a probability distribution
on a set of pure strategies. Thus, the set of mixed strategies ∆i is defined as {xi ∈
RS
≥0 ; ∑si∈Si xi(si) = 1} for a player i ∈ [N]. When a player i ∈ [N] plays a mixed

strategy xi ∈ ∆i, we interpret it as the player i plays a strategy si ∈ Si with probability
xi(si). We call a list of mixed strategies x = (x1,x2, . . . ,xN) ∈ ∆ a mixed strategy
profile, where ∆ :=×i∈[N]∆i. For a mixed strategy profile x = (x1,x2, . . . ,xN) ∈ ∆, an
expected payoff for a player i ∈ [N] is defined as P(x) = ∑s∈S ∏ j∈[N] pi(s)x j(s j). A
mixed strategy profile x = (x1,x2, . . . ,xN)∈ ∆ is a mixed Nash equilibrium if for each
player i ∈ [N] and every mixed strategy ξi ∈ ∆i, it holds that P(xi,x−i) ≥ P(ξi,x−i).
Here, we denote by x−i by the list of mixed strategies of all players except i.

88 Chapter 7. Nash Equilibrium Computation

A pure/mixed Nash equilibrium is an intuitive notion of rationality or stabil-
ity. Every player has no incentive to change their current pure/mixed strategy in
a pure/mixed Nash equilibrium. Nash [NJ50] have proven that every finite game al-
ways has a mixed Nash equilibrium. His statement implies that any finite game can
reach a quiescent situation. Note that Nash’s theorem does not guarantee the exis-
tence of a pure Nash equilibrium. Actually, many finite games have no pure Nash
equilibria; the Rock-paper-scissors game is an example.

The following natural questions worth considering arise: (1) Can such a situation
reach practically? (2) Can we efficiently compute a mixed Nash equilibrium? (3) Can
we efficiently decide whether a finite game has a pure Nash equilibrium? These
questions have been widely explored, and there are many negative and some positive
results. The next section will survey the research stream of computing pure/mixed
Nash equilibria.

7.2 On the Complexity of Equilibrium Computation
The results of the last two decades are unraveling the complexity of computing mixed
Nash equilibria [CD06; DGP09]. It is the most important result that the intractability
for computing Nash equilibria in two-player games even if both players gain only a
unit payoff at most [AKV05]. Furthermore, it is well known that the best algorithm
has an exponential worst-case running time even in a two-player setting [SS04].

Motived by the above negative facts, some studies have concentrated on the com-
plexity of computing specified classes of equilibria, such as pure, mixed, or corre-
lated equilibria [FPT04; Pap05]. This thesis focuses on the uniform Nash equilibria,
i.e., Nash equilibria consisting of strategies in which strategies are played according
to a uniform distribution. A uniform Nash equilibrium is a kind of mixed equilibrium.
However, unlike mixed Nash equilibria, uniform Nash equilibria do not always exist.
Bonifaci, Iorio, and Laura [BIL08] showed that it is NP-complete to decide whether
a given two-player game has a uniform Nash equilibria even if every element of pay-
off matrices is either 0 or 1. On the other hand, Addario-Berry, Kane, and Variant
[AKV05] proved that there is a polynomial-time algorithm to find a uniform Nash
equilibrium in such a two-player game if the graph defined by the game is planar.

7.2.1 Succinct Representation of Games
Any computational problem has inputs; the problem of computing a Nash equilibria
takes a description of a finite game G for which we want to find a pure/mixed Nash
equilibrium as an input. We need to concern about how long is such a description.

Consider a finite game G = ([N],{Si},{pi}). Here, we denote by m and k the
maximum and minimum numbers of pure strategies, respectively: m = maxi∈[N] |Si|
and k = mini∈[N] |Si|. Recall that a payoff function pi depends on all players’ selected
pure strategies for each player i ∈ [N]. That is, we need at least kN entries to describe
a payoff function pi. Thus, we need N · kN elements to explain the game G . It is
obviously a huge size input.

Of course, the study of computational complexity aspects of seeking a pure/mixed
Nash equilibrium on a finite strategic-form game is interested in multi-player set-
tings. Therefore, we reflect on the way to succinctly represent a game. As mentioned

7.2. On the Complexity of Equilibrium Computation 89

in the previous paragraph, it suffices to equip the description of a payoff function for
every player. There are three natural ways to explain them briefly:

1. Gives a Boolean or arithmetic circuit computing a payoff function;

2. regards the number of players as a constant; and

3. for each player, restrict the number of players who affect its payoff function.

Certainly, the first approach is a concise implementation of a payoff function. How-
ever, it is inappropriate as our motive. It is unknown whether we have an efficient
algorithm for deciding whether a given pure/mixed strategy profile is a pure/mixed
Nash equilibrium. We can easily see that such a problem is NP-hard. Thus, the Nash
equilibrium computation problem described in the first natural way may be outside
of FNP.

Our research purpose is to sharpen the tractability-intractability boundary of the
problem of computing pure/mixed Nash equilibria. Especially, we are interested in
the problem belonging to between P and NP. Hence, this thesis only focuses on the
remaining approaches. The last two methods have been widely studied.

Bimatrix Games

The second technique is simple. A fascinating situation is the two-player setting;
we call such a game a bimatrix game. A bimatrix game is a two-player strategic-
form game where players have a finite set of pure strategies. We call the first (resp.
second) player the row (resp. column) player. Here, we denote by R and C by the
sets of pure strategies for the row and column players, respectively. A bimatrix game
is specified by non-negative real matrices MR,MC ∈ RR×C

≥0 ; the rows and columns of
both matrices are indexed by the pure strategies of the players.

A bimatrix game lies on the tractability-intractability boundary because the prob-
lem of computing a mixed Nash equilibrium on a bimatrix game is generally PPAD-
complete [CDT09]. However, it is efficiently solvable if a bimatrix game is zero-sum
[Cai+16]. Note that a three-player zero-sum game is PPAD-complete; we can easily
see this fact from the PPAD-completeness of a bimatrix game.

Surprisingly, it is known that the problem of finding a mixed Nash equilibrium on
a bimatrix game is PPAD-complete even if both players obtain at most a unit reward.
Abbott, Kane, Valiant [AKV05] have provided an efficient procedure to transform a
two-player game into a win-lose bimatrix game, where a win-lose bimatrix game is a
two-player game in which every component of payoff matrices is either zero or one.
Combining their result and [CDT09], we can see that it is PPAD-complete to compute
a mixed Nash equilibrium on a win-lose bimatrix game.

From the above negative results, some studies related to the computational as-
pects of bimatrix games have focused on the specified classes of equilibria, such as
pure, mixed, correlated etc. [FPT04; Pap05]. Bonifaci, Iorio, and Laura [BIL08]
focused on uniform Nash equilibria. A Nash equilibrium (xR,xC) is said to be uni-
form if for each ri ∈ supp(xR) and each c j ∈ supp(xC), xR(ri) = 1/|supp(xR)| and
xC(c j) = 1/|supp(xC)|, where supp(x) = {i ∈ [n] ; x(i) > 0} for a vector x ∈ Rn

≥0.
Although a uniform Nash equilibrium is a mixed Nash equilibrium, the existence of
uniform Nash equilibria does not guarantee. Bonifaci, Iorio, and Laura [BIL08] and

90 Chapter 7. Nash Equilibrium Computation

Codenotti and Štefancič [CS05] showed the NP-completeness of checking whether a
given bimatrix game has a uniform Nash equilibrium.

Their proofs were based on a graph-theoretical approach. There is a one-to-
one correspondence between a win-lose bimatrix game and a bipartite digraph. Let
(MR,MC) be a win-lose bimatrix game. Addario-Berry, Oliver, and Vetta [AOV07]
and Bonifaci, Iorio, and Laura [BIL08] have constructed a bipartite digraph G =
(V,E) from (MR,MC) as follows: The set of vertices V is equal to R∪C; and we have
an arc (ri,c j) ∈ E if MR(ri,c j) = 1 and an arc (c j,ri) ∈ E if MC(ri,c j) = 1. We can
effortlessly see that a similar technique can also be done in the opposite direction,
i.e., construction from a bipartite digraph to a bimatrix game.

Fix arbitrary non-empty subset S ⊆ V , let G[S] be the subgraph induced by S.
We denote by Γ+(v) the set of out-neighbors of vertex x ∈ V , and by Γ

+
S the set of

out-neighbors of a vertex v ∈V that are in S ⊆V .
Let G = (R∪C,E) be a bipartite digraph, where R∩ S = /0. For a non-empty

subset S ⊆ R∪C with S∩R ̸= /0 ̸= S∩C, the induced subgraph G[S] is (α,β) out-
regular if the following conditions holds: (i) For every ri ∈ S∩R, |Γ+

S (ri)|= α; and
(ii) for every c j ∈ S∩C, |Γ+

S (c j)|= β . We say that G has an out-regular subgraph if
there exists a triple (α,β ,S) such that G[S] is (α,β) out-regular, and α,β ≥ 1.

A vertex v ∈ (R∪C) \ S dominates an an (α,β) out-regular subgraph G[S] is it
satisfies that either |Γ+

S (v)| > α if v ∈ R; or |Γ+
S (v)| > β if v ∈ C. We say that an

(α,β) out-regular subgraph G[S] is undominated if there are no vertices that domi-
nate G[S]. We say that G has an undominated out-regular subgraph if there is a triple
(α,β ,S) such that G[S] is an undominated (α,β) out-regular subgraph.

Bonifaci, Iorio, and Laura [BIL08] and Addario-Berry, Oliver, and Vetta [AOV07]
have proven the following important characterization:

Theorem 7.1 (Bonifaci, Iorio, and Laura [BIL08] and Addario-Berry, Oliver, and
Vetta [AOV07]). A win-lose bimatrix game has a uniform Nash equilibrium if and
only if the corresponding bipartite digraph has an undominated out-regular sub-
graph.

Bonifaci, Iorio, and Laura [BIL08] have proven the NP-hardness of verifying the
existence of uniform Nash equilibria on a given win-lose bimatrix game by using
Theorem 7.1; they reduced 3-SAT to the problem of deciding whether a bipartite
digraph has an undominated out-regular subgraph.

Addario-Berry, Oliver, and Vetta [AOV07] focused on the special case of win-
lose bimatrix games which induce a planar digraph. They have shown that such a
win-lose bimatrix game always has a uniform Nash equilibrium, and we can find it
in polynomial time. Their proof also relied on Theorem 7.1; they proved that a pla-
nar bipartite digraph has an undominated out-regular subgraph, and it can be found
in polynomial time. Datta and Krishnamurthy [DK11] have improved the results of
[AOV07]; they have shown that there is a nondeterministic logarithmic-space algo-
rithm for finding an undominated out-regular subgraph on a planar bipartite digraph.

We generalize these results to non-win-lose bimatrix games in Chapter 8. We pro-
vide a one-to-one correspondence between a bimatrix game and an edge-weighted
bipartite digraph. Furthermore, we prove that the problem of deciding whether a
bimatrix game has a uniform Nash equilibrium is NP-complete even if the game cor-
responds to a planar digraph.

7.2. On the Complexity of Equilibrium Computation 91

Finally, we mention the recent results related to the computational aspects of
win-lose bimatrix games. Recently, Bilò and Mavronicolas [BM21] have shown the
computational complexity of variants of win-lose bimatrix games and left a few open
questions, for example, the complexity of deciding whether a given symmetric win-
lose bimatrix game has a Pareto-optimal Nash equilibrium.

Graphical Games

The second method is usually called a graphical game, introduced by Kearn, Littman,
and Singh [KLS01]. A graphical game consists of

• an undirected graph G = (V,E), where V is a finite set of players and every
edge in E represent the interaction between its endpoints,

• for each player i ∈V , a finite set of strategies Si,

• a payoff function pi : ×i∈N(i)∪{i}Si → R≥0, where N(i) is the set of neighbors
of player i, that is, N(i) = { j ∈V ; {i, j} ∈ E}.

Consider a graphical game whose graph has n vertices and degree is d that every
player has m pure strategies. We need only n ·md+1 elements to explain this game;
this is modest compared to N · kN .

Generally, it is intractable to compute a pure Nash equilibrium on a graphical
game. Gottlob, Greco, and Scarcello [GGS05] have proven that deciding whether a
given graphical game has a pure Nash equilibrium is NP-hard. In particular, we can
straightforwardly see that the negative results presented in Bimatrix Games imme-
diately follow if we note that every two-player game is a graphical game.

Recent studies motived by these negative facts have concentrated on the sub-
classes of graphical games; these subclasses are usually introduced by restricting
(i) the graph structure, (ii) the number of pure strategies, or (iii) the properties of
payoff functions.

Daskalakis and Papadimitriou [DP06] have shown that the existence of pure Nash
equilibria on a graphical game is efficiently checkable, and we have a polynomial-
time algorithm for resolving that problem if the graph has O(logn)-treewidth, where
n is the number of players. Elkind, Goldberg, and Goldberg [EGG06] have proven
that a mixed Nash equilibrium can be found in polynomial time if a graph is a path,
i.e., every vertex has at most two neighbors, and every player has two pure strategies.

Polymatrix Games A polymatrix game is the best well-known subclass of graph-
ical games. Each edge on the graph in a polymatrix game is assigned a two-player
game, a bimatrix game, between endpoints. Thus, a polymatrix game consists of

• an undirected graph G = (V,E),

• for each player i ∈ S, a finite set of strategies Si,

• for each edge {i, j} ∈E, a bimatrix game ⟨Mi, j,M ji⟩, where Mi, j and M j,i imply
the payoff matrix for the player i and j, respectively.

92 Chapter 7. Nash Equilibrium Computation

The total payoff for each player i ∈ V is the sum of the payoffs from the bimatrix
game engaged; pi(s) = ∑ j∈Ni Mi, j(si,s j) when a pure strategy profile s = (sv)v∈V are
selected.

Cai, Condogan, Daskalakis, and Papadimitriou [Cai+16] have proven that we
have a polynomial-time algorithm to compute a mixed Nash equilibrium if a poly-
matrix game is zero-sum. Their proof showed that a mixed Nash equilibrium could
be found by linear programming. Unfortunately, it is also generally hard to compute
a mixed Nash equilibrium on a polymatrix game. Recently, Deligkas, Fearnley, and
Savani [DFS20] have shown that it is PPAD-complete to find a mixed Nash equilib-
rium on a tree polymatrix game even if each player has twenty pure strategies.

Network Coordination Games A network coordination game is a class obtained
by further restricting polymatrix games. In a network coordination game, both play-
ers receive the same reward from the bimatrix game, i.e., Mi, j = M j,i. Interestingly,
every network coordination game always has a pure Nash equilibrium. However, it
is hard to find a pure Nash equilibrium for them; Cai and Daskalakis [CD11] have
shown that the problem of computing a pure Nash equilibrium on a network coor-
dination game is PLS-complete even if the graph has degree five and every player
has two pure strategies. Their PLS-hardness results depended on the hardness of
MAXCUT; Elsässer and Tscheuschner [Tsc10; ET11] proved that MAXCUT is PLS
even on graphs with the maximum degree five. Remark that MAXCUT is a class of
network coordination games; this is obvious. There is a positive result about com-
puting a pure Nash equilibrium on a network coordination game: Poljak [Pol95] has
proven that we have a polynomial-time algorithm for solving MAXCUT with on a
cubic graph.

Naturally, it seems easy to compute a mixed Nash equilibrium on a network coor-
dination game. Cai and Daskalakis [CD11] have pointed out such a problem belongs
to PPAD∩PLS. However, it is now only still unknown whether we have a polynomial-
time algorithm for finding a mixed Nash equilibrium on a network coordination
game, but also it is still unknown that such a problem is PPAD∩PLS-complete.

Other Succinct Games

An (implicit) congestion game is a succinctly represented game. The set of pure
strategies of n players is a set of subsets of edges, which indicates resources. Each
edge e has a delay function de : [n]→Z>0. When all players select a subset each from
its pure strategy set (P1, . . . ,Pn), we calculate the congestion c(e) of each edge e, and
the (negative) payoff player i ∈ [n] is −∑e∈Pi d(c(e)). Fabrikant, Papadimitriou, and
Talwar [FPT04] have proven that the problem of computing a pure Nash equilibrium
on a congestion game is PLS-complete.

An implicit congestion game is a succinct variant of congestion games. In the
implicit case, E is the set of edges of an actual network, every player is associated
with two nodes in the network, and the set of strategies of a player i ∈ [n] is the
set of all paths between the two points corresponding to the player i. Fabrikant,
Papadimitriou, and Talwar [FPT04] also have shown the complexity of finding a
pure Nash equilibrium on an implicit congestion game is a PLS-complete problem.

7.2. On the Complexity of Equilibrium Computation 93

Simple Stochastic Games are also well-known succinct games. Such games were
formulated by Shapley [Sha53] and Condon [Con92]. It is known that the problem
of solving a simple stochastic game belongs to UNIQUE END OF POTENTIAL LINE

[Fea+20]. However, the hardness of the problem related to simple stochastic games
is still open.

Unfortunately, it seems to be hard to compute a mixed Nash equilibrium on an im-
plicit congestion game. Babichenko and Rubinstein [BR21] have shown the problem
of finding a mixed Nash equilibrium on an implicit congestion game is PPAD∩PLS-
complete.

Furthermore, the anonymous games also have been widely studied. This is a
generalization of symmetric games: Each player is different but cannot distinguish
each other. Their utility depends on the partition into their selected strategies. Chen,
Durfee, and Orfanou [CDO15] have proven that computing a Nash equilibrium on
an anonymous game is PPAD-complete.

7.2.2 Other Computational Aspects of Game Theory
Stable Matching

The stable matching model introduced by Gale and Shapley [GS13] is one of the most
important mathematical models for matching problems. An instance of a matching
problem consists of an undirected graph and a preference list. Thus, this model is
naturally generalized to hypergraphs, called a hypergraphic preference system. It is
not difficult to see that there exists an instance of the stable matching problem in the
hypergraphic preference system that has no stable matching. Therefore, we consider
in this chapter the following relaxation concept called a fractional matching. In the
ordinary stable matching problem, the value 0 or 1 is assigned to each edge. On
the other hand, in a fractional matching, a real number between zero and one is
assigned to each edge. Fortunately, Aharoni and Fleiner [AF03] showed that every
hypergraphic preference system always has at least stable fractional matching.

In this chapter, we consider the problem of finding a stable fractional matching
in a hypergraphic preference system. Kintali, Poplawski, Rajaraman, Sundraman,
and Teng [Kin+13] proved that the problem of finding a stable fractional match-
ing in a hypergraphic preference system is PPAD-complete. We introduce in this
chapter the problem of finding a stable fractional matching in a hypergraphic pref-
erence system whose maximum degree is bounded by some constant. The proof
by Kintali, Poplawski, Rajaraman, Sundaram, and Teng [Kin+13] implies the PPAD-
completeness of the problem of finding a stable fractional in a hypergraphic pref-
erence system whose maximum degree is five. We first prove that the problem of
finding a stable fractional matching in a hypergraphic preference system whose max-
imum degree is at most two can be solved with stable fractional matching. We sec-
ond prove that the problem of finding a stable fractional matching in a hypergraphic
preference system is PPAD-complete even if the maximum degree is three. Finally,
we prove that the problem of finding an approximate stable fractional matching in a
hypergraphic preference system is also PPAD-complete.

Recently, Csáji [Csá21] has proven that the problem of computing a stable frac-
tional matching is PPAD-complete even if every hyperedge contains at most three
vertices and every vertex joins at most three hyperedges.

95

Chapter 8

Uniform Nash on Planar Bimatrix
Games

8.1 Basics
The research interaction between Game Theory and Theoretical Computer Science
has helped to study the computational issues underlying fundamental game-theoretic
notions deeply. A seminal topic of these research streams is to clarify the complex-
ity of computing Nash equilibria in multi-player non-cooperative games [Pap94b].
A Nash equilibrium is an intuitive and essential concept of rationality in which no
player could unilaterally deviate from her selected strategy to improve her reward.

The results of the last two decades are unraveling the complexity of computing
Nash equilibria [CD06; DGP09]. The most important result is the intractability for
computing Nash equilibria in two-player games even if both players gain only a unit
reward at most [AKV05]. Furthermore, it is well known that the best algorithm has
an exponential worst-case running time in a two-player setting [SS04].

Motived from the above negative facts, some studies have concentrated on the
complexity of computing specified classes of equilibria, such as pure, mixed, or
correlated equilibria [FPT04; Pap94b]. This chapter focuses on the uniform Nash
equilibria, i.e., Nash equilibria consisting of strategies in which strategies are played
according to a uniform distribution. A uniform Nash equilibria do not always exist.
Bonifaci, Iorio, and Laura [BIL08] showed that it is NP-complete to decide whether
a given two-player game has uniform Nash equilibria even if every element of pay-
off matrices is either 0 or 1. On the other hand, Addario-Berry, Olver, and Vetta
[AOV07] proved that there is a polynomial-time algorithm to find a uniform Nash
equilibrium in such a two-player game if the graph defined by the game is planar.

We prove, in this chapter, that the problem of deciding whether a two-player game
that induces a planar graph has uniform Nash equilibria is NP-complete. Furthermore,
we state that if both players’ payoff matrices consist of only three types of non-zero
components, then such a problem is also NP-complete.

8.1.1 Our Results
This thesis sharpens the tractability-intractability boundary for the problem of com-
puting uniform Nash equilibria on bimatrix games. We prove that deciding whether
a bimatrix game has a uniform Nash equilibrium is intractable even if the game is
planar. Our proof shown in Section 8.3 is inspired by the proof techniques used in

96 Chapter 8. Uniform Nash on Planar Bimatrix Games

[AKV05; BIL08; CS05]. The key technique in proving the main result is the con-
struction of the clause-variable gadget, shown in Figure 8.2.

We also discuss the number of types of non-zero elements that appear in the
payoff matrices in Section 8.4.

8.2 Preliminaries

8.2.1 Bimatrix Games and Uniform Nash Equilibria
A bimatrix game is a two-player strategic form game where both payers have a finite
set of strategies. We call the first (resp. second) player the row (resp. column) player.
Here, we denote by R and C the set of strategies for the row and column player,
respectively. A bimatrix game is specified by non-negative real matrices MR,MC ∈
RR×C
≥0 ; the rows and columns of both matrics are indexed by the pure strategies of the

players.
A mixed strategy is a probability distribution over pure strategies, i.e., a vector

xR ∈ RR
≥0 such that ∑ri∈R xR(ri) = 1 is a mixed state of the rwo player. Similarly, a

vector xC ∈RC
≥0 such that ∑c j∈C xC(c j) = 1 is a mixed strategy of the column player.

For a mixed strategy x, the support supp(x) of x is the set of pure strategies i such
that x(i) > 0. A mixed strategy x is said to be uniform if for every i ∈ supp(x),
x(i) = 1/|supp(x)|.

When the row player plays a mixed strategy xR and the column player plays a
mixed strategy xC, the expected payoffs for the row player and the column player
is xTR MRxC and xTR MCxC, respectively. A Nash equilibrium of the bimatrix game
(MR,MC) is a pair of mixed strategies (x∗R,x

∗
C) satisfying for all mixed strategies xR ∈

RR
≥0 of the row player, (x∗R)

TMRx∗C ≥ xTR MRx∗C, and for all mixed strategies xC ∈ RC
≥0

of the column player, (x∗R)
TMCx∗C ≥ (x∗R)

TMCxC. We call a Nash equilibrium (x∗R,x
∗
C)

a uniform Nash equilibrium if both mixed strategies are uniform.

Relationship between Edge-Weighted Digraphs and Bimatrix Games We now
describe how to construct an edge-weighted bipartite digraph from a bimatrix game.
Our notation and definition introduced below are based on [AOV07; BIL08]. Note
that they only considered unweighted digraphs. We generalize their notion to edge-
weighted digraphs.

Let (MR,MC) be a bimatrix game, where the sets of strategies for the row players
and the column players are R and C, respectively. Now, we define the edge-weighted
bipartite digraph G = (V,E,w) induced by the bimatrix game (MR,MC). Here, w :
E → R≥0 represents weightes on edges. The set V of vertices is R∪C. We have an
arc (ri,c f) if MR(ri,cv) > 0, and the weight on the arc (ri,c j) is equal to MR(ri,c j).
Similarly, we have an arc (c j,ri) if MC(ri,c j) > 0, and the weight on the arc (c j,ri)
is equal to MC(ri,c j).

The bimatrix game (MR,MC) is a planar bimatrix game if the edge-weighted di-
graph G is induced by (MR,MC) is a planar graph.

Remark that it is possible that the reverse transformation. Thus, we can construct
a bimatrix game from an edge-weighted bipartite digraph.

8.2. Preliminaries 97

Let G = (V,E,w) be an edge-weighted bipartite digraph. Since G is bipartite,
we can naturally separate the set of vertices V into two disjoint subsets R and C.
We regard R and C as the sets of pure strategies for the row and column players,
respectively. The payoff matrix of the row player MR is defined as follows: For
each ri ∈ R, MR(ri,c j) = w(ri,c j) if (ri,c j ∈ E; otherwise MR(ri,c j) = 0. The defi-
nition of the payoff matrix of the column player MC is similar, i.e., for each c j ∈ C,
MC(ri,c j) = w(c j,ri) if (c j,ri) ∈ E; otherwise MC(ri,c j) = 0.

From the above observation, we obtain the following statement.

Lemma 8.1. For every bimatrix game, there is a corresponding edge-weighted bi-
partite digraph; vice versa.

Undominated Out-Regular Subgraphs For a finite subset S ⊆ V , let G[S] be the
subgraph induced by S. We denote by Γ+(v) the set of out-neighbors of a vertex
v ∈V , and by Γ

+
S (v) the set of out-neighbors of a vertex v ∈V that are in S ⊆V .

Fix arbitrary non-empty subset of strategies S = SR ∪SC ⊆V , where /0 ̸= SR ⊆ R
and /0 ̸= SC ⊆ S. The induced subgraph G[S] is (α,β) out-regular if the following
two conditions: (1) for every ri ∈ SR, ∑c j∈Γ

+
S (ri)

w(ri,c j) = α; (2) for every c j ∈ SC,
∑ri∈Γ

+
S (c j)

w(c j,ri) = β . We say that G has an out-regular subgraph if there is a triple
is a triple (α,β ,S) such taht G[S] is (α,β) out-regular.

A vertex v ∈ V \ S dominates an (α,β) out-regular subgraph G[S] if it satifies
that eigther ∑c j∈Γ

+
S (v)

w(v,c j)> α if v ∈ R; or ∑ri∈Γ
+
S (v)

w(v,ri)> β if v ∈C. We say
that an (α,β) out-regular subgraph G[S] is undominated if there are no vertices that
dominate G[S]. We say that G has an undominated out-regular subgraph if there is a
triple (α,β ,S) such that G[S] is an undominated (α,β) out-regular subgraph.

8.2.2 Problem Formulation
We present a list of computational problems that will be used in this chapter.

Definition 8.2. BIMATRIXGAME

Input:

• a bimatrix game (MR,MC).

Task: Decide whether

• there is a uniform Nash equilibrium (xR,xC).

Definition 8.3. PLANAR BIMATRIX GAME

Input:

• a planar bimatrix game (MR,MC)

Task: Decide whether

• there is a uniform Nash equilibrium (xR,xC).

Definition 8.4. UNDOMINATED OUTREGULAR

Input:

98 Chapter 8. Uniform Nash on Planar Bimatrix Games

• an edge-weighted bipartite digraph G = (V,E,{w(e)}e∈E).

Task: Decide whether

• there is G has an undominated out-regular subgraph.

Definition 8.5. UNDOMINATED OUTREGULAR ON PLANAR

Input:

• an edge-weighted bipartite planar digraph G = (V,E,{w(e)}e∈E).

Task: Decide whether

• there is G has an undominated out-regular subgraph.

8.3 On the Complexity of Planar Bimatrix Games
The purpose of this section is to prove the NP-hardness for the problem of deciding
whether a given bimatrix game (MR,MC) has uniform Nash equilibrium even if the
given game is planar. So, we prove the next theorem.

Theorem 8.6. The problem PLANAR BIMATRIX GAME is NP-complete.

It is not hard to see that PLANAR BIMATRIX GAME belongs to NP. Hence, it
suffices to show the NP-hardness of this problem. To prove Theorem 8.6, we show
the following three lemmata. The proofs of these lemmata are given in Sections
8.3.2, 8.3.2, and 8.3.3, respectively.

Lemma 8.7. Two problems BIMATRIXGAME and UNDOMINATED OUTREGULAR

are polynomially equivalent.

Lemma 8.8. 3-SAT is polynomial-time reducible to UNDOMINATED OUTREGU-
LAR

Lemma 8.9. We can efficiently modify the graph given by the proof of Lemma 8.8 to
be planar.

Theorem 8.6 immediately follows from the above lemmata. The last two lem-
mata show that the problem UNDOMINATED OUTREGULAR ON PLANAR is NP-hard.
Since this problem also belongs to NP, we obtain the NP-completeness of UNDOMI-
NATED OUTREGULAR ON PLANAR. From Lemma 8.7, we see that PLANAR BIMA-
TRIX GAME is NP-complete. Note that our proof shown in Section 8.3.1 shows that
the two problems PLANAR BIMATRIX GAME and UNDOMINATED OUTREGULAR

ON PLANAR are polynomially equivalent.

8.3. On the Complexity of Planar Bimatrix Games 99

8.3.1 Proof of Lemma 8.7
Lemma 8.7 is a generalization of Lemma 5 of Bonifaci, Iorio, and Laura [BIL08].
They only focused on the relationship between a win-lose bimatrxi game and an
unweighted bipartite digraph. Here, we extend their results to the correspondence
between a bimatrix game and an edge-weighted bipartite digraph.

The reduction is natural. As mentioned in Lemma 8.1, we have a one-to-one
correspondence between a bimatrix game and an edge-weighted bipartite digraph.
Furthermore, our constructions shown in Section 8.2 can be done in polynomial time.
Hence, to prove Lemma 8.7, it suffices to show the following theorem.

Theorem 8.10. Fix a subset of pure strategies S= SR∪SC ⊆V , where /0 ̸= SR ⊆R and
/0 ̸= SC ⊆ C. Then, G[S] is an undominated (α,β) out-regular subgraph if and only
if the pair of uniform strategies (xR,xC) such that supp(xR) = SR and supp(xC) = SC
is a Nash equilibrium.

Proof. First, we assume that G[S] is an undominated (α,β) out-regular subgraph.
Then, we show that the pair of uniform strategies (xR,xC) defined as supp(xR) = SR
and supp(xC) = SC is a Nash equilibrium. When the column player playes xC, the row
player gains the expected payoff α/|SC| by playing ri ∈ SR, but gains the expected
payoff at most α/|SC| by playing ri′ ∈ R \ SR. Hence, the uniform strategy xR is a
best response to xC for the rwo player. Similarly, we can see that the uniform strategy
xC is a best response to xR for the column player. Thus, (xR,xC) is a uniform Nash
equilibrium.

Next, we assume that the pair of uniform strategies (xR,xC) such that supp(xR) =
SR and supp(xC) = SC is a Nash equilibrium. For the sake of contradiction, we sup-
pose that there are strategies ri,rk ∈ R such that ∑c j∈Γ

+
S (ri)

w(ri,c j)> ∑cℓ∈Γ
+
S (rk)

w(rk,

cℓ) when the column player plays xC. In this case, the rwo player gains the expected
payoff (1/|SC|)∑c j∈Γ

+
S (ri)

w(ri,c j) by playing ri. On the other hand, she gains the
expected payoff (1/|SC|)∑cℓ∈Γ

+
S (rk)

w(rk,cℓ) by playing rk. From our supposition,
the row player will get a lager expected payoff for playing ri than for playing rk,
which contradicts that (xR,xC) is a Nash equilibrium. Therefore, G[S] is an (α,β)
out-regular subgraph. Using a similar technique, it is easy to see that G[S].

8.3.2 Proof of Lemma 8.8
Let φ : {0,1}n →{0,1} be a 3-CNF formula. Without loss of generality, we assume
that φ has m clauses, and each clause has exactly three literals.

Now, we construct an edge-weighted bipartite digraph Gφ such that every un-
dominated out-regular subgraph leads to a satisfying assignment of φ . The set of
vertices of Gφ consists of variable vertices xi, x̄i for each i ∈ [n], clauses vertices C j
for each j ∈ [m], and the additional vertex a, variable coordinating vertices yi, ȳ,zi for
each i ∈ [n], and clause coordinating vertices v1, j,v2, j,u1, j,u2, j for each j ∈ [m].

We create an arc (C j, ℓi) when the clause C j contains the literal ℓi. Notice that we
are distinguishing between negation and non-negation. Furthermore, we define the
weight on (C j, ℓi) as 1. We add an arc (a,C j) for every clause j ∈ [m], and define the
weight on (a,C j) as 1. For each clause j ∈ [m], we create the clause gadget such as
the left of Figure 8.1. For each i ∈ [n], we create the variable gadget such as the right
of Figure 8.1.

100 Chapter 8. Uniform Nash on Planar Bimatrix Games

C jv1, j v2, j

u1, j u2, ja

1 1

m m

33

1 a zi

xi

x̄i

yi

ȳi

1
2

2

m
3

m
3

FIGURE 8.1: The left is the clause gadget; the right is the variable
gadget.

From the above construction, the digraph Gφ has 5n+ 5m+ 1 vertices and is a
bipartite digraph. Hence, this construction can be done in polynomial time. It is
sufficient to prove the following theorem to complete the proof of Lemma 8.8.

Theorem 8.11. A Boolean formula φ has a satisfying assignment if and only if the
graph Gφ has an undominated out-regular subgraph.

Proof. We assume that φ has a satisfying assignment ξ . Then, we define the subset S
of vertices {C j ; j ∈ [m]}∪{xi,yi ; ξ (i) = 1}∪{x̄i, ȳi ; ξ (i) = 0}∪{a}. Also, we add
some v1, j,v2, j into S so that |Γ+

S (C j)|= 3 for every clause j ∈ [m], and furthermore,
we add uk, j into S when the vertex vk, j is in S.

We show that Gφ [S] is an undominated out-regular subgraph. It is easy to see
that Gφ [S] is (3,m) out-regular. By construction, there are no dominating vertices.
Therefore, G[S] is an undominated out-regular subgraph.

Next, we assume that the graph Gφ has an undominated out-regular subgraph.
More specifically, we suppose that the subset S of vertices induces an undominated
out-regular subgraph Gφ [S].

Note that the subgraph Gφ is strongly connected, and every directed edge has a
weight of at least one. This implies that ∑u∈Γ

+
S (v)

w(v,u) > 0 for every vertex v ∈ S.
From this fact, we can see that there is at least one vertex u ∈ S such that the arc (u,v)
is in Gφ .

Lemma 8.12. For every v ∈ S, it satisfies that ∑u∈Γ
+
S (v)

w(v,u)> 0.

Proof. For the sake of contradiction, we assume that there is a vertex v ∈ S such
that ∑u∈Γ

+
S (v)

w(v,u) = 0. We take a vertex u ∈ S that belongs to the different part
from v. Since the graph Gφ is strongly connected, there is an arc (v′,u) ∈ E(Gφ). If
v′ ∈ S, it contradicts that S induces an out-regular subgraph. On the other hand, if
v′ ∈V (Gφ)\S, it contradicts that Gφ [S] has no dominating vertices.

From Lemma 8.12, we can see that the additional vertex a is contained in S. The
graph given by removing the additional vertex a from the graph Gφ is an acyclic
digraph. Note that any induced subgraph H(S) on an acyclic digraph H has a vertex
v such that Γ

+
S (v) = /0, which implies that ∑u∈Γ

+
S (v)

w(v,u) = 0.
The subset S contains at least one clause vertex C j. To prove this, it suffices

to prove that any variable coordinating vertex zi is not contained in S. Recall that
the out-neighbors of the additional vertex a are only clause vertices C j or variable
coordinating vertices zi. For the sake of contradiction, we assume that there is a

8.3. On the Complexity of Planar Bimatrix Games 101

ε

α1

α2

β1β2

γ1

γ2

γ3

γ4

γ5

δ1 δ2

δ3 δ4

δ5

FIGURE 8.2: The construction of the Clause-Variable Gadget. Here,
weights on fine, dashed, thick, and dotted are 1, m, 3, and m − 1,

respectively.

vertex zi belonging to S. This implies that at least one of xi and x̄i is contained in S.
If xi ∈ S, then yi ∈ S. Hence, we have ∑u∈Γ

+
S (yi)

w(yi,u) ̸= ∑u∈Γ
+
S (zi)

w(zi,u), which
contradicts that S induces an out-regular subgraph. Therefore, zi ̸∈ S holds.

Since zi ̸∈ S for any i ∈ [n], there is a clause vertex C j contained in S. Then,
S contains at least one of the variable vertices in Γ

+
S (C j). Assuming that any such

vertices do not join in S, it holds that 0 < ∑u∈Γ
+
S (C j)

w(C j,u) ≤ 2. We take a clause
coordinating vertex vk, j ∈ S. In this case, we also have uk, j ∈ S by Lemma 8.12 and
the construction of Gφ . Since w(uk, j,a) = 3, a contradiction arises. Therefore, S
contains at least one of the variable vertices Γ

+
S (C j). In the following, we write xi

such a variable vertex. From Lemma 8.12, the variable coordinating vertex yi is also
contained in S if x ∈ S. Note that yi is the outneighbor of xi. Furthermore, it is easy to
see that x̄i is not contained in S if xi ∈ S; the vertex zi dominates G[S] when S contains
both xi and x̄i.

Finally, we show that every clause vertices C j are contained in S. Assuming that
there exists a clause vertex C j′ such that C j′ ̸∈ S, the sum of weights on arcs outgoing
from the additional vertex a is strictly less than m. On the other hand, the sum of
weights on arcs outgoing from the variable vertex contained in S is equal to m. This
is a contradiction.

We can construct a satisfying assignment ξ of the Boolean formula φ the subset
S. For each i ∈ [n], we define ξ (i) = 1 if xi ∈ S and ξ (i) = 0 if x̄i ∈ S. Here, for
any i ∈ [n] such that neither xi nor x̄i is contained in S, we assign arbitary value to
ξ (i) (without loss of genrality, ξ (i) = 0). From the construction of the graph Gφ , it
satisfies that φ(ξ) = 1.

102 Chapter 8. Uniform Nash on Planar Bimatrix Games

C1

C2

C3

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

FIGURE 8.3: The digraph constructed from a given 3-SAT instance
φ(x) = (x1 ∨ x̄2 ∨ x3)∧ (x2 ∨ x̄3 ∨ x4)∧ (x̄1 ∨ x3 ∨ x̄4), where C1 = x1 ∨

x̄2 ∨ x3, C2 = x2 ∨ x̄3 ∨ x4, and C3 = x̄1 ∨ x3 ∨ x̄4.

8.3.3 Proof of Lemma 8.9
In this section, we embed the graph Gφ constructed in Section 8.3.2 into a plane.
Thus, we eliminate crossing points. From simple observation, the only directed edges
that may not be planar are those between the variable vertices and the clause vertices.
To eliminate every crossing point, we construct a clause-variable gadget shown in
Figure 8.2 and insert this gadget into each crossing point.

First, we embed the graph Gφ into the 3m×2mn grid plane. We arrange all clause
vertices to the left and all variable vertices to the bottom. Each clause vertex has three
points to connect variable vertices, and each variable vertex has m points to connect
clause vertices. At the variable vertices, we label each point to connect adjacent
edges with 1,2, . . . ,m. If the variable vertex xi is contained in the clause vertex C j,
then the corresponding arc extends horizontally from any point of C j to just above
the j-th connection point of xi. The edge is then lowered vertically to the j-th point
of xi. We repeat this procedure to connect every directed edge between clause and
variable vertices. We lexicographically chose a connecting point of a clause vertex
without loss of generality. We illustrate an example of our construction in Figure 8.3.
In the remainder of this section, we will use the clause-variable gadget to remove the
crossing points of directed edges that occur in the above construction.

Before inserting clause-variable gadgets, we take the following steps. For each
arc (C j, ℓi), we add two vertices ℓC j

i and Cℓi
j , and add three directed edges (C j, ℓ

C j
i),

(ℓ
C j
i , Cℓi

j), and (Cℓi
j , ℓi). We define the weights on these edges as follows: w(C j, ℓ

C j
i)=

1, w(ℓC j
i ,Cℓi

j) = m, and w(Cℓi
j , ℓi) = 3. By this process, every edge between clause

and variable vertices has weights with three.
We insert the clause-variable gadget into each crossing point. Here, we regard

a crossing point as the vertex ε . We illustrate an example for inserting the clause-
variable gadget in Figure 8.4.

By the construction, it is obvious that the clause-variable gadget is planar. We
can convert the graph Gφ to the planar graph by inserting the clause-variable gadget
to each crossing point. Of course, our reconstruction can be done in polynomial time

8.3. On the Complexity of Planar Bimatrix Games 103

Cxi′
j

Cxi
j′ xi

xi′

ε

α1

α2

Cx′i
j

β1β2Cxi
j′

γ1

γ2

γ3

γ4

γ5

xi′

δ1 δ2

δ3 δ4

δ5 xi

FIGURE 8.4: An example of the elimination of a crossing point (the
left figure: an example of a possible crossing point) with a clause-
variable gadget (the right figure: an example of the Clause-Variable
Gadget). Here, weights on fine, dashed, thick, and dotted edges are 1,

m, 3, and m−1, respectively.

104 Chapter 8. Uniform Nash on Planar Bimatrix Games

since the clause-variable gadget has at most a constant number of vertices, and some
polynomial bounds the number of possible crossing points.

We denote by Hφ the planar digraph constructed from Gφ by the above procedure.
What remains is to prove that Hφ has an undominated out-regular subgraph if and
only if the Boolean formula φ has a satisfying assignment. To prove this, it suffices
to show the next lemma.

Lemma 8.13. The graph Gφ has an undominated out-regular subgraph if and only
if the graph Hφ has an undominated out-regular subgraph.

Proof. First, we assume that Gφ has an undominated out-regular subgraph Gφ [S],
i.e., the subset of vertices S ⊆V (Gφ) induces an undominated out-regular subgraph.
Then, we show how to construct a subset T of vertices on Hφ that induces the un-
dominated out-regular subgraph Hφ [T]. We define the subset T by performing the
procedure shown in Algorithm 4.

Algorithm 4 A procedure to construct the subset T
1: We initialize T with S.
2: for all pair of a clause vertex C j and a variable vertex ℓi such that (C j, ℓi) ∈

E(Gφ [S]) do
3: we add the vertices ℓC j

i and Cℓi
j to T .

4: end for
5: if there are some vertices on the path from Cℓi

j to ℓi then
6: we add some vertices as follows:

1. When the path passes through the clause-variable gadget horizontally, we
add the vertices β2, β1, ε , δ3, δ4 , and δ5 to T .

2. When the path passes through the clause-variable gadget vertically, we add
the vertices α2, α1, ε , γ3, γ4, and γ5 to T .

7: end if
8: for all ε ∈ T satisfying that ∑u∈Γ

+
T (ε)

w(ε,u)< m do
9: we add out-neighbors of ε as appropriate. More precisely, we add the vertex

γ1 to T if β1 ̸∈ T , else add the vertex δ1 to T if α1 ̸∈ T .
10: end for

What remains is to prove that the graph Hφ [T] is an undominated out-regular sub-
graph. By construction of Hφ , the vertices that can dominate Hφ [T] are the variable
coordinating vertices zi for i ∈ [n] or α2 and β2 that are on the clause-variable gadget.
As mentioned in the proof of Theorem 8.10, any variable coordinating vertex zi does
not dominate the graph Hφ [T] since at most one of the variable vertices xi and x̄i
is contained in S. The vertex α2 does not dominate Hφ [T] since at most one of the
vertices α1 and δ1 is contained in T by the above procedure. Similarly, we see that
the vertex β2 is not a dominating vertex. Hence, Hφ [T] is an undominated subgraph.
It is straightforward to see that the total weight on out-neighbors equals either 3 or m
for every vertex in T . Therefore, Hφ [T] is out-regular. From the above argument, Hφ

has an undominated out-regular subgraph.
Next, we assume that the graph Hφ has an undominated out-regular subgraph

Hφ [T], i.e., the subset T induces an undominated out-regular subgraph. Then, we

8.4. Types of Non-Zero Elements 105

show how to construct the subset S of vertices on Gφ that induces an undominated
out-regular subgraph. We construct the subgraph S by performing the procedure
shown in Algorithm 5.

Algorithm 5 A procedure to construct the subset S

1: We initialize S with {a}∪{C j ; j ∈ [m]}.
2: for all i ∈ [n] do
3: if xi ∈ T then
4: we add the vertices xi and yi to S
5: end if
6: if x̄i ∈ T then
7: we add the vertices x̄i and ȳi to S
8: end if
9: end for

10: for all j ∈ [m] satisfying that ∑u∈Γ
+
S (C j)

w(C j,u) = 1 do
11: we add the vertices v1, j, u1, j, v2, j, and u2, j to S
12: end for
13: for all j ∈ [m] satisfying that ∑u∈Γ

+
S (C j)

w(C j,u) = 2 do
14: we add the vertices v1, j and u1, j to S.
15: end for

What remains is to prove that the graph Gφ [S] is an undominated out-regular
subgraph. It is easy to see that Gφ [S] is out-regular. Note that exactly one of vari-
able vertices xi and x̄i is contained in T for each i ∈ [n]. If not, then the variable
coordinating vertex zi dominates the graph Gφ [S]. This fact implies that the graph
Gφ [S] is an undominated subgraph. From the above argument, the subset S induces
an undominated out-regular subgraph.

8.4 Types of Non-Zero Elements
This section focuses on the number of types of non-zero elements that appear in the
payoff matrices.

We call a bimatrix game a win-lose bimatrix game if every element of payoff
matrices is either 0 or 1. By definition, both players on a win-lose bimatrix game have
exactly one type of non-zero element. Addario-Berry, Olver, and Betta [AOV07]
have proven that a planar bimatrix game always has unique Nash equilibria. They
also have shown that we have a polynomial-time algorithm for finding a unique Nash
equilibrium of a planar Nash equilibrium. This fact can be rephrased as follows:
There exists a polynomial-time algorithm to decide whether a given planar bimatrix
game has a uniform Nash equilibrium if both players’ payoff matrices have only one
type of non-zero element.

In the proof of Theorem 8.6, we construct the reduction that both players’ payoff
matrices consist of three types of non-zero elements; each element of one player’s
payoff matrix is either m, m−1, 1, or 0, and each element of the other player’s payoff
matrix is either 3, 2, 1, or 0. Hence, we obtain the following corollary.

106 Chapter 8. Uniform Nash on Planar Bimatrix Games

ε

α1

α2

β1β2

γ1
1

γ1
2

γ2
1

γ2
2

γm
1

γm
2

· · ·

· · ·

· · ·

γ5

δ 1
1 δ 1

2

δ 2
1 δ 2

2

δ m
1 δ m

2

...
...

... δ5

FIGURE 8.5: Modification of Clause-Variable Gadget. Here, weights
on fine, dashed, and thick edges are 1, m, and 3, respectively.

Corollary 8.14. It is NP-complete to decide whether a given planar bimatrix game
has a uniform Nash equilibrium even if both players’ payoff matrices consist of three
types of non-zero elements.

We can reduce the number of types of non-zero components that appear in the
payoff matrices. We show that the problem PLANAR BIMATRIX GAME is NP-hard
even if one player’s payoff matrix consists of three types of non-zero components
and the other player’s payoff matrix consists of two types of non-zero components.
To prove this fact, we modify the clause-variable gadget to one shown in Figure 8.5.
We obtain the following theorem.

Theorem 8.15. It is NP-complete to decide whether a given planar bimatrix game
has uniform Nash equilibria even if one player’s payoff matrix consists of three types
of non-zero elements and the other player’s payoff matrix consists of two types of
non-zero elements.

Proof. The proof is almost the same as the proof of Lemma 8.13.

8.5. Conclusion 107

8.5 Conclusion
We have studied, in this chapter, the complexity of computing uniform Nash equilib-
ria on planar bimatrix games. We have shown that the problem of deciding whether
a given planar bimatrix game has a uniform Nash equilibrium is NP-complete even if
both players’ payoff matrix consists of two types of non-zero components.

This thesis left an open question worth considering: How hard to distinguish the
existence of uniform Nash equilibria on a planar bimatrix game satisfying that both
players’ payoff matrices consist of two types of non-zero components?

109

Chapter 9

Discrete Preference Games and
Network Coordination Games

9.1 Basics
A graphical game, introduced by Kearns, Littman, and Singh [KLS01], is a suc-
cinctly represented multi-player strategic-form game. A graphical game consists of
an undirected graph G = (V,E), where V is a finite set of players and every edge in
E represents the interaction between its endpoints, and for each player i ∈V , a finite
set of strategies Si and a cost function Ci : × j∈N(i)∪{i}S j →R≥0, where N(i) is the set
of neighbors of player i, that is N(i) = { j ∈V ; {i, j} ∈ E}.

We refer to the tuple of strategies played by each player as a strategy profile. The
set S = ×i∈[n]Si is called a set of strategy profiles. For a player i ∈ V , we denote by
S−i the set of strategies for all players except i. For a strategy profile x = (xi)i∈V , we
denote by xi the strategy played by a player i, and by x−i the strategies of all players
except i.

A pure Nash equilibrium is an intuitive and essential concept of rationality. A
pure Nash equilibrium is a strategy profile such that every player has no incentive
to change her selected strategy. x∗ = (x∗i)i∈V is a pure Nash equilibrium if for each
player i ∈ V , and every strategy xi ∈ Si, Ci(x∗i ,x

∗
−i) ≤ Ci(xi,x∗−i) holds. Note that

graphical games do not always have pure Nash equilibria because any two-player
strategic-form game is a graphical game.

The complexity of finding a pure Nash equilibrium on a graphical game is one
of the most interesting topics of Algorithmic Game Theory. Unfortunately, it is in-
tractable to determine the existence of a pure Nash equilibrium for a graphical game.
Gottlob et al. [GGS05] have proven that the problem of deciding whether there exists
a pure Nash equilibrium for a given graphical game is NP-hard. On the other hand,
Daskalakis and Papadimitriou [DP06] have shown that it is polynomial-time decid-
able whether there is a pure Nash equilibrium on a graphical game whose players’
network has O(logn)-treewidth. Furthermore, their result has stated that we can find
a pure Nash equilibrium in polynomial time if it exists for such a graphical game.

We wish to understand what properties make it hard to compute a pure Nash
equilibrium for a graphical game and make it easy to do. This paper focuses on the
class of graphical games that are guaranteed the existence of pure Nash equilibria.
There are well-known classes of graphical games that always have a pure Nash equi-
librium; a discrete preference game and a network coordination game are examples.
The formal definitions of these games can be found in Section 9.2.

110 Chapter 9. Discrete Preference Games and Network Coordination Games

The results of the hardness of computing a pure Nash equilibrium for a discrete
preference game and a network coordination game are known. Lolakapuri et al.
[Lol+19] have proven that finding a pure Nash equilibrium on a discrete preference
game is PLS-complete even if the maximum degree of the players’ network is 7.
Cai and Daskalakis [DP06] have shown the PLS-completeness of computing a pure
Nash equilibrium for a network coordination game even if the maximum degree of
the players’ network is five and each player has two strategies. On the other hand,
Lolakapuri et al. [Lol+19] have proven that a pure Nash equilibrium for a discrete
preference game on a tree metric space is polynomial-time computable.

The following computational aspects of pure Nash equilibria are still unknown
for discrete preference games and network coordination games:

• How hard is computing a pure Nash equilibrium for a discrete preference game
on a non-tree metric space?

• Can we find pure Nash equilibria in polynomial time for a discrete preference
game and a network coordination game if the maximum degree of the players’
networks is four?

This chapter deals with the above topics. In particular, we discuss the complexity of
finding a pure Nash equilibrium for a discrete preference game on neither O(logn)-
treewidth nor a tree metric space. First, we estimate an upper bound of the number of
iterations of the best response dynamics for a discrete preference game on a discrete
metric space to compute a pure Nash equilibrium. Second, we provide a sufficient
condition that we have a polynomial-time algorithm to find a pure Nash equilibrium
of such a discrete preference game. Finally, we present a relationship between dis-
crete preference games and network coordination games.

9.1.1 Our Results
Discrete preference game on the discrete metric A discrete metric space with
at least three strategies is one of the simple non-tree metric spaces. It is important
to consider and understand the complexity of a discrete preference game with such
a metric space. Recall that a discrete preference game was formulated based on a
decision-making model wherein agents decide which platform to use [Lol+19]. Note
that the metric space implies that every agent is only interested in being on the same
or different platforms. Namely, a discrete preference game on a discrete metric space
is one of the uncomplicated settings of decision-making models.

Section 9.3 provides an upper bound for the number of iterations of the best
response dynamics for a discrete preference game on the discrete metric. We show
that the best response dynamics halts after quadratic iterations when we view the
given parameter as a constant.

9.2. Preliminaries 111

Discrete preference games on grid graph Our motive behind this work is to clar-
ify the boundary between cases where we can find a pure Nash equilibrium in poly-
nomial time for the numbers of players and strategies and cases where it is not1.
As mentioned above, the complexity of finding a pure Nash equilibrium on a graph
with degree four is unknown for discrete preference games and network coordina-
tion games. Hence, it is important to clarify the complexity of finding a pure Nash
equilibrium for a discrete preference game on a two-dimensional grid graph. A two-
dimensional grid graph is one of the graphs whose maximum degree is four.

Remark that Section 9.5.1 shows the relationship between discrete preference
games and network coordination games. In particular, we prove that there is a
polynomial-time reduction such that the structure of the players’ network is pre-
served from a discrete preference game to a network coordination game. This fact
implies that the hardness result for a network coordination game straightforwardly
follows from the hardness results for a discrete preference game. Therefore, it is a
natural approach to deal with the complexity of discrete preference games first, under
negative conjecture.

Section 9.4 provides a sufficient condition that we have a polynomial-time algo-
rithm to find a pure Nash equilibrium of a discrete preference game on a grid graph.
To prove this condition, Section 9.4.1 introduces a more general discrete preference
game, called a cartesian game, in which a discrete preference game is constructed
from some discrete preference games. We show that it can efficiently construct a
pure Nash equilibrium for a cartesian game from pure Nash equilibria for the discrete
preference games that form that cartesian game. Our results are the first polynomial-
time computability of discrete preference games on neither O(logn)-treewidth nor
tree metric spaces.

9.2 Preliminaries
Discrete Preference Games A discrete preference game with a parameter G =
(G,M ,(βi),α), which is the fundamental model introduced by Chierichetti et al.
[CKO18], consists of an unweighted graph G = (V,E), a finite metric space M =
(L,d), a preferred strategy βi ∈ L for each player i ∈V , and a parameter 0 ≤ α < 1.
Every player has the identical strategy set L. Given a strategy profile x = (xi)i∈V , the
cost for player i is:

ci(x) = αd(xi,βi)+(1−α) ∑
j∈N(i)

d(xi,x j). (9.1)

Network Coordination Games A network coordination game G =(G,(Si),(Ci, j,C j,i))
is defined by: (i) an undirected graph G = (V,E); (ii) for each edge {i, j} ∈ E,
there are two cost functions Ci, j : Si × S j → R≥0 and C j,i : S j × Si → R≥0 that sat-
isfy Ci, j(xi,x j) =C j,i(x j,xi) for all xi ∈ Si and x j ∈ S j; (iii) the total cost for a player
i ∈V is the sum of all her costs, i.e., Ci(x) = ∑ j∈N(i)Ci, j(xi,x j).

1Note that the games dealt with in this paper are guaranteed the existence of pure Nash equilibria.
This fact implies that we can trivially find it in polynomial time when we regard the number of players
as a constant. On the other hand, it is not always possible to compute a pure Nash equilibrium in
polynomial time when the number of strategies is considered a constant.

112 Chapter 9. Discrete Preference Games and Network Coordination Games

Potential Games A game is an exact potential game if there exists a function
Φ : S → R such that for all s−i ∈ S−i, si, ti ∈ Si, Φ(si,s−i)−Φ(ti,s−i) =Ci(si,s−i)−
Ci(ti,s−i), where S is the set of strategy profiles, and Ci is the cost for player i. In this
thesis, we call such a function an exact potential function for the game. A game is a
generalized ordinal potential game if there is a function Φ : S → R such that for all
s−i ∈ S−i, si, ti ∈ Si, Φ(si,s−i)> Φ(ti,s−i) whenever Ci(si,s−i)>Ci(ti,s−i). We call
such a function a generalized ordinal potential function for the game. The existence
of pure Nash equilibrium for some variants of potential games can be found in Chap-
ter 2.2 of [LCS16]. Notice that we can easily see that an exact potential game always
has a pure Nash equilibrium since the best response dynamics, which is described in
Section 9.3, halts after the finite number of iterations.

9.3 Discrete Preference Games on the Discrete Metric
In this section, we estimate an upper bound of the number of iterations of the best
response dynamics for a discrete preference game with a parameter on the discrete
metric. Recall that the two-strategic case was studied by previous work [CKO18;
FGV16]. We now focus on the case when there are three or more strategies.

Let G =
(
G = (V,E),M = (L,d),(βi)i∈V ,α

)
be a discrete preference game with

a parameter 0 ≤ α < 1, where the metric M is the discrete metric. We define the
potential Φ for a strategy profile x = (xi)i∈V as

Φ(x) = ∑
i∈V

αd(xi,βi)+(1−α) ∑
{i, j}∈E

d(xi,x j). (9.2)

Note that the above function Φ is an exact potential function for G [CKO18]. There-
fore, any player decreases her cost if and only if the potential Φ also decreases by the
same value.

The best response dynamics follow the following procedure: While the current
strategy profile is not a pure Nash equilibrium, pick an arbitrary player who wants
to deviate from the current strategy profile, and she changes her strategy to a best
response. Note that there is only one player moving strategy at each step in the best
response dynamics.

The following theorem gives an upper bound of the number of iterations of the
best response dynamics for a discrete preference game with a parameter. Then we
denote by Φmax the potential of the start point.

Theorem 9.1. The best response dynamics for a discrete preference game on the
discrete metric halts after at most µ(α)−1Φmax steps, where µ(α) = min{1−α,α +
(1−α)⌊1−α/(1−α)⌋,−α +(1−α)⌊1+α/(1−α)⌋}, and Φmax is the potential
of the start point.

Proof. We denote by Di(x) the number of neighbors that plays a strategy different
from i’s strategy, i.e., Di(x) = |{ j ∈ N(i);xi ̸= x j}|. Then given a strategy profile
x = (xv)v∈V , the cost of player i is: ci(x) = αd(xi,βi)+(1−α)Di(x).

We consider the best response dynamics. Let x = (xi)v∈V be a current strategy. In
this step, a player i∈V moves her strategy from xi to yi, and i’s cost strictly decreases.
Then, there are three possible cases:

9.4. Discrete Preference Games on Grid Graphs 113

• If xi ̸= βi ̸= yi, then we have 0 < ci(xi,x−i)−ci(yi,x−i) = (1−α)(Di(xi,x−i)−
Di(yi,x−i)). In this case, it satisfies that Di(xi,x−i)− Di(yi,x−i) > 0. No-
tice that Di(·) is a non-negative integer, and hence, Φ(xi,x−i)−Φ(yi,x−i) =
ci(xi,x−i)− ci(yi,x−i)≥ (1−α)> 0 holds.

• If xi ̸= βi = yi, then we have 0 < ci(xi,x−i)− ci(yi,x−i) = α +(1−α)(Di(xi,
x−i)−Di(yi,x−i)). In this case, it satisfies that Di(xi,x−i)−Di(yi,x−i)>−α/
(1−α). Note that Di(·) is a non-negative integer. If −α/(1−α) is an integer,
then it holds that Di(xi,x−i)−Di(yi,x−i) ≥ 1−α/(1−α), and otherwise, it
holds that −α/(1−α) < ⌈−α/(1−α)⌉ = ⌊1−α/(1−α)⌋ ≤ Di(xi,x−i)−
Di(yi,x−i). Hence, we have Di(xi,x−i)−Di(yi,x−i) ≥ ⌊1−α/(1−α)⌋. This
implies that Φ(xi,x−i)−Φ(yi,x−i) = ci(xi,x−i)−ci(yi,x−i)≥ α +(1−α)⌊1−
α/(1−α)⌋> 0.

• If xi = β ̸= yi, then we have 0 < ci(xi,x−i)−ci(yi,x−i) =−α +(1−α)(Di(xi,
x−i)−Di(yi,x−i)). In this case, it satisfies that Di(xi,x−i)−Di(yi,x−i) > α/
(1−α). Note that Di(·) is a non-negative integner. If α/(1−α) is an inte-
ger, then it holds that Di(xi,x−i)−Di(yi,x−i)≥ 1+α/(1−α), and otherwise,
it holds that α/(1 − α) < ⌈α/(1 − α)⌉ ≤ ⌊1 + α/(1 − α)⌋ ≤ Di(xi,x−i)−
Di(yi,x−i). Therefore, we have Di(xi,x−i)−Di(yi,x−i) ≥ ⌊1+α/(1−α)⌋.
This implies that Φ(xi,x−i)−Φ(yi,x−i) = ci(xi,x−i)−ci(yi,x−i)≥−α +(1−
α)⌊1+α/(1−α)⌋> 0.

From the above observation, at each step of the best response dynamics, the potential
Φ decreases at least µ(α). Therefore, the best response dynamics halts after at most
µ(α)−1Φmax steps, where Φmax is the potential for the start point.

Remark 9.2. When we view the given parameter α as a constant, the best response
dynamics halts after at most O(n2) iterations by Theorem 9.1 because the exact po-
tential function Φ(x) in O(n2). Note that it halts after at most O(n) iterations in the
two-strategic setting by a technical way to select a player who moves her strategy at
each step even if the parameter α is non-constant [CKO18].

9.4 Discrete Preference Games on Grid Graphs
We present the special case of a discrete preference game whose pure Nash equilibria
can be found in polynomial time beyond O(logn)-treewidth and tree metrics.

We consider a discrete preference game with a parameter on a k-dimensional grid
graph. We call a graph G = (V,E) a k-dimensional grid graph if there are k positive
integers M1, . . . ,Mk such that V = [M1]×·· ·× [Mk] and there is an edge {i, j} ∈ E if
∥i− j∥1 = 1.

Now, we prove that there is a polynomial-time algorithm to compute a pure Nash
equilibrium for a discrete preference game G = (G,M ,(βi)i∈V ,α) on k dimensional
grid graph G if the following two conditions hold:

(A) M =(L,d) is a 1-product metric of k arbitrary finite metrics M1 =(L1,d1), . . . ,
Mk = (Lk,dk); and

114 Chapter 9. Discrete Preference Games and Network Coordination Games

(B) we can select a strategy β t
it ∈ Lt for each t ∈ [k] and each it ∈ [Mt] so that the set

{β t
it ∈ Lt ; t ∈ [k], it ∈ [Mt]} satisfies the following condition: for each player

i = (i1, . . . , ik) ∈V , the preferred strategy βi is a form of (β 1
i1, . . . ,β

k
ik) ∈ L.

In other words, the second condition implies that the t-th element of the preferred
strategy βi of a player i is β t

it whenever the t-th player of i is it . For instance, we
consider a discrete preference game on a two-dimentional grid graph G = ([N1]×
[N2],E) satisfying the above two conditions. The condition (B) implies that the player
(i1, i2) prefers the strategy (β 1

i1,β
2
i2) if a player (i1, j2) and a player (j1, i2) prefer

strategies (β 1
i1 ,β

2
j1) and (β 1

j1,β
2
i2), respectively.

Theorem 9.3. We suppose that a discrete preference game G = (G,M ,(βi)i∈V ,α)
on k-dimensional grid graph G satisfies the above two conditions (A) and (B). In this
case, we can find a pure Nash equilibrium for G in polynomial time.

To prove the above theorem, we introduce a cartesian product of discrete pref-
erence games, a game formed by some discrete preference games, in Section 9.4.1.
We prove that a pure Nash equilibrium for a cartesian product of discrete preference
games is efficiently constructible from pure Nash equilibria for ingredients of the
original one. After that, we give the proof of Theorem 9.3 in Section 9.4.2.

9.4.1 Cartesian Products of Discrete Preference Games
A cartesian product of discrete preference games is formed by k discrete preference
games with a parameter. This model represents an environment where every player
belongs to k different communities and makes decisions within each community.
Here, we suppose that each community forms its own network. When we assume
that every community forms the same network, such a game is a discrete preference
game on a product metric space — we discuss the complexity of such a model in
Section 9.4.3.

Informally speaking, a players’ network on a cartesian product of discrete pref-
erence games is a cartesian product of graphs that are networks for the ingredients of
the original one. Each player is a tuple of players on ingredients, and they communi-
cate along only one edge on an ingredient. Furthermore, a strategy space comprises
a product metric space2.

We define a cartesian product of graphs and a cartesian product of discrete pref-
erence games.

Definition 9.4 (Cartesian Product of Graphs). Let G1 = (V1,E1), . . . ,Gk = (Vk,Ek)
be simple graphs. We define the cartesian product of graphs G = (V,E) as follows:
Each node v∈V is a k-tuple of nodes (v1, . . . ,vk), where vi ∈Vi for each i∈ [k]. There
is an edge {v,u} ∈ E if and only if there exists only one t ∈ [k] such that {vt ,ut} ∈ Et
and vi = ui for all i ̸= t. We denote G1□G2□ · · ·□Gk by the cartesian product of k
graphs G1, . . . ,Gk.

Definition 9.5 (Cartesian Product of Discrete Preference Game). Fix a parameter 0≤
α ≤ 1. Given k discrete preference games with a parameter G1 =(G1 =(V1,E1),M1 =

2This paper deals with a case of a 1-product metric space, but it can also be generalized to any
ℓ-product metric space.

9.4. Discrete Preference Games on Grid Graphs 115

(L1,d1),(β
1
i)i∈V1,α), . . . ,Gk = (Gk = (Vk,Ek),Mk = (Lk,dk),(β

k
i)i∈Vk ,α), we de-

fine the discrete preference game G = (G = (V,E),M = (L,d),(βi)i∈V ,α) as fol-
lows: the graph G := G1□G2□ · · ·□Gk, the strategy space M is a 1-product met-
ric of M1, . . . ,Mk, and, for each player i = (i1, . . . , ik) ∈ V , the strategy profile
βi = (β 1

i1, . . . ,β
k
ik). In this case, we call G the cartesian game constructed from dis-

crete preference games G1, . . . ,Gk.

Let G be the cartesian game constructed from discrete preference games G1, . . . ,Gk.
When we are given a strategy profile xt of Gt for each t ∈ [k], we interpret x = (xt)t∈[k]
as the strategy profile of G such that each player i = (i1, . . . , ik)∈V plays the strategy
xi = (x1

i1 , . . . ,x
k
ik).

The next theorem states that we can efficiently construct a pure Nash equilibrium
for G from pure Nash equilibria for G1, . . . ,Gk.

Theorem 9.6. Suppose that G = (G,M ,(βi)i∈V ,α) is a Cartesian game constructed
from k discrete preference games Gt = (Gt ,Mt ,(β

t
i)i∈Vt ,α) for t ∈ [k]. In this case,

a strategy profile x̂ = (x̂t)t∈[k] is a pure Nash equilibrium for G , where x̂t is arbitrary
pure Nash equilibrium for Gt .

Proof. For each t ∈ [k], we denote by Mt = (Lt ,dt) the t-th finite metric space. Note
that each player i = (i1, . . . , ik) ∈ V plays a k-tuple (x1

i1, . . . ,x
k
ik) ∈ L1 × ·· · × Lk as

her strategy. For a strategy profile x = (xi)i∈V of G , the cost ci for a player i =
(i1, . . . , ik) ∈V is

ci(x) = αd(xi,βi)+(1−α) ∑
j∈N(i)

d(xi,x j).

For each t ∈ [k] and each player it ∈ Vt , we denote by ct
it the cost function for it

on Gt . Note that for a strategy profile xt = (xt
it)it∈Vt , the cost for a player it ∈Vt is

ct
it (x

t) = αdt(xt
it ,β

t
it)+(1−α) ∑

jt∈Nt(it)
dt(xt

it ,x
t
jt),

where Nt(it) is the set of neighbors of the player it on the graph Gt .
As mentioned above, given a strategy profile xt = (xt

it)it∈Vt of the game Gt for
each t ∈ [k], we interpret the tuple x = (xt)t∈[k] as the strategy profile of G such that
each player i = (i1, . . . , ik) ∈ V plays the strategy xi = (x1

i1, . . . ,x
k
ik). In this case, the

cost for a player i = (i1, . . . , ik) holds that

ci(x) = αd(xi,βi)+(1−α) ∑
j∈N(i)

d(xi,x j)

= ∑
t∈[k]

αdt(xt
it ,β

t
it)+(1−α) ∑

s∈[k]
∑

j∈N(i|s)
∑

t∈[k]
dt(xt

it ,x
t
jt)

= ∑
t∈[k]

αdt(xt
it ,β

t
it)+(1−α) ∑

s∈[k]
∑

j∈N(i|s)

(
ds(xs

is,x
s
js)+∑

t ̸=s
dt(xt

it ,x
t
jt)

)
= ∑

t∈[k]
αdt(xt

it ,β
t
it)+(1−α) ∑

s∈[k]
∑

j∈N(i|s)
ds(xs

is,x
s
js)

116 Chapter 9. Discrete Preference Games and Network Coordination Games

= ∑
t∈[k]

(
αdt(xt

it ,β
t
it)+(1−α) ∑

jt∈Nt(it)
dt(xt

it ,x
t
jt)

)
= ∑

t∈[k]
ct

it (x
t),

where N(i | t) = { j ∈ N(i) ; jt ̸= it}, which is the subset of the neighbors of i on
G that are adjacent to i by an edge on Gt . The fourth equality follows from the
construction of the strategy profile x = (xt)t∈[k]. To show the fifth equality, we use
the fact that ∑ j∈N(i|t) dt(xt

it ,x
t
jt) = ∑ j∈Nt(it) dt(xt

it ,x
t
jt).

Here, we prove that if a strategy profile x̂t is a pure Nash equilibrium for Gt for
each t ∈ [k], then the strategy profile x̂ = (x̂t)t∈[k] is a pure Nash equilibrium for G .

For the sake of a contradiction, we assume that some player i = (i1, . . . , ik) ∈ V
can improve her cost by moving her strategy to yi = (y1

i1, . . . ,y
k
ik), i.e., it satisfies that

ci(x̂i, x̂−i)> ci(yi, x̂−i). Then we have

0 < ci(x̂i, x̂−it)− ci(yi, x̂−it)

= ∑
t∈[k]

ct
it (x̂

t
it , x̂

t
−it)−

(
∑

t∈[k]
αdt(yt

it ,β
t
it)+(1−α) ∑

s∈[k]
∑

j∈N(i|s)
∑

t∈[k]
dt(yt

it , x̂
t
jt)

)
= ∑

t∈[k]
ct

it (x̂
t
it , x̂

t
−it)−

(
∑

t∈[k]
αdt(yt

it ,β
t
it)+(1−α) ∑

s∈[k]
∑

j∈Ns(is)
ds(ys

is, x̂
s
js)

)
−δ

= ∑
t∈[k]

ct
it (x̂

t
it , x̂

t
−it)− ∑

t∈[k]
ct

it (y
t
it , x̂

t
−it)−δ

= ∑
t∈[k]

(
ct

it (x̂
t
it , x̂

t
−it)− ct

it (y
t
it , x̂

t
−it)
)
−δ ,

where δ = (1−α)∑s∈[k]∑ j∈N(i|s)∑t ̸=s dt(yt
it , x̂

t
jt). Note that δ is non-negative.

Recall that for every t ∈ [k], the strategy profile x̂t is a pure Nash equilibrium for
Gt . Thus, it holds that ct

it (x̂
t
it , x̂

t
−it)≤ cit (y

t
it , x̂

t
−it). Therefore, we have

0 ≤ δ < ∑
t∈[k]

(
ct

it (x̂
t
it , x̂

t
−it)− ct

it (y
t
it , x̂

t
−it)
)
≤ 0,

which is a contradiction.

9.4.2 Polynomial-time Solvability of Discrete Preference Games
In this section, we prove Theorem 9.3. From the condition (A), the strategy space M
on G is a 1-product metric space of k finite metrics M1, . . . ,Mk. From the condition
(B), we can select a strategy β t

it ∈ Lt for each t ∈ [k] and each it ∈ [Mt] so that the set
{β t

it ∈ Lt ; t ∈ [k], it ∈ [Mt]} such that for each player i = (i1, . . . , ik)∈V , the preferred
strategy βi is equal to (β 1

i1, . . . ,β
k
ik).

Note that a k-dimensional grid graph G = ([M1]× ·· · × [Mk],E) is a Cartesian
product of graphs G1 =([M1],E1), . . . , Gk =([Mk],Ek), where there is an edge {i, j}∈
Et if |i− j|= 1 for each t ∈ [k]. We use this fact to prove this theorem.

We decompose G into k discrete preference games G1, . . . ,Gk such that G is to
be a cartesian game constructed from these subgames. For each t ∈ [k], we defne

9.4. Discrete Preference Games on Grid Graphs 117

the t-th subgame as Gt = (Gt ,Mt ,(β
t
it)it∈[Nt],α). It is easy to see that G is a product

game constructed from k discrete preference games G1, . . . ,Gk.
For every t ∈ [k], we can find a pure Nash equilibrium x̂t for Gt in polynomial

time from the result of the polynomial-time computability for pure Nash equilibria
on graphs that have O(logn)-treewidth by Daskalakis and Papadimitriou [DP06]. By
Theorem 9.6, the strategy profile x̂ = (x̂t)t∈[k] constructed from pure Nash equilibria
x̂1, . . . , x̂k is a pure Nash equilibrium for G . Therefore, we can compute a pure Nash
equilibrium for G in polynomial time.

9.4.3 Properties of Discrete Preference Games on Product Metric
Spaces

In the rest of this section, we focus on a discrete preference game on a product metric
space. Recall that Lolakapuri, Bhaskar, Narayanam, Parija, and Dayama [Lol+19]
considered a 1-product metric space of some path metric spaces and have proven that
the problem of finding a pure Nash equilibrium for a discrete preference game on
such a metric space is polynomial-time computable. Their algorithm, called Product
Metric Algo produced in [Lol+19], gives us an approach to computing pure Nash
equilibria for games: It may be easier to compute it when we can decompose the
strategy space into an ℓ-product metric space for some ℓ ∈ Z>0 ∪{∞}.

This section discusses the conditions under which such an approach, a decompo-
sition approach, would work well. We prove that the decomposition approach always
works for a discrete preference game on a 1-product metric space of arbitrary finite
metric spaces.

Before discussing, we describe the more general model of discrete preference
games, introduced by Lolakapuri, Bhaskar, Narayanam, Parija, and Dayama [Lol+19].
In their model, a game has edge weights and a penalty for each strategy instead of
a parameter. A discrete preference game with penalties G = (G,M ,(pi(s))) is de-
fined by: (i) an edge-weighted graph G = (V,E,(we)e∈E); (ii) each player i ∈ V has
a penalty pi(s) ∈R≥0 for each strategy s ∈ L, where L is a finite set of strategies; (iii)
given a strategy profile x = (xi)i∈V , the cost for player i ∈V is:

ci(x) = ∑
s∈L

pi(s)d(xi,s)+ ∑
j∈N(i)

wi jd(xi,x j). (9.3)

Let (G = (V,E,(we)e∈E),M = (L,d),(pi(s))i∈V,s∈L) be a discrete preference
game. For this game, we define the function Φ : LV → R≥0 as follows:

Φ(x) = ∑
i∈V

∑
s∈L

pi(s)d(s,xi)+ ∑
{i, j}∈E

wi jd(xi,x j). (9.4)

We show that Φ is an exact potential function for a discrete preference game with
penalties.

Lemma 9.7. Let G = (G,M ,(pi(s))) be a discrete preference game with penalties,
where G = (V,E,(we)e∈E), M = (L,d). The game G is an exact potential game.

118 Chapter 9. Discrete Preference Games and Network Coordination Games

Proof. To see why the function Φ defined as Eq. (9.4) is an exact potential function
for G , for each player i ∈ V , all two strategies xi and yi, and all strategies x−i of all
players expect i, it holds that

Φ(xi,x−i)−Φ(yi,x−i)

= ∑
s∈L

pi(s)d(s,xi)+ ∑
j∈N(i)

wi jd(xi,x j)

−

(
∑
s∈L

pi(s)d(s,yi)+ ∑
j∈N(i)

wi jd(yi,x j)

)
= ci(xi,x−i)− ci(yi,x−i).

Thus, a discrete preference game with penalties is an exact potential game.

Now, we consider a discrete preference game on an ℓ-product metric space. Let
G = (G = (V,E,(we)e∈E),M = (L,d),(pi(s))i∈V,s∈L) be a discrete preference game
with penalties, and let ℓ ∈ Z>0 ∪{∞}. Suppose that M is an ℓ-product metric space
formed by k finite metric spaces M1 = (L1,d1), . . . ,Mk = (Lk,dk). For a strategy
profile x = (xi)i∈V on G , we interpret it as that each player i ∈ V plays k-tuple xi =
(x1

i , . . . ,x
k
i) ∈ L1 ×·· ·×Lk. We denote by xt = (xt

i)i∈V the list on Lt for each strategy
profile x on G . For a strategy profile x = (xt)t∈[k] on G , we interpret the strategy xi of
player i ∈V as the k-tuple of strategies xi = (x1

i , . . . ,x
k
i), where xt is a strategy profile

on Lt for each t ∈ [k].
We decompose G into k discrete preference games on the partial metric spaces. In

the following, we refer to such games as subgames. For each t ∈ [k], the t-th subgame
Gt of G is defined as Gt := (G,Mt ,(qt

i(s
t))i∈V,st∈Lt), where qt

i(s
t) = ∑u∈L : ut=st pi(u).

Then the cost ct
i(x

t) of a player i ∈V on the t-th subgame is

ct
i(x

t) = ∑
st∈Lt

qt
i(s

t)dt(xt
i,s

t)+ ∑
j∈N(i)

wi jdt(xt
i,x

t
j). (9.5)

We denote by Φ(t)(xt) the exact potential function for the t-th subgame, i.e.,

Φ
(t)(xt) = ∑

i∈V
∑

st∈Lt

qt
i(s

t)dt(xt
i,s

t)+ ∑
{i, j}∈E

wi jdt(xt
i,x

t
j).

Furthermore, we define a function Ψ(x) as

Ψ(x) = ∑
t∈[k]

Φ
(t)(xt). (9.6)

Theorem 9.8. If the function Ψ defined in Eq. (9.6) is a generalized ordinal potential
function for G , then a strategy profile x̂ = (x̂t)t∈[k] is a pure Nash equilibrium for G ,
where x̂t is an arbitrary pure Nash equilibrium for the t-th subgame.

Proof. For the sake of a contradiction, we assume that x̂ is not a pure Nash equi-
librium for G , and thus, there is a player i that can improve her cost by moving to
another strategy yi from x̂i. Then it holds that ci(x̂i, x̂−i) > ci(yi, x̂−i). Since Ψ is a

9.4. Discrete Preference Games on Grid Graphs 119

generalized ordinal potential function for G , it satisfies that

0 < Ψ(x̂i, x̂−i)−Ψ(yi, x̂−i) = ∑
t∈[k]

(
ct

i(x̂
t
i, x̂

t
−i)− ct

i(y
t
i, x̂

t
−i)
)
.

This implies that there is at least one t ∈ [k] such that ct
i(x̂

t
i, x̂

t
−i) > ct

i(y
t
i, x̂

t
−i). Note

that for each t ∈ [k], x̂t is a pure Nash equilibrium for the t-th subgame, and hence,
we have ct

i(x̂
t
i, x̂

t
−i)≤ ct

i(y
t
i, x̂

t
−i). This is a contradiction.

Corollary 9.9. There is a polynomial-time algorithm to find a pure Nash equilibrium
for G when the following two conditions hold: (i) for each t-th subgame; we have a
polynomial-time algorithm to find a pure Nash equilibrium; and (ii) the function Ψ

is a generalized ordinal potential function for G .

Unfortunately, the function Ψ is not always a generalized ordinal potential func-
tion for G . Consider a discrete preference game on a discrete metric space with 2k

points. Note that such a metric can be written straightforwardly as an ∞-product met-
ric of k discrete metric spaces. Example 9.10 shows that the metric decomposition
approach is not easily applicable in such a game.

Example 9.10. For simplicity, we consider a discrete preference game with a param-
eter. Let G = (V,E) be an unweighted graph, and M be a discrete metric space on
2k strategies. For each player v ∈V , we denote by βv ∈ [2k] the preferred strategy of
player v. Furthermore, we are given a parameter 1/2 < α < 1.

We decompose M into k metric spaces ({0,1},δ). Each point x ∈ [2k] is inter-
preted as the binary string, and hence, the point on the t-th metric is the the t-th bit
for x. Here, the function δ is also the discrete metric, i.e., δ (x,y) = 1 if x ̸= y, other-
wise δ (x,y) = 0. It is easy to see that for each pair of points x,y ∈ L, it satisfies that
d(x,y) = maxt∈[k] δ (xt ,yt), where xt is the t-th bit of x. The cost for player i ∈ V on
the t-th subgame is ct

i(x
t) = αδ (β t

i ,x
t
i)+(1−α)∑ j∈N(i) δ (xt

i,x
t
j).

Now, we show that this game does not satisfy the condition of Theorem 9.8. We
fix any player i ∈V . Then, we take strategies xi and yi for i and strategies x−i for all
others except i such that it satisfies the following conditions:

• xi and yi are different at only the t-th bit for some t ∈ [k];

• xt
i = β t

i and xi ̸= βi ̸= yi;

• Di(xi,x−i)> D(yi,x−i); and

• Dt
i(x

t
i,x

t
−i)−Dt

i(y
t
i,x

t
−i)≤ 1,

where Di(xi,x−i) denotes that the number of i’s neighbors that play a different strat-
egy from xi, and also we denote Dt

i(x
t
i,x

t
−i) the number of i’s neighbors whose t-th

strategy is not xt
i .

In this setting, the player i can decrease her cost by moving xi to yi. On the other
hand, for the cost ct

i for i on the t-th subgame, it follows that

ct
i(x

t
i,x

t
−i)− ct

i(y
t
i,x

t
−i)

=−α +(1−α)
(
Dt

i(x
t
i,x

t
−i)−Dt

i(y
t
i,x

t
−i)
)

≤−α +(1−α) = 1−2α < 0.

120 Chapter 9. Discrete Preference Games and Network Coordination Games

The first equality holds from the second assumption, and note that yt
i ̸= xt

i in this set-
ting. The second inequality follows from the fourth assumption. The final inequality
follows from 1/2 < α < 1.

The above observation implies that i can not improve her cost in the t-th subgame.
Notice that i moves only one bit from the first assumption, the function defined in
Eq. (9.6) is not a generalize ordinal potential function.

In the 1-product case, Ψ defined in Eq. (9.6) is always a generalized ordinal
potential function for G ; more precisely, Ψ is an exact potential function for G . To
prove this, it suffices to show that Ψ is equal to Φ defined in Eq. (9.4). Theorem 9.11
states this fact.

Theorem 9.11. If a metric space M is a 1-product metric space, then the function
Ψ defined in Eq. (9.6) is an exact potential function for G .

Proof. We suppose that M = (L,d) is a 1-product metric space of k metric spaces,
i.e., d(x,y) = ∑t∈[k] dt(xt ,yt) for all x,y ∈ L. It suffices to show that Φ defined in Eq.
(9.4) equals to Ψ defined in Eq. (9.6). For any strategy profile x, we have

Φ(x) = ∑
i∈V

∑
s∈L

pi(s)d(s,xi)+ ∑
{i, j}∈E

wi jd(xi,x j)

= ∑
i∈V

∑
s∈L

pi(s) ∑
t∈[k]

dt(st ,xt
i)+ ∑

{i, j}∈E
wi j ∑

t∈[k]
dt(st ,xt

i)

= ∑
t∈[k]

∑
i∈V

∑
st∈Lt

∑
u∈L : ut=st

pi(u)dt(st ,xt
i)+ ∑

t∈[k]
∑

{i, j}∈E
wi jdt(st ,xt

i)

= ∑
t∈[k]

Φ
(t) = Ψ(x).

In the second equality, we use the fact that M is a 1-product metric space.

Immediately, we obtain the following corollary, which is a generalization of the
result by Lolakapuri, Bhaskar, Narayanam, Parija, and Dayama [Lol+19].

Corollary 9.12. There is a polynomial-time algorithm to find a pure Nash equilib-
rium for a discrete preference game if the following two conditions hold: (i) the
metric space is a 1-product metric space; (ii) we have a polynomial-time algorithm
to find a pure Nash equilibrium for every subgame.

9.5 Relationship between Discrete Preference Games
and Network Coordination Games

This section presents the relationship between network coordination games and dis-
crete preference games. First, we show that every discrete preference game is re-
ducible to a network coordination game in polynomial time. Second, we provide a
class of network coordination games that are polynomial-time reducible to discrete
preference games.

9.5. Relationship between Discrete Preference Games and Network Coordination
Games

121

9.5.1 Reduction from Discrete Preference Games to Network Co-
ordination Games

This section shows that a discrete preference game is reducible to a network coordi-
nation game in polynomial time.

Lemma 9.13. Let G be a discrete preference game on a graph G. If we have a
polynomial-time algorithm to compute pure Nash equilibria for network coordina-
tion games on the graph G, then it is also polynomial-time computable to find a pure
Nash equilibrium for G .

Proof. To prove this, it is sufficient to construct a polynomial-time reduction from a
discrete preference game to a network coordination game that preserves the structure
of the players’ network.

For each player i ∈ V , we denote as ∆i := |N(i)|. For each edge e = {i, j} ∈ E,
we define the cost function Ci, j as follows: for each element (xi,x j) ∈ L×L,

Ci, j(xi,x j) = ∑
k∈{i, j}

∆
−1
k ∑

s∈L
pkd(s,xk)+wed(xi,x j)

which means the cost for i and j when i plays xi and j plays x j.
The exact potential function Φ′ for a network coordination game is

Φ
′(x) = ∑

e={i, j}∈E
Ci, j(xi,x j) (9.7)

for each strategy profile x = (xi)i∈V [CD11].
To see that every pure Nash equilibrium for our network coordination game is

also a pure Nash equilibrium for the given discrete preference game, we show that
Φ′ is also an exact potential function for a discrete preference game (see Theorem
2.2 in Chapter 2 of [LCS16]).

Φ
′(x) = ∑

e={i, j}∈E
Ci, j(xi,x j)

= ∑
e={i, j}∈E

∑
k∈e

∆
−1
k ∑

s∈L
pk(x)d(s,xk)+ ∑

e={i, j}∈E
wi, jd(xi,x j)

= ∑
i∈V

(
∑

j∈N(i)
∑
s∈L

∆
−1
i pi(s)d(s,xi)

)
+ ∑

e={i, j}∈E
wi, jd(xi,x j)

= ∑
i∈V

∑
s∈L

pi(s)d(s,xi)+ ∑
e={i, j}∈E

wi, jd(xi,x j)

= Φ(x).

This is an exact potential function for a discrete preference game (see Eq. (9.4)).
Hence, we complete constructing a polynomial-time reduction from a discrete prefer-
ence game to a network coordination game. Note that our reduction does not change
the structure of the graph G.

122 Chapter 9. Discrete Preference Games and Network Coordination Games

Recall that Daskalakis and Papadimitriou [DP06] have proven that we can find
a pure Nash equilibrium for a graphical game whose players’ network has O(logn)-
treewidth in polynomial time. Apt, de Keijer, Rahn, Schäfer, and Simon [Apt+17]
showed the polynomial-time computability of a pure Nash equilibrium for a network
coordination game whose players’ network contains at most one cycle. Therefore, we
immediately obtain the following corollary by using these previous results together
with Lemma 9.13.

Corollary 9.14. There is a polynomial-time algorithm to compute a pure Nash equi-
librium for a discrete preference game if the given players’ network G = (V,E) sat-
isfies at least one of the following properties: (i) G has O(log |V |)-treewidth; and (ii)
G contains at most one cycle.

9.5.2 Reduction from Network Coordination Games to Discrete
Preference Games

In the previous section, we show that a discrete preference game is a special case of
network coordination games. This section provides a class of network coordination
games that are polynomial-time reducible to discrete preference games. Note that it is
known that equilibrium computation for our class of network coordination games is
easy by using a submodular function minimizing algorithm, such as [LSW15; Orl09].
However, by reducing a discrete preference game, we solve equilibrium computation
faster (see Remark 9.18 for details).

We consider the complexity of a two-strategic network coordination game such
that for each pair of players i, j, the cost Ci, j between i and j is symmetric, i.e.,
Ci, j(0,1) =Ci, j(1,0) and a submodular function, i.e.,

Ci, j(1,0)+Ci, j(0,1)≥Ci, j(1,1)+Ci, j(0,0), (9.8)

where we denote by {0,1} the set of strategies.
In this setting, we show that we can find a pure Nash equilibrium in O(n2∆) time

by reducing it to a discrete preference game on a path metric, where n is the number
of players, and ∆ is the maximum degree of a given graph.

Theorem 9.15. Suppose that a two-strategic network coordination game G = (G =
(V,E),({0,1})v∈V ,(Ce)e∈E) satisfies that for each edge {i, j} ∈ E, a cost function
Ci, j is a symmetric submodular function. In this setting, we can find a pure Nash
equilibrium for G in O(n2∆) time, where n is the number of players, and ∆ is the
maximum degree of G.

Proof. Let G = (G = (V,E),({0,1})v∈V ,(Ce)e∈E) be a network coordination game.
We now reduce this game to a discrete preference game on the path metric M =
({0,1},d), where d(x,y) = 1/2 if x ̸= y, otherwise d(x,y) = 0. Furthermore, our
reduction preserves the construction of the players’ network, and hence, the resulting
discrete preference game is on the graph G = (V,E).

For each edge {i, j} ∈ E, the weight is wi, j = 2Ci, j(1,0)−Ci, j(0,0)−Ci, j(1,1).
For each player i ∈ V , the penalty is pi(s) = ∑ j∈N(i)Ci, j(1− s,1− s) for each s ∈
{0,1}. Note that every weight wi, j on an edge {i, j} ∈ E is non-negative from our
restrictions.

9.5. Relationship between Discrete Preference Games and Network Coordination
Games

123

We denote by G ′ = (G′ = (V,E,(we)e∈E),M ,(pv(0), pv(1))v∈V) the resulting
discrete preference game with penalties. From Lemma 9.7, the exact potential func-
tion Φ for G ′ is

Φ(x) = ∑
i∈V

∑
s∈{0,1}

pi(s)d(s,xi)+ ∑
{i, j}∈E

wi, jd(xi,xi). (9.9)

We show, in Lemma 9.16, that Ψ equals to the exact potential function defined in
Eq. (9.7) for the given network coordination game G . Proving this, we complete the
reduction from G to a discrete preference game on a path metric.

Lemma 9.16. The above function Φ is an exact potential function for G .

Proof. It suffices to show that Φ defined in Eq. (9.9) equals the function defined in
Eq. (9.7). By definition, it follows that

Φ(x) = ∑
i∈V

∑
k=0,1

pi(k)d(k,xi)+ ∑
{i, j}∈E

wi, jd(xi,x j)

= ∑
i∈V

∑
j∈N(i)

(
Ci, j(1,1)d(0,xi)+Ci, j(0,0)d(1,xi)

)
+

1
2 ∑

i∈V
∑

j∈N(i)

(
2Ci, j(0,1)−Ci, j(1,1)−Ci, j(0,0)

)
d(xi,x j)

=
1
2 ∑

i∈V
∑

j∈N(i)

(
Ci, j(1,1)d(0,xi)+Ci, j(0,0)d(1,xi)

+Ci, j(1,1)d(0,x j)+Ci, j(0,0)d(1,x j)
)

+
1
2 ∑

i∈V
∑

j∈N(i)

(
2Ci, j(0,1)−Ci, j(1,1)−Ci, j(0,0)

)
d(xi,x j)

=
1
2 ∑

i∈V
∑

j∈N(i)

(
Ci, j(1,1)d(0,xi)+Ci, j(0,0)d(1,xi)

+Ci, j(1,1)d(0,x j)+Ci, j(0,0)d(1,x j)

+2Ci, j(0,1)d(xi,x j)−Ci, j(1,1)d(xi,x j)

−Ci, j(0,0)d(xi,x j)
)

=
1
2 ∑

i∈V
∑

j∈N(i)

(
Ci, j(0,0)

(
d(1,xi)+d(1,x j)−d(xi,x j)

)
+Ci, j(1,1)

(
d(0,xi)+d(0,x j)−d(xi,x j)

)
+2Ci, j(0,1)d(xi,x j)

)
=

1
2 ∑

i∈V
∑

j∈N(i)
Ci, j(xi,x j).

Note that, in the third equality, for each player i ∈ V , we add the additional value
Ci, j(1,1)d(0,x j) +Ci, j(0,0)d(1,x j) for every neighbor j ∈ N(i). That value also

124 Chapter 9. Discrete Preference Games and Network Coordination Games

appears in the terms of i in the third equation. Dividing the new summation

∑
i∈V

∑
j∈N(i)

(
Ci, j(1,1)d(0,xi)+Ci, j(0,0)d(1,xi)+Ci, j(1,1)d(0,x j)+Ci, j(0,0)d(1,x j)

)
into half, it is equivalent to the the first summation of the third equation. Therefore,
the fourth equality holds. The final equality follows from the following fact: for each
s ∈ {0,1} and each pair of i, j ∈V ,

d(s,xi)+d(s,x j)−d(xi,x j) =

{
1 if xi = x j = 1− s
0 otherwise.

Furthermore, we have

1
2 ∑

i∈V
∑

j∈N(i)
Ci, j(xi,x j) = ∑

{i, j}∈E
Ci, j(xi,x j)

which is the exact potential function for the network coordination game G , defined
in Eq (9.7). Thus, we complete the proof of Lemma 9.16.

Since any two-element finite metric space is a tree metric, we can apply Tree
Metric Algo, proposed by Lolakapuri, Bhaskar, Narayanam, Parija, and Dayama
[Lol+19], to find a pure Nash equilibrium for G ′. Here, Tree Metric Algo is an
algorithm for computing a pure Nash equilibrium for a discrete preference game on
a tree metric.

In a two-strategic setting, each player moves her strategy at most once during
Tree Metric Algo. Recall that Lolakapuri, Bhaskar, Narayanam, Parija, and Dayama
[Lol+19] showed the following theorem:

Theorem 9.17 (Lolakapuri, Bhaskar, Narayanam, Parija, and Dayama [Lol+19]).
For a discrete preference game that has n players and whose tree metric space has
m points, the Tree Metric Algo outputs a pure Nash equilibrium on the given game,
in O(nm ·nEO)-time. Here EO is the time to evaluate the cost function for a player.

Since the metric space has only two points and the cost function for each player
can be evaluated in O(∆)-time, we can compute a pure Nash equilibrium for a G ′ in
O(n2∆) time.

Since each pure Nash equilibrium for G ′ agrees with a pure Nash equilibrium for
the network coordination game G , we obtain a pure Nash equilibrium for G from the
above argument. We complete the proof of Theorem 9.15.

Remark 9.18. If every cost function on a network coordination game is a submodular
function, then the exact potential function Φ′ defined in Eq. (9.7) is also a submod-
ular function. This implies that we can apply an algorithm for submodular function
minimization, such as [LSW15; Orl09], to find a pure Nash equilibrium. In par-
ticular, we solve it in O(n3 log2(n) ·EO+ n4 logO(1)(n)) time [LSW15], where n is
the number of players, and EO is the time to evaluate Φ′, which is bounded by the
number of edges.

We obtain a pure Nash equilibrium that minimizes the corresponding potential
function by using the submodular minimization algorithm. Note that equilibrium

9.6. Conclusion 125

computation allows any pure Nash equilibrium as a solution; that is, a solution that
we obtain does not necessarily minimize the corresponding function. In Theorem
9.15, we exploit this fact, and thus, we can find a pure Nash equilibrium faster than
applying an algorithm for submodular function minimization. Our result implies that
equilibrium computation is solved at least O(n) factor faster.

9.6 Conclusion
We have studied the complexity of computing a pure Nash equilibrium for a discrete
preference game on a grid graph. As mentioned in Section 9.1, our motive behind
this work is to resolve the main open question for network coordination games: Is
it tractable to find a pure Nash equilibrium for a network coordination game on a
graph with degree four? Under negative conjecture, we study the complexity of
computing a pure Nash equilibrium for a discrete preference game, a subclass of
network coordination games.

Unfortunately, it is still open whether finding a pure Nash equilibrium for a dis-
crete preference game on a graph with degree four is tractable. We have shown the
polynomial-time computability for a discrete preference game with a parameter on
a k-dimensional grid graph when it satisfies the two conditions (A) and (B). It is
the first result for efficient computability for a discrete preference game with neither
O(logn)-treewidth nor a tree metric space. Note that our result holds under some-
what artificial conditions. An interesting open question worth considering is whether
it is also tractable if we remove the condition (A) or (B).

Another interesting direction would be the complexity of computing pure Nash
equilibria for discrete preference games on the discrete metric space with three or
more elements. We provide, in Section 9.3, an upper bound for the number of itera-
tions of the best response dynamics for a discrete preference game with a parameter
on a discrete metric space. The discrete preference metric space with three or more
strategies is one of the simple environments among finite metric spaces, not a tree
metric space.

Finally, we have discussed the complexity of computing a two-strategic network
coordination game whose cost functions are symmetric submodular functions. In
this case, the game is reducible to a discrete preference game on a path metric space,
and we can find a pure Nash equilibrium faster than an algorithm for submodular
function minimization. An open question worth considering is whether we can also
compute a pure Nash equilibrium faster than an algorithm for submodular function
minimization when a cost function is asymmetric.

127

Chapter 10

On the Complexity of Stable
Fractional Hypergraph Matching

10.1 Basics
Gale and Shapley [GS13] introduced the stable matching model, which is one of the
most important mathematical models for matching problems. The stable matching
model is usually defined on undirected graphs. Thus, this model is naturally gen-
eralized to hypergraphs. We can easily see that there is an instance of the stable
matching problem on hypergraphs that has no stable hypergraph matching. So, we
consider a fractional matching, which is a relaxation concept in this chapter. Recall
that we assign the value 0 or 1 to each edge in the original stable matching prob-
lem. In a fractional matching, we assign a real number between 0 and 1 to each
edge. Fortunately, Aharoni and Fleiner [AF03] have proven that there exists a stable
fractional matching in every hypergraph. Their proof was based on Scarf’s Lemma
[Sca67]. For example, the concept of stable fractional matchings in a hypergraph is
used in [BF16; BFI16; NV15]. It should be noted that stable fractional matchings in
hypergraphs are closely related to the stable matching problem with couple [BK13]
that is a practical and theoretically important variant of the stable matching (see, e.g.,
[BFI16; NV15]). In this chapter, we consider the problem of computing a stable
fractional matching in a hypergraph matching.

Kintali, Poplawski, Rajaraman, Sundram, and Teng [Kin+13] have proven that
the problem of finding a stable fractional matching in a hypergraphic preference sys-
tem is PPAD-complete. We consider the complexity of the problem of finding a stable
fractional matching in a hypergraphic preference system whose maximum degree is
bounded by some constant. It is natural to consider that in many practical applica-
tions, the length of a preference list (i.e., the degree of a vertex) is constant. Thus, it
is important to reveal the complexity of this problem with a low constant degree. The
proof by Kintali, Poplawski, Rajaraman, Sundraman, and Teng [Kin+13] implies the
PPAD-completeness of the problem of finding a stable fractional matching in a hyper-
graphic preference system whose maximum degree is five. However, to the best our
knowledge, the complexity of the problem of finding a stable fractional matching in
a hypergraphic preference system whose maximum degree is at most four is open. In
this chapter, we prove that

1. this problem is PPAD-complete even if the maximum degree three;

2. if the maximum degree is two, then this problem can be solved in polynomial
time;

128 Chapter 10. On the Complexity of Stable Fractional Hypergraph Matching

3. it is PPAD-complete to compute an approximate stable fractional matching in a
hypergraphic preference system.

10.2 Problem Formulation and Main Results
A hypergraphic preference sytem P consists of the following two components:

1. a finite hypegraph (V,E) and

2. a set of strict total orders ≻v for every vertex v in V such that for each vertex
v ∈V , ≻v is a strict total order on E(v),

where for each edge e ∈ E, we denote by E(v) the set of hyperedges e ∈ E such that
v ∈ e. We denote by P = (V,E,{≻v}v∈V) this hypergraphic preference system P. No-
tice if |e|= 2 for every hyperedge e in E, then P is just an instance of the well-known
stable roommate problem (see, e.g., [Pap07]). Define deg(P) := maxv∈V |E(v)|.

Assume that we are given a hypergraphic preference system P = (V,E,{≻v}).
Then a vector x in RE

≥0 is called a fractional matching in P if ∑e∈E(v) x(e) ≤ 1 for
every vertex v in V . Furthermore, a fractional matching x ∈ RE

≥0 is said to be stable
if for every hyperedge e in E, there exists a vertex v ∈ e such that

x(e)+ ∑
f∈E(v): f≻ve

x(f) = 1. (10.1)

It is known [AF03] that there exists a stable fractional matching in every hyper-
graphic preference system. The problem called FRACTIONAL STABLE MATCHING

is defined as follows:

Definition 10.1. FRACTIONAL STABLE MATCHING

Input:

• a hypergraphic preference system P = (V,E,{≻v}).

Task: Find

• a stable fractional matching x ∈ RE
≥0 in P, i.e., x satisfies that

– ∑e∈E(v) x(e)≤ 1 for every vertex v ∈V ;

– for each hyperedge e ∈ E, there exists a vertex v ∈ e such that Equation
10.1 holds.

The following result about the computational complexity of FRACTIONAL STA-
BLE MATCHING is known.

Theorem 10.2 (Kintali, Poplawski, Rajaraman, Sundaraman, and Teng [Kin+13]).
FRACTIONAL STABLE MATCHING is PPAD-complete.

The proof by Kintali, Poplawski, Rajaraman, Sundaraman, and Teng [Kin+13]
implies the PPAD-completeness of the problem of finding a stable fractional matching
in a hypergraphic preference system P such that deg(P) = 5. However, to the best of
our knowledge, the complexity of the problem of finding a stable fractional matching

10.3. PPAD-completeness 129

in a hypergraphic preference system P such that 2≤ deg(P)≤ 4 is open. (If deg(P) =
1, then the answer of FRACTIONAL STABLE MATCHING is trivial.) This chapter
presents the following theorems:

Theorem 10.3. FRACTIONAL STABLE MATCHING in a hypergraphic preference
system P such that deg(P) = 3 is PPAD-complete.

Theorem 10.4. FRACTIONAL STABLE MATCHING in a hypergraphic preference
system P such that deg(P) = 2 can be solved in polynomial time.

In should be note that Theorem 10.3 implies the PPAD-completeness of FRACTIONAL

STABLE MATCHING in a hypergraphic preference system P such that deg(P) = 4. It
is sufficient to add a with degree four to the instance used in the proof Theorem 10.3.

Furthermore, we consider APPROXIMATE FRACTIONAL STABLE MATCHING

that is an approximate variant of FRACTIONAL STABLE MATCHING. In this prob-
lem, we are given a hypergraphic preference system P = (V,E,{≻v}) and a positive
real number ε that may depend on |V | and |E|. Then a fractional matching x ∈ RE

≥0
is said to be ε-stable if for every hyperedge e ∈ E, there exists a vertex v ∈ e such
that

x(e)+ ∑
f∈E(v): f≻ve

x(f)≥ 1− ε. (10.2)

Notice that an ε-stable fractional matching in P since a stable fractional matching in
P always exists. The goal of this problem is to find an ε-stable fractional matching
in P. We prove the following theorem:

Definition 10.5. APPROXIMATE FRACTIONAL STABLE MATCHING

Input:

• a hypergraphic preference system P = (V,E,{≻v}),

• a positive real value ε > 0.

Task: Find

• an ε-stable fractional matching x ∈ RE
≥0 in P, i.e., x satisfies that

– ∑e∈E(v) x(e)≤ 1 for every vertex v ∈V ;

– for each hyperedge e ∈ E, there exists a vertex v ∈ e such that Equation
10.2 holds.

Theorem 10.6. APPROXIMATE FRACTIONAL STABLE MATCHING is PPAD-complete.

10.3 PPAD-completeness
For proving Theorem 10.3, we need the following lemma.

Lemma 10.7. Assume that we are given a hypergraphic preference system P such
that deg(P) ≥ 4. Then there exists a hypergraphic preference system Q such that
(i) deg(Q) = 3 and (ii) we can construct a stable fractional matching in P from a
stable fractional matching in Q in polynomial time. Furthermore, we can construct
Q in polynomial time.

130 Chapter 10. On the Complexity of Stable Fractional Hypergraph Matching

Before proving Lemma 10.7, we prove Theorem 10.3 by using this lemma.

Proof of Theorem 10.3. It follows from Theorem 10.2 that FRACTIONAL STABLE

MATCHING in a hypergraphic preference system P such that deg(P) = 3 belongs
to PPAD. Furthermore, Theorem 10.2 and Lemma 10.7 imply that every problem in
PPAD is reducible to FRACTIONAL STABLE MATCHING in a hypergraphic preference
system P such that deg(P) = 3 in polynomial time. This complete the proof.

10.3.1 Proof of Lemma 10.7
In this subsection we prove Lemma 10.7. The following proof is inspired by the
proof of the PPAD-completeness of PREFERENCE GAME with degree three by Kin-
tali, Poplawski, Rajaraman, Sundaram, and Teng [Kin+13].

Assume that we are given a hypergraphic preference system P = (V,E,{≻v})
such that deg(P) ≥ 4. Then we construct a new hypergraphic preference system
Q = (W,F,{▷v}) as follows. Define

W := {vi ; v ∈V, i ∈ {1,2, . . . , |E(v)|}∪{v̄i ; v ∈V, i ∈ {1,2, . . . , |E(v)|−1}.

For each vertex v ∈V and each hyperedge e ∈ E(v), we define

r(v,e) := 1+ |{ f ∈ E(v) ; f ≻v e}|.

For each hyperedge e ∈ E, we define ē := {vr(v,e) ; v ∈ e}. Define Ē := {ē ; e ∈ E}
and

F := Ē ∪{{vi, v̄i},{v̄i,vi+1} ; v ∈V, i{1,2, . . . , |E(v)|−1}} .

For each vertex v ∈ V and each integer i ∈ {1,2, . . . , |E(v)|}, we denote by hv
i the

hyperedge e ∈ Ē such that vi ∈ e. For each vertex w ∈ W , we define the strict total
order ▷w as follows. We first consider the case where w = vi for some vertex v ∈ V
and some integer i∈ {1,2, . . . , |E(v)|}. It suffices to consider the case where |E(v)| ≥
2. In this case, we define

hv
1 ▷w {v1, v̄1} if i = 1
{v̄|E(v)|−1,v|E(v)|}▷w hv

|E(v)| if i = |E(v)|
{v̄i−1,vi}▷w hv

i ▷w {vi, v̄i} otherwise.

Next, we assume that w = v̄i for some vertex v ∈ V and some integer i ∈ {1,2, . . . ,
|E(v)|−1}. In this case, we define {vi, v̄}▷w {v̄i,v+ i+1}. Since |W | ≤ 2|V ||E| and
|F | ≤ |E|+2|V ||E|, Q can be constructed in polynomial time. Futhermore, deg(Q) =
3.

In what follows, we prove that we can construct a stable fractional matching in
P from a stable fractional matching in Q in polynomial time. Assume that we are
given a stable fractional matching z in Q. Then, we define the vector x ∈ RE

≥0 by
x(e) := z(ē). Clearly, we can construct x from z in polynomial time. What remains
is to prove that x is a stable fractional matching in P. To prove this, we need the
following lemma:

Lemma 10.8. For every vertex v ∈V and every integer i ∈ {1,2, . . . , |E(v)|−1},

10.3. PPAD-completeness 131

(10.8.A) z({vi, v̄i}) = 1−∑
i
j=1 z(hv

j), and

(10.8.B) z({v̄i,vi+1}) = ∑
i
j=1 z(hv

j).

Proof. Let v be a vertex in V such that |E(v)| ≥ 2. We prove by induction on i. We
first consider the case of i = 1. Since z is a fractional matching in Q, we have

1 ≥ ∑
e∈F(v1)

z(e) = z(hv
1)+ z({v1, v̄1}).

This implies that z({v1, v̄1}) < 1 − z(hv
1). For proving (10.8.A), we assume that

z({v1, v̄1}) < 1− z(hv
1). Since z is a stable fractional matching in Q, at least one

of the following statement holds:

1 = z({v1, v̄1})+ ∑
e∈F(v1):e▷v1{v1,v̄1}

z(e) = z({v1, v̄1})+ z(hv
1); (10.3)

1 = z({v1, v̄1})+ ∑
e∈F(v̄1):e▷v̄1{v1,v̄1}

z(e) = z({v1, v̄1}). (10.4)

However, the above assumption implies that z({v1, v̄1})+z(hv
1)< 1 and z({v1, v̄1})<

1 since z(hv
1)≥ 0. These observations contradict (10.3) and (10.4). Therefore, z({v1,

v̄1}) = 1− z(hv
1).

Next, we consider (10.8.B). Since z is a fractional matching in Q, we have

1 ≥ ∑
e∈F(v̄1)

z(e) = z({v1, v̄1})+ z({v̄1,v2}).

We have z({v̄1,v2}) ≤ z(hv
1) since (10.8.A) for the case of i = 1 implies that z({v1,

v̄1})= 1−z(hv
1). For proving (10.8.B) by contradiction, we assume that z({v̄1,v2})<

z(hv
1). Since z is a stable fractional matching in Q, at least one of the following

statements holds:

1 = z({vk, v̄k})+ ∑
e∈F(vk):e▷vk{vk,v̄k}

z(e) = z({vk, v̄k})+ z({v̄k−1,vk})+ z(hv
k);

(10.5)

1 = z({vk, v̄k})+ ∑
e∈F(v̄k):e▷v̄k{vk,v̄k}

z(e) = z({vk, v̄k). (10.6)

However, the above assumption and the induction hypothesis imply that

z({vk, v̄k})+ z({v̄k−1,vk)+ z(hv
k) = z({zk, v̄k})+

k−1

∑
j=1

z(hv
j)+ z(hv

k)

< 1−
k

∑
j=1

z(hv
j)+

k

∑
j=1

z(hv
j) = 1.

This contradicts (10.5). Furthermore, it follows that z({vk, v̄k)} < 1 from the above
assumption since z is a non-negative real vector. This contradicts (10.6). This com-
plete the proof of (10.8.A).

132 Chapter 10. On the Complexity of Stable Fractional Hypergraph Matching

Next, we consider (10.8.B). Since z is a fractional matching in Q, we have

1 ≥ ∑
e∈F(v̄k)

z(e) = z({vk, v̄k})+ z({v̄k,vk+1}).

Since (10.8.A) for the case of i = k implies that

z({vk, v̄k}) = 1−
k

∑
j=1

z(hv
j), (10.7)

we have

z({v̄k,vk+1})≤
k

∑
j=1

z(hk
j). (10.8)

For proving (10.8.B) by contradiction, we assume that the inequality in 10.8 strictly
holds. Since z is a stable fractional matching in Q, at least one of the following
statements holds:

1 = z({v̄k,vk+1})+ ∑
e∈F(v̄k):e▷v̄k{v̄k,vk+1}

z(e) = z({v̄k,vk+1})+ z({vk, v̄k}). (10.9)

1 = z({v̄k,vk+1})+ ∑
e∈F(vk+1):e▷vk+1{v̄k,vk+1}

z(e) = z({v̄k,vk+1}). (10.10)

Notice that 10.7 and the above assumption imply that

z({v̄k,vk+1})+ z({vk, v̄k})< ∑
j∈[k]

z(hv
j)+1− ∑

j∈[k]
z(hv

j) = 1.

This contradicts 10.9. Furthermore, 10.7 and z ∈ RF
≥0 imply that ∑ j∈[k] z(hv

j) ≤ 1.
This contradicts 10.10, and complete the proof.

We are now ready to prove that x is a stable fractional matching in P. We first
prove that x is a fractional matching in P. Let v be a vertex in V . Define k := |E(v)|.
If k = 1, then

∑
e∈E(v)

x(e) = z(hv
1)≤ 1.

If k > 1, then

∑
e∈E(v)

x(e) = ∑
i∈[k]

z(hv
i)

= ∑
i∈[k−1]

z(hv
i)+ z(hv

k)

= z({v̄k−1,vk})+ z(hv
k) (by (10.8.B) of Lemma 10.8)

= ∑
e∈F(vk)

z(e)≤ 1,

where the inequality follows from the fact that z is a fractional matching in Q.

10.4. Polynomial-Time Computability 133

Lastly, we prove that x is a stable fractional matching in P. Let e be a hyperedge
in E. Then since z is a stable fractional matching in Q, there exists a vertex w in ē
such that

z(ē)+ ∑
f∈F(w): f▷wē

z(f) = 1.

Assume that w = vk for some vertex v in e and some integer k ∈ [|E(v)|]. Notice
that ē = hv

k. For each integer i ∈ [k], we assume that hv
i = ēi. Notice that ek = e,

e1 ≻v e2 ≻v · · · ≻v ek, and e≻v f holds for every hyperedge f ∈E(v)\{e1,e2, . . . ,ek}.
For integer i ∈ [k], x(ei) = z(hv

i). If k = 1, then

1 = z(ē)+ ∑
f∈F(w): f▷wē

z(f) = z(ē) = x(e) = x(e)+ ∑
f∈E(v): f≻ve

x(f).

If k > 1, then

1 = z(ē)+ ∑
f∈F(w): f▷wē

z(f)

= z(hv
k)+ z({v̄k−1,vk})

= z(hv
k)+ ∑

i∈[k−1]
z(hv

i) (by (10.8.B) of Lemma 10.8)

= x(e)+ ∑
i∈[k−1]

x(ei)

= x(e)+ ∑
f∈E(v): f≻ve

x(f).

These imply that x is a stable fractional matching in P. This completes the proof.

10.4 Polynomial-Time Computability
Throughout this section, we assume that we are given a hypergraphic preference
system P such that deg(P) = 2. Define V ∗ as the set of vertices v ∈ V such that
|E(v)| = 2. In addition, we define the directed graph D = (N,A) as follows. For
each hyperedge e ∈ E, N contains a vertex ne. For each vertex v ∈V ∗, A contains an
arc from n f to ne, where we assume that distinct hyperedges e, f in E contain v and
e ≻v f . See Figure 10.1 for an example of D.

Our algorithm is described in Algorithm 6. This algorithm can be intuitively
explained as follows. If there exists a vertex ne in N such that any arc in A does not
leave ne, then the hyperedge e is most preferred by every vertex v in e. Thus, we set
the value for e to be 1. For every arc a = (n f ,ne) in A, we must set the value for f
to be 0 since some vertex in V is contained in e, f . Then we can remove vertices in
N whose value is determined from D. We repeat this. Finally, we obtain a directed
graph D′ in which the out-degree of every vertex is at least one. Thus, by setting the
value for each vertex of D′ to be 1/2, we can construct a stable fractional matching
in P.

Here, we apply Algorithm 6 for the example in Figure 10.1. Since the right
digraph has no sinks, x(e) = 1/2 for every hyperedges e ∈ E.

134 Chapter 10. On the Complexity of Stable Fractional Hypergraph Matching

v1

v2 v3

v4

v5

v6

v7

e1

e2

e3

e4

e5

e6

ne1 ne2

ne3

ne4

ne5

ne6

FIGURE 10.1: The left figure illustrates an hypergraphic preference
system such that e1 ≻v1 e2 ≻v2 e1, e1 ≻v3 e2, w4 ≻v4 e5, e3 ≻v5 e5,
e2 ≻v6 e3, and e3 ≻v7 e6. The right figure represents the digraph con-

structed from the left one.

In order to prove Theorem 10.4, we need to show that Algorithm 6 always halts
and computes a stable fractional matching in the given hypergraphic preference sys-
tem and computes a stable fractional matching in the given hypergraphic preference
system in polynomial time. We prove, in Lemma 10.9, that Algorithm 6 computes a
stable fractional matching in the given hypergraphic preference system. After that,
we show that this algorithm halts in polynomial time in Lemma 10.9.

Lemma 10.9. The output of Algorithm 6 is a stable fractional matching in P.

Proof. Assume that Algorithm 6 halts when t = k. For proving this lemma, it suffices
to prove the following conditions are satisfied.

(10.9.A) For every arc a = (u,v) ∈ A, we have ξ ∗(u)+ξ ∗(v)≤ 1.

(10.9.B) For every vertex vinN such that ξ ∗(v) ̸= 1, there exists a vertex w ∈ N
such that an arc from v to w is contained in A and ξ ∗(v)+ξ w = 1.

We first prove (10.9.A). Assume that we are given an arc a = (u,v) in A. If
ξ ∗(u) = 0, then (10.9.A) clearly holds. Next, we assume that ξ ∗(u) = 1. Then
there exists a positive integer t such that u ∈ Nt and any arc of Dt does not leave
u. Notice that v ∈ Nt . This implies that ξ ∗(v) ∈ {0,1}. If ξ ∗(v) = 1, then there
exists a positive integer t ′ such that t ′ < t, v ∈ Nt ′ , and any arc of Dt ′ does leave v.
Furthermore, the definition of Tt ′ implies that ξ ∗(v) = 0. Lastly, we consider the case
where ξ ∗(u) = 1/2, i.e., u ∈ Nt . If ξ ∗(v) = 1, then u ̸∈ Nk, which contradicts the fact
that u ∈ Nk. This implies that ξ ∗ ∈ {0,1/2}. This completes the proof of (10.9.A).

Next, we prove (10.9.B). Assume that we are given a vertex v ∈ N such that
ξ ∗(v) ̸= 1. Assume taht ξ ∗(v) = 0. In this case, there exists a positive integer t such
that v ∈ Tt . That is, there exists a vertex w ∈ St such that there exists an arc of Dt
from v to w. Since w ∈ St , ξ ∗(w) = 1. This implies that ξ ∗(v)+ ξ ∗(w) = 1. Next,
we assume that ξ ∗(v) = 1/2. In this case, there exists a vertex w ∈ Nk such that there
exists an arc of Dk from v to w. Since ξ ∗(w) = 1/2, we have ξ ∗(v)+ ξ ∗(w) = 1.
This completes the proof.

10.5. Approximate 135

Algorithm 6 Finding a fractional stable matching

1: Set value w1
v =−1 for every v ∈ N.

2: Define N1 := {v ∈ N ; wv < 0} and D1 := D.
3: Set k := 1.
4: while there exists a vertex v ∈ Nk such that w+ vk < 0 do
5: Define Sk as the set of vertices v ∈ Nk whose out-degree is 0.
6: Define Tk := {v ∈ Nk ; (v,s) ∈ A for some s ∈ Sk}.
7: if Sk is empty then
8: Define wk

v = 1/2 for each v ∈ Nk
9: else

10: Define the value wk
s = 1 for each s ∈ Sk.

11: Define the value wk
t = 0 for each t ∈ Tk.

12: end if
13: Nk+1 := Nk \ (Sk ∪Tk).
14: Dk+1 as teh subgraph of Dk induced by Nk+1.
15: k := k+1.
16: end while
17: Define the vector x ∈ RN

≥0 by x(e) := wk
e for each hyperedge e ∈ E.

18: Return x, and halt.

Proof of Theorem 10.4. This theorem immediately follows from Lemma 10.9.

10.5 Approximate
This section presents the proof of Theorem 10.6. Since a stable fractional matching is
clearly an ε-stable fractional matching for any positive rational number ε , Theorem
10.2 (i.e., the fact that FRACTIONAL STABLE MATCHING is in PPAD) implies that
APPROXIMATE FRACTIONAL STABLE MATCHING is in PPAD. What remains is to
prove that every problem in PPAD is reducible to APPROXIMATE FRACTIONAL STA-
BLE MATCHING. For this, Theorem 10.2 implies that it is sufficient to prove that
FRACTIONAL STABLE MATCHING is reducible to APPROXIMATE FRACTIONAL

STABLE MATCHING in polynomial time. This fact immediately follows from the
following lemma.

Lemma 10.10. Assume that are given a hypergraphic preference system P = (V,E,
{≻v}). Furthermore, we define ε := 2−20|E|4 . Then we can construct a stable frac-
tional matching in P from an ε-stable fractional matching in P in polynomial time.

Notice that the bit-length of ε in Lemma 10.10 is bounded by a polynomial in the
size of P. More precisely, the bit-length of ε in Lemma is O(|E|4).

What remains is to prove Lemma 10.10. We prove Lemma 10.10 by using the
following known result called LP compactness. Assume that we are given positive
integer m,n and vectors a∈Qm×n and b∈Qm, where Q is the set of rational numbers.
Then we consider the following linear inequality system whose variable is a vector

136 Chapter 10. On the Complexity of Stable Fractional Hypergraph Matching

x ∈ Rn.

∑
j∈[n]

a(i, j) · x(j)≥ b(i)(i ∈ [m]). (10.11)

For each positive real number δ and each vector y ∈R≥0
n, we say that y satisfies the

linear inequality system 10.11 to within δ , if

∑
j∈[n]

a(i, j) · y(j)≥ b(i)−δ

for every integer i ∈ [m].

Theorem 10.11 (LP compactness (see Lemma 4.11 of [Kin+13])). Assume that
we are given positive integers m,n and vectors a ∈ Qm×n and b ∈ Qm. Further-
more, we assume that there exists a positive integer β satisfying the condition that
for every pair of integer i ∈ [m] and j ∈ [n], there exist integers p,q,r,s such that
a(i, j) = p/q,b(i) = r/s, and |p|, |q|, |r|, |s| ≤ 2β . Then we consider the following
linear inequality system whose variable is a vector x ∈ Rn:

∑
j∈[n]

a(i, j) · x(j)≥ b(i)(i ∈ [m]). (10.12)

If there exists a vector y ∈Rn satisfying the linear inequality system (10.12) to within
2−20n4β , then there exists a vector x ∈ Rn that is feasible for the linear inequality
system (10.12).

We are now ready to prove Lemma 10.10.

Proof of Lemma 10.10. Assume that we are given an ε-stable fractional matching
y ∈ P. For each hyperedge e ∈ E, we define set U(e) as the set of vertices v ∈ e such
that

y(e)+ ∑
f∈E(v): f≻ve

y(f)≥ 1− ε.

Notice that since y in an ε-stable fractional matching in P, U(e) ̸= /0 for any hyper-
edge e ∈ E. We consider the following linear inequality system whose variable is a
vector x ∈ RE .

−∑e∈E(v) x(e)≥−1 ∀v ∈V
x(e)+∑ f∈E(v): f≻ve x(f)≥ 1 ∀e ∈ E,∀v ∈U(e)
x(e)≥ 0 ∀e ∈ E.

(10.13)

Notice that the number of constraints of the linear inequality system (10.13) is bounded
by a polynomial in the input size of FRACTIONAL STABLE MATCHING.

Notice that y satisfies the linear inequality system (10.13) to within 2−20|E|4 .
Thus, by setting n := |E| and β := 1,Theorem 10.11 implies that there exists a vector
x ∈RE that is feasible for the linear inequality system (10.13) in polynomial time by
using the ellipsoid method [Kha80].

Let x be a vector in RE that is feasible for the linear inequality system (10.13).
Then we prove that x is a stable fractional matching in P. For this, it suffices to prove

10.6. Conclusions 137

that for every hyperedge e ∈ E, there exists a vertex v ∈ e such that

x(e)+ ∑
f∈E(v): f≻ve

x(f) = 1. (10.14)

Let e be a hyperedge in E. The first constraint of (10.13) implies that

x(e)+ ∑
f∈E(v): f≻ve

x(f)

for every vertex v ∈U(e). Thus, the second constraint of (10.13) implies that

x(e)+ ∑
f∈E(v): f≻ve

x(f) = 1

for every vertex v ∈U(e). Since U(e) ̸= /0, this implies that there exists a vertex v ∈ e
satisfying (10.14). This completes the proof.

10.6 Conclusions
We have considered the complexity of the problem of finding a stable fractional hy-
pergraph matching in a hypergraphic preference system whose maximum degree is
bounded by some constant. We have shown the PPAD-completeness of DEGREE-3
FRACTIONAL STABLE MATCHING and the existence of a polynomial-time algo-
rithm for solving DEGREE-2 FRACTIONAL STABLE MATCHING. Our results have
improved the result by Previously, Kintali, Poplawski, Rajaraman, Sundaram, and
Teng [Kin+13]. They proved the PPAD-completeness of DEGREE-5 FRACTIONAL

STABLE MATCHING.
Note that Caáji [Csá21] recently has proven the PPAD-hardness of the problem

of finding a stable fractional matching in a hypergraphic preference system even if
every hyperedge contains at most three vertices and every vertex joins at most three
hyperedges.

139

Part V

Conclusions and Open Problems

141

Chapter 11

Open Problems

In this thesis, we have focused on the complexity of TFNP classes from the perspective
of Fixed Point Theory and Algorithmic Game Theory. Part II has organized central
results around TFNP classes. We have shown the robustness of the definition EOPL

based on the problem END OF POTENTIAL LINE. Furthermore, we have proven that
DEGREE-4 POTENTIAL ODD is a PPA∩PLS-complete problem and DEGREE-3 PO-
TENTIAL ODD is an EOPL-complete problem. Part III has considered the complexity
of finding a fixed point. We have focused on the two order-theoretic fixed point the-
orems: Caristi’s fixed point theorem and Brøndsted’s fixed point theorem. Finally,
Part IV has dealt with the computational aspects of Game Theory. We have consid-
ered the complexity of equilibrium computation related to graphical games with pure
Nash equilibria and bimatrix games. Moreover, we have considered the complexity
of computing a stable fractional matching on a hypergraphic preference system.

To conclude this thesis, this chapter collects important and interesting open ques-
tions worth considering for the reader’s convenience.

II Fundamental Theory of Computational Complexity

(1) EOPL
?
= UniqueEOPL

?
= FP

(2) EOPL
?
= PPA∩PLS

(3) Can we formulate quantum analogs of TFNP classes, such as PLS, PPP,
PPA, and PPAD?

III Fixed Point Theory

(1) Is the problem of finding a Tarski’s fixed point EOPL-complete?

(2) Does TARSKI belong to UniqueEOPL?

(3) Can we improve the query lower bound for computing a Tarski’s fixed
point in the three-dimensional setting?

(4) Which is true that BRØNDESTED is CLS- or PPAD-complete?

IV Algorithmic Game Theory

(1) How hard is the problem of computing a mixed Nash equilibrium on a
graphical game with pure Nash equilibria?

(2) Is the problem of finding a pure Nash equilibrium on a network coordi-
nation game whose players’ network has degree four PLS-complete?

143

Bibliography

[Aar13] Scott Aaronson. Quantum Computing since Democritus. Cambridge Uni-
versity Press, 2013. ISBN: 978-0-521-19956-8. DOI: 10.1017/CBO9780511979309.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009. ISBN: 978-0-521-42426-
4.

[ABB20] James Aisenberg, Maria Luisa Bonet, and Sam Buss. “2-D Tucker is PPA
complete.” In: Journal of Computer and System Sciences 108 (2020),
pp. 92–103. DOI: 10.1016/j.jcss.2019.09.002.

[AF03] Ron Aharoni and Tamás Fleiner. “On a lemma of Scarf.” In: Journal of
Combinatorial Theory, Series B 87.1 (2003), pp. 72–80. DOI: 10.1016/
S0095-8956(02)00028-X.

[AKV05] Timothy G. Abbott, Daniel M. Kane, and Paul Valiant. “On the Com-
plexity of Two-PlayerWin-Lose Games.” In: Proceedings of the 46th
Annual IEEE Symposium on Foundations of Computer Science. IEEE
Computer Society, 2005, pp. 113–122. DOI: 10.1109/SFCS.2005.59.

[AOV07] Louigi Addario-Berry, Neil Olver, and Adrian Vetta. “A Polynomial
Time Algorithm for Finding Nash Equilibria in Planar Win-Lose Games.”
In: Journal of Graph Algorithms and Applications 11.1 (2007), pp. 309–
319. DOI: 10.7155/jgaa.00147.

[Apt+17] Krzysztof R. Apt, Bart de Keijzer, Mona Rahn, Guido Schäfer, and Sunil
Simon. “Coordination games on graphs”. In: International Journal of
Game Thoery 46.3 (2017), pp. 851–877. DOI: 10.1007/s00182-016-
0560-8.

[Ban+19] Frank Ban, Kamal Jain, Christos H. Papadimitriou, Christos-Alexandros
Psomas, and Aviad Rubinstein. “Reductions in PPP.” In: Information
Processing Letters 145 (2019), pp. 48–52. DOI: 10.1016/j.ipl.2018.
12.009.

[Ban22] S. Banach. “Sur les operations dans les ensembles abstraits et leur ap-
plication aux equations integrales.” In: Fundamenta Mathematicae 3
(1922), pp. 133–181. DOI: 10.4064/fm-3-1-133-181.

[BF16] Péter Biró and Tamás Fleiner. “Fractional solutions for capacitated NTU-
games, with applications to stable matchings.” In: Discrete Optimization
22 (2016), pp. 241–254. DOI: 10.1016/j.disopt.2015.02.002.

[BFI16] Péter Biró, Tamás Fleiner, and Robert W. Irving. “Matching couples with
Scarf’s algorithm.” In: Annals of Mathematics and Artificial Intelligence
77.3-4 (2016), pp. 303–316. DOI: 10.1007/s10472-015-9491-5.

https://doi.org/10.1017/CBO9780511979309
https://doi.org/10.1016/j.jcss.2019.09.002
https://doi.org/10.1016/S0095-8956(02)00028-X
https://doi.org/10.1016/S0095-8956(02)00028-X
https://doi.org/10.1109/SFCS.2005.59
https://doi.org/10.7155/jgaa.00147
https://doi.org/10.1007/s00182-016-0560-8
https://doi.org/10.1007/s00182-016-0560-8
https://doi.org/10.1016/j.ipl.2018.12.009
https://doi.org/10.1016/j.ipl.2018.12.009
https://doi.org/10.4064/fm-3-1-133-181
https://doi.org/10.1016/j.disopt.2015.02.002
https://doi.org/10.1007/s10472-015-9491-5

144 Bibliography

[BIL08] Vincenzo Bonifaci, Ugo Di Iorio, and Luigi Laura. “The complexity
of uniform Nash equilibria and related regular subgraph problems.” In:
Theoretical Computer Science 401.1-3 (2008), pp. 144–152. DOI: 10.
1016/j.tcs.2008.03.036.

[BK13] Péter Biró and Flip Klijn. “Matching with couples: a Multidisciplinary
Survey.” In: International Game Theory Review 15.2 (2013). DOI: 10.
1142/S0219198913400082.

[BM21] Vittorio Bilò and Marios Mavronicolas. “The Complexity of Computa-
tional Problems About Nash Equilibria in Symmetric Win-Lose Games.”
In: Algorithmica 83.2 (2021), pp. 447–530. DOI: 10.1007/s00453-
020-00763-x.

[Bor16] Michaela Borzechowski. The complexity class Polynomial Local Search
(PLS) and PLS-complete problems. 2016.

[BR21] Yakov Babichenko and Aviad Rubinstein. “Settling the complexity of
Nash equilibrium in congestion games”. In: Proceedings of the 53rd An-
nual ACM SIGACT Symposium on Theory of Computing, STOC. ACM,
2021, pp. 1426–1437. DOI: 10.1145/3406325.3451039.

[Bro11] L. E. J. Brouwer. “Über Abbildung von Mannigfaltigkeiten.” In: Math-
ematische Annalen 71.1 (1911), pp. 97 –115. ISSN: 0025-5831. DOI:
10.1007/bf01456931.

[Brø74] Arne Brøndsted. “On a lemma of Bishop and Phelps.” In: Pacific Journal
of Mathematics 55.2 (1974), pp. 335–341. DOI: 10.2140/pjm.1974.
55.335.

[Cai+16] Yang Cai, Ozan Candogan, Constantinos Daskalakis, and Christos Pa-
padimitriou. “Zero-Sum Polymatrix Games: A Generalization of Mmin-
max.” In: Mathematics of Operations Research 41.2 (2016), pp. 648–
655. DOI: 10.1287/moor.2015.0745.

[Car76] J. Caristi. “Fixed point theorems for mapping satisfying inwardness con-
ditions.” In: Transactions of the American Mathematical Society 215
(1976), pp. 241 –251. DOI: 10.1090/S0002-9947-1976-0394329-4.

[CD06] Xi Chen and Xiaotie Deng. “Settling the Complexity of Two-Player
Nash Equilibrium.” In: Proceedings of the 47th Annual IEEE Sympo-
sium on Foundations of Computer Science. IEEE Computer Society,
2006, pp. 261–272. DOI: 10.1109/FOCS.2006.69.

[CD07] Xi Chen and Xiaotie Deng. “Recent development in computational com-
plexity characterization of Nash equilibrium.” In: Computer Science Re-
view 1.2 (2007), pp. 88–99. DOI: 10.1016/j.cosrev.2007.09.002.

[CD09] Xi Chen and Xiaotie Deng. “On the complexity of 2D discrete fixed
point problem.” In: Theoretical Computer Science 410.44 (2009), pp. 4448
–4456. ISSN: 0304-3975. DOI: 10.1016/j.tcs.2009.07.052.

[CD11] Yang Cai and Constantinos Daskalakis. “On Minmax Theorems for Mul-
tiplayer Games.” In: Proceedings of the 22nd Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA. 2011, pp. 217–234. DOI: 10.
1137/1.9781611973082.20.

https://doi.org/10.1016/j.tcs.2008.03.036
https://doi.org/10.1016/j.tcs.2008.03.036
https://doi.org/10.1142/S0219198913400082
https://doi.org/10.1142/S0219198913400082
https://doi.org/10.1007/s00453-020-00763-x
https://doi.org/10.1007/s00453-020-00763-x
https://doi.org/10.1145/3406325.3451039
https://doi.org/10.1007/bf01456931
https://doi.org/10.2140/pjm.1974.55.335
https://doi.org/10.2140/pjm.1974.55.335
https://doi.org/10.1287/moor.2015.0745
https://doi.org/10.1090/S0002-9947-1976-0394329-4
https://doi.org/10.1109/FOCS.2006.69
https://doi.org/10.1016/j.cosrev.2007.09.002
https://doi.org/10.1016/j.tcs.2009.07.052
https://doi.org/10.1137/1.9781611973082.20
https://doi.org/10.1137/1.9781611973082.20

Bibliography 145

[CDO15] Xi Chen, David Durfee, and Anthi Orfanou. “On the complexity of nash
equilibria in anonymous games”. In: Proceedings of the forty-seventh
annual ACM symposium on Theory of computing. 2015, pp. 381–390.
DOI: 10.1145/2746539.2746571.

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. “Settling the Complex-
ity of Computing Two-Player Nash Equilibria.” In: Journal of the ACM
56.3 (2009), 14:1 –14:57. ISSN: 00045411. DOI: 10.1145/1516512.
1516516.

[Che+09] Xi Chen, Decheng Dai, Ye Du, and Shang-Hua Teng. “Settling the Com-
plexity of Arrow-Debreu Equilibria in Markets with Additively Sepa-
rable Utilities.” In: Proceedings of the 50th Annual IEEE Symposium
on Foundations of Computer Science, FOCS. IEEE Computer Society,
2009, pp. 273–282. DOI: 10.1109/FOCS.2009.29.

[CKO18] Flavio Chierichetti, Jon Kleinberg, and Sigal Oren. “On discrete prefer-
ences and coordination.” In: Journal of Computer and System Sciences
93 (2018), pp. 11–29. DOI: 10.1016/j.jcss.2017.11.002.

[CL10] Ching-Lueh Chang and Yuh-Dauh Lyuu. “Optimal bounds on finding
fixed points of contraction mappings.” In: Theoretical Computer Science
411.16 (2010), pp. 1742 –1749. ISSN: 0304-3975. DOI: 10.1016/j.
tcs.2010.01.016.

[CL22] Xi Chen and Yuhao Li. “Improved Upper Bounds for Finding Tarski
Fixed Points.” In: CoRR abs/2202.05913 (2022). DOI: 10.48550/arXiv.
2202.05913. arXiv: 2202.05913.

[Con92] Anne Condon. “The complexity of stochastic games.” In: Information
and Computation 96.2 (1992), pp. 203–224. DOI: 10 . 1016 / 0890 -
5401(92)90048-K.

[Coo71] Stephen A. Cook. “The Complexity of Theorem-Proving Procedures.”
In: Proceedings of the 3rd Annual ACM Symposium on Theory of Com-
puting. ACM, 1971, pp. 151–158. DOI: 10.1145/800157.805047.

[CS05] Bruno Codenotti and Daniel Stefankovic. “On the computational com-
plexity of Nash equilibria for (0, 1) bimatrix games.” In: Information
Processing Letters 94.3 (2005), pp. 145–150. DOI: 10.1016/j.ipl.
2005.01.010.

[Csá21] Gergely Csáji. On the complexity of Stable Hypergraph Matching, Stable
Multicommodity Flow and related problems. 2021.

[Das09] Constantinos Daskalakis. “Nash equilibria: Complexity, symmetries, and
approximation.” In: Computer Science Review 3.2 (2009), pp. 87–100.
DOI: 10.1016/j.cosrev.2009.03.003.

[Del+21] Argyrios Deligkas, John Fearnley, Themistoklis Melissourgos, and Paul
G. Spirakis. “Computing exact solutions of consensus halving and the
Borsuk-Ulam theorem.” In: Journal of Computer and System Sciences
117 (2021), pp. 75–98. DOI: 10.1016/j.jcss.2020.10.006.

https://doi.org/10.1145/2746539.2746571
https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1109/FOCS.2009.29
https://doi.org/10.1016/j.jcss.2017.11.002
https://doi.org/10.1016/j.tcs.2010.01.016
https://doi.org/10.1016/j.tcs.2010.01.016
https://doi.org/10.48550/arXiv.2202.05913
https://doi.org/10.48550/arXiv.2202.05913
https://arxiv.org/abs/2202.05913
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1145/800157.805047
https://doi.org/10.1016/j.ipl.2005.01.010
https://doi.org/10.1016/j.ipl.2005.01.010
https://doi.org/10.1016/j.cosrev.2009.03.003
https://doi.org/10.1016/j.jcss.2020.10.006

146 Bibliography

[Den+21] Xiaotie Deng, Jack R. Edmonds, Zhe Feng, Zhengyang Liu, Qi Qi, and
Zeying Xu. “Understanding PPA-completeness.” In: Journal of Com-
puter and System Sciences 115 (2021), pp. 146–168. DOI: 10.1016/j.
jcss.2020.07.006.

[DFK17] Xiaotie Deng, Zhe Feng, and Rucha Kulkarni. “Octahedral Tucker is
PPA-complete.” In: Electronic Coloquim on Computational Complexity
TR17-118 (2017). URL: https://eccc.weizmann.ac.il/report/
2017/118.

[DFS20] Argyrios Deligkas, John Fearnley, and Rahul Savani. “Tree Polymatrix
Games Are PPAD-Hard.” In: Proceedings of the 47th International Col-
loquium on Automata, Languages, and Programming, ICALP. Vol. 168.
LIPIcs. 2020, 38:1–38:14. DOI: 10.4230/LIPIcs.ICALP.2020.38.

[DGP09] Constantinos. Daskalakis, Paul W. Goldberg, and Christos H. Papadim-
itriou. “The Complexity of Computing a Nash Equilibrium.” In: SIAM
Journal on Computing 39.1 (2009), pp. 195–259. DOI: 10.1137/070699652.

[DK11] Samir Datta and Nagarajan Krishnamurthy. “Some Tractable Win-Lose
Games.” In: Proceedings of the 8th International Conference on The-
ory and Applications of Models of Computation, TAMC. Vol. 6648. Lec-
ture Notes in Computer Science. Springer, 2011, pp. 365–376. DOI: 10.
1007/978-3-642-20877-5_36.

[Doh+17] Jérôme Dohrau, Bernd Gärtner, Manuel Kohler, Jiří Matoušek, and Emo
Welzl. “ARRIVAL: a zero-player graph game in NP ∩ coNP.” In: A jour-
ney through discrete mathematics. Springer, 2017, pp. 367–374. DOI:
10.1007/978-3-319-44479-6_14.

[DP06] Constantinos Daskalakis and Christos H. Papadimitriou. “Computing
pure nash equilibria in graphical games via markov random fields.” In:
Proceedings of the 7th ACM Conference on Electronic Commerce (EC-
2006). ACM, 2006, pp. 91–99. DOI: 10.1145/1134707.1134718.

[DP11] Constantinos Daskalakis and Christos Papadimitriou. “Continuous Lo-
cal Ssearch.” In: Proceedings of the 22nd annual ACM-SIAM Sympo-
sium on Discrete algorithms. 2011, pp. 790–804. DOI: 10.1137/1.
9781611973082.62.

[DP20] Constantinos Daskalakis and Christos H. Papadimitriou. Continuous Lo-
cal Search - Corrigendum. 2020. URL: http://people.csail.mit.
edu/costis/CLS-corrigendum.pdf.

[DQY11] Chuangyin Dang, Qi Qi, and Yinyu Ye. Computational models and com-
plexities of Tarski’s fixed points. Tech. rep. 2011. URL: https://web.
stanford.edu/~yyye/unitarski1.pdf.

[DTZ18] Constantinos Daskalakis, Christos Tzamos, and Manolis Zampetakis.
“A converse to Banach’s fixed point theorem and its CLS-completeness.”
In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing. 2018, pp. 44–50. DOI: 10.1145/3188745.3188968.

https://doi.org/10.1016/j.jcss.2020.07.006
https://doi.org/10.1016/j.jcss.2020.07.006
https://eccc.weizmann.ac.il/report/2017/118
https://eccc.weizmann.ac.il/report/2017/118
https://doi.org/10.4230/LIPIcs.ICALP.2020.38
https://doi.org/10.1137/070699652
https://doi.org/10.1007/978-3-642-20877-5_36
https://doi.org/10.1007/978-3-642-20877-5_36
https://doi.org/10.1007/978-3-319-44479-6_14
https://doi.org/10.1145/1134707.1134718
https://doi.org/10.1137/1.9781611973082.62
https://doi.org/10.1137/1.9781611973082.62
http://people.csail.mit.edu/costis/CLS-corrigendum.pdf
http://people.csail.mit.edu/costis/CLS-corrigendum.pdf
https://web.stanford.edu/~yyye/unitarski1.pdf
https://web.stanford.edu/~yyye/unitarski1.pdf
https://doi.org/10.1145/3188745.3188968

Bibliography 147

[EGG06] Edith Elkind, Leslie Ann Goldberg, and Paul Goldberg. “Nash Equilibria
in Graphical Games on Trees Revisited.” In: Proceedings of the 7th ACM
conference on Electronic Commerce, EC. 2006, pp. 100–109. DOI: 10.
1145/1134707.1134719.

[ET11] Robert Elsässer and Tobias Tscheuschner. “Settling the Complexity of
Local Max-Cut (Almost) Completely.” In: Proceedings of the 38th An-
nual International Colloquium on Automata, Languages, and Program-
ming. Vol. 6755. 2011, pp. 171–182. DOI: 10 . 1007 / 978 - 3 - 642 -
22006-7_15.

[Ete+20] Kousha Etessami, Christos Papadimitriou, Aviad Rubinstein, and Mi-
halis Yannakakis. “Tarski’s Theorem, Supermodular Games, and the Com-
plexity of Equilibria.” In: Proceedings of the 11th Innovations in The-
oretical Computer Science Conference, ITCS. Vol. 151. LIPIcs. 2020,
18:1–18:19. ISBN: 978-3-95977-134-4. DOI: 10.4230/LIPIcs.ITCS.
2020.18.

[EY10] Kousha Etessami and Mihalis Yannakakis. “On the Complexity of Nash
Equilibria and Other Fixed Points.” In: SIAM Journal on Computing
39.6 (2010), pp. 2531–2597. DOI: 10.1137/080720826.

[Fea+20] John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. “Unique
end of potential line.” In: Journal of Computer and System Sciences 114
(2020), pp. 1–35. DOI: 10.1016/j.jcss.2020.05.007.

[Fea+21] John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Sa-
vani. “The Complexity of Gradient Descent: CLS = PPAD ∩ PLS.” In:
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing. Association for Computing Machinery, 2021, 46–59. ISBN:
9781450380539. DOI: 10.1145/3406325.3451052.

[FGV16] Diodato Ferraioli, Paul W. Goldberg, and Carmine Ventre. “Decentral-
ized dynamics for finite opinion games.” In: Theoretical Computer Sci-
ence 648 (2016), pp. 96–115. ISSN: 0304-3975. DOI: 10.1016/j.tcs.
2016.08.011.

[FPS20] John Fearnley, Dömötör Pálvölgyi, and Rahul Savani. “A faster algo-
rithm for finding Tarski fixed points.” In: CoRR abs/2010.02618 (2020).
DOI: 10.48550/arXiv.2010.02618. arXiv: 2010.02618.

[FPT04] Alex Fabrikant, Christos H. Papadimitriou, and Kunal Talwar. “The com-
plexity of pure Nash equilibria.” In: Proceedings of the 36th Annual
ACM Symposium on Theory of Computing. 2004, pp. 604–612. DOI:
10.1145/1007352.1007445.

[FRG18] Aris Filos-Ratsikas and Paul W. Goldberg. “Consensus halving is PPA-
complete.” In: Proceedings of the 50th Annual ACM SIGACT Sympo-
sium on Theory of Computing. 2018, pp. 51–64. DOI: 10.1145/3188745.
3188880.

https://doi.org/10.1145/1134707.1134719
https://doi.org/10.1145/1134707.1134719
https://doi.org/10.1007/978-3-642-22006-7_15
https://doi.org/10.1007/978-3-642-22006-7_15
https://doi.org/10.4230/LIPIcs.ITCS.2020.18
https://doi.org/10.4230/LIPIcs.ITCS.2020.18
https://doi.org/10.1137/080720826
https://doi.org/10.1016/j.jcss.2020.05.007
https://doi.org/10.1145/3406325.3451052
https://doi.org/10.1016/j.tcs.2016.08.011
https://doi.org/10.1016/j.tcs.2016.08.011
https://doi.org/10.48550/arXiv.2010.02618
https://arxiv.org/abs/2010.02618
https://doi.org/10.1145/1007352.1007445
https://doi.org/10.1145/3188745.3188880
https://doi.org/10.1145/3188745.3188880

148 Bibliography

[FRG19] Aris Filos-Ratsikas and Paul W. Goldberg. “The Complexity of Split-
ting Necklaces and Bisecting Ham Sandwiches.” In: Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing. 2019,
pp. 638–649. DOI: 10.1145/3313276.3316334.

[FS21] John Fearnley and Rahul Savani. “A Faster Algorithm for Finding Tarski
Fixed Points.” In: Proceedings of the 38th International Symposium on
Theoretical Aspects of Computer Science, STACS. Vol. 187. LIPIcs. 2021,
29:1–29:16. ISBN: 978-3-95977-180-1. DOI: 10.4230/LIPIcs.STACS.
2021.29.

[GD03] Andrzej Granas and James Dugundji. Fixed Point Theory. Springer, 2003.
ISBN: 0387001735.

[GGS05] Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. “Pure Nash
Equilibria: Hard and Easy Games.” In: Journal of Artificial Intelligence
Research 24 (2005), pp. 347–406. DOI: 10.1613/jair.1683.

[GH19] Paul W. Goldberg and Alexandros Hollender. “The Hairy Ball Problem
is PPAD-Complete.” In: Proceedings of the 46th International Collo-
quium on Automata, Languages, and Programming. Vol. 132. LIPIcs.
2019, 65:1–65:14. DOI: 10.4230/LIPIcs.ICALP.2019.65.

[Göö+22] Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre,
William Pires, Robert Robere, and Ran Tao. “Further Collapses in TFNP.”
In: CoRR abs/2202.07761 (2022). DOI: https://doi.org/10.48550/
arXiv.2202.07761. arXiv: 2202.07761.

[GS13] D. Gale and L. S. Shapley. “College Admissions and the Stability of
Marriage.” In: The American Mathematical Monthly 120.5 (2013), pp. 386–
391. DOI: 10.4169/amer.math.monthly.120.05.386.

[GZ11] Oded Goldreich and David Zuckerman. “Another Proof That BPP ⊆ PH

(and More).” In: Studies in Complexity and Cryptography. Miscellanea
on the Interplay between Randomness and Computation. Vol. 6650. Lec-
ture Notes in Computer Science. Springer, 2011, pp. 40–53. DOI: 10.
1007/978-3-642-22670-0_6.

[HG18] Alexandros Hollender and Paul W. Goldberg. “The Complexity of Multi-
source Variants of the End-of-Line Problem, and the Concise Multi-
lated Chessboard.” In: Electronic Coloquim on Computational Com-
plexity TR18-120 (2018). URL: https://eccc.weizmann.ac.il/
report/2018/120/.

[HV21] Pavel Hubácek and Jan Václavek. “On Search Complexity of Discrete
Logarithm.” In: Proceedings of the 46th International Symposium on
Mathematical Foundations of Computer Science, MFCS. Ed. by Filippo
Bonchi and Simon J. Puglisi. Vol. 202. LIPIcs. 2021, 60:1–60:16. DOI:
10.4230/LIPIcs.MFCS.2021.60.

[HY17] Pavel Hubáček and Eylon Yogev. “Hardness of Continuous Local Search:
Query Complexity and Cryptographic Lower Bounds.” In: Proceedings
of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms. 2017,
pp. 1352–1371. DOI: 10.1137/17M1118014.

https://doi.org/10.1145/3313276.3316334
https://doi.org/10.4230/LIPIcs.STACS.2021.29
https://doi.org/10.4230/LIPIcs.STACS.2021.29
https://doi.org/10.1613/jair.1683
https://doi.org/10.4230/LIPIcs.ICALP.2019.65
https://doi.org/https://doi.org/10.48550/arXiv.2202.07761
https://doi.org/https://doi.org/10.48550/arXiv.2202.07761
https://arxiv.org/abs/2202.07761
https://doi.org/10.4169/amer.math.monthly.120.05.386
https://doi.org/10.1007/978-3-642-22670-0_6
https://doi.org/10.1007/978-3-642-22670-0_6
https://eccc.weizmann.ac.il/report/2018/120/
https://eccc.weizmann.ac.il/report/2018/120/
https://doi.org/10.4230/LIPIcs.MFCS.2021.60
https://doi.org/10.1137/17M1118014

Bibliography 149

[IK18] Takashi Ishizuka and Naoyuki Kamiyama. “On the Complexity of Sta-
ble Fractional Hypergraph Matching.” In: Proceedings of the 29th In-
ternational Symposium on Algorithms and Computation, ISAAC 2018.
Vol. 123. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018, 11:1–11:12. DOI: 10.4230/LIPIcs.ISAAC.2018.11.

[IK22a] Takashi Ishizuka and Naoyuki Kamiyama. NP-hardness of Computing
Uniform Nash Equilibria on Planar Bimatrix Game. 2022. DOI: 10.
48550/ARXIV.2205.03117.

[IK22b] Takashi Ishizuka and Naoyuki Kamiyama. On Finding Pure Nash Equi-
libria of Discrete Preference Games and Network Coordination Games.
2022. DOI: 10.48550/arXiv.2207.01523.

[Ish21a] Takashi Ishizuka. “On the complexity of finding a Caristi’s fixed point.”
In: Information Processing Letters 170 (2021), p. 106119. DOI: 10 .
1016/j.ipl.2021.106119.

[Ish21b] Takashi Ishizuka. “The complexity of the parity argument with poten-
tial.” In: Journal of Computer and System Sciences 120 (2021), pp. 14–
41. DOI: 10.1016/j.jcss.2021.03.004.

[Jeř16] Emil Jeřábek. “Integer factoring and modular square roots.” In: Journal
of Computer and System Sciences 82.2 (2016), pp. 380–394. DOI: 10.
1016/j.jcss.2015.08.001.

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis.
“How Easy is Local Search?” In: Journal of Computer and System Sci-
ences 37.1 (1988), pp. 79–100. DOI: 10.1016/0022-0000(88)90046-
3.

[Kha80] Leonid G Khachiyan. “Polynomial algorithms in linear programming.”
In: USSR Computational Mathematics and Mathematical Physics 20.1
(1980), pp. 53–72. DOI: 10.1016/0041-5553(80)90061-0.

[Kin+13] Shiva Kintali, Laura J. Poplawski, Rajmohan Rajaraman, Ravi Sundaram,
and Shang-Hua Teng. “Reducibility among Fractional Stability Prob-
lems.” In: SIAM Journal on Computing 42.6 (2013), pp. 2063–2113.
DOI: 10.1137/120874655.

[Kle+21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos H.
Papadimitriou. “Total Functions in the Polynomial Hierarchy.” In: Pro-
ceedings of the 12th Innovations in Theoretical Computer Science Con-
ference, ITCS. Vol. 185. LIPIcs. 2021, 44:1–44:18. DOI: 10 . 4230 /
LIPIcs.ITCS.2021.44.

[KLS01] Michael J. Kearns, Michael L. Littman, and Satinder P. Singh. “Graph-
ical Models for Game Theory.” In: Proceedings of the 17th Conference
in Uncertainty in Artificial Intelligence, UAI. 2001, pp. 253–260.

[KNY19] Ilan Komargodski, Moni Naor, and Eylon Yogev. “White-Box vs. Black-
Box Complexity of Search Problems: Ramsey and Graph Property Test-
ing.” In: Journal of the ACM 66.5 (2019), 34:1–34:28. DOI: 10.1145/
3341106.

https://doi.org/10.4230/LIPIcs.ISAAC.2018.11
https://doi.org/10.48550/ARXIV.2205.03117
https://doi.org/10.48550/ARXIV.2205.03117
https://doi.org/10.48550/arXiv.2207.01523
https://doi.org/10.1016/j.ipl.2021.106119
https://doi.org/10.1016/j.ipl.2021.106119
https://doi.org/10.1016/j.jcss.2021.03.004
https://doi.org/10.1016/j.jcss.2015.08.001
https://doi.org/10.1016/j.jcss.2015.08.001
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0041-5553(80)90061-0
https://doi.org/10.1137/120874655
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.1145/3341106
https://doi.org/10.1145/3341106

150 Bibliography

[LCS16] Quang Duy Lã, Yong Huat Chew, and Boon-Hee Soong. Potential Game
Theory. Springer, Cham, 2016. ISBN: 9783319809038.

[Lev73] Leonid A. Levin. “Universal sequential search problems.” In: Problems
of Information Transmission 9.3 (1973), pp. 265–266.

[Lol+19] Phani Raj Lolakapuri, Umang Bhaskar, Ramasuri Narayanam, Gyana R.
Parija, and Pankaj S. Dayama. “Computational Aspects of Equilibria in
Discrete Preference Games.” In: Proceedings of the 28th International
Joint Conference on Artificial Intelligence, IJCAI. 2019, pp. 471–477.
DOI: 10.24963/ijcai.2019/67.

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. “A Faster Cutting
Plane Method and its Implications for Combinatorial and Convex Opti-
mization.” In: Proceeding of the IEEE 56th Annual Symposium on Foun-
dations of Computer Science, FOCS. IEEE Computer Society, 2015,
pp. 1049–1065. DOI: 10.1109/FOCS.2015.68.

[MP91] Nimrod Megiddo and Christos H. Papadimitriou. “On total functions,
existence theorems and computational complexity.” In: Theoretical Com-
puter Science 81.2 (1991), pp. 317–324. ISSN: 0304-3975. DOI: 10 .
1016/0304-3975(91)90200-L.

[MS21a] Serge Massar and Miklos Santha. “Characterising the intersection of
QMA and coQMA.” In: Quantum Information Processing 20.12 (2021),
p. 396. DOI: 10.1007/s11128-021-03326-3.

[MS21b] Serge Massar and Miklos Santha. “Total functions in QMA.” In: Quan-
tum Information Processing 20.1 (2021), p. 35. DOI: 10.1007/s11128-
020-02959-0.

[NJ50] John F Nash Jr. “Equilibrium points in n-person games.” In: Proceedings
of the national academy of sciences 36.1 (1950), pp. 48–49. DOI: 10.
1073/pnas.36.1.48.

[NV15] Thanh Nguyen and Rakesh Vohra. “Near Feasible Stable Matchings.”
In: Proceedings of the Sixteenth ACM Conference on Economics and
Computation, EC ’15, Portland, OR, USA, June 15-19, 2015. Ed. by
Tim Roughgarden, Michal Feldman, and Michael Schwarz. ACM, 2015,
pp. 41–42. DOI: 10.1145/2764468.2764471.

[OPR16] Abraham Othman, Christos Papadimitriou, and Aviad Rubinstein. “The
complexity of fairness through equilibrium.” In: ACM Transactions on
Economics and Computation (TEAC) 4.4 (2016), pp. 1–19. DOI: 10.
1145/2956583.

[Orl09] James B. Orlin. “A faster strongly polynomial time algorithm for sub-
modular function minimization.” In: Mathematical Programming 118.2
(2009), pp. 237–251. DOI: 10.1007/s10107-007-0189-2.

[Pap05] Christos H. Papadimitriou. “Computing correlated equilibria in multi-
player games.” In: Proceedings of the 37th Annual ACM Symposium on
Theory of Computing. ACM, 2005, pp. 49–56. DOI: 10.1145/1060590.
1060598.

https://doi.org/10.24963/ijcai.2019/67
https://doi.org/10.1109/FOCS.2015.68
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1007/s11128-021-03326-3
https://doi.org/10.1007/s11128-020-02959-0
https://doi.org/10.1007/s11128-020-02959-0
https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.1145/2764468.2764471
https://doi.org/10.1145/2956583
https://doi.org/10.1145/2956583
https://doi.org/10.1007/s10107-007-0189-2
https://doi.org/10.1145/1060590.1060598
https://doi.org/10.1145/1060590.1060598

Bibliography 151

[Pap07] Christos H Papadimitriou. “The complexity of finding Nash equilibria.”
In: Algorithmic game theory 2 (2007), p. 30.

[Pap94a] Christos H. Papadimitriou. Computational complexity. Addison-Wesley,
1994. ISBN: 978-0-201-53082-7.

[Pap94b] Christos H. Papadimitriou. “On the Complexity of the Parity Argument
and Other Inefficient Proofs of Existence.” In: Journal of Computer and
System Sciences 48.3 (1994), pp. 498–532. DOI: 10 . 1016 / S0022 -
0000(05)80063-7.

[Pol95] Svatopluk Poljak. “Integer Linear Programs and Local Search for Max-
Cut.” In: SIAM Journal on Computing 24.4 (1995), pp. 822–839. DOI:
10.1137/S0097539793245350.

[Sca67] Herbert E Scarf. “The core of an N person game.” In: Econometrica:
Journal of the Econometric Society (1967), pp. 50–69. DOI: 10.2307/
1909383.

[Sha53] Lloyd S Shapley. “Stochastic games.” In: Proceedings of the national
academy of sciences 39.10 (1953), pp. 1095–1100. DOI: 10 . 1073 /
pnas.39.10.1095.

[Sip97] Michael Sipser. Introduction to the theory of computation. PWS Pub-
lishing Company, 1997. ISBN: 978-0-534-94728-6.

[Spe28] E. Sperner. “Neuer beweis für die invarianz der dimensionszahl und des
gebietes.” In: Abhandlungen aus dem Mathematischen Seminar der Uni-
versität Hamburg 6.1 (1928), pp. 265 –272. ISSN: 0025-5858. DOI: 10.
1007/BF02940617.

[SS04] Rahul Savani and Bernhard von Stengel. “Exponentially Many Steps for
Finding a Nash Equilibrium in a Bimatrix Game”. In: Proceedings of the
45th Symposium on Foundations of Computer Science. IEEE Computer
Society, 2004, pp. 258–267. DOI: 10.1109/FOCS.2004.28.

[SZZ18] Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. “PPP-
Completeness with Connections to Cryptography.” In: 59th IEEE An-
nual Symposium on Foundations of Computer Science, FOCS 2018. IEEE
Computer Society, 2018, pp. 148–158. DOI: 10.1109/FOCS.2018.
00023.

[Tar55] Alfred Tarski. “A lattice-theoretical fixpoint theorem and its applica-
tions.” In: Pacific journal of Mathematics 5.2 (1955), pp. 285–309. DOI:
10.2140/pjm.1955.5.285.

[Tsc10] Tobias Tscheuschner. “The local max-cut problem is PLS-complete even
on graphs with maximum degree five.” In: CoRR abs/1004.5329 (2010).
DOI: 10.48550/arXiv.1004.5329. arXiv: 1004.5329.

[Yan09] Mihalis Yannakakis. “Equilibria, fixed points, and complexity classes.”
In: Computer Science Review 3.2 (2009), pp. 71–85. DOI: 10.1016/j.
cosrev.2009.03.004.

https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1137/S0097539793245350
https://doi.org/10.2307/1909383
https://doi.org/10.2307/1909383
https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1007/BF02940617
https://doi.org/10.1007/BF02940617
https://doi.org/10.1109/FOCS.2004.28
https://doi.org/10.1109/FOCS.2018.00023
https://doi.org/10.1109/FOCS.2018.00023
https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.48550/arXiv.1004.5329
https://arxiv.org/abs/1004.5329
https://doi.org/10.1016/j.cosrev.2009.03.004
https://doi.org/10.1016/j.cosrev.2009.03.004

152 Bibliography

[ZF87] Stathis Zachos and Martin Furer. “Probabilistic quantifiers vs. distrustful
adversaries.” In: International Conference on Foundations of Software
Technology and Theoretical Computer Science. Springer. 1987, pp. 443–
455. DOI: 10.1007/3-540-18625-5_67.

https://doi.org/10.1007/3-540-18625-5_67

	Abstract
	Acknowledgements
	I Overview
	Introduction
	Total Search Problem in `3́9`42`"̇613A``45`47`"603ANP
	Outline of the Thesis and Main Contributions
	Oganization
	Main Contributions

	List of Papers

	Preliminaries
	Notation
	Standard Notation
	Metric Spaces
	Languages and Relations
	Implicit Graphs

	II Fundamental Theory of Computational Complexity
	Theory of Computation
	What is Computation?
	What is a Search Problem?
	Complexity Classes of Search Problems
	Class PLS
	Class PPAD
	Class PPA
	Class PPP
	Class PPADPLS
	Class EOPL
	Further Classes for Search Problems Outside of NP

	On the Complexity of Parity Argument with Potential
	Basics
	Our Contribution

	Preliminaries
	Normalization
	The Problem: EITHER SOLUTION(A, B)
	Class PPAPLS

	Multi Source Problems
	The Problem: kS-EoPL
	Higher Degree Problem: IMBALANCE with Potential
	Looking for Multiple Solutions

	The Hardness of Parity Argument with Potential
	The Problem: POTENTIAL LEAF
	The Problem: POTENTIAL ODD
	Variants of ODD with Potential

	Conclusions and Open Problems

	III Fixed Point Theory
	The Complexity of Fixed Point Computation
	Arithmetic Circuits
	Alternative Definition of PLS
	Complexity Class CLS

	Complexity of Computing a Fixed Point
	Brouwer's Fixed Point Theorem
	Banach's Fixed Point Theorem
	Caristi's Fixed Point Theorem
	Brøndsted's Fixed Point Theorem
	Tarski's Fixed Point Theorem

	On the Complexity of Strong Approximation
	Complexity Class FIXP
	Complexity Class BU

	On the Complexity of Caristi's Fixed Points
	Computing a Caristi's Fixed Point
	Discrete Domain
	Continuous Domain

	Computing a Brøndested's Fixed Point
	Comupting a Brøndested's Fixed Point is in `3́9`42`"̇613A``45`47`"603APPAD
	Computing a Brøndested's Fixed Point is `3́9`42`"̇613A``45`47`"603ACLS-hard

	Conclusions

	IV Algorithmic Game Theory
	Nash Equilibrium Computation
	Essence of Game Theory
	On the Complexity of Equilibrium Computation
	Succinct Representation of Games
	Other Computational Aspects of Game Theory

	Uniform Nash on Planar Bimatrix Games
	Basics
	Our Results

	Preliminaries
	Bimatrix Games and Uniform Nash Equilibria
	Problem Formulation

	On the Complexity of Planar Bimatrix Games
	Proof of Lemma 8.7
	Proof of Lemma 8.8
	Proof of Lemma 8.9

	Types of Non-Zero Elements
	Conclusion

	Discrete Preference Games and Network Coordination Games
	Basics
	Our Results

	Preliminaries
	Discrete Preference Games on the Discrete Metric
	Discrete Preference Games on Grid Graphs
	Cartesian Products of Discrete Preference Games
	Polynomial-time Solvability of Discrete Preference Games
	Properties of Discrete Preference Games on Product Metric Spaces

	Relationship between Discrete Preference Games and Network Coordination Games
	Reduction from Discrete Preference Games to Network Coordination Games
	Reduction from Network Coordination Games to Discrete Preference Games

	Conclusion

	On the Complexity of Stable Fractional Hypergraph Matching
	Basics
	Problem Formulation and Main Results
	PPAD-completeness
	Proof of Lemma 10.7

	Polynomial-Time Computability
	Approximate
	Conclusions

	V Conclusions and Open Problems
	Open Problems
	Bibliography

