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Chapter 1

Introduction

Historically, the term fairing refers to a structure whose function is to improve
the aerodynamics of a particular object. For example, a fairing helps reduce the
drag of an airplane or boat. In this regard, to fair a given design is part of the
process of streamlining. This concept was then translated to industrial design
and architecture, and its meaning has widened to include smooth shapes that help
structures fit more naturally in their environment. In this particular work, we
investigate two families of curves that are closely related to the industry and to
natural processes: The Euler’s elasticae and the log-aesthetic curves.

The problem of the elastica is that of finding the shape that a thin strip of elastic
material acquired when it is bent. The most complete mathematical solution is
attributed to Euler, hence the term Euler’s elastica. It is interesting to know that
the elastica serves as a mathematical model of the mechanical spline, used for
shipbuilding and similar applications, and it directly inspired the modern theory
of mathematical splines [28], which are widely used in computer-aided design
and computer graphics. From a mathematical point of view, the Euler’s elastica
(or elastic curve) is a class of planar curves characterized as the solutions to
the variational problem of minimizing the elastic energy under certain boundary
conditions. It has been regarded as one of the most important classes of planar
curves because it is endowed with rich mathematical structure: exact solutions,
integrability, geometry of elliptic curves, and so on [31, 43]. D. Brander et al. [6]
have proposed an algorithm to fair (to approximate) a given planar curve segment
to an Euler’s elastica, motivated mainly by the development of the robotic hot-
blade cutting technology. In this thesis, motivated by the problem, in architecture,
to characterize the profile keylines of Japanese handmade pantiles, where the curve
data is obtained in the form of discrete point data, we aim to construct a fairing
method of discrete planar curves by utilizing the integrable discrete analogue of
the Euler’s elastica proposed by A. I. Bobenko and Y. B. Suris [5].
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The log-aesthetic curves (LAC) constitute a class of planar spirals that includes
the logarithmic spiral, the Nielsen’s spiral, the Cornu spiral, and the circle involute,
among others. This family is defined to best represent the properties observed by
T. Harada et al. [15], who set up an experiment to analyze aesthetically pleasing
curves from the viewpoint of the observer. Their main result may be described
as follows: the curves that car designers regard as aesthetically pleasing have the
common property that the frequency histogram of the radius of curvature follows
a piece-wise linear relation in a log-log scale. An analytic formulation of the LAC
was provided in [36, 50], which promoted theoretical and practical studies of LAC
towards their use in computer-aided geometric design as indicated by Levien and
Séquin [29]. Several works have been written regarding the implementation and
construction of LAC with fixed boundary conditions, see for example [10, 11, 51].
Furthermore, extensions to surfaces have also been considered with an emphasis
on providing practical tools for industrial design, see [35]. From a different point
of view, LAC have been characterized as curves that are obtained via a variational
principle in the framework of similarity geometry, moreover, they can also be seen
as invariant curves under the integrable flow on plane curves which is governed
by the Burgers equation [23]. This fact was also shown to be useful at providing
an integrable discretization of the LAC that preserves the underlying geometric
structure [20]. All these previous works contributed to constructing methods that
generate a desirable shape with given fixed conditions.

The goal of this thesis is to provide tools, founded on geometric properties,
to be used in reverse engineering applications. In Chapter 2, we review the basic
concepts of planar curves and discrete planar curves. In Chapter 3, we focus our
attention to the Euler’s elastica. We review, in Sections 3.1 and 3.2, the properties
and results of the continuous and discrete Euler’s elastica, respectively. In each
instance, we show that all the discrete objects possess analogue properties than
their continuous counterpart. In Section 3.3, we construct a method to fair a given
discrete planar curve by using the integrable discrete analogue of Euler’s elastica.
In Chapter 4, in analogy to the previous chapter, we focus our attention to the LAC.
In Section 4.1, we review some basic definitions and present a result showing that
a general LAC segment can be uniquely identified by seven parameters. We use
this result in Section 4.2 to construct an algorithmic method, assuming discrete
input data, to approximate a given planar curve. Finally, in Chapter 5 we use our
findings in two concrete applications. In Section 5.1, we characterize the profile
keylines of Japanese handmade pantiles by the integrable discrete analogue of the
Euler’s elasticae and in Section 5.2 we characterize some simple profile lines of a
car’s roof by the LAC.
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Chapter 2

Preliminaries

2.1 Planar curves
Let us start with some basic definitions of planar curves, in part to introduce the
notation that we are going to use in this thesis. We use the convention that a point
𝑃 ∈ R2 is expressed as a column vector, i.e.,

𝑃 =

(
𝑥
𝑦

)
= t(𝑥, 𝑦) ∈ R2. (2.1)

We denote by R𝜑 to the counterclockwise rotation matrix of angle 𝜑,

R𝜑 =

(
cos 𝜑 − sin 𝜑
sin 𝜑 cos 𝜑

)
. (2.2)

Regarding the functions, the first, second, etc., derivative of any given function 𝑓

will be denoted as 𝑓 ′(𝑡), 𝑓 ′′(𝑡), etc., respectively. For the curves, we focus our
attention only on a particular kind of planar curves, those which are regular and
smooth, so we simply refer to them as planar curves. The notion of smoothness
that we consider is that all orders of derivatives exist and are continuous. A more
comprehensive introduction can be found in any introductory book on differential
geometry of curves and surfaces (see, for example, [1, 7]).

Definition 2.1 — A (regular and smooth) planar curve is a function 𝛾 : [𝑡0, 𝑡1] →
R2 defined over the interval [𝑡0, 𝑡1] ⊂ R such that

(1) there exists a smooth function Γ : 𝐼 → R2 defined over an open set 𝐼 ⊃
[𝑡0, 𝑡1] which extends the function 𝛾, and

(2) its first derivative satisfies that ‖𝛾′(𝑡)‖ > 0, 𝑡 ∈ [𝑡0, 𝑡1].
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Let 𝛾 : [𝑡0, 𝑡1] → R2 be a planar curve. Then, the arc length function is
defined as

𝑠(𝑡) :=
∫ 𝑡

𝑡0

‖𝛾′(𝑡)‖ d𝑡, 𝑡 ∈ [𝑡0, 𝑡1], (2.3)

and the total length of 𝛾 as

𝐿 ≡ 𝐿 [𝛾] :=
∫ 𝑡1

𝑡0

‖𝛾′(𝑡)‖ d𝑡. (2.4)

The tangent and normal vectors are defined as

𝑇 (𝑡) :=
𝛾′(𝑡)
‖𝛾′(𝑡)‖ , 𝑡 ∈ [𝑡0, 𝑡1], (2.5)

and
𝑁 (𝑡) := R𝜋/2 𝑇 (𝑡), 𝑡 ∈ [𝑡0, 𝑡1], (2.6)

respectively, where R𝜋/2 is a 𝜋/2 counterclockwise rotation matrix. Furthermore,
the tangent and normal vectors, being unit vectors, are parameterized by the
turning angle function 𝜓 : [𝑡0, 𝑡1] → R, such that

𝑇 (𝑡) =
(
cos𝜓(𝑡)
sin𝜓(𝑡)

)
, 𝑁 (𝑡) =

(− sin𝜓(𝑡)
cos𝜓(𝑡)

)
. (2.7)

The (signed) curvature ^ : [𝑡0, 𝑡1] → R is defined in such a way that it satisfies

𝑇 ′(𝑡) = 𝑠′(𝑡)^(𝑡)𝑁 (𝑡), 𝑡 ∈ [𝑡0, 𝑡1] . (2.8)

The (signed) radius of curvature 𝜌(𝑡) at a point 𝑡 ∈ [𝑡0, 𝑡1] is defined as the radius
of the osculating circle of 𝛾(𝑡) at the point 𝑡, i.e.,

𝜌(𝑡) :=
1

𝜓′(𝑡) 𝑠
′(𝑡). (2.9)

At each point 𝛾(𝑡), the orthonormal basis {𝑇 (𝑡), 𝑁 (𝑡)} of R2 helps describe the
local properties of the curve. This basis is called the Frenet frame and it is
identified with elements of the special orthogonal group by

Φ(𝑡) := [𝑇 (𝑡), 𝑁 (𝑡)] ∈ SO(2), 𝑡 ∈ [𝑡0, 𝑡1] . (2.10)

Finally, from (2.6) and (2.8), it can be seen that the equation of motion of the
Frenet frame, which moves along the curve, satisfies that

Φ′(𝑡) = Φ(𝑡)𝐿 (𝑡), 𝐿(𝑡) =
(

0 −𝑠′(𝑡)^(𝑡)
𝑠′(𝑡)^(𝑡) 0

)
, (2.11)

which is called the Frenet formula.
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Remark 2.2 — Consider the tangent vector parameterized by the turning angle, as
in (2.7). Then, it is easy to see that

𝑇 ′(𝑡) = 𝜓′(𝑡)𝑁 (𝑡). (2.12)

Thus, by comparing (2.12) with (2.8), we obtain an expression for the curvature in
terms of the turning angle, as

^(𝑡) = 1
𝑠′(𝑡)𝜓

′(𝑡), (2.13)

which provides a simple relationship between the radius of curvature and the
curvature,

𝜌(𝑡) = 1
^(𝑡) . (2.14)

Note that the arc length function (2.3) of a (regular) curve 𝛾(𝑡), 𝑡 ∈ [𝑡0, 𝑡1], is
a smooth function with nowhere vanishing first derivative; hence, it is a strictly
monotonic smooth bijection with its image 𝑠( [𝑡0, 𝑡1]) = [0, 𝐿] ⊂ R. With this in
mind, we can always find a reparameterization �̄�(𝑠) = (𝛾 ◦ 𝑠−1) (𝑠), 𝑠 ∈ [0, 𝐿],
such that the parameter 𝑠 represents the partial length of the curve. This param-
eter is called the arc length parameter and, when there is no confusion with its
corresponding function, will be denoted as 𝑠, as well.

Definition 2.3 — A curve 𝛾 : [𝑠0, 𝑠1] → R2 is parameterized by arc length if and
only if ‖𝛾′(𝑠)‖ = 1 for all 𝑠 ∈ [𝑠0, 𝑠1].
Remark 2.4 — Note that the total length of an arc length parameterized curve
𝛾(𝑠), 𝑠 ∈ [𝑠0, 𝑠1], is 𝐿 = 𝑠1 − 𝑠0, the tangent vector is 𝑇 (𝑠) = 𝛾′(𝑠), the curvature
satisfies 𝑇 ′(𝑠) = ^(𝑠)𝑁 (𝑠), and can be computed as ^(𝑠) = 𝜓′(𝑠).

Theorem 2.5 (Fundamental Theorem of Planar Curves) — Given a function
^ : [𝑠0, 𝑠1] → R, there exists a curve 𝛾 : [𝑠0, 𝑠1] → R2 parameterized by arc
length which has ^ as its curvature function. Furthermore, this curve is uniquely
determined up to rigid transformations of the plane.

Proof. From the expression ^(𝑠) = 𝜓′(𝑠), for the curvature of an arc length
parameterized curve, we find that

𝜓𝑖 (𝑠) =
∫ 𝑠

𝑠0

^(𝑠) d𝑠 + 𝜓𝑖, 𝑠 ∈ [𝑠0, 𝑠1] (2.15)
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Figure 2.1: Representation of a planar curve and its relation to the Frenet frame,
the turning angle, and the radius of curvature.

for some 𝜓𝑖 ∈ R. Then, from 𝑇 (𝑠) = 𝛾′(𝑠) we obtain

𝛾𝑖 (𝑠) :=
∫ 𝑠

𝑠0

(
cos𝜓𝑖 (𝑠)
sin𝜓𝑖 (𝑠)

)
d𝑠 +

(
𝑥𝑖
𝑦𝑖

)
, 𝑠 ∈ [𝑠0, 𝑠1], (2.16)

for some t(𝑥𝑖, 𝑦𝑖) ∈ R2. By construction, 𝛾𝑖 is an arc length parameterized curve
with curvature ^. Moreover, (2.16) is the general solution for such curves. For
the second part, assume 𝛾1 and 𝛾2 are two arc length parameterized curves with
curvature ^, described by (2.16) with constants {𝜓1, 𝑥1, 𝑦1} and {𝜓2, 𝑥2, 𝑦2}, re-
spectively. Then, it is easy to see that

𝛾2 =

(
cos (𝜓2 − 𝜓1) − sin (𝜓2 − 𝜓1)
sin (𝜓2 − 𝜓1) cos (𝜓2 − 𝜓1)

) (
𝛾1 −

(
𝑥1
𝑦1

))
+

(
𝑥2
𝑦2

)
, (2.17)

which shows that 𝛾1 and 𝛾2 differ only by rigid transformations of the plane. �

Corollary 2.6 — Given a function 𝜓 : [𝑠0, 𝑠1] → R, there exists an arc length
parameterized curve 𝛾 : [𝑠0, 𝑠1] → R2 which has 𝜓 as its turning angle function.
Furthermore, this curve is uniquely determined up to translations of the plane.

The last two results are telling us that any curve can be completely characterized
in terms of its curvature or turning angle function, disregarding any rigid motion
of the plane. The equations of the curvature or the turning angle in terms of the
arc length parameter are consider to be intrinsic equations, in the sense that they
represent qualities of the curve that do not change from system to system. In
the literature, equation relating the curvature and arc length are known as Cesáro
equations, and equations relating the turning angle and the arc length are known
as Whewell equations [49].
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Example 2.7 (Euler’s elastica) — Consider 𝜓(𝑠), 𝑠 ∈ [𝑠0, 𝑠1], such that

𝜓′′ + ` sin𝜓 = 0, (2.18)

for some ` > 0. This differential equation can be solved by exploiting the
properties of the Jacobi elliptic functions. It is easy to check that

sin
𝜓(𝑠)

2
= sn

(
𝑘−1√`𝑠; 𝑘

)
, cos

𝜓(𝑠)
2

= cn
(
𝑘−1√`𝑠; 𝑘

)
, (2.19)

for some 𝑘 > 0, is an implicit solution of (2.18). In particular, we use the following
three properties for the functions sn(𝑢; 𝑘), cn(𝑢; 𝑘), and dn(𝑢; 𝑘), of modulus 𝑘 ,

(sn(𝑢; 𝑘))2 + (cn(𝑢; 𝑘))2 = 1, (2.20)
d

d𝑢
sn(𝑢; 𝑘) = cn(𝑢; 𝑘) dn(𝑢; 𝑘), (2.21)

d
d𝑢

dn(𝑢; 𝑘) = −𝑘2 sn(𝑢; 𝑘) cn(𝑢; 𝑘). (2.22)

From (2.20) and (2.21) we get

𝜓′(𝑠) = 2𝑘−1√` dn
(
𝑘−1√`𝑠; 𝑘

)
. (2.23)

Then, we take the derivative of (2.23) and use (2.22) to prove that (2.18) holds.
Furthermore, (2.23) gives the expression for the curvature, which is computed as
^(𝑠) = 𝜓′(𝑠).

2.2 Discrete planar curves
For discrete systems, there is no general framework accepted as canonical. In
fact, depending on the uses, different definitions coexist and are welcome. This is
more noticeable for derived quantities, for example the discrete tangent, discrete
curvature, discrete Frenet frame, and so on. In our case, we follow the notion of
discrete curves provided in [3, 18].

Definition 2.8 — A discrete (regular) planar curve of size 𝑁 ∈ N is a map
𝛾 : [0, 𝑁 − 1] ∩ N → R2 defined over the integers, identified by 𝛾(𝑛) ≡ 𝛾𝑛, that
satisfies

det
(
𝛾𝑛+1 − 𝛾𝑛, 𝛾𝑛 − 𝛾𝑛−1

)
≠ 0, 𝑛 = 1, . . . , 𝑁 − 2, (2.24)

which means that there are no three consecutive points in the plane that are
collinear. Moreover, if

‖𝛾𝑛+1 − 𝛾𝑛‖ = ‖𝛾𝑛 − 𝛾𝑛−1‖, 𝑛 = 1, . . . , 𝑁 − 2, (2.25)
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the discrete planar curve is referred to as parameterized by arc length, with step
size ℎ, defined by

ℎ := ‖𝛾1 − 𝛾0‖ ∈ R − {0}. (2.26)

Remark 2.9 — In what follows, and for the remaining of this thesis, unless explicitly
mentioned, let us assume that all the discrete planar curves are parameterized by
arc length. Furthermore, when it is understood from the context, we omit the
expression discrete before the name of each discrete object.

Let 𝛾𝑛, 𝑛 = 0, . . . , 𝑁 − 1, be a discrete planar curve with step size ℎ. The
(discrete) total length is defined as

𝐿 :=
𝑁−2∑︁
𝑛=0

‖𝛾𝑛+1 − 𝛾𝑛‖ = (𝑁 − 1)ℎ. (2.27)

The (discrete) tangent and (discrete) normal vectors are defined as

𝑇𝑛 :=
𝛾𝑛+1 − 𝛾𝑛
‖𝛾𝑛+1 − 𝛾𝑛‖ , 𝑛 = 0, . . . , 𝑁 − 2, (2.28)

and
𝑁𝑛 := R𝜋/2 𝑇𝑛, 𝑛 = 0, . . . , 𝑁 − 2, (2.29)

respectively, where R𝜋/2 is the 𝜋/2 counterclockwise rotation matrix. Likewise
the smooth case, we parameterize the tangent and normal vectors by the (discrete)
turning angle 𝜓𝑛, such that

𝑇𝑛 =

(
cos𝜓𝑛
sin𝜓𝑛

)
, 𝑁𝑛 =

(− sin𝜓𝑛
cos𝜓𝑛

)
, 𝑛 = 0, . . . , 𝑁 − 2. (2.30)

Furthermore, we define the deflection angle by

𝐾𝑛 := 𝜓𝑛 − 𝜓𝑛−1 ∈ (−𝜋, 𝜋), 𝑛 = 1, . . . , 𝑁 − 2. (2.31)

Analogously to (2.9) in the smooth case, the (discrete) radius of curvature is
defined as the radius of the circle osculating at the middle points of two consecutive
segments of the discrete curve, i.e.,

𝜌𝑛 :=
ℎ

2 tan
(
𝐾𝑛

2

) . (2.32)

Moreover, along the same lines as the smooth case, the (discrete) curvature is
defined as the inverse of the radius of curvature,

^𝑛 :=
2
ℎ

tan
(
𝐾𝑛
2

)
. (2.33)

8



The (discrete) Frenet frame is defined by

Φ𝑛 = [𝑇𝑛, 𝑁𝑛] ∈ SO(2). (2.34)

Note that the Frenet frame can be described as Φ𝑛 = R𝜓𝑛 . Then, by definition of
𝐾𝑛, we have the identity R𝜓𝑛 = R𝜓𝑛−1 R𝐾𝑛 , which is written as

Φ𝑛 = Φ𝑛−1

(
cos𝐾𝑛 − sin𝐾𝑛
sin𝐾𝑛 cos𝐾𝑛

)
, 𝑛 = 1, . . . , 𝑁 − 1. (2.35)

In the literature, (2.35) is usually presented as the definition of the discrete Frenet
formula. However, in this thesis, we use an equivalent equation that is closely
related to its continuous analogue. From (2.33) and (2.35), it can be seen that the
Frenet frame satisfies that

Φ𝑛 −Φ𝑛−1
ℎ

=
Φ𝑛 +Φ𝑛−1

2

(
0 ^𝑛
^𝑛 0

)
, 𝑛 = 1, . . . , 𝑁 − 2. (2.36)

which we defined as the (discrete) Frenet formula, by analogy with (2.11) in the
smooth case.
Remark 2.10 — Let us see that (2.32) and (2.33) are well-defined. By definition
of discrete regular curve, (2.24) in terms of the turning angle is written as

det
((

cos𝜓𝑛+1
sin𝜓𝑛+1

)
,

(
cos𝜓𝑛
sin𝜓𝑛

))
≠ 0, (2.37)

which is equivalent to sin𝐾𝑛 ≠ 0. Hence, 𝐾𝑛 ≠ 0,±𝜋, . . . , and so on, implying
that tan

(
𝐾𝑛

2

)
is well-defined and non-zero.

Theorem 2.11 — Given a map ^𝑛 ∈ R, 𝑛 = 1, . . . , 𝑁 − 2, for every ℎ > 0, there
exists a discrete planar curve 𝛾𝑛 ∈ R2, 𝑛 = 0, . . . , 𝑁 − 1, with step size ℎ, such
that ^𝑛 is its discrete curvature. Furthermore, for each ℎ, the curve is uniquely
determined up to rigid transformations of the plane.

Proof. We proceed by explicitly constructing the curve. Firstly, for each ℎ > 0, we
compute 𝐾𝑛 = 2 arctan(ℎ^𝑛/2), 𝑛 = 1, . . . , 𝑁 − 2. Then, from (2.31), the turning
angle is obtained recursively,{

𝜓𝑛 = 𝜓𝑛−1 + 𝐾𝑛, 𝑛 = 1, . . . , 𝑁 − 2,
𝜓0 = 𝜓init,

(2.38)
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Figure 2.2: Representation of a
discrete planar curve with step
size ℎ and its relation to the
Frenet frame and the turning an-
gle.
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Figure 2.3: Representation of a
discrete planar curve with step
size ℎ and its relation to the de-
flection angle and the radius of
curvature.

for some 𝜓init ∈ R. Finally, from (2.28) and (2.30), we obtain the discrete curve,{
𝛾𝑛 = 𝛾𝑛−1 + ℎ t(cos𝜓𝑛−1, sin𝜓𝑛−1), 𝑛 = 1, . . . , 𝑁 − 1,
𝛾0 =

t(
𝑥init, 𝑦init

)
,

(2.39)

for some constants 𝑥init, 𝑦init ∈ R. For the second part, by the previous con-
struction, it is clear that two given discrete curve, with step size ℎ, must have
the same deflection angle. Hence, they differ only in the choice of the constants
{𝑥init, 𝑦init, 𝜓init}, which are associated to rigid transformations of the plane. �

Corollary 2.12 — Consider a map 𝜓𝑛 ∈ R, 𝑛 = 0, . . . , 𝑁 − 2, satisfying that

𝜓𝑛 ≠ 𝜓𝑛−1, 𝑛 = 1, . . . , 𝑁 − 2. (2.40)

Then, for every ℎ > 0 there exists a discrete planar curve 𝛾𝑛 ∈ R2, 𝑛 = 0, . . . , 𝑁−1,
with step size ℎ, such that 𝜓𝑛 is its turning angle. Furthermore, for each ℎ, the
curve is uniquely determined up to translations of the plane.

Corollary 2.13 — Given a map 𝐾𝑛 ∈ R, 𝑛 = 1, . . . , 𝑁 − 2, there exists a discrete
planar curve 𝛾𝑛 ∈ R2, 𝑛 = 0, . . . , 𝑁−1 such that 𝐾𝑛 is its deflection. Furthermore,
the curve is uniquely determined up to rigid transformations of the plane and scale
transformations.

2.2.1 Continuum limit of discrete objects
The discrete objects defined in this thesis depend on the step size ℎ, which is used
to recover their respective continuous counterpart when the limit of ℎ going to
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zero is taken, denoted as ℎ → 0. In a general setting, we proceed as follows: For a
given discrete object 𝑓𝑛, which depends on ℎ, we assume that there exists a smooth
function 𝑓 that extends 𝑓𝑛, for every ℎ > 0, such that

𝑓 (𝑛ℎ) = 𝑓𝑛. (2.41)

Then, we investigate different properties of 𝑓𝑛 from 𝑓 and its Taylor expansions at
ℎ = 0. We will frequently use the following expressions:

𝑓𝑛 = 𝑓 (𝑠), (2.42)

𝑓𝑛−1 = 𝑓 (𝑠 − ℎ) = 𝑓 (𝑠) − ℎ 𝑓 ′(𝑠) + 1
2
ℎ2 𝑓 ′′(𝑠) + O(ℎ3), (2.43)

𝑓𝑛+1 = 𝑓 (𝑠 + ℎ) = 𝑓 (𝑠) + ℎ 𝑓 ′(𝑠) + 1
2
ℎ2 𝑓 ′′(𝑠) + O(ℎ3), (2.44)

and so on, where 𝑠 := 𝑛ℎ. When it is clear by the context, we denote the smooth
function simply as 𝑓 , instead of 𝑓 . In some circumstances, special attention
should be paid and we possibly need to scale appropriately the discrete object or
its parameters in order to obtain a well-defined limit. For example, as ℎ → 0 we
have that

𝛾𝑛+1 − 𝛾𝑛 = ℎ𝛾′(𝑠) + O(ℎ2) −−−→
ℎ→0

0, (2.45)

however
1
ℎ
(𝛾𝑛+1 − 𝛾𝑛) −−−→

ℎ→0
𝛾′(𝑠). (2.46)

As the last part of this chapter, let us see some relations between the smooth and
discrete objects defined in Section 2.1 and Section 2.2, respectively. We defined
a discrete curve to satisfy that ‖𝛾𝑛+1 − 𝛾𝑛‖ = ℎ, then its continuum limit gives an
arc length parameterized curve,

‖𝛾𝑛+1 − 𝛾𝑛‖ = ℎ −−−→
ℎ→0

‖𝛾′(𝑠)‖ = 1. (2.47)

Furthermore, for the tangent vector we have that

𝑇𝑛 =
𝛾𝑛+1 − 𝛾𝑛
‖𝛾𝑛+1 − 𝛾𝑛‖ −−−→

ℎ→0

𝛾′(𝑠)
‖𝛾′(𝑠)‖ = 𝛾′(𝑠) = 𝑇 (𝑠). (2.48)

Finally, for the discrete curvature we can see that

^𝑛 =
2
ℎ

tan
(
𝜓𝑛 − 𝜓𝑛−1

2

)
−−−→
ℎ→0

𝜓′(𝑠) = ^(𝑠), (2.49)

where we have used that the underlying smooth curve is parameterized by arc
length. In conclusion, we note that Definition 2.8 provides a discrete curve that
is in correspondence to an arc length parameterized curve in the limit ℎ → 0,
and the quantities defined in the discrete framework correspond to the equivalent
quantities in the continuous framework, for arc length parameterized curves.
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Chapter 3

Fairing to Euler’s elasticae

This chapter addresses solely the Euler’s elastica. In Section 3.1 and Section 3.2
we review and present definitions of the smooth and discrete case, collecting the
information on variational formulations, exact solutions, and continuum limits. In
Section 3.3, we present a detailed account of the fairing method from a general
discrete planar curve to the discrete Euler’s elastica. Explicit expressions are given
in terms of the Jacobi elliptic functions, and for various formulas the readers may
refer to [27, 38], for example. Part of the content of this chapter is included in
[13].

3.1 Euler’s elastica
Historically, the term elastica comes from the shape that thin rods of a flexible
material acquire when they are bent [28]. From a mathematical point of view, the
Euler’s elastica (or simply referred to as the elastica) is defined as a critical point
of the elastic energy [26]

𝐸 [𝛾] =
∫ 𝐿

0
(^(𝑠))2 d𝑠, (3.1)

with respect to variations with fixed endpoints and fixed tangent vectors at the
endpoints, under the condition of preserving the total length. The Euler-Lagrange
equation yields the following differential equations for the curvature and the turning
angle:

Proposition 3.1 — The curvature ^ of an Euler’s elastica satisfies

^′′ + 1
2
^3 − _^ = 0, (3.2)
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for some constant _ ∈ R. Moreover, up to a rigid rotation of the plane, the turning
angle 𝜓 satisfies

𝜓′′ + ` sin𝜓 = 0, (3.3)

for some constant ` > 0.

Proof. Derivation of (3.2) is given in various literature, such as [3, 5, 43]. We
show a concise derivation using the variation of the tangent vector. Consider the
functional

𝑆[𝑇] =
∫ 𝐿

0
(〈𝑇 ′, 𝑇 ′〉 + 𝑐〈𝑇,𝑇〉 + 〈𝑎, 𝑇〉) d𝑠, (3.4)

which is obtained from (3.1) after incorporating the constraints{
‖𝑇 ′‖ = const.,
𝛾(𝐿) − 𝛾(0) = const.,

(3.5)

with 𝑐 = 𝑐(𝑠) ∈ R and 𝑎 ∈ R2 being the corresponding Lagrange multipliers. The
variation of 𝑆 is calculated by using the Frenet formula (2.11) as

𝛿𝑆 =

∫ 𝐿

0
(2〈𝑇 ′, 𝛿𝑇 ′〉 + 2𝑐(𝑠)〈𝑇, 𝛿𝑇〉 + 〈𝑎, 𝛿𝑇〉) d𝑠

= 2〈𝑇 ′, 𝛿𝑇〉
���𝐿
0
+ 2

∫ 𝐿

0

〈
(^2 + 𝑐(𝑠))𝑇 − ^′𝑁 + 𝑎

2
, 𝛿𝑇

〉
d𝑠. (3.6)

The first term is the boundary term, which vanishes due to the boundary condition,
and the second term gives the Euler-Lagrange equation

(^2 + 𝑐) 𝑇 − ^′𝑁 + 𝑎
2
= 0. (3.7)

Then, the scalar product of (3.7) with 𝑁 gives

− ^′ + 1
2
〈𝑎, 𝑁〉 = 0. (3.8)

On the one hand, the result of multiplying (3.8) by ^′ is integrated to obtain

^2

2
− _ =

1
2
〈𝑎, 𝑇〉, (3.9)

where _ ∈ R is a constant of integration. On the other hand, differentiating (3.8)
and using that 𝑁′ = −^𝑇 gives

^′′ = −^
2
〈𝑎, 𝑇〉. (3.10)
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Hence, eliminating 〈𝑎, 𝑇〉 from equations (3.9) and (3.10) yields

^′′ + ^
( ^2

2
− _

)
= 0, (3.11)

which is nothing but (3.2). For the second part, we consider the functional

𝑆[𝜓] =
∫ 𝐿

0

(
(𝜓′)2 +

〈
𝑎,

(
cos𝜓
sin𝜓

)〉)
d𝑠, (3.12)

which is obtained from (3.1) after incorporating the constraint 𝛾(𝐿)−𝛾(0) = const.,
written in terms of the turning angle, with 𝑎 ∈ R2 being the corresponding
Lagrange multiplier. Note that〈

𝑎,

(
cos𝜓
sin𝜓

)〉
= 2` cos(𝜓 − 𝜙), (3.13)

for some constants ` > 0 and 𝜙 ∈ R, thus

𝑆[𝜓] =
∫ 𝐿

0

(
(𝜓′)2 + 2` cos(𝜓 − 𝜙)

)
d𝑠. (3.14)

The Euler-Lagrange equation is readily obtained as

𝜓′′ + ` sin(𝜓 − 𝜙) = 0, (3.15)

which is nothing but (3.3) after applying a rigid rotation of the plane that shifts 𝜓
to 𝜓 + 𝜙. �

Remark 3.2 — Both defining equations for the Euler’s elastica are equivalent, in
the sense that (3.2) is derived from (3.3) as follows: The result of multiplying (3.3)
by 𝜓′ is integrated to obtain

1
2
(𝜓′)2 = ` cos𝜓 + _, (3.16)

where _ ∈ R is a constant of integration. Then, differentiating (3.3) and using
(3.16), to eliminate the term with cos𝜓, yields

𝜓′′′ =
(
−1

2
(𝜓′)2 + _

)
𝜓′, (3.17)

which is (3.2) written in terms of 𝜓′ = ^.
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Remark 3.3 — Equations (3.2) and (3.3) can be seen as travelling-wave reductions
of the (focusing) modified KdV equation,

𝜕^

𝜕𝑡
+ 3

2
^2 𝜕^

𝜕𝑠
+ 𝜕

3^

𝜕𝑠3
= 0, (3.18)

and the sine-Gordon equation,

𝜕2𝜓

𝜕𝑠𝜕𝑦
= sin𝜓, (3.19)

respectively, where the former describes the integrable deformation of planar
curves [12, 21].

It is known that the differential equations (3.2) and (3.3) can be solved in terms
of the Jacobi elliptic functions. In the literature, the solutions are often constructed
from their first integral,

(^′)2 + ^
4

2
− _^2 = 𝑐, (3.20)

1
2
(𝜓′)2 − ` cos𝜓 = _, (3.21)

respectively, where 𝑐 ∈ R is a constant. We present the solutions and verify them
by using formulas for the differential equations of the Jacobi elliptic functions.
We note that, depending on the boundary or initial conditions, there are two
families of solutions: Euler’s elasticae with inflection points and Euler’s elasticae
without inflection points. When consider necessary, we refer to them as WI (with
inflection) and NI (no inflection), respectively. Some examples of different Euler’s
elasticae are shown in Figure 3.1.

Proposition 3.4 — The curvature and the turning angle of an Euler’s elastica can
be expressed in terms of the Jacobi elliptic functions as follows:
[WI]

^(𝑠) = 2𝑘√` cn
(√
`(𝑠 + 𝑠0); 𝑘

)
, (3.22)

sin
𝜓(𝑠)

2
= 𝑘 sn

(√
`(𝑠 + 𝑠0); 𝑘

)
, ` =

_

2𝑘2 − 1
, (3.23)

[NI]

^(𝑠) = 2𝑘−1√` dn
(
𝑘−1√`(𝑠 + 𝑠0); 𝑘

)
, (3.24)

sin
𝜓(𝑠)

2
= sn

(
𝑘−1√`(𝑠 + 𝑠0); 𝑘

)
, ` =

_

2𝑘−2 − 1
, (3.25)

for the elastica with or without inflection points, respectively, where ` > 0, 𝑠0 ∈ R,
and 𝑘 ∈ (0, 1) are constants.
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Remark 3.5 — The Jacobi elliptic functions admit an analytic continuation to
modules 𝑘 ≥ 1, see, for example, [27, 38]. In particular, the following formulas
hold:

sn(𝑢; 𝑘) = 𝑘−1 sn(𝑘𝑢; 𝑘−1), (3.26)
cn(𝑢; 𝑘) = dn(𝑘𝑢; 𝑘−1), (3.27)
dn(𝑢; 𝑘) = cn(𝑘𝑢; 𝑘−1). (3.28)

Taking this into account, the cases [WI] and [NI] are regarded as one, and the
range of 𝑘 is extended to [0,∞].
proof of Proposition 3.4. To verify that (3.22) and (3.24) are solutions of (3.2),
for [WI] and [NI], we simply use the formula for the second derivative of the cn
and dn functions [38],

d2

d𝑢2 cn(𝑢; 𝑘) = (2𝑘2 − 1) cn(𝑢; 𝑘) − 2𝑘2(cn(𝑢; 𝑘)3, (3.29)

d2

d𝑢2 dn(𝑢; 𝑘) = (2 − 𝑘2) dn(𝑢; 𝑘) − 2(dn(𝑢; 𝑘))3, (3.30)

respectively. To verify that (3.23) and (3.23) are solutions of (3.3), we proceed as
shown in Example 2.7, where case [NI] was depicted. Case [WI] is verified in a
similar manner, using the identities

(dn(𝑢; 𝑘))2 + 𝑘2(sn(𝑢; 𝑘))2 = 1, (3.31)
d

d𝑢
sn(𝑢; 𝑘) = cn(𝑢; 𝑘) dn(𝑢; 𝑘), (3.32)

d
d𝑢

cn(𝑢; 𝑘) = − sn(𝑢; 𝑘) dn(𝑢; 𝑘). (3.33)

�

3.2 Integrable discrete Euler’s elastica
The discrete Euler’s elastica [3, 5, 19, 44] is defined as a discrete planar curve
with step size ℎ that is a critical point of the functional

𝐸𝑑 =
𝑁−2∑︁
𝑛=1

2
ℎ

log
(
1 + ℎ

2

4
^2
𝑛

)
= −

𝑁−2∑︁
𝑛=1

2
ℎ

log
(
1 + 〈𝑇𝑛−1, 𝑇𝑛〉) + const., (3.34)
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(𝑘 = 0.01) (𝑘 = 0.99)

(𝑘 = 0.3) (𝑘 = 1)

(𝑘 = 0.7) (𝑘 = 1.01)

(𝑘 = 0.85) (𝑘 = 1.25)

(𝑘 = 0.9089...) (𝑘 = 3)

Figure 3.1: Typical examples of Euler’s elasticae. The case 𝑘 = 0.9089... is
the solution of 2𝐸 (𝑘) = 𝐾 (𝑘), where 𝐾 (𝑘) and 𝐸 (𝑘) are the complete elliptical
integrals of first and second kind, respectively. The equation 2𝐸 (𝑘) = 𝐾 (𝑘) is
related with the periodicity of the Euler’s elastica curve.

with respect to variations with fixed endpoints and end edges. The equivalence
between both expressions come from the relation

1 + ℎ
2

4
^2
𝑛 =

2
1 + 〈𝑇𝑛, 𝑇𝑛−1〉 , (3.35)

which can be seen as a trigonometric identity after replacing all the quantities in
terms of the turning angle 𝜓𝑛. As mentioned in [3], the functional 𝐸𝑑 can be
regarded as a discrete analogue of the elastic energy (3.1). This can be seen as
follows: On the one hand, it is known that the bending moment 𝑀 of a thin rod
is proportional to the curvature [26], 𝑀 ∝ ^. On the other hand, assume that the
curvature of two consecutive segments of length ℎ is given by ^(Y) = 2 tan(Y/2)/ℎ,
where Y is the deflection between both segments. Then, we find that the total work
exerted at each inner vertex is∫ 𝐾𝑛

0
𝑀 (Y) dY ∝ 2

ℎ
log

(
1 + ℎ

2

4
(^(𝐾𝑛))2

)
. (3.36)

Proposition 3.6 — The curvature of a discrete Euler’s elastica satisfies

^𝑛+1 + ^𝑛−1 =
𝛼^𝑛

1 + ℎ2

4 ^
2
𝑛

, (3.37)
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for some constant 𝛼 ∈ R.

Proof. Following [3, 5], consider the functional

𝑆𝑑 =
𝑁−2∑︁
𝑛=1

(
2
ℎ

log(1 + 〈𝑇𝑛−1, 𝑇𝑛〉) + 𝑐𝑛−1〈𝑇𝑛−1, 𝑇𝑛−1〉 + ℎ〈𝑎, 𝑇𝑛−1〉
)

(3.38)

which is obtained from (3.34) after incorporating the constraints{
‖𝛾𝑛 − 𝛾𝑛−1‖ = const.,
𝛾𝑁 − 𝛾0 = const.,

(3.39)

with 𝑐𝑛 ∈ R and 𝑎 ∈ R2 being the corresponding Lagrange multipliers. Define
𝐿 (𝑇𝑛−1, 𝑇𝑛) such that 𝑆𝑑 =

∑𝑁−2
𝑛=1 𝐿 (𝑇𝑛−1, 𝑇𝑛). Then, it is easy to see that the

discrete Euler-Lagrange equation,

𝜕

𝜕𝑇𝑛
𝐿 (𝑇𝑛−1, 𝑇𝑛) + 𝜕

𝜕𝑇𝑛
𝐿 (𝑇𝑛, 𝑇𝑛+1) = 0, (3.40)

obtained from variations with fixed endpoints (𝛿𝑇0 = 0 and 𝛿𝑇𝑁−2 = 0), gives

2
ℎ

𝑇𝑛−1
1 + 〈𝑇𝑛−1, 𝑇𝑛〉 +

2
ℎ

𝑇𝑛+1
1 + 〈𝑇𝑛, 𝑇𝑛+1〉 + 2𝑐𝑛𝑇𝑛 + ℎ𝑎 = 0. (3.41)

From the discrete Frenet formula (2.36) written in terms of 𝑇𝑛 and 𝑁𝑛,

𝑇𝑛 − 𝑇𝑛−1
ℎ

= ^𝑛
𝑁𝑛 + 𝑁𝑛−1

2
, (3.42)

𝑁𝑛 − 𝑁𝑛−1
ℎ

= −^𝑛𝑇𝑛 + 𝑇𝑛−1
2

, (3.43)

we obtain

2
ℎ

〈𝑇𝑛, 𝑁𝑛〉
1 + 〈𝑇𝑛, 𝑇𝑛+1〉 = ^𝑛+1, (3.44)

2
ℎ

〈𝑇𝑛−1, 𝑁𝑛〉
1 + 〈𝑇𝑛−1, 𝑇𝑛〉 = −^𝑛. (3.45)

Then, using (3.44) and (3.45) in (3.41) gives

^𝑛 − ^𝑛+1 = ℎ〈𝑎, 𝑁𝑛〉. (3.46)

On the other hand, from (3.42) and (3.46) we have

〈𝑎, 𝑇𝑛〉 − 〈𝑎, 𝑇𝑛−1〉 = −1
2
^𝑛^𝑛+1 + 1

2
^𝑛−1^𝑛, (3.47)
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which implies that there exists a constant _ ∈ R such that

〈𝑎, 𝑇𝑛〉 = −1
2
^𝑛^𝑛+1 + _. (3.48)

Finally, from (3.42), (3.46) and (3.48), we obtain

(^𝑛+1 + ^𝑛−1)
(
1 + ℎ

2

4
^2
𝑛

)
= (2 + ℎ2_)^𝑛, (3.49)

that is exactly (3.37) with 𝛼 = 2 + ℎ2_. �

By using techniques similar to the ones shown in [45], we obtained explicit
solutions to (3.37) from its discrete first integral,

^2
𝑛+1 + ^2

𝑛 − 𝛼^𝑛+1^𝑛 + ℎ
2

4
^2
𝑛+1^

2
𝑛 = 𝐶, (3.50)

where 𝐶 ∈ R is a constant. Here, we avoid the very long computation required
to obtain the explicit solutions. We simply present and verify them by using
the addition formulas for the Jacobi elliptic functions. Note that the following
solutions are in correspondence to (3.22) and (3.24) in the continuum limit. Figure
3.2 illustrates some typical examples of both smooth and discrete elasticae.

Proposition 3.7 — The curvature of a discrete Euler’s elastica can be expressed
in terms of the Jacobi elliptic functions as follows:

[WI]

^𝑛 =
2𝑘 sn(𝑧; 𝑘)
ℎ dn(𝑧; 𝑘) cn(𝑧𝑛 + 𝑞; 𝑘), 𝛼 =

2 cn(𝑧; 𝑘)
(dn(𝑧; 𝑘))2 , (3.51)

[NI]

^𝑛 =
2 sn(𝑘−1𝑧; 𝑘)
ℎ cn(𝑘−1𝑧; 𝑘) dn(𝑘−1(𝑧𝑛 + 𝑞); 𝑘), 𝛼 =

2 dn(𝑘−1𝑧; 𝑘)
(cn(𝑘−1𝑧; 𝑘))2 . (3.52)

where 𝑧, 𝑞 ∈ R and 𝑘 > 0 are constants.

Proof. By direct computation, using the addition formulas for the dn and cn
functions [38], we verify that (3.51) and (3.52) are solutions of (3.37). For [WI],
we use the formula

cn(𝑢 + 𝑣) + cn(𝑢 − 𝑣) =
2 cn 𝑣
dn2 𝑣

cn 𝑢

1 + 𝑘2 sn2 𝑣
dn2 𝑣

cn2 𝑢
, (3.53)
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where for simplicity in the notation we omitted the module 𝑘 , as in cn 𝑢 ≡ cn(𝑢; 𝑘)
and similarly for the other quantities. Then, by choosing{

𝑢 = 𝑧𝑛 + 𝑞,
𝑣 = 𝑧,

(3.54)

we satisfy (3.37), with

^𝑛 = 𝐴 cn(𝑢; 𝑘), 𝐴 =
2𝑘 sn 𝑣
ℎ dn 𝑣

, 𝛼 =
2 cn 𝑣
dn2 𝑣

, (3.55)

which proves (3.51). For [NI] we proceed analogously, from the formula

dn(𝑢 + 𝑣) + dn(𝑢 − 𝑣) =
2 dn 𝑣
cn2 𝑣

dn 𝑢

1 + sn2 𝑣
cn2 𝑣

dn2 𝑢
, (3.56)

and by choosing {
𝑢 = 𝑘−1(𝑧𝑛 + 𝑞),
𝑣 = 𝑘−1𝑧.

(3.57)

This yields (3.37), with

^𝑛 = 𝐴 dn(𝑢; 𝑘), 𝐴 =
2 sn 𝑣
ℎ cn 𝑣

, 𝛼 =
2 dn 𝑣
cn2 𝑣

, (3.58)

which proves (3.52). �

Remark 3.8 — By comparing (3.22) and (3.51), we can fix the values of 𝑧 and
𝑞 such that there exists a constant Ω satisfying that ^𝑛 = ^(Ω𝑛). Indeed, the
following constraints must be satisfied:

𝑧 = sn−1©«
√︄

`ℎ2

`ℎ2𝑘2 + 1
; 𝑘ª®¬, 𝑞 =

√
`𝑠0, Ω =

𝑧√
`
. (3.59)

There is also a similar relationship between equations (3.24) and (3.52). The
relation ^𝑛 = ^(Ω𝑛) implies that the discrete curvature ^𝑛 is an exact discretization
[30] of the smooth curvature ^(𝑠).
Remark 3.9 (Continuum limit) — By putting 𝛼 = 2+ℎ2_ and 𝑛ℎ = 𝑠, the difference
equation (3.37) yields the differential equation (3.2) in the continuum limit ℎ → 0.
On the level of solutions, (3.51) and (3.52), with the parameterization of 𝑧 and 𝑞
given by {

𝑧 = ℎ
√
`,

𝑞 = 𝑠0
√
`,

(3.60)

are consistent in the continuum limit with (3.22) and (3.24), respectively.
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(𝑘 = 0.7)

(closed curve∗)

(𝑘 = 0.99)

(𝑘 = 1.25)

(𝑘 = 3)

Figure 3.2: Typical examples of smooth and discrete elasticae. The closed curve
case has different values of 𝑘 for each value of 𝑧, reaching 𝑘 = 0.9089... in the
continuum limit.

Remark 3.10 — Equation (3.37) is also known as the McMillan map, which is
a special case of the Quispel-Roberts-Thompson (QRT) map solved by elliptic
functions [40]. It can also be regarded as an autonomous version of a discrete
Painlevé II equation [24, 25, 41]
Remark 3.11 — It is known that position vectors of both smooth and discrete
elasticae admit explicit formulas in terms of the elliptic theta functions [33, 37].
However, those results are not used in this thesis.

3.2.1 Discrete Euler’s elastica in terms of a potential function
In this section, we present a different approach to the discrete Euler’s elastica
[44], and we show that is, indeed, compatible with the previous definition. Firstly,
following [21], we define the potential angle \𝑛 such that

𝜓𝑛 =
\𝑛+1 + \𝑛

2
. (3.61)
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Note that the potential angle has one degree of freedom for a given discrete curve.
In this context, the discrete curvature is written as

^𝑛 =
2
ℎ

tan
(
\𝑛+1 − \𝑛−1

4

)
. (3.62)

Following [44], we present the variational formulation for the discrete Euler’s
elastica, but we use the potential angle instead of the turning angle as it was
originally written. This change makes this theory compatible with the discrete
isoperimetric and equidistant deformation of discrete planar curves, and is crucial
to prove the equivalence with the previous construction.

Proposition 3.12 — Suppose that \𝑛 ∈ R, 𝑛 = 0, . . . , 𝑁 − 1, is a critical point of
the functional

𝑆𝑑 =
𝑁−2∑︁
𝑛=0

cos
(
\𝑛+1 − \𝑛

2

)
− 𝜖 cos

(
\𝑛+1 + \𝑛

2

)
, (3.63)

for some constant 𝜖 > 0, with respect to variations of \𝑛 with fixed endpoints.
Then, the following holds:

(1) The Euler-Lagrange equation is

sin
(
\𝑛+1 − 2\𝑛 + \𝑛−1

4

)
+ 𝜖 sin

(
\𝑛+1 + 2\𝑛 + \𝑛−1

4

)
= 0. (3.64)

(2) There exists a conserved quantity

cos
(
\𝑛+1 − \𝑛

2

)
+ 𝜖 cos

(
\𝑛+1 + \𝑛

2

)
= Λ, (3.65)

where Λ ∈ R is a constant.

(3) For ℎ > 0, the discrete curvature ^𝑛 obtained from (3.62) satisfies (3.37)
with 𝛼 = 2(1 − 𝜖2)/Λ2. Therefore, the discrete curve obtained from this
construction is a discrete Euler’s elastica.

Proof. For (1), let 𝐿 (\𝑛, \𝑛+1) be such that 𝑆𝑑 =
∑𝑁−2
𝑛=1 𝐿 (\𝑛, \𝑛+1). Then, the

Euler-Lagrange equation,

𝜕

𝜕\𝑛
𝐿 (\𝑛−1, \𝑛) + 𝜕

𝜕\𝑛
𝐿 (\𝑛, \𝑛+1) = 0, (3.66)
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is expressed as

0 = cos
(
\𝑛+1 − \𝑛−1

4

) [
sin

(
\𝑛+1 − 2\𝑛 + \𝑛−1

4

)
+ 𝜖 sin

(
\𝑛+1 + 2\𝑛 + \𝑛−1

4

)]
,

(3.67)
which gives (3.64). For (2), we multiply (3.64) by sin( \𝑛+1−\𝑛−1

4 ), use the product-
to-sum formula, and rearrange the terms to obtain

cos
(
\𝑛+1 − \𝑛

2

)
+𝜖 cos

(
\𝑛+1 + \𝑛

2

)
= cos

(
\𝑛 − \𝑛−1

2

)
+𝜖 cos

(
\𝑛 + \𝑛−1

2

)
, (3.68)

which implies (3.65). For (3), we introduce the quantity

𝜑𝑛 =
\𝑛+1 − \𝑛

2
, (3.69)

for simplicity in the notation. In this case, note that 𝐾𝑛 = 𝜓𝑛 − 𝜓𝑛−1 = 𝜑𝑛 + 𝜑𝑛−1,
thus (3.64) and (3.65) are rewritten as

sin
(𝜑𝑛 − 𝜑𝑛−1

2

)
= −𝜖 sin

(
𝜓𝑛 + 𝜓𝑛−1

2

)
, (3.70)

cos 𝜑𝑛 + 𝜖 cos𝜓𝑛 = Λ, (3.71)

respectively. From (3.70) and (3.71), we obtain

tan
𝐾𝑛−1

2
=

sin 𝜑𝑛−1 + 𝜖 sin𝜓𝑛−1
Λ

, (3.72)

tan
𝐾𝑛+1

2
=

sin 𝜑𝑛 − 𝜖 sin𝜓𝑛
Λ

. (3.73)

Then, we combine (3.72) and (3.73), and use the sum-to-product formula to obtain

Λ

(
tan

𝐾𝑛+1
2

+ tan
𝐾𝑛−1

2

)
=

2 sin
𝐾𝑛
2

[
cos

(𝜑𝑛 − 𝜑𝑛−1
2

)
− 𝜖 cos

(
𝜓𝑛 + 𝜓𝑛−1

2

)]
. (3.74)

On a separate note, consider

cos
(𝜑𝑛 − 𝜑𝑛−1

2

)
+ 𝜖 cos

(𝜓𝑛 + 𝜓𝑛−1
2

)
=

cos
𝐾𝑛
2
(cos 𝜑𝑛 + 𝜖 cos𝜓𝑛) + sin

𝐾𝑛
2
(sin 𝜑𝑛 + 𝜖 sin𝜓𝑛), (3.75)
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which is a trigonometric identity, that is expressed as

cos
(𝜑𝑛 − 𝜑𝑛−1

2

)
+ 𝜖 cos

(𝜓𝑛 + 𝜓𝑛−1
2

)
=

Λ

cos 𝐾𝑛

2
, (3.76)

by means of (3.71) and (3.72). From the square of (3.70), we have

cos2
(𝜑𝑛 − 𝜑𝑛−1

2

)
− 𝜖2 cos2

(𝜓𝑛 + 𝜓𝑛−1
2

)
= 1 − 𝜖2, (3.77)

which is rewritten as

cos
(𝜑𝑛 − 𝜑𝑛−1

2

)
− 𝜖 cos

(
𝜓𝑛 + 𝜓𝑛−1

2

)
=

1 − 𝜖2

Λ
cos

𝐾𝑛
2

(3.78)

by means of (3.76). Finally, from (3.74) and (3.78) we obtain

tan
𝐾𝑛+1

2
+ tan

𝐾𝑛−1
2

=
1 − 𝜖2

Λ2

2 tan 𝐾𝑛

2

1 + tan2 𝐾𝑛

2
. (3.79)

Hence, from the definition of discrete curvature, (3.79) is equivalent to equation
(3.37) with 𝛼 = 2(1 − 𝜖2)/Λ2. �

Remark 3.13 (Continuum limit) — Proposition 3.12 provides discrete analogues
for equations (3.3) and (3.16). In fact, by putting

Λ = 1 − ℎ2

4
_, 𝜖 =

ℎ2

4
`, 𝑠 = 𝑛ℎ, (3.80)

equations (3.64) and (3.65) yield equations (3.3) and (3.16) in the continuum limit
ℎ → 0.

In [44], an explicit solution of (3.64) in terms of the Jacobi elliptic functions
is derived by using the Hirota’s bilinear form [16]. We present that solution and a
verification by means of the addition formulas for the Jacobi elliptic functions.

Proposition 3.14 — The following functions satisfy (3.64):

[WI]

sin
\𝑛
2

= 𝑘 sn(𝑧𝑛 + 𝑞; 𝑘), cn(𝑧; 𝑘) = 1 − 𝜖
1 + 𝜖 , (3.81)

[NI]

sin
\𝑛
2

= sn(𝑘−1(𝑧𝑛 + 𝑞); 𝑘), dn(𝑘−1𝑧; 𝑘) = 1 − 𝜖
1 + 𝜖 , (3.82)

where 𝑧, 𝑞 ∈ R, and 𝑘 > 0 are constants.
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Proof. Let us see that these explicit equations satisfy (3.65), which can be expanded
as

(1 + 𝜖) cos
\𝑛+1

2
cos

\𝑛
2

+ (1 − 𝜖) sin
\𝑛+1

2
sin

\𝑛
2

= Λ. (3.83)

For [WI], consider {
𝑢 = 𝑧𝑛 + 𝑞,
𝑣 = 𝑧,

(3.84)

so that (3.83) is rewritten as

(1 + 𝜖) dn(𝑢 + 𝑣; 𝑘) dn(𝑢; 𝑘) + (1 − 𝜖)𝑘2 sn(𝑢 + 𝑣; 𝑘) sn(𝑢; 𝑘) = Λ. (3.85)

Then, by means of the addition formulas for the sn and dn functions, the later
expression becomes an identity if cn(𝑧; 𝑘) = (1− 𝜖)/(1 + 𝜖), and Λ is consistently
reduced to Λ = (1 + 𝜖) dn(𝑧; 𝑘). Analogously, for [NI] we consider{

𝑢 = 𝑘−1(𝑧𝑛 + 𝑞),
𝑣 = 𝑘−1𝑧,

(3.86)

so that (3.83) is rewritten as

(1 + 𝜖) cn(𝑢 + 𝑣; 𝑘) cn(𝑢; 𝑘) + (1 − 𝜖) sn(𝑢 + 𝑣; 𝑘) sn(𝑢; 𝑘) = Λ, (3.87)

which becomes an identity if dn(𝑘−1𝑧; 𝑘) = (1 − 𝜖)/(1 + 𝜖), and Λ is consistently
reduced to Λ = (1 + 𝜖) cn(𝑘−1𝑧; 𝑘). �

Remark 3.15 — Proposition 3.14, for the potential angle, and Proposition 3.7, for
the discrete curvature, are in correspondence one with the other in the following
sense.

[WI] — If the parameter 𝛼 in (3.37) is given by

𝛼 = 2
(1 − 𝜖2)

Λ2 = 2
cn(𝑧; 𝑘)
dn2(𝑧; 𝑘)

, (3.88)

then (3.81) is in correspondence to (3.51).

[NI] — If the parameter 𝛼 in (3.37) is given by

𝛼 = 2
(1 − 𝜖2)

Λ2 = 2
dn(𝑘−1𝑧; 𝑘)
cn2(𝑘−1𝑧; 𝑘) , (3.89)

then (3.82) is in correspondence to (3.52). Furthermore, these relationships are
verified by direct computation of the discrete curvature in terms of the potential
angle, given by (3.62), using the explicit expressions (3.81) and (3.82), respectively.
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Remark 3.16 (Continuum limit) — Continuum limits of equations (3.81) and (3.82)
to equations (3.23) and (3.25), respectively, are obtained by putting 𝜖 =

`
4 ℎ

2 and
taking the limit of ℎ → 0. This is consistent with Remark 3.9.
Remark 3.17 — Equation (3.64) can be seen as a reduction of two well-known
equations:

(1) The discrete sine-Gordon equation [4, 16, 22],

sin

(
\𝑚+1
𝑙+1 − \𝑚+1

𝑙 − \𝑚𝑙+1 + \𝑚𝑙
4

)
=
𝑎

𝑏
sin

(
\𝑚+1
𝑙+1 + \𝑚+1

𝑙 + \𝑚𝑙+1 + \𝑚𝑙
4

)
, (3.90)

where 𝑎, 𝑏 are lattice intervals. In fact, assuming that \ depends only on
𝑛 = 𝑙 + 𝑚, (3.90) is reduced to (3.64) with 𝜖 = − 𝑏

𝑎 .

(2) The discrete potential modified KdV equation [17],

tan
\𝑚+1
𝑙+1 − \𝑚𝑙

4
=
𝑏 + 𝑎
𝑏 − 𝑎 tan

\𝑚+1
𝑙 − \𝑚𝑙+1

4
, (3.91)

or equivalently

sin

(
\𝑚+1
𝑙+1 − \𝑚+1

𝑙 + \𝑚𝑙+1 − \𝑚𝑙
4

)
=
𝑎

𝑏
sin

(
\𝑚+1
𝑙+1 + \𝑚+1

𝑙 − \𝑚𝑙+1 − \𝑚𝑙
4

)
, (3.92)

which describes the isoperimetric and equidistant deformation of discrete
planar curves [21, 32]. Equation (3.92) is transformed into (3.90) by the
substitution \𝑚𝑙 ↦→ (−1)𝑚\𝑚𝑙 . In this sense, (3.64) can also be regarded as a
reduction of the discrete potential modified KdV equation.

3.3 Fairing of discrete planar curves
In this section, we provide an algorithmic way to approximate a given discrete
planar curve to a discrete elastica. Among the many possible discretizations for
the elastica, the advantages of using the one shown in this thesis can be described
as follows: The discrete objects are endowed with the same integrable structure
as in their smooth counterpart, i.e., they possess several conserved quantities, can
be obtained via a variational principle, and their explicit solutions are expressed
in terms of the Jacobi elliptic functions. Moreover, it is known that variational
integrators have controlled error in their solutions [9, 30, 39]. In particular, the
explicit expression for the discrete curvature ^𝑛 is an exact discretization of the
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smooth curvature ^(𝑠) as discussed in Remark 3.9, and the potential function \𝑛
has the same functional shape as the smooth turning angle 𝜓(𝑠). From these
observations, we expect this discretization to have good numerical properties.

Before describing the approximation method, we need the following expres-
sions and results. Firstly, we incorporate the freedom of rotation. We do this by
shifting the turning angle by a constant 𝜙 ∈ R, in all the expressions. In particular,
the difference equation for the potential angle (3.64) goes to

sin
(
\𝑛+1 − 2\𝑛 + \𝑛−1

4

)
+ `ℎ

2

4
sin

(
\𝑛+1 + 2\𝑛 + \𝑛−1

4
− 𝜙

)
= 0, (3.93)

where we put 𝜖 = `ℎ2/4, with ` > 0 a constant. Moreover, from Proposition 3.14,
the explicit solutions of (3.93) become

[WI]

sin
\𝑛 − 𝜙

2
= 𝑘 sn(𝑧𝑛 + 𝑞; 𝑘), cos

\𝑛 − 𝜙
2

= dn(𝑧𝑛 + 𝑞; 𝑘), (3.94)

[NI]

sin
\𝑛 − 𝜙

2
= sn(𝑘−1(𝑧𝑛 + 𝑞); 𝑘), cos

\𝑛 − 𝜙
2

= cn(𝑘−1(𝑧𝑛 + 𝑞); 𝑘), (3.95)

where 𝑘 > 0, 𝑞, 𝑧 ∈ R are constants.

General discrete Euler’s elastica segment
Given a potential function, a discrete Euler’s elastica is computed recursively by

ZΘ𝑛 = ZΘ𝑛−1 + ℎ
©«
cos

(
\𝑛+1−𝜙

2 + \𝑛−𝜙
2 − 𝜙

)
sin

(
\𝑛+1−𝜙

2 + \𝑛−𝜙
2 − 𝜙

) ª®¬, 𝑛 = 1, . . . , 𝑁 − 1,

ZΘ0 =

(
𝑥0
𝑦0

)
,

(3.96)

where we use introduce the notation ZΘ for the Euler’s elastica obtained from the
parameters

Θ := (𝑥0, 𝑦0, ℎ, 𝜙, 𝑧, 𝑞, 𝑘), (3.97)

where 𝑘 determines the shape of the elastica, 𝑞 the initial point, and 𝑧 is related
with the length and point aggregation of the curve segment. We conclude that
a general discrete elastica segment can be characterized by the seven parameters
(3.97).

27



Remark 3.18 — Note that if we expand the sine and cosine functions in (3.96) and
make use of (3.94), we obtain a recursive expression of ZΘ𝑛 in terms of the Jacobi
elliptic functions.

For the next section we need two extra results, and for them we introduce
the following quantities: the projection of the curve 𝛾𝑛 onto the line L𝜙 :=
{ t(sin 𝜙,− cos 𝜙)𝑡 | 𝑡 ∈ R},

𝑢𝑛 :=
〈(

sin 𝜙
− cos 𝜙

)
, 𝛾𝑛

〉
, (3.98)

and the turning angle of the curve measured from L𝜙, denoted as Ψ𝑛 := 𝜋
2 +𝜓𝑛−𝜙,

which satisfies that {
cosΨ𝑛 = − sin(𝜓𝑛 − 𝜙),
sinΨ𝑛 = cos(𝜓𝑛 − 𝜙).

(3.99)

Proposition 3.19 — The discrete curvature ^𝑛 is an affine function of the projection
𝑢𝑛, satisfying

^𝑛 =
`

Λ
𝑢𝑛 + 𝐴, (3.100)

where Λ ∈ R satisfies (3.65) and 𝐴 ∈ R is a constant.

Proof. In the context of the proof of Proposition 3.12, after incorporating 𝜙 and
putting 𝜖 = `ℎ2/4, from (3.72) and (3.73) we obtain

^𝑛+1 − ^𝑛
ℎ

= − `
Λ

sin(𝜓𝑛 − 𝜙). (3.101)

Then, noticing that 𝑢𝑛+1 − 𝑢𝑛 = ℎ
〈 t(sin 𝜙,− cos 𝜙), 𝑇𝑛

〉
, we have

𝑢𝑛+1 − 𝑢𝑛
ℎ

= − sin(𝜓𝑛 − 𝜙). (3.102)

Hence, by comparing equations (3.100) and (3.101), we conclude that there exists
a constant 𝐴 ∈ R such that, for all 𝑛,

^𝑛 =
`

Λ
𝑢𝑛 + 𝐴. (3.103)

�

Remark 3.20 — Note that, by putting `1 = ` cos 𝜙 and `2 = ` sin 𝜙, equation
(3.100) can be expressed as

^𝑛 =
1
Λ
(`2𝑥𝑛 − `1𝑦𝑛) + 𝐴, (3.104)

where 𝑥𝑛, 𝑦𝑛 ∈ R are the two components of 𝛾𝑛 = t(𝑥𝑛, 𝑦𝑛).
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Corollary 3.21 — It holds that

sinΨ𝑛 =
`

2Λ
𝑢𝑛+1𝑢𝑛 + 𝐴𝑢𝑛+1 + 𝑢𝑛

2
+ 𝐵, (3.105)

where 𝐵 ∈ R is a constant.

Proof. From the definition of 𝑢𝑛 and Ψ𝑛, (3.98) and (3.99), respectively, we obtain

𝑇𝑛 = R𝜙

(
sinΨ𝑛

−𝑢𝑛+1−𝑢𝑛
ℎ

)
, 𝑁𝑛 = R𝜙

( 𝑢𝑛+1−𝑢𝑛
ℎ

sinΨ𝑛

)
. (3.106)

Then, putting this into the discrete Frenet formula,

𝑇𝑛 − 𝑇𝑛−1
ℎ

= ^𝑛
𝑁𝑛 + 𝑁𝑛−1

2
, (3.107)

gives
sinΨ𝑛 − sinΨ𝑛−1 =

1
2

( `
Λ
𝑢𝑛 + 𝐴

)
(𝑢𝑛+1 − 𝑢𝑛−1), (3.108)

where we used (3.100). After expanding the right-hand side of the previous
expression and then adding ± 𝐴

2 𝑢𝑛, we conclude that there exists a constant 𝐵 ∈ R
such that, for all 𝑛,

sinΨ𝑛 =
`

2Λ
𝑢𝑛+1𝑢𝑛 + 𝐴𝑢𝑛+1 + 𝑢𝑛

2
+ 𝐵. (3.109)

�

3.3.1 Fairing process methodology
Given a general discrete curve segment 𝛾𝑛 ∈ R2 (𝑛 = 0, . . . , 𝑁 − 1), we look for a
discrete elastica ZΘ𝑛 ∈ R2 that is the closest to 𝛾𝑛 in a 𝐿2-distance sense. Namely,
we seek to find Θ∗ such that

Θ∗ = arg min
Θ∈𝑈

{
1
2

𝑁−1∑︁
𝑛=0

ZΘ𝑛 − 𝛾𝑛
2

}
, (3.110)

with the admissible set𝑈 given by

𝑈 =

{
(𝑥0, 𝑦0, ℎ, 𝜙, 𝑧, 𝑞, 𝑘) ∈ R7

���� (𝑥0, 𝑦0) ∈ R2, ℎ > 0, 𝜙 ∈ [0, 2𝜋),
𝑧, 𝑞 ∈ R and 𝑘 > 0

}
. (3.111)

The non-convex optimization problem is solved using the Interior Point Optimizer
(IPOPT) package, which for our purpose can be seen as a gradient descent-like
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method for nonlinear optimizations [47]. For its implementation we need two
objects: the gradient of the objective function,

L(Θ) :=
𝑁−1∑︁
𝑛=0

1
2
ZΘ𝑛 − 𝛾𝑛

2
, (3.112)

and an initial guess to start the optimization. The gradient of the objective function
is computed as follows: From (3.112), we have

𝜕

𝜕Θ𝑖
L(Θ) =

𝑁−1∑︁
𝑛=0

〈
ZΘ𝑛 − 𝛾𝑛, 𝜕

𝜕Θ𝑖
ZΘ𝑛

〉
, Θ𝑖 = 𝑥0, 𝑦0, ℎ, 𝜙, 𝑧, 𝑞, 𝑘, (3.113)

which is computed recursively from (3.96), using that

𝜕

𝜕Θ𝑖
ZΘ𝑛 =

𝜕

𝜕Θ𝑖
ZΘ𝑛−1 +


0, Θ𝑖 = 𝑥0, 𝑦0,

𝑇𝑛, Θ𝑖 = ℎ,

ℎ 𝜕
𝜕Θ𝑖
𝑇𝑛, otherwise,

(3.114)

with

𝜕

𝜕Θ𝑖
ZΘ0 =


t(1, 0), Θ𝑖 = 𝑥0,
t(0, 1), Θ𝑖 = 𝑦0,
t(0, 0), otherwise.

(3.115)

Next, from the properties of the trigonometric functions, we compute the gradient
of the tangent by

𝜕

𝜕Θ𝑖
𝑇𝑛 = 𝑁𝑛 ×

{
1, Θ𝑖 = 𝜙,

F (𝑖)
𝑛 , Θ𝑖 = 𝑧, 𝑞, 𝑘,

(3.116)

with

F (𝑖)
𝑛 =

1

cos
(
\𝑛+1−𝜙

2

) 𝜕

𝜕Θ𝑖
sin

(
\𝑛+1 − 𝜙

2

)
+ 1

cos
(
\𝑛−𝜙

2

) 𝜕

𝜕Θ𝑖
sin

(
\𝑛 − 𝜙

2

)
, (3.117)

or equivalently,

F (𝑖)
𝑛 = − 1

sin
(
\𝑛+1−𝜙

2

) 𝜕

𝜕Θ𝑖
cos

(
\𝑛+1 − 𝜙

2

)
− 1

sin
(
\𝑛−𝜙

2

) 𝜕

𝜕Θ𝑖
cos

(
\𝑛 − 𝜙

2

)
. (3.118)

Finally, we use (3.95), (3.94) and the derivatives of the Jacobi elliptic functions
with respect to their argument and module (cf. [27]) to obtain an explicit expression
of (3.116), and this completes all the calculations required to obtain (3.113).
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3.3.2 Initial guess
The IPOPT method needs a starting point Θ̄, which we refer as the initial guess. In
this section, we describe the algorithm that we use to obtain the initial guess, which
is a discrete analogue of the one provided in [6]. To estimate 𝜙, 𝑧, 𝑞, and 𝑘 we
use some results from the smooth elastica. We use the following approximations:
Using the parameterization (3.80) from Remark 3.13, equations (3.104) and (3.105)
are expanded in terms of √`ℎ to give

^𝑛 = `2𝑥𝑛 − `1𝑦𝑛 + 𝐴 + O(`ℎ2), (3.119)

sinΨ𝑛 =
1
2
`𝑢2

𝑛 + 𝐴𝑢𝑛 + 𝐵 + O(`ℎ2), (3.120)

respectively. For the discrete curvature, consider the following: Solutions (3.52)
and (3.51) can be written respectively as

[WI]

^𝑛 = ^max cn(𝑧𝑛 + 𝑞; 𝑘), ^max =
2
ℎ

𝑘 sn(𝑧; 𝑘)
dn(𝑧; 𝑘) , (3.121)

[NI]

^𝑛 = ^max dn(𝑘−1(𝑧𝑛 + 𝑞); 𝑘), ^max =
2
ℎ

sn(𝑘−1𝑧; 𝑘)
cn(𝑘−1𝑧; 𝑘) . (3.122)

From Remark 3.13 and Remark 3.15, we have 𝛼 = 2 + _ℎ2 + O(ℎ4), which is
compatible with the parameterization 𝑧 = √

`ℎ + O(ℎ2) (see Remark 3.9). Hence,
we obtain that ^max satisfies

[WI]
^max = 2𝑘√` + O(`ℎ2), (3.123)

[NI]
^max = 2𝑘−1√` + O(`ℎ2). (3.124)

For the parameter 𝑘 we use the following: From (3.120), we note that 𝑢𝑛 must be
bounded from above and below, with the upper bound 𝑢max being

𝑢max =
−𝐴 + Δ

`
+ O(ℎ2), Δ =

√︃
𝐴2 − 2`(𝐵 − 1). (3.125)

Noticing that 𝑢max occurs at the same instance than ^max, from (3.100) we get

^max = Δ + O(`ℎ2). (3.126)

Hence, from (3.123) we obtain
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[WI]
𝑘 =

Δ

2√` + O(√`ℎ2), (3.127)

[NI]

𝑘 =
2√`
Δ

+ O(√`ℎ2). (3.128)

Initial guess pseudo-algorithm

As the last part of this chapter, we present an algorithmic approach to obtain the
initial guess

Θ̄ =
(
𝑥0, �̄�0, ℎ̄, 𝜙, 𝑧, 𝑞, �̄�

)
, (3.129)

for a given a discrete curve 𝛾𝑛, 𝑛 = 0, . . . , 𝑁 − 1, with step size ℎ. Firstly, we
compute the following quantities. The turning angle,(

cos𝜓𝑛
sin𝜓𝑛

)
=
𝛾𝑛+1 − 𝛾𝑛

ℎ
, 𝑛 = 0, . . . , 𝑁 − 2, (3.130)

and the discrete curvature,

^𝑛 =
2
ℎ

tan
𝜓𝑛 − 𝜓𝑛−1

2
, 𝑛 = 1, . . . , 𝑁 − 2. (3.131)

v Parameter 𝝓 — We solve (3.119) in the least square sense,

( ¯̀1, ¯̀2, �̄�) = arg min
(`1,`2,𝐴)

{
1
2

𝑁−2∑︁
𝑛=1

(^𝑛 + `1𝑦𝑛 − `2𝑥𝑛 − 𝐴)2

}
. (3.132)

Then, define ¯̀ :=
√︃

¯̀2
1 + ¯̀2

2 and set 𝜙 such that

cos 𝜙 =
¯̀1
¯̀
, sin 𝜙 =

¯̀2
¯̀
. (3.133)

v Parameter 𝒌 — Using ¯̀ and �̄�, we solve (3.120) in the least square sense,

�̄� = arg min
𝐵

{
1
2

𝑁−2∑︁
𝑛=0

(
sinΨ𝑛 − 1

2
¯̀𝑢2
𝑛 − �̄�𝑢𝑛 − 𝐵

)2
}
. (3.134)

Then, from (3.127), if �̄� < �̄�2

2 ¯̀ − 1 we are in case of the Elastica with inflections,
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[WI]

�̄� = 2
(
�̄�2

¯̀
− 2(�̄� − 1)

)−1/2
, (3.135)

otherwise (�̄� ≥ �̄�2

2 ¯̀ − 1) we are in case without inflections,

[NI]

�̄� =
1
2

(
�̄�2

¯̀
− 2(�̄� − 1)

)1/2
. (3.136)

v Parameter 𝒒, 𝒛 — For simplicity, let us denote 𝑠𝑛 := 𝑧𝑛 + 𝑞. Define 𝑚 ∈ N
as the number of segments in which the function 𝑢𝑛 is monotone. We counted 𝑚
manually, although it could also be estimated by, for example,

[WI]

�̄� =

⌈
(𝑁 − 1)ℎ

√
¯̀

2𝐾 ( �̄�)

⌉
( + 1), (3.137)

[NI]

�̄� =

⌈
(𝑁 − 1)ℎ

√
¯̀

𝐾 ( �̄�)

⌉
( + 1), (3.138)

where 𝐾 is the complete elliptic integral of the first kind, and the term in brackets
(+1) is added only if both 𝑢0 and 𝑢𝑁−1 are simultaneously increasing or decreasing.
Then, we simply invert the Jacobi elliptic function at the endpoints 𝑛 = 0 and
𝑛 = 𝑁 − 1 to obtain 𝑞 and 𝑧, using that sn−1 = 𝐹 ◦ arcsin, cn−1 = 𝐹 ◦ arccos, where
𝐹 is the elliptic integral of the first kind. Concretely, from (3.121) and (3.123), we
have the following:

[WI]

cn(𝑧𝑛 + 𝑞; �̄�) = ¯̀𝑢𝑛 + �̄�
2�̄�

√
¯̀

≡ 𝑈𝑛. (3.139)

Hence,

– If 𝑢𝑛 is decreasing on the first segment:

𝑠0 = 𝐹 (arccos𝑈0; �̄�), (3.140)

and

𝑠𝑁−1 =

{
2(𝑚 − 1)𝐾 ( �̄�) + 𝐹 (arccos𝑈𝑁−1; �̄�), 𝑚 is odd,
2𝑚𝐾 ( �̄�) − 𝐹 (arccos𝑈𝑁−1; �̄�), 𝑚 is even.

(3.141)
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– If 𝑢𝑛 is increasing on the first segment:

𝑠0 = 4𝐾 ( �̄�) − 𝐹 (arccos𝑈0; �̄�), (3.142)

and

𝑠𝑁−1 =

{
2(𝑚 + 1)𝐾 ( �̄�) − 𝐹 (arccos𝑈𝑁−1; �̄�), 𝑚 is odd,
2𝑚𝐾 ( �̄�) + 𝐹 (arccos𝑈𝑁−1; �̄� , 𝑚 is even.

(3.143)

[NI]

dn( �̄�−1𝑠𝑛; �̄�) = ¯̀𝑢𝑛 + �̄�
2�̄�−1√ ¯̀

, (3.144)

which can be rewritten as

sn( �̄�−1𝑠𝑛; �̄�) = �̄�−1

√︄
1 −

(
¯̀𝑢𝑛 + �̄�
2�̄�−1√ ¯̀

)2

≡ 𝑈𝑛. (3.145)

Hence,

– If 𝑢𝑛 is decreasing on the first segment:

𝑠0 = �̄�𝐹 (arcsin𝑈0; �̄�), (3.146)

and

𝑠𝑁−1 =

{
(𝑚 − 1) �̄�𝐾 ( �̄�) + �̄�𝐹 (arcsin𝑈𝑁−1; �̄�), 𝑚 is odd,
𝑚�̄�𝐾 ( �̄�) − �̄�𝐹 (arcsin𝑈𝑁−1; �̄�), 𝑚 is even.

(3.147)

– If 𝑢𝑛 is increasing on the first segment:

𝑠0 = 2�̄�𝐾 ( �̄�) − �̄�𝐹 (arcsin𝑈0; �̄�), (3.148)

and

𝑠𝑁−1 =

{
(𝑚 + 1) �̄�𝐾 ( �̄�) − �̄�𝐹 (arcsin𝑈𝑁−1; �̄�), 𝑚 is odd,
𝑚�̄�𝐾 ( �̄�) + �̄�𝐹 (arcsin𝑈𝑁−1; �̄�), 𝑚 is even.

(3.149)

Finally, we set
𝑞 = 𝑠0, 𝑧 =

1
𝑁 − 1

(𝑠𝑁−1 − 𝑠0). (3.150)
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v Parameter 𝒙0, 𝒚0, 𝒉 — From the previous steps, using all the recovered pa-
rameters, we construct a discrete elastica segment that starts at the origin with
parameters Θ̌ = (0, 0, ℎ, 𝜙, 𝑧, 𝑞, �̄�). Then,(

𝑥0
�̄�0

)
= arg min

t(𝑥0,𝑦0)

{
1
2

𝑁−1∑︁
𝑛=0

(
𝛾𝑛 − Z Θ̌𝑛

)2
}
. (3.151)

For the step size, we just set ℎ̄ = ℎ.
Figure 3.3 illustrates typical examples of the fairing method, where we used

the above algorithm to obtain the initial guess.

Figure 3.3: Typical examples of the fairing of discrete planar curves to discrete
Euler’s elasticae. Black squares are the input curve, green triangles are the initial
guess, and red circles are the output elasticae.
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Chapter 4

Fairing to Log-aesthetic curves

This chapter addresses the Log-aesthetic curve. In Section 4.1, we present the basic
definitions and show a result that helps characterize the family of Log-aesthetic
curves via similarity transformations. In Section 4.2, in a similar manner than in
the previous chapter, we present an algorithmic approach to fair planar curves to
Log-aesthetic curves. Part of the content of this chapter is included in [14].

4.1 Log-aesthetic curve
In [15], T. Harada et al. presented a quantitative and qualitative study of planar
curves sampled from the keylines of a car and suggested that, for aesthetically
pleasing curves, the frequency histogram of the radius of curvature follows a
piecewise linear relation in a log-log scale. In [36, 50], by considering an analytic
formulation of the work by T. Harada et al., it is shown that such curves satisfy

log
(

d𝑠
d𝑅

)
= 𝛼𝑅 − log 𝐴, (4.1)

for some 𝛼 ∈ R and 𝐴 > 0, where 𝑅 = log 𝜌. These curves will later be coined
as log-aesthetic curves (or simply referred to as LAC), and (4.1) is usually given
as the defining equation. In this thesis, we consider the following, equivalent,
definition:

Definition 4.1 (Log-aesthetic curve) — An arc length parameterized curve 𝛾(𝑠)
with a strictly monotonic radius of curvature is called a log-aesthetic curve (LAC)
if its curvature satisfies

^^′′ − (𝛼 + 1) (^′)2
= 0, (4.2)

for some constant 𝛼 ∈ R.
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Remark 4.2 — Assuming that functions are well-behaved, we have d𝑠
d𝑅 = 𝜌/𝜌′,

then (4.1) is rewritten as
𝜌′𝜌(𝛼−1) = 𝐴, (4.3)

and by taking the derivative of (4.3), we obtain

𝜌𝜌′′ + (𝛼 − 1) (𝜌′)2 = 0, (4.4)

which is rewritten in terms of ^ = 𝜌−1 to give (4.2).
Let us see that the parameter 𝛼 of a given LAC is invariant under the simi-

larity transformations and reflections. Firstly, note that because the curvature of
a planar curve is invariant under the Euclidean transformations, we only check
the invariance under scale transformations and the reflections over the diagonal
{(𝑥, 𝑥) ∈ R2 |𝑥 ∈ R}. For scale transformations, consider the arc length parame-
terized LAC 𝛾(𝑠) satisfying (4.2), for some 𝛼 ∈ R, and define �̃�(𝑠) := 𝑆𝛾(𝑠/𝑆),
where 𝑆 > 0. Then ˜̂(𝑠), the curvature of �̃�(𝑠), is given by ˜̂(𝑠) = 𝑆−1^(𝑠/𝑆) and
it is easy to see that it satisfies (4.2). For the reflections over the diagonal, note
that interchanging the 𝑥− and 𝑦−component of the curve is equivalent to changing
the sign of the curvature, and (4.2) is invariant under that change.

The fundamental theorem of planar curves states that an arc length param-
eterized planar curve is uniquely determined by its curvature up to Euclidean
transformations. In addition, the curvature of an LAC determined by (4.2) has
two arbitrary parameters. In view of this, we introduce the basic LAC by fixing
this freedom and show that one can recover a general LAC by applying similarity
transformations and shifting the arc length parameter.

Definition 4.3 (Basic LAC) — Let b𝛼 (𝑠) be an LAC defined over an open interval
𝐼 ⊂ R, such that {0} ∈ 𝐼, and satisfying

^′(𝑠) = −(^(𝑠)) (𝛼+1) < 0, ∀𝑠 ∈ 𝐼,
^(0) = 1,
𝜓(0) = 0,
b𝛼 (0) = 0.

(4.5)

We call b𝛼 (𝑠) a basic LAC.

Let us see a more explicit expression for the basic LAC and its related quantities.
In what follows, we use the sub-index b𝛼, as for example ^b𝛼 , to denote those
quantities associated with their respective basic LAC. Taking the initial condition
into consideration, the explicit form of the curvature is given by

^b𝛼 (𝑠) =
{

exp(−𝑠), 𝛼 = 0,
(1 + 𝛼𝑠)−1/𝛼, 𝛼 ≠ 0.

(4.6)
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Then, the turning angle is obtained from the curvature by (𝜓b𝛼)′ = ^b𝛼 ,

𝜓b𝛼 (𝑠) =


1 − exp(−𝑠), 𝛼 = 0,
log(𝑠 + 1), 𝛼 = 1,
(1+𝛼𝑠) 𝛼−1

𝛼 −1
𝛼−1 , 𝛼 ≠ 0, 1.

(4.7)

Although it is not used in this thesis, we note that the position vector can be
expressed in terms of the incomplete gamma function, see for example [51]. For
simplicity we consider the case in which 1 + 𝛼𝑠 > 0. In this case, the maximal
interval 𝐼𝛼 ⊂ R on which the basic LAC can be defined is

𝐼𝛼 =


(−∞,−1/𝛼), 𝛼 < 0,
(−∞,∞), 𝛼 = 0,
(−1/𝛼,∞), 𝛼 > 0,

(4.8)

and we assume that all basic LAC are defined over 𝐼𝛼. Finally, note that the image
of ^b𝛼 is ^b𝛼 [𝐼𝛼] = (0,∞).
Proposition 4.4 — Any LAC with 𝛼 ≠ 1 and positive and decreasing curvature
can be expressed as a basic LAC after applying similarity transformations and
shifting the arc length parameter. In particular, if 𝛾(𝑠), 𝑠 ∈ [0, 𝐿], is an LAC of
length 𝐿, there exists a unique 𝛾0 ∈ R2, 𝜙 ∈ [0, 2𝜋), 𝑆 ∈ R\{0}, and 𝑠0 ∈ R, such
that

𝛾(𝑠) = 𝛾0 + 𝑆 R𝜙 b
𝛼 (𝑠/𝑆 + 𝑠0), 𝑠 ∈ [0, 𝐿], (4.9)

where b𝛼 (𝑠) is a basic LAC of length 𝐿/𝑆.

Proof. For a given LAC 𝛾(𝑠), 𝑠 ∈ [0, 𝐿] with 𝛼 ≠ 1 and positive and decreasing
curvature, we know that its curvature satisfies (4.2), which can be integrated once
to obtain

^′(𝑠) = −𝐴(^(𝑠)) (𝛼+1) , (4.10)

for some 𝐴 > 0. Next, consider the curve �̄�(𝑠) := 𝑆−1𝛾(𝑠𝑆), 𝑠 ∈ [0, 𝐿/𝑆], and set
𝑆 = 𝐴1/(𝛼−1) . Note that the curvature of �̄� satisfies{

¯̂′(𝑠) = −( ¯̂(𝑠)) (𝛼+1) ,
¯̂(0) = 𝐴1/(𝛼−1)^(0), (4.11)

which can be integrated to obtain

¯̂(𝑠) =


exp(−(𝑠 − log ¯̂(0))), 𝛼 = 0,[
1 + 𝛼

(
𝑠 + ( ¯̂(0))−𝛼−1

𝛼

)]−1/𝛼
, 𝛼 ≠ 0.

(4.12)
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By comparing ¯̂ with ^b𝛼 in (4.6), there exists a unique 𝑠0 ∈ R such that ¯̂(𝑠) =
^b𝛼 (𝑠 + 𝑠0). From the fundamental theorem of planar curves, it follows that the
curves �̄� and b𝛼 are congruent up to rigid transformations, i.e.

�̄�(𝑠) = �̄�0 + R𝜙 b
𝛼 (𝑠 + 𝑠0), 𝑠 ∈ [0, 𝐿/𝑆], (4.13)

for some �̄�0 ∈ R2 and 𝜙 ∈ [0, 2𝜋). Finally, we use that 𝛾(𝑠) = 𝑆�̄�(𝑠/𝑆) to obtain
(4.9) with 𝛾0 := 𝑆�̄�0. �

Remark 4.5 — In the proof of Proposition 4.4, the scale transformation is used
to change the value of 𝐴, in (4.10), without changing the value of 𝛼. However,
in the case of 𝛼 = 1 this technique cannot be exploited. Because, the case of
𝛼 = 1 corresponds to the logarithmic spiral, which is a self-similar curve. In
particular, the value of 𝐴 for a given logarithmic spiral is invariant under scale
transformations, thus the technique used in Proposition 4.4 cannot be used to
recover the entire family of LAC with 𝛼 = 1.
Remark 4.6 — Let 𝑋 be the reflection of R2 defined by the map (𝑥, 𝑦) ↦→ (𝑦, 𝑥).
If 𝛾(𝑠), 𝑠 ∈ [0, 𝐿], is an LAC, then also are

𝛾 (1) (𝑠) := 𝛾(𝐿 − 𝑠),
𝛾 (2) (𝑠) := 𝑋𝛾(𝑠),
𝛾 (3) (𝑠) := 𝑋𝛾(𝐿 − 𝑠).

(4.14)

Moreover, their respective curvatures satisfy
^ (1) (𝑠) = −^(𝐿 − 𝑠),
^ (2) (𝑠) = −^(𝑠),
^ (3) (𝑠) = ^(𝐿 − 𝑠),

(4.15)

which allow us to use Proposition 4.4 in those cases in which the curvature is not
positive and decreasing, by applying one of the transformations (4.14).

4.1.1 Recovering the parameters of an LAC segment
We focus our attention on the problem of finding the parameters that uniquely
identify a given LAC segment. We proceed in three steps, in which we solve several
linear equations in the least-squares sense, with the objective of constructing an
algorithm that can be applied to general curves. Before describing the method,
we make use of the following remarks: In view of Remark 4.5 we omit the case
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(𝛼 = −2) (𝛼 = 1)
Logarithmic spiral

(𝛼 = −1)
Cornu spiral

(𝛼 = 2)
Circle involute

(𝛼 = 0)
Nielsen’s spiral (𝛼 = 4)

Figure 4.1: Typical examples of log-aesthetic curves.

𝛼 = 1, and for simplicity in the formulation of this method we further omit the
case 𝛼 = 0. Removing these values does not hinder the quality of the algorithm,
because they are only single points on the real line. At last, given an LAC segment
𝛾(𝑠), 𝑠 ∈ [0, 𝐿], by possibly applying one of the transformations (4.14), we assume
that its curvature is positive and decreasing. Then, from Proposition 4.4, it follows
that there exists a set of parameters {𝑥0, 𝑦0, 𝑆, 𝜙, 𝑙, 𝑠0, 𝛼} such that

𝛾(𝑠) =
(
𝑥0
𝑦0

)
+ 𝑆 R𝜙 b

𝛼 (𝑠/𝑆 + 𝑠0), 𝑠 ∈ [0, 𝑙𝑆], (4.16)

which implies, by definition of the curvature function, that

^(𝑠) = 𝑆−1^b𝛼 (𝑠/𝑆 + 𝑠0). (4.17)

Let 𝑅 = − log ^ and 𝑅b𝛼 = − log ^b𝛼 , then

𝑅(𝑠) = log 𝑆 + 𝑅b𝛼 (𝑠/𝑆 + 𝑠0). (4.18)
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Finally, from the differential equation (4.5) we have that log(𝑅′
b𝛼) + 𝛼𝑅b𝛼 = 0;

hence, from (4.18), we obtain

log(𝑅′) + 𝛼𝑅 = (𝛼 − 1) log 𝑆. (4.19)

Step 1 — Let 𝑐1 := 𝛼 and 𝑐0 := (𝛼 − 1) log 𝑆. Then, from (4.19), in the least
squares sense we have

(𝑐0, 𝑐1) = arg min
(𝑐0,𝑐1)

{
1
2

∫ 𝐿

0
(log(𝑅′) + 𝑐1𝑅 − 𝑐0)2 d𝑠

}
, (4.20)

which leads to

𝑐1 =
𝐿

∫ 𝐿

0 𝑅 log(𝑅′) d𝑠 −
∫ 𝐿

0 𝑅 d𝑠
∫ 𝐿

0 log(𝑅′) d𝑠

(
∫ 𝐿

0 𝑅 d𝑠)2 − 𝐿
∫ 𝐿

0 𝑅2 d𝑠
, (4.21)

and
𝑐0 =

1
𝐿

∫ 𝐿

0
(log(𝑅′) + 𝑐1𝑅) d𝑠. (4.22)

Then, 𝛼 = 𝑐1 and 𝑆 = exp(𝑐0/(𝑐1 − 1)).

Step 2 — From (4.6) and (4.17), we have that ^(𝑠) = 𝑆−1(1 + 𝛼(𝑠/𝑆 + 𝑠0))−1/𝛼,
which allows us to isolate the parameter 𝑠0 as

𝑠0 =
(𝑆^(𝑠))−𝛼

𝛼
− 1
𝛼
− 𝑠

𝑆
. (4.23)

Then,

𝑠0 := arg min
𝑠0

{
1
2

∫ 𝐿

0

(
1

𝛼𝑆𝛼^(𝑠)𝛼 − 1
𝛼
− 𝑠

𝑆
− 𝑠0

)2
d𝑠

}
(4.24)

gives

𝑠0 =
1

𝛼𝐿𝑆𝛼

∫ 𝐿

0
(^(𝑠))−𝛼 d𝑠 − 1

𝛼
− 1
𝐿𝑆

∫ 𝐿

0
𝑠 d𝑠. (4.25)

Similarly, we compute 𝑠end := 𝐿/𝑆+ 𝑠0 from ^ (3) (𝑠) = ^(𝐿− 𝑠) = 𝑆−1(1+𝛼(𝑠end−
𝑠/𝑆))−1/𝛼. In the least squares sense, we obtain

𝑠end =
1

𝛼𝐿𝑆𝛼

∫ 𝐿

0
(^(𝐿 − 𝑠))−𝛼 d𝑠 − 1

𝛼
+ 1
𝐿𝑆

∫ 𝐿

0
𝑠 d𝑠, (4.26)

Hence,
𝑙 = 𝑠end − 𝑠0 = 𝐿/𝑆. (4.27)
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Step 3 — At this point, it remains to find the rotation and translation parameters.
For the former, note that the angle function of 𝛾 and b𝛼 differ only by a constant
𝜙, as

𝜓(𝑠) = 𝜙 + 𝜓b𝛼 (𝑠/𝑆 + 𝑠0). (4.28)
Thus, in the least squares sense we obtain

𝜙 =
1
𝐿

∫ 𝐿

0
(𝜓(𝑠) − 𝜓b𝛼 (𝑠/𝑆 + 𝑠0)) d𝑠. (4.29)

Finally, for the translation (𝑥0, 𝑦0) we solve (4.9) in the least squares sense,(
𝑥0
𝑦0

)
=

1
𝐿

∫ 𝐿

0

(
𝛾(𝑠) − 𝑆 R𝜙 b

𝛼 (𝑠/𝑆 + 𝑠0)
)
d𝑠. (4.30)

4.2 Fairing of planar curves
In this section, we consider the case where a general planar curve segment is given
and we want to find an LAC segment that is the closest in a 𝐿2-distance sense. For
all the applications that we have in mind, the input data is regarded as a discrete
curve, thus we must consider a discretization of the LAC and of the previous
results.

General log-aesthetic curve segment
From Proposition 4.4, we know that a general LAC segment b (𝑠), 𝑠 ∈ [0, 𝐿], after
a possible change of parameterization or a reflection (see Remark 4.6), can be
expressed as

b (𝑠) =
(
𝑥0
𝑦0

)
+ 𝑆 R𝜙 b

𝛼 (𝑠/𝑆 + 𝑠0), 𝑠 ∈ [0, 𝐿], (4.31)

where b𝛼 is a basic LAC with total length 𝑙 := 𝐿/𝑆. Furthermore, b (𝑠) is also
rewritten as

b (𝑠) =
(
𝑥0
𝑦0

)
+

∫ 𝑠

0

(
cos(𝜓b𝛼 (𝑡/𝑆 + 𝑠0) + 𝜙)
sin(𝜓b𝛼 (𝑡/𝑆 + 𝑠0) + 𝜙)

)
d𝑡, 𝑠 ∈ [0, 𝐿], (4.32)

where 𝜓b𝛼 is given by (4.7). From now on, let us consider a discretization of
(4.32). Let 𝑁 ∈ N, and define

ℎ := 𝐿
𝑁−1 ,

𝑧 := 𝐿
𝑆(𝑁−1) =

𝑙
𝑁−1 ,

𝑞 := 𝑠0,
(4.33)
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and the discrete curve bΘ𝑛 ∈ R2, 𝑛 = 0, . . . , 𝑁 − 1, such that
bΘ𝑛 = bΘ𝑛−1 + ℎ

(
cos(𝜓b𝛼 (𝑧𝑛 + 𝑞) + 𝜙)
sin(𝜓b𝛼 (𝑧𝑛 + 𝑞) + 𝜙)

)
, 𝑛 = 1, . . . , 𝑁 − 1,

bΘ0 =

(
𝑥0
𝑦0

)
,

(4.34)

where we introduced the notation bΘ𝑛 for the discrete curve that depends on the
parameters

Θ := (𝑥0, 𝑦0, ℎ, 𝜙, 𝑧, 𝑞, 𝛼). (4.35)

Note that, the recursive expression (4.34) gives an approximation of b (𝑠) of second
order, in the sense that 

b (𝑠) = bΘ𝑛 + O(ℎ2),
𝑇 (𝑠) = 𝑇𝑛,

𝜓(𝑠) = 𝜓𝑛,

^(𝑠) = ^𝑛 + O(ℎ2),

(4.36)

where 𝑠 = ℎ𝑛, and the discrete objects are computed from their definition (see
Section 2.2). We conclude that a general LAC segment can be approximated by
bΘ𝑛 which depends on the seven parameters (4.35).
Remark 4.7 — From (4.34) and (4.36), note that the discrete turning angle of bΘ𝑛
is given by 𝜓𝑛 = 𝜓b𝛼 (𝑧𝑛 + 𝑞) + 𝜙; hence,

𝜓𝑛 =
(1 + 𝛼(𝑧𝑛 + 𝑞)) 𝛼−1

𝛼 − 1
𝛼 − 1

+ 𝜙. (4.37)

4.2.1 Fairing process methodology
The input data for the fairing process is assumed to be a list of 𝑁 two-dimensional
points, regarded as a discrete curve with constant step size,

𝛾𝑛 =

(
𝑥𝑛
𝑦𝑛

)
, 𝑛 = 0, . . . , 𝑁 − 1. (4.38)

Given 𝛾𝑛, we look for an LAC segment bΘ𝑛 ∈ R2 that is the closest to 𝛾𝑛, in the
𝐿2-distance sense. Namely, we seek to find a set of parameters Θ∗ such that

Θ∗ = arg min
Θ∈𝑈

{
1
2

𝑁−1∑︁
𝑛=0

bΘ𝑛 − 𝛾𝑛
2

}
, (4.39)
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with the admissible set𝑈 given by

𝑈 =

{
(𝑥0, 𝑦0, 𝜙, ℎ, 𝑧, 𝑞, 𝛼) ∈ R7

���� (𝑥0, 𝑦0) ∈ R2, ℎ > 0, 𝜙 ∈ [0, 2𝜋),
𝑧 > 0, 𝑞 ∈ 𝐼𝛼 and 𝛼 ∈ R\{0, 1}

}
. (4.40)

The optimization problem is solved using the Interior Point Optimizer (IPOPT)
package [47], so we need the gradient of the objective function and an initial guess
to start the optimization. Following our previous explanation in Section 3.3.1 (for
the Euler’s elastica), let us compute the gradient of

L(Θ) :=
1
2

𝑁−1∑︁
𝑛=0

bΘ𝑛 − 𝛾𝑛
2
. (4.41)

We have,

𝜕

𝜕Θ𝑖
L(Θ) =

𝑁−1∑︁
𝑛=0

〈
bΘ𝑛 − 𝛾𝑛, 𝜕

𝜕Θ𝑖
bΘ𝑛

〉
, Θ𝑖 = 𝑥0, 𝑦0, 𝜙, ℎ, 𝑧, 𝑞, 𝛼, (4.42)

which is computed recursively from equation (4.34), using that

𝜕

𝜕Θ𝑖
bΘ𝑛 =

𝜕

𝜕Θ𝑖
bΘ𝑛−1 +


0, Θ𝑖 = 𝑥0, 𝑦0,

𝑇𝑛, Θ𝑖 = ℎ,

ℎ 𝜕
𝜕Θ𝑖
𝑇𝑛, otherwise,

(4.43)

with

𝜕

𝜕Θ𝑖
bΘ0 =


t(1, 0), Θ𝑖 = 𝑥0,
t(0, 1), Θ𝑖 = 𝑦0,
t(0, 0), otherwise,

(4.44)

where 𝑇𝑛 is computed as

𝑇𝑛 :=
(
cos(𝜓b𝛼 (𝑧𝑛 + 𝑞) + 𝜙)
sin(𝜓b𝛼 (𝑧𝑛 + 𝑞) + 𝜙)

)
. (4.45)

Then, using that (𝜓b𝛼)′ = ^b𝛼 , we obtain the gradient of 𝑇𝑛 by

𝜕

𝜕Θ𝑖
𝑇𝑛 = R𝜋/2 𝑇𝑛 ×


1, Θ𝑖 = 𝜙,

^b𝛼 (𝑧𝑛 + 𝑞), Θ𝑖 = 𝑞,

𝑛^b𝛼 (𝑧𝑛 + 𝑞), Θ𝑖 = 𝑧,
𝜕
𝜕𝛼𝜓b𝛼 (𝑧𝑛 + 𝑞), Θ𝑖 = 𝛼,

(4.46)
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with

𝜕

𝜕𝛼
𝜓b𝛼 (𝑠) = 1

(𝛼 − 1)2+

(1 + 𝑠𝛼)− 1
𝛼

(
(𝛼 − 1) (1 + 𝑠𝛼) log(1 + 𝑠𝛼) − 𝛼 (

𝛼 + 2𝑠𝛼 − 𝑠) )
𝛼2(𝛼 − 1)2 , (4.47)

which is obtained by direct computation from (4.7).

4.2.2 Initial guess
In this section, in analogy to Section 3.3.2, we describe the algorithm that we use
to obtain the initial guess. As it was mentioned in the previous section, we regard
the input data as a discrete curve; hence, we use a discrete analogue to the three
steps described in Section 4.1.1.

Initial guess pseudo-algorithm:

We present an algorithmic approach to obtain the initial guess

Θ̄ =
(
𝑥0, �̄�0, ℎ̄, 𝜙, 𝑧, 𝑞, �̄�

)
, (4.48)

for a given a discrete curve 𝛾𝑛, 𝑛 = 0, . . . , 𝑁 − 1, with step size ℎ. Firstly, we
compute the following quantities: From the tangent vector,

𝑇𝑛 =
𝛾𝑛+1 − 𝛾𝑛

ℎ
, 𝑛 = 0, . . . , 𝑁 − 2, (4.49)

and using that the sine and cosine of the deflection angle satisfies that sin𝐾𝑛 =

det(𝑇𝑛−1, 𝑇𝑛) and cos𝐾𝑛 = 〈𝑇𝑛−1, 𝑇𝑛〉, we compute the turning angle by{
𝜓𝑛 = 𝜓𝑛−1 + arctan(det(𝑇𝑛−1, 𝑇𝑛)/〈𝑇𝑛−1, 𝑇𝑛〉), 𝑛 = 1, . . . , 𝑁 − 2,
𝜓0 = arctan

(
det

( t(1, 0), 𝑇0
)/〈 t(1, 0), 𝑇0

〉)
,

(4.50)
and the curvature by

^𝑛 =
2
ℎ

det(𝑇𝑛−1, 𝑇𝑛)
1 + 〈𝑇𝑛−1, 𝑇𝑛〉 , 𝑛 = 1, . . . , 𝑁 − 2. (4.51)

Then, let us define the logarithm of the radius of curvature by

𝑅𝑛 = − log ^𝑛, 𝑛 = 1, . . . , 𝑁 − 2, (4.52)
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and its discrete derivative by

Δ𝑅𝑛 = −^𝑛+1 − ^𝑛
^𝑛

, 𝑛 = 1, . . . , 𝑁 − 3. (4.53)

v Parameter 𝜶 — Following Step 1, we solve

(𝑐0, 𝑐1) = arg min
(𝑐0,𝑐1)

{
1
2

𝑁−3∑︁
𝑛=1

(log(Δ𝑅𝑛/ℎ) + 𝑐1𝑅𝑛 − 𝑐0)2ℎ

}
. (4.54)

Then, using that �̄� = 𝑐0 and 𝑆 = exp(𝑐0/(𝑐1 − 1)), we obtain

�̄� =
(𝑁 − 3)∑𝑁−3

𝑛=1 𝑅𝑛 logΔ𝑅𝑛 −
∑𝑁−3
𝑛=1 𝑅𝑛

∑𝑁−3
𝑛=1 logΔ𝑅𝑛(∑𝑁−3

𝑛=1 𝑅𝑛

)2
− (𝑁 − 3)∑𝑁−3

𝑛=1 𝑅
2
𝑛

, (4.55)

and

𝑆 = ℎ
1

1−�̄� exp

(
1

(�̄� − 1) (𝑁 − 3)
𝑁−3∑︁
𝑛=1

(logΔ𝑅𝑛 + �̄�𝑅𝑛)
)
. (4.56)

v Parameter 𝒒, 𝒛 — From Step 2, and using that 𝑞 = 𝑠0, and 𝑧 = 𝑙/(𝑁 − 1), we
obtain

𝑞 =
1

�̄�(𝑁 − 2)𝑆�̄�
𝑁−2∑︁
𝑛=1

(^𝑛)−�̄� − 1
�̄�
− (𝑁 − 1)ℎ

2𝑆
, (4.57)

and
𝑧 =

(𝑁 − 1)ℎ
𝑆

. (4.58)

v Parameter 𝝓, 𝒙0, 𝒚0, 𝒉 — Let bΘ̌𝑛 , 𝑛 = 0, . . . , 𝑁 − 1, be the discrete curve
computed as in (4.34) with Θ̌ = (0, 0, ℎ, 0, 𝑧, 𝑞, �̄�). Then, its turning angle is
𝜓b �̄� (𝑧𝑛 + 𝑠0); hence, following Step 3, we obtain

𝜙 =
1

𝑁 − 1

𝑁−2∑︁
𝑛=0

(𝜓𝑛 − 𝜓b �̄� (𝑧𝑛 + 𝑞)), (4.59)

and (
𝑥0
�̄�0

)
=

1
𝑁

𝑁−1∑︁
𝑛=0

(
𝛾𝑛 − R𝜙 b

Θ̌
𝑛

)
. (4.60)

Finally, we set ℎ̄ = ℎ.
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Figure 4.2: Examples of discrete curves approximated by LAC. Black curves are
the input curves, blue curves are the first guesses and the red curves are the final
outputs of the IPOPT program. The parameter 𝛼 obtained is: 1.310 (upper-left),
0.547 (upper-right), −9.254 (bottom-left), and −1.033 (bottom-right).

As a first test for this algorithm, we used synthetic data: discrete curves with
constant step size based on Bézier curves. These curves were split in segments
with sign preserving monotonic curvature. Then, we faired each segment to an
LAC, using the previous algorithm to compute the initial guess. Some examples
are shown in Figure 4.2. In the next section we apply this method to real data.
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Chapter 5

Applications

In this chapter, we present an example of usage of the fairing algorithms described
in Section 3.3 and Section 4.2, for the Euler’s elastica and log-aesthetic curve,
respectively. In both cases, we seek to characterize the keylines of existing objects.
We note that this differs from other common applications in design, in which
the objective is to construct new objects for given boundary conditions. We
characterize the profile of Japanese handmade pantiles in Section 5.1, which is
part of a joint work with T. Suzuki [13]; and we characterize keylines of a car’s
roof in Section 5.2, which is part of a joint work with K. T. Miura [14].

5.1 Keylines of Japanese handmade pantiles
Sangawara (Japanese pantiles) are the most common type of roof tiles in Japan and
are thought to be unique to the country. Although the number of buildings with
sangawara roofs is decreasing, landscapes with constructions having sangawara
roofs are considered, by the community, to be one of the most beautiful and
culturally Japanese scenes. Traditionally, sangawara were handmade from local
clay by placing a clay plate on a wooden mold, beating it with a board called
tataki, and stroking it with a board called nadeita. In recent times, they are mass-
produced in limited areas, by metal mold presses. The mold shapes are thought
to be based on the shape of the sangawara in the handmade era, but companies
keep their designs a trade secret. We consider that it is important to characterize
aesthetically pleasing curves like sangawara with mathematical formulas to be
used in architectural design. Because of this, and the fact that the process involves
bending the clay plate, we thought that the shape of sangawara could possibly
be approximated by the Euler’s elasticae. In Section 5.1.1, we explain how the
handmade sangawara (simply referred to as pantiles) were collected, and how we

48



obtain the keyline of each pantile. In Section 5.1.2, we approximate those keylines
to discrete Euler’s elasticae.

5.1.1 Data collection and pre-processing
The pantiles that we measured were used in a house built around 1900 in Settsu
city, Osaka prefecture. From the characteristic shapes of the pantiles, they were
likely used from the original construction or replaced before the revision of the
urban building law in 1924 after the Great Kanto Earthquake. According to the
owners, most of the tiles were blown away when the 2nd Muroto Typhoon hit in
1961, so they were collected and re-roofed. After that, only a few of the pantiles
were replaced before the house was demolished in March 2017. In a survey before
the demolition, it was found that the roofs of this house were covered by four
different sizes of pantiles that ranged from 240 to 280 mm in working width. Prior
to dismantling the building, six rows of pantiles were preserved (A to F in Figure
5.1), covering those four sizes. We measured 37 pantiles of the C and F rows, with
a working width of 270 mm (the most commonly used on this house), excluding
the eave pantiles (C01, F01).

Figure 5.1: Preserved pantiles (black and red: A-F) and measured pantiles (red:
C02-14, F02-25).
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Figure 5.2: Left: Placement of 3D laser scanner and pantile during measurement.
Right: Example of 3D keylines generated (C07).

The NextEngine’s Ultra HD 3D laser scanner was used for the measurements,
as shown in Figure 5.2. The mesh data obtained from the 3D laser scanner was
read by 3D Systems’ RapidWorks 64 4.1.0, a reverse modeling software. This
software was used to synthesize and decimate its polygons finer than the scanner’s
measurement accuracy (0.3 mm) and then it automatically healed incorrect data
and filled the holes in the meshes. The keylines used for this analysis correspond
to the bottom front edge of the pantiles. Figure 5.2 shows an example of the
keylines generated. By using the principal component analysis, the keylines were
projected to a plane, and after processing these curves, we obtained discrete planar
curves with constant step size. The keylines have one inflection point, and the
curve is clearly asymmetric at this point. This makes difficult to formulate such
curve in terms of a single elastica. Therefore, we estimate the inflection point of
the curve, then we divide it in two segments and approximate each of them with
different elasticae. We estimated the inflection point using a method inspired by
the Ramer–Douglas–Peucker algorithm [8, 42], which was devised to smoothen a
given discrete set of points by decimation.
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5.1.2 Characterization by discrete Euler’s elasticae
We considered the input curves to be 37 segments, corresponding to the segments
of the keylines situated at the right-hand side of their estimated inflection points.
To each segment, we applied the algorithm described in Section 3.3. From the
parameters Θ = (𝑥0, 𝑦0, ℎ, 𝜙, 𝑧, 𝑞, 𝑘), the point (𝑥0, 𝑦0) ∈ R2 was fixed at the
inflection point, and the remaining five parameters were optimized. An example
of the fairing is shown in Figure 5.3, the result after fairing all the curves is shown
in Figure 5.4, and the resulting parameter values are summarized in Table 5.1.

Figure 5.3: Example: fairing of the C07 lower keyline (black) to an Euler’s elastica
(red).

Lower keylines right (valley) side ℎ 𝜙
𝑧 𝑞 𝑘[mm] [rad] [grad]

C02–14, F02–15, 17–23, 25 mean 0.964 −0.168 −9.623 9.001 × 10−3 5.919 0.353
std. dev. 6.564 × 10−3 2.078 × 10−3 0.119 1.263 × 10−3 1.789 × 10−3 1.235 × 10−2

F16 0.945 2.045 117.192 67.36 5.226 27.43
F24 1.007 2.478 141.986 121.8 28.28 27.39

Table 5.1: Calculation results for ℎ, 𝜙, 𝑧, 𝑞 and 𝑘 (mean and standard deviation).
Because the values for F16 and F24 were noticeably different from the others, the
means and standard deviations were calculated for the 35 keylines except for F16
and F24, and the values for F16 and F24 were written separately.

As Table 5.1 shows, there are 35 keylines (except for F16 and F24) that show
very little variation in their parameters, and the discrete elasticae are similar in
shape. The 𝑘 values are close to 0.3, corresponding to the case with inflection
points [WI]. The values of 𝑘 for F16 and F24 are noticeably different, and corre-
spond to the case without inflection point [NI]. We think that the variations in the
parameters 𝑧 and 𝑞, for the 35 elasticae [WI], are related to the estimation error of
the inflection point. The effect that the local unevenness of the keylines, due to the
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Figure 5.4: Upper: Input curves (black). Bottom: Approximating Euler’s elastica
(red). The highlighted curves (green) correspond to keylines that presented a
statistically different result.

manufacturing and measuring process, has on the estimation of the inflection point
should be examined. In conclusion, we found that 35 of the 37 lower keylines of
the handmade pantiles could be approximated by discrete Euler’s elasticae with a
very small variation on the right-hand side of the inflection point. However, the
errors of the estimated positions of the inflection points may affect the accuracy of
the approximations.

5.2 Keylines of a car’s roof
In order to test the fairing algorithm shown in Section 4.2 we characterize some
simple profile lines of a car’s roof (Toyota Prius). In Section 5.2.1 we explain how
the keylines were collected and processed, and in Section 5.2.2 we approximate
those keylines to log-aesthetic curves.

5.2.1 Data collection and pre-processing
A 3D model was obtained by measuring a scale model car with a 3D laser scanner
(Hexagon 8330-7, measurement accuracy of 0.078 mm). This 3D model was
stored in STL (Standard Triangle/Tessellation Language) format, which encodes
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the geometry of the object in a triangular mesh. Using Rhinoceros 6, a computer-
aided design software, we intercepted the 3D model with vertical planes, see
Figure 5.5. Finally, we projected the curves into the plane and processed the
discrete point to obtain a planar discrete curve with constant step size. The length
of each curve is approximately 1500 mm, and the separation between each curve
is 100 mm.

Figure 5.5: Top: 3D model (STL data). Bottom: Position of sampled curves,
obtained from the interception of the 3D model and vertical planes (Software:
Rhino 6). The black lines represent the intercepting planes, and the red lines, in
the highlighted area, represent the resulting curves. From the center to the bottom,
curves are labelled as ps_1, ps_2, ps_3, ps_4 and ps_5.

We observed that the curvature of the keylines is highly irregular, as a product
of the measuring technique employed. To reduce the noise, we proceeded as
follows: Let the curve 𝛾𝑛 ∈ R2, 𝑛 = 0, . . . , 𝑁 − 1 with a constant step size ℎ > 0,
be the raw data; then:

(0) — Let �̌� = 3.

(1) — For �̌� < 𝑁 , apply the Ramer–Douglas–Peucker algorithm to 𝛾𝑛, to obtain
a new curve �̌�𝑛, 𝑛 = 0, . . . , �̌� − 1, such that �̌�0 = 𝛾0 and �̌��̌�−1 = 𝛾𝑁−1.
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(2) — Construct a cubic spline curve 𝛾cs(𝑡), 𝑡 ∈ [0, 𝐿], using �̌�𝑛, 𝑛 = 0, . . . , �̌� −1,
as the control points; hence, 𝛾cs(0) = 𝛾0 and 𝛾cs(𝐿) = 𝛾𝑁−1.
(3) — Construct a discrete curve �̄�𝑛, 𝑛 = 0, . . . , 𝑁−1 with step size ℎ, by sampling
the cubic spline 𝛾cs(𝑡𝑛) in a appropriate manner such that ‖𝛾cs(𝑡𝑛+1) − 𝛾cs(𝑡𝑛)‖ = ℎ
and �̄�𝑛 = 𝛾cs(𝑡𝑛), 𝑛 = 0, . . . , �̌� − 1.
(4) — If the residual 𝑅 is greater than a prescribed error [,

𝑅 =
1
𝐿2

𝑁−1∑︁
𝑛=0

‖�̄�𝑛 − 𝛾𝑛‖ℎ > [, (5.1)

repeat from step (1), with a greater value of �̌� . Otherwise, the process ends.
In our case, we used [ = 10−3, and we observed that this produces a smoother

plot for the curvature, see Figure 5.6. Hence, we use �̄�𝑛, instead of 𝛾𝑛, as the input
curve of the fairing process.

5.2.2 Characterization by log-aesthetic curves
We applied the algorithm described in Section 4.2 to the 5 curves obtained from
the previous analysis. We noticed that the admissible set 𝑈 for the parameters
Θ, as defined in (4.40), was too broad and unexpected jumps in the value of the
parameters produced unrealistic outputs. To keep the optimization relatively close
to the initial guess, we decided to constrain the admissible set to �̄�0.1, defined by

�̄�0.1 := 𝑈 ∩ {
Θ ∈ R7 :

��Θ𝑖 − Θ̄𝑖
�� < 0.1Θ̄𝑖

}
, (5.2)

where Θ̄ is the initial guess for the IPOPT method, as described in Section 4.2.2.
In this way, �̄�0.1 constrain the final result to be in a 10% range of the initial guess.
Final results are presented in Figure 5.7. We note that the parameters that we
obtained provide a good fit of the input curve. We can observe that, despite the
curves being similar in shape to each other, the values of the parameter 𝛼 have big
variations. However, the final result is still a good fit, after finding the remaining
parameters. Let us note that, this algorithm allows us to input the parameter 𝛼 by
hand (or by replacing (4.55) by an alternative expression or algorithm) and then
we can continue with the next steps without any further change. In particular, in
Figure 5.8 we show the results of the initial guess obtained by fixing 𝛼 = 2. The
fact that we still obtained a good fit is attributed to the input curve having a soft
varying curvature. We conclude that the method proposed has a good performance,
however further analysis on the recovery of the parameter 𝛼 is required.
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ps_1

(raw and smoothen data) (close-up: smoothen data)

ps_2

ps_3

ps_4

ps_5

arc length arc length

Figure 5.6: Input curves without smoothing. Left column: Each curve represent
a different section of the car’s roof. Black lines are raw data and red lines are
the smoothen data (the input curves after noise reduction). Left column: raw and
smoothen curves in the plane, practically overlapping with each other. Middle
column: Curvature plot vs arc length for their corresponding input curves, where
the blue line is a reference for the constant ^ = 0. Right column: same as middle
column, with a close-up on the smoothen data.
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ps_1 ps_2 ps_3 ps_4 ps_5

1 2 3 4 5

alpha 4.44 1.73 0.30 -4.66 0.62

S 3070.37 2885.32 4125.71 3597.87 4966.19

s0 0.10 0.11 -0.27 -0.31 -0.55

l 0.49 0.52 0.37 0.42 0.31

phi -1.89 -1.90 -1.49 -1.48 -1.08

x0 -552.73 -549.88 -544.74 -537.90 -529.70

y0 3346.76 3346.06 3346.39 3347.03 3349.25

Figure 5.7: Discrete curves approximated by LAC. Each curve represent a different
section of half of the car roof, taken at 100 mm apart. Black lines: input curves.
Red lines: LAC output. The parameters in the table correspond to the smooth
LAC, according to Proposition 4.4, recovered from the approximation defined in
(4.34) using (4.33)
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ps_1
α = 2.000

ps_2
α = 2.000

ps_3
α = 2.000

ps_4
α = 2.000

ps_5
α = 2.000

ps_1
α = 4.436

ps_2
α = 1.735

ps_3
α = 0.296

ps_4
α = −4.661

ps_5
α = 0.616

Figure 5.8: Initial guess, with fixed 𝛼 = 2 at the top, and fixed by the algorithm
(Equation (4.55)) at the bottom. Black lines: Input curves. Red lines: LAC Initial
guess.
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Chapter 6

Conclusions

Regarding the discrete Euler’s elastica, we provided a review of the literature on
the integrable discretization and showed concrete parameterizations that recover
the continuous framework. Although several results are well-known facts, explicit
expressions and proof are not found in the literature. In particular, we showed
that there are two possible definitions for the discrete Euler’s elastica which are,
indeed, equivalent (Proposition 3.12). We showed that their explicit solutions
can be written in terms of the Jacobi elliptic functions, and could be checked by
simply using the addition formulas for the Jacobi elliptic functions. In Section 3.3,
we presented an algorithmic approach to reconstruct a discrete Euler’s elastica by
seven parameters. This work can be seen as an extension of the algorithm provided
by D. Brander et al. in [6], and it can be used in cases where the input curve is
intrinsically discrete. We used our algorithm in Section 5.1 to the problem of
characterizing the profile keylines of Japanese handmade pantiles.

Regarding the log-aesthetic curve, we have shown in Proposition 4.4 that any
LAC segment (with parameter 𝛼 ≠ 1) can be obtained from a basic LAC by
applying similarity transformations. This shows that the family of LAC with the
same parameter 𝛼 is self-similar. In recent studies [20], the similarity geometry
framework was used to provide a similarity geometry analogue of the elastic
energy and to construct more general LAC and discrete LAC. We consider that
further studies exploiting the self-similarity properties of the LAC will be crucial
to attain generalized aesthetic surfaces and space curves. In Section 4.2, we
used Proposition 4.4 to construct an algorithmic approach to recover the seven
parameters that uniquely identify a given LAC, proceeding in a similar manner
than for the Euler’s elastica case. We expect that this algorithm will be used as a
new tool to characterize an existing object, which is particularly useful in reverse
engineering. Moreover, because the LAC is regarded as an aesthetically pleasing
shape, there exists an increasing interest from the industry to have algorithms
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like the ones presented that can be used in computer-aided design softwares. In
this thesis, and as a simple example of usage, in Section 5.2 we characterized
the profile lines of a car’s roof. As it was first discussed by T. Harada et al. in
[15], they considered that the value of the parameter 𝛼 gives specific attributes
to the curve’s character. However, we have seen that curves that are similar can
possibly have different values of 𝛼, which is a consequence of the curves not having
several changes in magnitude for their curvatures. One possible way to solve this
problem is by allowing the designer to input the expected value of 𝛼. Finally,
further extensions to this method could be the generalization into space curves,
or aesthetic surfaces, for which a result similar to Proposition 4.4 is needed. We
think that investigating generalizations that use the self-similar properties is a first
step to approach this task.
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