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Abstract

For analyzing clustered survival data, a flexible partially linear additive hazards
model is proposed. To accommodate the nonlinear effects, the unknown regression
function is approximated by B-splines. All regression coefficients are estimated
through a system of pseudo-score functions. Under certain conditions, the proposed
estimators are shown to be asymptotically normal, where a consistent estimator of
the covariance matrix is given. Simulation studies are also conducted to evaluate
the finite sample performance of the proposed method, which is illustrated using a
real data set from an AIDS clinical trial.

Key Words and Phrases: B-spline, Clustered data, Marginal model, Partially linear additive

hazards, Right censored data.

1. Introduction

In survival analysis, the Cox model might be the most popular model to analyze
survival data and has been extensively studied in various contexts, where the risk ratios
are of interest. In contrast to it, the additive hazards (AH) model focuses on modelling
the risk difference and could be more plausible and reasonable than the former in many
applications, see Buckley (1984) and Aalen et al. (2008). One such case is the epidemi-
ological study in Kulich and Lin (2000). Particularly, for univariate failure time data,
Lin and Ying (1994) proposed the following AH model

λ(t|Z) = λ0(t) + β⊤Z, (1)

where β is the regression coefficient vector corresponding to a p-dimensional covariates
Z and λ0(t) is an unknown baseline hazard function. The model (1) above has attracted
much attention and been studied in various contexts. For more details, see references
listed in Afzal et al. (2017).

It is worth noting that most of the works mentioned above concern the univariate
survival data, i.e., the failure times are mutually independent, or assume that the covari-
ates affect the hazard rate linearly. However, multivariate failure time data often arise
in practical applications due to natural or artificial clustering, and the linear assumption
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may not always be appropriate. For example, during follow-up, each patient may expe-
rience several different events or recurrent events, or the same type of disease may affect
clustered organs of the same subject (Yin (2007)). As the Colon Cancer Study in Moer-
tel et al. (1990), age at study entry may effect nonlinearly on the times to recurrence of
cancer and death. Additionally, in an AIDS clinical trial study, as one of the motivations
of this paper, CD4 count is often considered to be a marker for antiretroviral treatment
response and HIV disease progression. When modelling this relationship, researchers
usually tend to introduce a specific or unspecified nonlinear function to describe it, e.g.,
Guo and Carlin (2004) and Mandal et al. (2019).

For clustered data, including but not limited to the recent papers listed below,
many models and inference approaches have been developed. When there does not exist
censoring, Cheng et al. (2014) considered efficient estimation of the parameters in a gen-
eralized partially linear additive models for longitudinal/clustered data. Geraci (2019)
developed methods for the modelling and estimation of nonlinear conditional quantile
functions when data are clustered within two-level nested designs. Wang et al. (2020)
studied the weighted quantile average estimation technique for the parameter in additive
partially linear models with missing covariates. When the data exists right censoring,
Yin and Cai (2004) derived a class of estimation methods and asymptotic properties for
the marginal additive hazards model. Yin (2007) proposed a class of graphical and nu-
merical methods to assess the overall fitting adequacy of the marginal additive hazards
model. Li and Yin (2009) proposed a generalized method of moments approach to the
accelerated failure time model with correlated survival data, which was also studied by
Johnson and Strawderman (2009), and furthermore discussed by Fu et al. (2021). Zeng
and Cai (2010) proposed a class of additive transformation risk models and developed an
estimating equation approach. Eriksson et al. (2014) compared the marginal approach
and the conditional approach in the context of a Cox regression analysis, where they
treated within-cluster correlation as if it was introduced by unobserved cluster level co-
variates. Zhang and Kwun (2014) discussed a flexible individual frailty model, where the
multivariate exponential distributed frailties are introduced. Pan et al. (2015) developed
the estimating equations for inferring the regression parameters in the AH model with
random effects. Geerdens et al. (2018) suggested a local likelihood approacha to infer a
parametric conditional copula whose parameter depends on a cluster-level covariate in
a functional way.

On the other hand, to handle the nonlinear effects, some semi-parametric or non-
parametric approaches have been proposed in the literature, such as the transformation
model (Mandal et al. (2019)) and various versions of partially linear models. Explicitly
speaking, based on the partially linear proportional hazards model, Liu et al. (2016) pro-
posed a new penalised pseudo-partial likelihood method to select important covariates
for multivariate failure time data. Afzal et al. (2017) considered partly linear AH model
for left-truncated and right-censored data, and recently Afzal et al. (2021) proposed a
hierarchical bi-level variable selection approach for right censored data in the linear part
of this model, where the covariates are naturally grouped. Song et al. (2019) considered
a partially time-varying coefficient proportional hazards model, where corrected score
and conditional score approaches are employed to accommodate potential measurement
error. Engebretsen and Glad (2020) used the monotone splines lasso and proposed two
methods for fitting a partially linear monotone model. Zou et al. (2020) studied the
quantile regression estimation and variable selection for the partially linear single-index
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models with censoring indicators missing at random. More details can be available from
Cheng et al. (2014), Geraci (2019), Wang et al. (2020) and the references therein.

However, to the best of our knowledge, there is no result available in the literature
for the partially linear additive hazards (PLAH) regression model with clustered survival
data, which assumes that the marginally conditional hazard function depends on some
covariate variables in linear relationship but is nonlinearly related to other covariates.
In the following, we will consider this situation and present an estimating equation
method for regression parameters in the linear part and the nonparametric part. Our
method has several desirable features. First, by approximating the nonlinear function
with B-splines, the proposed estimators can be obtained in a closed form. Thus our
method avoids the ”curse of dimensionality” problem. Second, the implementation of
the proposed approach is comfortable via some existing softwares. Third, the simulation
studies indicate the performance is satisfactory from the viewpoint of bias, coverage
probability and average estimated error induced by approximation.

The remainder of the paper is organized as follows. The model formulation is
presented in Section 2, where a system of estimating equations for making inference are
proposed and the asymptotic normality of the proposed estimators is established under
some regular conditions. In Section 3, simulation studies are carried out to evaluate the
proposed approach under various scenarios. In Section 4, a HIV data set was analyzed
as illustration. Some concluding remarks are given in Section 5. Additional simulation
results are contained in the Supplementary Materials.

2. Estimation method

Consider a study consisting of n independent clusters. Let Tik and Cik denote the
failure time and censoring time of the k-th subject in the i-th cluster, i = 1, ..., n, and
k = 1, ...,K, respectively. Given the p-dimensional covariates vector Zik and univariate
continuous covariate Wik, the conditional hazard function of Tik is assumed to have the
following form

λTik
(t|Zik,Wik) = λ0(t) + β⊤Zik + φ(Wik), (2)

where β is a p-dimensional regression coefficient vector, λ0(t) is the unknown baseline
hazard function, and φ(.) is the nonlinear regression function, which is smooth but
unspecified. Therefore, the observations consist of (T̃ik = min(Tik, Cik),∆ik = I(Tik ≤
Cik),Zik,Wik) with I(.) being the indicator function, i = 1, ..., n, and k = 1, ...,K. We
assume that subjects in the same cluster are exchangeable.

Motivated by the work of Yin (2007), for each (i, k), we define the counting process
Nik(t) = I(T̃ik ≤ t,∆ik = 1), and the at-risk process Yik(t) = I(T̃ik ≥ t). Denote

Mik(t) = Nik(t)−
∫ t

0

Yik(u)[dΛ0(u) + β⊤Zik + φ(Wik)du],

which is a local square integrable martingale. If β and φ(.) are known, then the cumu-

lative baseline hazard function Λ0(t) =
∫ t

0
λ0(u)du can be estimated by

Λ̂0(t) =

n∑
i=1

K∑
k=1

∫ t

0

dNik(u)− Yik(u)[β
⊤Zik + φ(Wik)]du∑n

i=1

∑K
k=1 Yik(u)

.

Due to the fact that the nonparametric component φ(.) is a totally unspecified
function, the direct application of the estimating function is not practicable. Note that
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using splines to model unknown function is very common in statistics. Here we propose
to approximate φ(.) with a linear combination of B-spline basis functions as follows,

φ(w) ≈
J∑

j=1

αjB̃j(w),

where (B̃1(w), ..., B̃J(w))
⊤ is a vector of normalized B-spline basis functions of order l

with q internal knots lying in the support of W , and J = q + l − 1. For more details,
see Schumaker (1981). To ensure the identifiability of φ(.), we assume the requirement
E[φ(W )] = 0 holds. Therefore, we consider the centering version

Bj(w) = B̃j(w)−
n∑

i=1

K∑
k=1

B̃j(Wik)/(n×K).

Then the final expression of φ(.) used in the later estimation method is

φ(w) ≈ φn(w) =

J∑
j=1

αjBj(w) = α⊤B(w),

where α = (α1, ..., αJ)
⊤ and B(w) = (B1(w), ..., BJ(w))

⊤. Substituting φn for φ in (2),
one obtain the proposed spline model

λTik
(t|Zik,Wik) = λ0(t) + β⊤Zik +α⊤B(Wik)

= λ0(t) + γ⊤Xik
(3)

where γ = (β⊤,α⊤)⊤, Xik = (Z⊤
ik,B(Wik)

⊤)⊤. Following the idea of Lin and Ying
(1994) and under the assumptions mentioned above, we propose to estimate γ by the
solution, denoted by γ̂n, to the following estimating function

U(γ) =

n∑
i=1

K∑
k=1

∫ τ

0

XikdM̃ik(t),

where M̃ik(t) is obtained by replacing the Λ0 and φ in Mik(t) by Λ̂0 and φn, respectively,
τ is the end time of a study. After some algebra, we have

U(γ) =
∑n

i=1

∑K
k=1

∫ τ

0
[Xik − X̄(u)][dNik(u)− Yik(u)γ

⊤Xikdu]

=
∑n

i=1

∑K
k=1

∫ τ

0
[Xik − X̄(u)]dNik(u)

−
{∑n

i=1

∑K
k=1

∫ τ

0
Yik(u)[Xik − X̄(u)]

⊗
2du

}
γ,

(4)

where a
⊗

2 = aa⊤ for a column vector a, and

X̄(u) =

∑n
i=1

∑K
k=1 Yik(u)Xik∑n

i=1

∑K
k=1 Yik(u)

.

Furthermore, we can obtain an analytic closed form of the resulting estimator

γ̂n =

{
n∑

i=1

K∑
k=1

∫ τ

0

Yik(u)[Xik − X̄(u)]
⊗

2du

}−1 { n∑
i=1

K∑
k=1

∫ τ

0

[Xik − X̄(u)]dNik(u)

}
.

(5)
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To derive the asymptotic normality of the proposed estimators, some notations are
needed. Suppose that

1

n

n∑
i=1

K∑
k=1

Yik(u)X
r
ik

uniformly converges to πr(u) for u ∈ [0, τ ], r = 0, 1. Define

An =
1

n

n∑
i=1

K∑
k=1

∫ τ

0

Yik(u)[Xik − X̄(u)]
⊗

2du

and

Σ = E


[

K∑
k=1

∫ τ

0

Y1k(u)[X1k − π1(u)

π0(u)
]dM1k(u)

]⊗
2
 ,

and assume that An converges in probability to a nonsingular deterministic matrix A.
Under the above assumptions, and suppose the nonlinear regression function φ is indeed
a B-spline function, i.e., the function φn, similar to the proof of Theorem 1 in Yin and
Cai (2004), one can show that

n1/2(γ̂n − γ0) → N(0, A−1ΣA−1), (6)

in distribution as n → ∞, where γ0 = (β⊤
0 ,α

⊤
0 )

⊤ is the true value. A consistent
estimator of the covariance matrix can be obtained by substituting A and Σ by An and

1

n

n∑
i=1

[
K∑

k=1

∫ τ

0

[Xik − X̄(u)]dM̂ik(u)

]⊗
2

,

where M̂ik(u) is obtained from M̃ik(u) with some unspecified quantities therein replaced
by their estimators. Based on these results, one can construct the 95% confidence
intervals of β0 and α0, thus the point-wise confidence interval of φ(w0) at a fixed value
w0 can be obtained.

Remark 1. How to calculate the integral in equation (5) is critical. Combining
the definitions of Yik(u) and Nik(u), the integral in the second term on the right hand
of the equality (5) becomes a summarization of integrand at every jump T̃ik. The
difficulty mainly arises from the first term. But note that Yik(u) is a piecewise constant
function, whose points of division are the ordered different observation times T̃ik, we
can exchange the integral and the summarization, and divide the integral interval into
several subintervals. At this time, the integrand in each subinterval becomes a constant.
Thus the computation can be conducted. More details can be found in the section 3.1
of page 6 in Anders and Scheike (2012), where the R package ahaz is introduced and is
used to finish our simulation studies.

Remark 2. In model (2), the covariates are presumed to be time-independent.
In fact, this requirement can be relaxed and easily extended to the case, where some
time-dependent covariates are observed, in line with the strategy in Yin and Cai (2004).
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Remark 3. To conclude the asymptotic normality of the proposed estimators, we
impose the nonlinear regression function φ is a B-spline function, where the knots and
order are assumed to be known. The primary purpose is to avoid the complex derivative
of the limiting property, and the same skill is also adopted in other areas, such as Afzal et
al. (2017,2021). Even if this requirement does not hold strictly, the following simulation
studies demonstrate that the approximation error can be ignorable.

Remark 4. Selection of the optimal number and locations of interior knots and
the order of spline often is consider to be important for bringing superior numerical
performance when applying the spline method. As argued by Lu and McMahan (2018),
The order controls the overall smoothness of the spline estimator, whereas the knot
set specification controls model flexibility. Too many (few) knots lead to over (under)
fitting. In this paper, quadratic B-splines was used and the interior knots with fixed
number 3 were placed at the equally-spaced quantiles of the observations. Although one
can select optimal number of knots through some model selection criterions, as done
in the subsection 2.3 in Lu and McMahan (2018), we find from our experience that if
the observed covariate Wik is not sparse and skewed seriously, the affection induced by
different choices of number of interior knots is not serious, and can be omitted, which is
also displayed in the following Table 3.

Remark 5. The computation of the proposed method can be easily implemented
by the R packages Splines and ahaz, where the function bs and ahaz (Anders and Scheike
(2012)) are used in this paper.

3. Simulation studies

In this section, we conducted simulation studies to evaluate the finite-sample per-
formance of the proposed estimation procedure in different settings. The simulation
set-up is partly adapted from Afzal et al. (2017), Johnson and Strawderman (2009)
and Yin (2007). In all simulation settings, we consider the situation of K = 2, i.e., the
cluster size was two, and the marginally conditional hazard functions of the failure times
Tik given the covariates (Zik,Wik) were

λTik
(t|Zik,Wik) = λ0(t) + β⊤

0 Zik + φ0(Wik), (7)

where β0 = (β01, β02)
⊤, Zik = (Z1ik, Z2ik)

⊤, λ0(t) is the baseline hazard function, and
φ0(.) is the nonlinear regression function. Specifically, for each cluster, we generated
the two failure times under the Clayton copula function from the bivariate distribution
function

F (t1, t2) = [F1(t1) + F2(t2)− 1]−1/θ,

where Fk(tk) = exp(−Λ0(tk) − β⊤
0 Ziktk − φ0(Wik)tk), Λ0(t) =

∫ t

0
λ0(s)ds, and θ(> 0)

is the correlation parameter, which takes differen values to yield the Kendall’s τ . All
covariates and censoring times involved are generated independently. The true regression
coefficients β0 and function φ0(.) are determined explicitly in the following Examples
1-2, respectively.

In these simulations, quadratic B-splines were used to approximate the regression
function, where the interior knots with fixed number 3 were placed at the equally-spaced
quantiles of the observations of Wik. For each study design, N = 1000 independent data
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sets based on the above-mentioned model with sample sizes n = 100, 200, 400, 800 were
generated and analyzed using the proposed approach. We calculated the estimated bi-
ases (BIAS), the sample standard deviations (SD), the average of the estimated standard
errors (SE) and the 95% empirical coverage probabilities (CP) for the regression coeffi-
cient estimators. In addition, for the nonlinear part, we recorded the averaged integrated
absolute bias (IABIAS) for a estimator φ̂j(.), (j = 1, ..., N), defined by

IABIAS =
1

N × ngrid

N∑
j=1

ngrid∑
i=1

|φ̂j(wi)− φ(wi)|,

where ngrid is the number of grid points wi between 3 and 9 with step length 0.1. We
also plotted the 95% point-wise confidence intervals and the average estimated curves
of φ0.

Example 3.1. Based on the above model (7), we specified the variables and parameters
as follows. λ0(t) = 5, (β01, β02)

⊤ = (0.3, 0.5)⊤, covariates (Z1ik, Z2ik)
⊤ are generated

from Z1ik ∼ Bernoulli(0.5), Z2ik ∼ Unif(−1, 1), and φ0(W ) = 0.3((W − 6)2 − 3) with
W ∼ Unif(3, 9). The censoring time Cik follows a uniform distribution Unif(0, a) with
the constant a chosen to obtain average right censoring rates of about 20% and 50%,
respectively. The correlation parameter θ takes values 0, 0.5 and 3 to yield the Kendall’s
τ = 0, 0.2, 0.6, respectively.

Table 1 presents the results on estimations of regression parameters, and the cor-
responding estimated curves are shown in Fig. 1. It can be seen that the proposed
estimators of (β01, β02)

⊤ seem to be unbiased, the coverage probabilities almost reach
the nominal level 0.95 irrespective to the sample size and censoring rate, and the sample
standard deviations and the average of the estimated standard errors are in agreement,
which demonstrates the proposed variance estimates are reasonable. At the same corre-
lation and right censoring rate, as sample size increases, the proposed estimators tend
to have smaller BIAS, SD, SE and IABIAS. The average estimated curves almost over-
lapped the true curve on the entire range, and the space between the upper and lower
95% point-wise confidence intervals become narrower with an increase of sample size. In
addition, more figures can be available from the author upon request.

Example 3.2. In this example, we specified the variables and parameters as follows.
λ0(t) = t, (β01, β02)

⊤ = (0.5, 1)⊤, covariates (Z1ik, Z2ik)
⊤ are generated from Z1ik ∼

Bernoulli (0.5), Z2ik ∼ |N(0, 0.4)|, and φ0(W ) = sin(π(W/3−1)) with W ∼ Unif(3, 9).
The censoring time Cik also follows a uniform distribution Unif(0, a) with the constant
a chosen to obtain average right censoring rates of about 20% and 52%, respectively.
Here the correlation parameter θ still takes values 0, 0.5 and 3 to yield the Kendall’s
τ = 0, 0.2, 0.6, respectively.

Table 2 presents the results on estimations of regression parameters, and the corre-
sponding estimated curves are shown in Fig. 2. One can see that the results are similar
to those presented in the Example 1. It is worthwhile to point out that compared with
that in Example 1, the IABIAS is smaller and the estimated curves are more close to the
true one and have a narrower 95% point-wise confidence intervals under each scenario.
In addition, more figures can be available from the author upon request.
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Figure 1: The solid line (red) is the true curve. The dashed lines (green) are average
estimated curves for n = 100, 200, 400, 800 with 1000 duplications for Example 3.1,
under (θ, CR)=(0.5, 20%) by row, respectively. The dash-dotted lines (blue) are the
95% point-wise confidence intervals
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Figure 2: The solid line (red) is the true curve. The dashed lines (green) are average
estimated curves for n = 100, 200, 400, 800 with 1000 duplications for Example 3.2,
under (θ, CR)=(0.5, 20%) by row, respectively. The dash-dotted lines (blue) are the
95% point-wise confidence intervals
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Table 1: Simulation results of (β01, β02) = (0.3, 0.5) and φ(.) in Example 3.1
β01 β02 φ(.)

n θ CR BIAS SE SD CP BIAS SE SD CP IABIAS
50 0 20% 0.029 0.861 0.892 0.943 0.013 0.752 0.748 0.949 0.861

50% 0.071 1.077 1.061 0.959 -0.003 0.936 0.961 0.951 1.013
0.5 20% 0.011 0.852 0.848 0.949 0.015 0.741 0.747 0.952 0.812

50% -0.009 1.077 1.093 0.949 0.021 0.939 0.920 0.959 1.017
3 20% -0.023 0.859 0.868 0.950 -0.006 0.748 0.748 0.958 0.818

50% 0.059 1.072 1.060 0.956 0.029 0.935 0.945 0.953 1.014
200 0 20% 0.038 0.584 0.581 0.960 0.001 0.508 0.521 0.948 0.550

50% -0.030 0.735 0.764 0.942 0.012 0.635 0.646 0.939 0.681
0.5 20% 0.029 0.584 0.586 0.945 0.018 0.507 0.512 0.953 0.560

50% 0.010 0.739 0.735 0.951 -0.011 0.640 0.633 0.955 0.677
3 20% 0.008 0.588 0.596 0.950 -0.000 0.510 0.519 0.953 0.559

50% -0.027 0.736 0.740 0.950 0.006 0.638 0.619 0.961 0.686
400 0 20% -0.014 0.405 0.401 0.954 0.006 0.351 0.347 0.958 0.386

50% -0.020 0.514 0.523 0.951 -0.005 0.446 0.451 0.950 0.480
0.5 20% 0.008 0.406 0.422 0.947 0.009 0.353 0.359 0.952 0.386

50% -0.007 0.514 0.524 0.951 0.003 0.445 0.449 0.962 0.470
3 20% 0.017 0.406 0.412 0.949 0.021 0.352 0.357 0.940 0.377

50% 0.015 0.514 0.500 0.959 0.014 0.445 0.449 0.962 0.478
800 0 20% -0.009 0.284 0.279 0.950 -0.011 0.246 0.247 0.953 0.273

50% 0.008 0.360 0.358 0.952 0.000 0.312 0.306 0.953 0.330
0.5 20% 0.019 0.284 0.274 0.958 -0.014 0.246 0.241 0.959 0.267

50% 0.009 0.360 0.359 0.951 -0.009 0.312 0.304 0.957 0.330
3 20% 0.001 0.285 0.271 0.961 0.000 0.247 0.254 0.939 0.263

50% -0.008 0.359 0.361 0.950 0.015 0.311 0.303 0.951 0.330

Notes: BIAS: the estimated biases; SD: sample standard deviation; SE: average standard error estimate;
CP: the 95% empirical coverage probability; IABIAS: the averaged integrated absolute bias; n: sample
size; CR: the right censoring rate.

4. Real data analysis

In this section, we illustrate the proposed estimation method by analyzing a real
data set. For technical details on modelling specifications, we follow the choices used in
the simulation studies in Section 3.

The data set comes from a recent clinical trial, which was described by Guo and
Carlin (2004), and the primary objective is to compare the efficacy and safety of two
antiretroviral drugs, i.e. didanosine (ddI) or zalcitabine (ddC), in treating patients who
had failed or were intolerant of zidovudine (AZT) therapy. In this study, a total of 467
HIV-infected patients were enrolled and randomly assigned to receive either ddI or ddC.
CD4 counts were recorded at study entry and again at 2, 6, 12, and 18-month visits,
and the times to death were also recorded. Therefore, one patient is treated as a cluster.
And the data set can be available in JM package in statistical software R. In this paper,
we include five covariates as main effects in our analysis: CD4 counts, observation time
at which the CD4 cells count was recorded (obstime), drug (ddI = 1, ddC = 0), gender
(male = 1, female = 0), PrevOI (previous opportunistic infection (AIDS diagnosis) at
study entry = 1, no AIDS diagnosis = 0), and AZT (AZT failure = 1, AZT intolerance
= 0). Among of them, only CD4 and obstime are subject-specific covariates, and others
are cluster-level covariates. Let Ti denote the times to death of the ith patient, we
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Table 2: Simulation results of (β01, β02) = (0.5, 1) and φ(.) in Example 3.2
β01 β02 φ(.)

n θ CR BIAS SE SD CP BIAS SE SD CP IABIAS
100 0 20% 0.020 0.298 0.295 0.960 0.053 0.678 0.678 0.960 0.299

50% 0.001 0.352 0.353 0.958 0.075 0.801 0.808 0.944 0.333
0.5 20% 0.023 0.296 0.284 0.967 0.095 0.678 0.694 0.944 0.287

50% 0.008 0.351 0.349 0.959 0.028 0.796 0.818 0.948 0.328
3 20% 0.018 0.298 0.300 0.954 0.090 0.685 0.713 0.941 0.289

50% 0.014 0.353 0.358 0.952 0.086 0.802 0.807 0.954 0.334
200 0 20% 0.011 0.204 0.206 0.954 0.041 0.465 0.452 0.958 0.203

50% 0.016 0.241 0.244 0.947 0.032 0.547 0.529 0.967 0.225
0.5 20% 0.010 0.204 0.200 0.958 0.040 0.463 0.467 0.948 0.196

50% 0.011 0.241 0.240 0.949 0.012 0.547 0.534 0.948 0.226
3 20% 0.008 0.204 0.204 0.949 0.035 0.463 0.465 0.945 0.199

50% 0.015 0.241 0.244 0.948 0.042 0.545 0.551 0.951 0.224
400 0 20% 0.005 0.142 0.138 0.949 0.031 0.322 0.323 0.953 0.139

50% 0.004 0.168 0.163 0.955 -0.007 0.379 0.376 0.948 0.156
0.5 20% 0.003 0.142 0.141 0.960 0.006 0.322 0.332 0.949 0.136

50% 0.003 0.168 0.172 0.943 0.015 0.381 0.383 0.951 0.158
3 20% -0.004 0.142 0.143 0.952 0.021 0.323 0.321 0.955 0.136

50% 0.001 0.168 0.166 0.948 0.020 0.380 0.387 0.956 0.156
800 0 20% -0.001 0.100 0.099 0.954 0.018 0.226 0.229 0.947 0.097

50% 0.005 0.118 0.121 0.959 0.009 0.266 0.256 0.950 0.110
0.5 20% -0.001 0.099 0.104 0.936 0.007 0.226 0.231 0.939 0.095

50% 0.007 0.118 0.120 0.946 -0.008 0.267 0.254 0.961 0.111
3 20% 0.002 0.099 0.099 0.953 0.004 0.225 0.223 0.948 0.097

50% 0.005 0.118 0.116 0.954 0.007 0.267 0.267 0.936 0.109

Notes: BIAS: the estimated biases; SD: sample standard deviation; SE: average standard error estimate;
CP: the 95% empirical coverage probability; IABIAS: the averaged integrated absolute bias; n: sample
size; CR: the right censoring rate.

analyze the data by fitting the following PLAH model

λTi(t|Zik, CD4ik) = λ0(t) + β1obstimeik + β2drugi + β3genderi
+β4prevOIi + β5AZTi + φ(CD4ik),

where Zik = (obstimeik, drugi, genderi, prevOIi, AZTi)
⊤.

Table 3 and Fig 3 present the estimation results in terms of the regression param-
eters in the cases that the degree is taken to be 2 and the number of interior knots is
taken to be 3, 5, and 8. It is clear that the proposed method produces very close esti-
mates in these cases, which indicate that the method is robust to the choice of number
of knots. one can see that the covariate effects of both drug and prevOI are statistically
significant at level 0.05, which means that the ddI group has a higher risk than the ddC
group, thus the ddC group has a little better survival, and patients who had a negative
AIDS diagnosis at study entry have better average survival rates than those who had a
positive diagnosis. These conclusions also were found in Section 3.2 of Guo and Carlin
(2004), where they used the variable Stratum, which is the same as the covariate prevOI
denoted here. In addition, the covariate obstime seems to be also a significant risk factor
and behaves similar to those obtained by Fu et al. (2021). Fig. 3 indicates that the risk
caused by CD4 count decreases as the number of CD4 increases before it reaches around
15. Not surprisingly, CD4 count often is seen as a protective biomarker for preventing
progression to AIDS. It is worthwhile to point out that the effect of CD4 seems to not
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Figure 3: The estimated curves of φ(.) with the number of interior knots being equal to
3 (gray solid line), 5 (red dashed line), 8 (blue dotted line), respectively when analyzing
the HIV data.

be linear, and the log transformation and square root transformation of CD4 are used
for HIV data analysis by Mandal et al. (2019) and Guo and Carlin (2004), respectively.

As pointed out by one reviewer, when the number of interior knots is set to be 3 and
5, the estimated function seems to have a increasing trend after CD4 taking value 20.
In contrast to it, the performance under 8 knots is fairly flat. we compute the maximum
of CD4 in the sample and quantilea at different levels τ , the results are listed in the
Table 4. From it, we can see that the maximum of CD4 in the sample is far away from
the other values and the number of observations around the maximum is almost null.
Therefor, when the number of knots is small, it will bring relatively large separation
between the knots and cause the underfitting in the right tail.

Table 3: Esimation results of regression coefficients under the PHAH model for the HIV
data

q = 3 q = 5 q = 8
Parameter Est SE p-value Est SE p-value Est SE p-value
obstime (β1) -0.0023 0.0001 0.0000 -0.0023 0.0001 0.0000 -0.0023 0.0001 0.0000
drug (β2) 0.0044 0.0021 0.0339 0.0044 0.0021 0.0339 0.0046 0.0021 0.0295
gender (β3) -0.0028 0.0039 0.4634 -0.0030 0.0039 0.4467 -0.0035 0.0040 0.3745
prrvOI (β4) 0.0117 0.0026 0.0000 0.0116 0.0026 0.0000 0.0117 0.0026 0.0000
AZT (β5) 0.0022 0.0032 0.4814 0.0023 0.0032 0.4610 0.0024 0.0032 0.4550

Table 4: Summary of the variable CD4 in the HIV data
Min Q1 Q2 Mean Q3 Max τ = 0.9 τ = 0.95 τ = 0.99 τ = 0.999
0 3.162 5.477 7.023 10.440 24.125 15.205 16.763 19.234 19.847
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5. Conclusion

In this paper, we developed a well-defined estimation method for partially linear
additive hazards model to analyze clustered failure time data. B-splines are used to
approximate the unknown regression function, which significantly reduces the number
of unknown parameters while maintaining adequate modelling flexibility. Simulation
studies show that the proposed method estimates all regression parameters accurately
and efficiently. Specially, the estimation method is robust to the choice of number of
knots, and can been easily implemented using some existing softwares.

Technically, the proposed method can be extended to the scenario where multiple
covariates have nonlinear effects on the conditional hazard function, i.e.,

λTik
(t|Zik,Wik) = λ0(t) + β⊤

0 Zik +

J∑
j=1

φj(Wijk),

where φj(.) are the nonlinear regression functions for the covariate Wijk. However, some
cautions are needed for handing the knots, where the dimension of the covariates induced
by introducing of spline basis functions may be high. In addition, the method presented
here can adapt to other types of survival data, such as current status data.

Topics for future work also include development of goodness-of-fit test and model
diagnostics. For example, how to select the covariates who have nonlinear effects in the
model is important and how to determine the optimal model in terms of determination
of number and locations of knots. Besides, When the working independence assumption
does not hold, such as with the informative cluster size, it is necessary to develop new
inference methodology.

Acknowledgement

The author is deeply grateful to the referee and the editor for their helpful comments
and suggestions. The research was supported by the Young Natural Science Research
Program of Jiangsu University of Science and Technology.

References

Aalen, O., Borgan, O. and Gjessing, H. (2008). Survival and event history analysis: A
process point of view, Springer.

Afzal, A. R., Dong, C. and Lu X. (2017). Estimation of partly linear additive hazards
model with left-truncated and right-censored data. Statistical Modelling, 6, 423-448.

Afzal, A. R., Yang, J. and Lu, X. (2021). Variable selection in partially linear additive
hazards model with grouped covariates and a diverging number of parameters. Com-
putational Statistics, 36, 829-855.

Anders, G. R. and ScheikeT. H. (2012). Coordinate descent methods for the penalized
semiparametric additive hazards model. Journal of Statistical Software, 47, 1-17.

Buckley, J. (1984). Additive and multiplicative models for relative survival rates. Bio-
metrics, 40, 51-62.



Partially linear additive hazards regression for clustered and right censored data 13

Cheng, G., Zhou, L. and Huang, J. Z. (2014). Efficient semiparametric estimation in
generalized partially linear additive models for longitudinal/clustered data.
Bernoulli, 20, 141-163.

Engebretsen, S. and Glad, I. K. (2020). Partially linear monotone methods with auto-
matic variable selection and monotonicity direction discovery. Statistics in Medicine,
39, 3549-3568.

Eriksson, F., Gerds, T. A. and Lesaffre, E. (2014). Unobserved confounder effects in
models for clustered dental failure time data. Statistical Modelling, 6, 549-566.

Fu, L., Yang, Z., Zhou, Y. and Wang, Y. G. (2021). An efficient gehan-type estimation
for the accelerated failure time model with clustered and censored data. Lifetime
Data Analysis, 1-31.

Geerdens, C., Acar, E. and Janssen, P. (2018). Conditional copula models for right-
censored clustered event time data. Biostatistics, 19, 247-262.

Geraci, M. (2019). Modelling and estimation of nonlinear quantile regression with clus-
tered data. Computational Statistics & Data Analysis, 136, 30-46.

Guo, X. and Carlin, B. P. (2004). Separate and joint modeling of longitudinal and event
time data using standard computer packages. The American Statistician, 58, 16-24.

Johnson, L. M. and Strawderman, R. L. (2009). Induced smoothing for the semipara-
metric accelerated failure time model: asymptotics and extensions to clustered data.
Biometrika, 3, 577-590.

Kulich, M. and Lin, D.Y. (2000). Additive hazards regression for case-cohort studies.
Biometrika, 1, 73-87.

Li, H. and Yin, G. (2009). Generalized method of moments estimation for linear regres-
sion with clustered failure time data. Biometrika, 2, 293-306.

Lin, D. Y. and Ying, Z. (1994). Semiparametric analysis of the additive risk model.
Biometrika, 81, 61-71.

Liu, J., Zhang, R., Zhao, W. and Lv, Y. (2016). Variable selection in partially linear
hazard regression for multivariate failure time data. Journal of Nonparametric Statis-
tics, 2, 375-394.

Lu, M. and McMahan, C. S. (2018). A partially linear proportional hazards model for
current status data. Biometrics, 4, 1240-1249.

Mandal, S., Wang, S. and Sinha, S. (2019). Analysis of linear transformation models
with covariate measurement error and interval censoring. Statistics in Medicine, 38,
4642-4655.

Moertel, C., Fleming, T., Macdonald, J., Haller, D., Laurie, J., et al. (1990).
Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma.
The New England Journal of Medicine, 6, 352-358.

Pan, D., Liu, Y. Y. and Wu, Y. S. (2015). Additive hazards regression with random ef-
fects for clustered failure times. Acta Mathematica Sinica, 31, 511-525.

Schumaker, L. (1981). Spline Functions: Basic Theory, New York: Wiley.

Song, X., Wang, L., Ma, S. and Huang, H. (2019). Variable selection for partially linear
proportional hazards model with covariate measurement error. Journal of Nonpara-



14 W. Chen and F. Ren

metric Statistics, 1, 196-220.

Wang, X., Song, Y. and Zhang, S. (2020). An efficient estimation for the parameter in
additive partially linear models with missing covariates. Journal of The Korean Sta-
tistical Society, 49, 779-801.

Yin, G. (2007). Model checking for additive hazards model with multivariate survival
data. Journal of Multivariate Analysis, 98, 1018-1032.

Yin, G. and Cai, J. (2004). Additive hazards model with multivariate failure time data.
Biometrika, 91, 801-818.

Zeng, D. and Cai, J. (2010). Additive transformation models for clustered failure time
data. Lifetime Data Analysis, 3, 333-352.

Zhang, R. and Kwun, C. G. C. (2014). A marginalizable frailty model for correlated
right-censored data. ArXiv Preprint ArXiv:1403.6744.

Zou, Y., Fan, G. and Zhang, R. (2020). Quantile regression and variable selection for
partially linear single-index models with missing censoring indicators. Journal of
Statistical Planning and Inference, 204, 80-95.

Received: August 17, 2022
Revised: October 12, 2022
Accept: October 17, 2022


