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BREGMAN FINITO/MISO FOR NONCONVEX REGULARIZED
FINITE SUM MINIMIZATION WITHOUT LIPSCHITZ GRADIENT

CONTINUITY∗

PUYA LATAFAT† , ANDREAS THEMELIS‡ , MASOUD AHOOKHOSH§ , AND

PANAGIOTIS PATRINOS†

Abstract. We introduce two algorithms for nonconvex regularized finite sum minimization,
where typical Lipschitz differentiability assumptions are relaxed to the notion of relative smoothness.
The first one is a Bregman extension of Finito/MISO [A. Defazio and J. Domke, Proc. Mach. Learn.
Res. (PMLR), 32 (2014), pp. 1125–1133; J. Mairal, SIAM J. Optim., 25 (2015), pp. 829–855], studied
for fully nonconvex problems when the sampling is randomized, or under convexity of the nonsmooth
term when it is essentially cyclic. The second algorithm is a low-memory variant, in the spirit of
SVRG [R. Johnson and T. Zhang, Advances in Neural Information Processing Systems 26, Curran
Associates, Red Hook, NY, 2013, pp. 315–323] and SARAH [L. M. Nguyen et al., Proc. Mach.
Learn. Res. (PMLR), 70 (2017), pp. 2613–2621], that also allows for fully nonconvex formulations.
Our analysis is made remarkably simple by employing a Bregman–Moreau envelope as the Lyapunov
function. In the randomized case, linear convergence is established when the cost function is strongly
convex, yet with no convexity requirements on the individual functions in the sum. For the essentially
cyclic and low-memory variants, global and linear convergence results are established when the cost
function satisfies the Kurdyka– Lojasiewicz property.

Key words. nonsmooth nonconvex optimization, incremental aggregated algorithms, Bregman–
Moreau envelope, KL inequality
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1. Introduction. We consider the following regularized finite sum minimization

(P) minimizex∈Rn φ(x) := 1
N

∑N
i=1 fi(x) + g(x) subject tox ∈ C,

where C denotes the closure of C :=
⋂N
i=1 int domhi for some convex functions hi, i ∈

[N ] := {1, . . . , N}. Our goal in this paper is to study such problems without imposing
convexity assumptions on fi and g, and in a setting where fi are differentiable but
their gradients need not be Lipschitz continuous. Our full setting is formalized in
Assumption I.

To relax the Lipschitz differentiability assumption, we adopt the notion of smooth-
ness relative to a distance-generating function [7], and following [40] we will use the
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Algorithm 1 Bregman Finito/MISO for the regularized finite sum minimization (P).

Require Legendre kernels hi such that fi is Lfi-smooth relative to hi
stepsizes γi ∈ (0,N/Lfi

)

initial point xinit ∈ C :=
⋂N
i=1 int domhi

Initialize table s0 = (s01, . . . , s
0
N ) ∈ RnN of vectors s0i = 1

γi
∇hi(xinit)− 1

N∇fi(x
init)

Rn-vector s̃0 =
∑N
i=1 s

0
i

Repeat for k = 0, 1, . . . until convergence

1: Compute zk ∈ arg minw∈Rn

{
g(w) +

∑N
i=1

1
γi
hi(w)− ⟨s̃k, w⟩

}
2: Select a subset of indices Ik+1 ⊆ [N ] := {1, . . . , N} and update the table sk+1 as

follows:

sk+1
i =

{
1
γi
∇hi(zk)− 1

N∇fi(z
k) if i ∈ Ik+1,

ski otherwise

3: Update the vector s̃k+1 = s̃k +
∑
i∈Ik+1(sk+1

i − ski )

Return zk

terminology of relative smoothness. Despite the lack of Lipschitz differentiability, in
many applications the involved functions satisfy a descent property where the usual
quadratic upper bound is replaced by a Bregman distance (cf. Fact 2.5(i) and Defi-
nition 2.1). Owing to this property, Bregman extensions for many classical schemes
have been proposed [7, 40, 6, 59, 49, 1].

In the setting of finite sum minimization, the incremental aggregated algorithm
PLIAG was proposed recently [70] as a Bregman variant of the incremental aggregated
gradient method [15, 16, 65]. The analysis of PLIAG is limited to the convex case
and requires restrictive assumptions for the Bregman kernel [70, Thm. 1, Assump.
8]. Stochastic mirror descent (SMD) is another relevant algorithm which can tackle
more general stochastic optimization problems. SMD may be viewed as a Bregman
extension of the stochastic (sub)gradient method and has long been studied [46, 61, 11,
45]. More recently, [32] studied SMD for convex and relatively smooth formulations,
and (sub)gradient versions have been analyzed under relative continuity in a convex
setting [39], as well as relative weak convexity [71, 25].

Motivated by these recent works, we propose a Bregman extension of the popular
Finito/MISO algorithm [28, 42] in a fully nonconvex setting and with very general
sampling strategies that will be made precise shortly after. In a nutshell, our analysis
revolves around the fact that, regardless of the index selection strategy, the function
L : Rn × RnN → R defined as

(1.1) L(z, s) := φ(z) +
∑N
i=1 Dĥ∗

i

(
si,∇ĥi(z)

)
,

where ĥ∗i denotes the convex conjugate of ĥi := hi/γi − fi/N, monotonically decreases
along the iterates (zk, sk)k∈N generated by Algorithm 1 (see Assumption I for the
requirements on hi, fi). Our methodology leverages an interpretation of Finito/MISO
as a block-coordinate algorithm that was observed in [37] in the Euclidean setting.
In fact, the analysis is here further simplified after noticing that the smooth function
can be “hidden” in the distance-generating function, resulting in a Lyapunov function
L that can be expressed as a Bregman–Moreau envelope (cf. Lemma 3.2).
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Algorithm 2 Low-memory Bregman Finito/MISO.

Require Legendre kernels hi such that fi is Lfi-smooth relative to hi
stepsizes γi ∈ (0,N/Lfi

)

initial point xinit ∈ C :=
⋂N
i=1 int domhi

Initialize Rn-vector s̃0 =
∑N
i=1

[
1
γi
∇hi(xinit)− 1

N∇fi(x
init)

]
set of selectable indices K0 = ∅ ▷ set to ∅ so as to start with a full update

Repeat for k = 0, 1, . . . until convergence

1: zk ∈ arg minw∈Rn

{
g(w) +

∑N
i=1

1
γi
hi(w)− ⟨s̃k, w⟩

}
2: if Kk = ∅ then ▷ No index left to be sampled: full update

3: Ik+1 = Kk+1 = [N ] ▷ activate all indices and reset the selectable indices

4: z̃k = zk ▷ store the full update zk

5: s̃k+1 =
∑N
i=1

[
1
γi
∇hi(zk)− 1

N

∑N
i=1∇fi(zk)

]
6: else
7: select a nonempty subset Ik+1 ⊆Kk ▷ select among the indices not yet sampled

8: Kk+1 = Kk \Ik+1 ▷ update the set of selectable indices

9: z̃k = z̃k−1

10: s̃k+1 = s̃k +
∑
i∈Ik+1

[(
1
γi
∇hi(zk)− 1

N∇fi(z
k)
)
−
(

1
γi
∇hi(z̃k)− 1

N∇fi(z̃
k)
)]

Return z̃k

We cover a wide range of sampling strategies for the index set Ik+1 at step 2,
which we can summarize into the following two umbrella categories:

Randomized rule: ∃p1, . . . , pN > 0 : Pk
[
i ∈ Ik+1

]
= p ∀k ∈ N, i ∈ [N ].(S1)

Essentially cyclic rule: ∃T > 0 :
⋃T
t=1 I

k+t = [N ] ∀k ∈ N.
(S2)

The randomized setting (S1), in which Pk denotes the probability conditional to
the knowledge at iteration k, covers, for instance, a minibatch strategy of size b.
Another notable case is when each index i is selected at random with probability pi
independently of other indices.

The essentially cyclic rule (S2) is also very general and has been considered by
many authors [62, 60, 33, 24, 67]. Two notable special cases of single index selection
rules complying with (S2) are the cyclic and shuffled cyclic sampling strategies:

Shuffled cyclic rule: Ik+1 =
{
π⌊k/N⌋

(
mod(k,N) + 1

)}
,(Sshuf

2 )
where π0, π1, . . . are permutations of the set of indices [N ] (chosen randomly or de-
terministically). When π⌊k/N⌋ = id one recovers the (plain) cyclic sampling rule

Cyclic rule: Ik+1 = {mod(k,N) + 1}.(Scycl
2 )

We remark that, in the cyclic case, our algorithm generalizes DIAG [44] for smooth
strongly convex problems, which itself may be seen as a cyclic variant of Finito/MISO.

1.1. Low-memory variant. One iteration of Algorithm 1 involves the compu-
tation of zk at step 1 and that of the gradients ∇(hi/γi − fi/N), i ∈ Ik+1, at step 3.
Consequently, the overall complexity of each iteration is independent of the number
N of functions appearing in problem (P), and is instead proportional to the number
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of sampled indices, which the user is allowed to upper bound to any integer between
1 and N . As is the case for all incremental gradient methods, the low iteration cost
comes at the price of having to store in memory a table sk of N many Rn vectors,
which can become problematic when N grows large. Other incremental algorithms
for convex optimization such as IAG [15, 16, 65], IUG [64], SAG [54], and SAGA [27],
can considerably reduce memory allocation from O(nN) to O(n) in applications such
as logistic regression and lasso where the gradients ∇fi can be expressed as scaled
versions of the data vectors. Despite the favorable performance of the Finito/MISO
algorithm on such problems as observed in [27], this memory reduction trick cannot
be employed due to the fact that the vectors si stored in the table depend not only on
the gradients, but also on the vectors ∇hi(zk). Nevertheless, inspired by the popular
stochastic methods SVRG [34, 66] and SARAH [48], by suitably interleaving incre-
mental and full gradient evaluations it is possible to completely waive the need of a
memory table and match the O(n) storage requirement.

In a nutshell, after a full update — which in Algorithm 1 corresponds to selecting
Ik+1 = [N ] — all vectors sk+1

i in the table only depend on variable zk computed
at step 1, until i is sampled again. As long as full gradient updates are frequent
enough so that no index is sampled twice in-between, it thus suffices to keep track of
zk ∈ Rn instead of the table sk ∈ RnN . The variant is detailed in Algorithm 2, in
which Kk ⊆ [N ] keeps track of the indices that have not yet been sampled between
full gradient updates (and is thus reset whenever such full steps occur; cf. step 3).
Vector z̃k ∈ Rn is equal to zk corresponding to the latest full gradient update (cf.
step 4) and acts as a low-memory surrogate of the table sk of Algorithm 1. Similarly
to SVRG and SARAH, this reduction in the storage requirements comes at the cost
of an extra gradient evaluation per sampled index (cf. step 10).

Since full gradient updates correspond to selecting all indices, Algorithm 2 may
be viewed as Algorithm 1 with an essentially cyclic sampling rule of period N , a
claim that will be formally shown in Lemma 4.12. In fact, not only does it naturally
inherit all the convergence results, but its particular sampling strategy also allows us
to waive convexity requirements on g that are necessary for more general essentially
cyclic rules.

1.2. Contributions. As a means to informally summarize the content of the
paper, in Table 1 we synopsize the convergence results of the two algorithms.

1. To the best of our knowledge, this is the first analysis of an incremental
aggregated method in a fully nonconvex setting and without Lipschitz differentia-
bility assumptions. Our analysis, surprisingly simple and yet covering randomized
and essentially cyclic samplings altogether, relies on a sure descent property on the
Bregman–Moreau envelope (cf. Lemma 4.2).

2. We propose a novel low-memory variant of the (Bregman) Finito/MISO al-
gorithm, that in the spirit of SVRG [34, 66] and SARAH [48] alternates between
incremental steps and a full proximal gradient step. It is highly interesting even in
the Euclidean case, as it can accommodate fully nonconvex formulations while main-
taining an O(n) memory requirement.

3. Linear convergence of Algorithm 1 in the randomized case is established when
the cost function φ is strongly convex, yet with no convexity requirement on fi or
g. To the best of our knownledge, this is a novelty even in the Euclidean case, for
all available results are bound to strong convexity of each term fi in the sum; see,
e.g., [28, 42, 44, 37, 50]. This type of assumption has also been considered in [2] for
the case of SVRG. Although in practice it is hardly ever the case that f is strongly
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Table 1
Summary of the convergence results for Algorithm 1 with randomized rule (S1) and essentially

cyclic rule (S2), and for the low-memory variant of Algorithm 2 (LM). Claims are either sure,
almost sure (a.s.), or in expectation (E). Other abbreviations: loc: locally; cvx: convex; str:
strongly; smooth: Lipschitz differentiable; ω: set of limit points; kl1/2: Kurdyka– Lojasiewicz
property with exponent 1/2.

Sampling Requirements (on top of Assumption I) Property Reference

zk

bounded
any φ + δC level bounded sure Lemma 4.2(iv)

φ(zk)
convergent

S1 a.s. Theorem 4.6(ii)
S2 C = Rn; g cvx; hi loc str cvx smooth;

φ level boundeda sure
Theorem 4.9

LM Theorem 4.13

ω(zk)
stationary

S1
either C = Rn

a.s.
Theorem 4.6(iv)

or domhi closed; φ cvx Theorem 4.6(vi)
S2 C = Rn; g cvx; hi loc str cvx smooth;

φ level boundeda sure
Theorem 4.9

LM C = Rn Theorem 4.13

zk

convergent

S1
either C = Rn; φ cvx

a.s. Theorem 4.6(vii)
or Assumption II; φ + δC cvx

level bounded
S2 Assumption III; g cvx

sure
Theorem 4.11(i)

LM Assumption III Theorem 4.14(i)

φ(zk) and
zk linearly
convergent

S1 C = Rn; φ str cvx; hi loc smooth E Theorem 4.7
S2 Assumption III; φ kl1/2; g cvx

sure
Theorem 4.11(iii)

LM Assumption III; φ kl1/2 Theorem 4.14(iii)
a Level boundedness is not necessary if thehi are globally smooth and strongly convex (cf. Theorem 4.9).

convex without each fi also being (strongly) convex, our analysis being agnostic to
the decomposition leads to tighter and more general results.

4. We leverage the Kurdyka– Lojasiewicz (KL) property to establish global (as
apposed to subsequential) convergence as well as linear convergence, for Algorithm 1
with (essentially) cyclic sampling and for the low-memory Algorithm 2.

1.3. Organization. We conclude this section by introducing some notational
conventions. The problem setting is formally described in section 2 together with
a list of related definitions and known facts involving Bregman distances, relative
smoothness, and proximal mapping. Section 3 offers an alternative interpretation
of Algorithm 1 as the block-coordinate Bregman proximal point Algorithm 3, which
majorly simplifies the analysis, addressed in section 4. Some auxiliary results are
deferred to Appendix A. Section 5 applies the proposed algorithms to sparse phase
retrieval problems, and section 6 concludes the paper.

1.4. Notation. The set of real and extended-real numbers are R := (−∞,∞)
and R := R ∪ {∞}, while the positive and strictly positive reals are R+ := [0,∞)
and R++ := (0,∞). With id we indicate the identity function x 7→ x defined on a
suitable space. We denote by ⟨ · , · ⟩ and ∥ · ∥ the standard Euclidean inner product
and the induced norm. For a vector w = (w1, . . . , wr) ∈ R

∑
i ni , wi ∈ Rni is used to

denote its ith block coordinate. intE and bdryE, respectively, denote the interior
and boundary of a set E, and for a sequence (xk)k∈N we write (xk)k∈N ⊆ E to indicate
that xk ∈ E for all k ∈ N. We say that (xk)k∈N converges at Q-linear rate (resp.,
R-linear rate) to a point x if there exists c ∈ (0, 1) such that ∥xk+1 − x∥ ≤ c∥xk − x∥
(resp., ∥xk − x∥ ≤ ρck for some ρ > 0) holds for all k ∈ N.
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We use the notation H : Rn ⇒ Rm to indicate a mapping from each point x ∈ Rn
to a subset H(x) of Rm. The set gphH := {(x, y) ∈ Rn × Rm | y ∈ H(x)} is the
graph of H. We say that H is outer semicontinuous (osc) if gphH is a closed subset
of Rn × Rm, and locally bounded if for every bounded U ⊂ Rn the set

⋃
x∈U H(x) is

bounded.
The domain and epigraph of an extended-real-valued function h : Rn → R are

the sets domh := {x ∈ Rn | h(x) <∞} and epih := {(x, α) ∈ Rn × R | h(x) ≤ α}.
Function h is said to be proper if domh ̸= ∅, and lower semicontinuous (lsc) if
epih is a closed subset of Rn+1. We say that h is level bounded if its α-sublevel
set lev≤α h := {x ∈ Rn | h(x) ≤ α} is bounded for all α ∈ R. The conjugate of h is
defined by h∗(y) := supx∈Rn {⟨y, x⟩ − h(x)}. The indicator function of a set E ⊆ Rn
is denoted by δE , namely, δE(x) = 0 if x ∈ E and ∞ otherwise.

We denote by ∂̂h : Rn ⇒ Rn the regular subdifferential of h, where

v ∈ ∂̂h(x̄) ⇔ lim inf
x̄ ̸=x→x̄

h(x)− h(x̄)− ⟨v, x− x̄⟩
∥x− x̄∥

≥ 0.

A necessary condition for local minimality of x for h is 0 ∈ ∂̂h(x); see [53, Thm. 10.1].
The (limiting) subdifferential of h is ∂h : Rn ⇒ Rn, where v ∈ ∂h(x) iff x ∈ domh and

there exists a sequence (xk, vk)k∈N ⊆ gph ∂̂h such that (xk, h(xk), vk) → (x, h(x), v)
as k →∞. Finally, the set of r times continuously differentiable functions from X to
R is denoted by Cr(X).

2. Problem setting and preliminaries. Throughout this paper, problem (P)
is studied under the following assumptions.

Assumption I (basic requirements). In problem (P),
a1. fi : Rn → R are Lfi-smooth relative to Legendre kernels hi (Definitions 2.2

and 2.4);

a2. g : Rn → R is proper and lsc;

a3. a solution exists: arg min
{
φ(x) | x ∈ C

}
̸= ∅;

a4. for given γi ∈ (0,N/Lfi
), i ∈ [N ], it holds that for any s ∈ Rn

(2.1) T (s) := arg min
w∈Rn

{
g(w) +

∑N
i=1

1
γi
hi(w)− ⟨s, w⟩

}
⊆ C.

As it will become clear in section 3, the subproblem (2.1) is in fact a reformulation
of a (Bregman) proximal mapping. Assumption I.a4 excludes boundary points from
rangeT . This is a standard assumption that usually holds in practice [20, 56], e.g.,
when g is convex or when the intersection of domhi, i ∈ [N ], is an open set.

Definition 2.1 (Bregman distance). For a convex function h : Rn → R that is
continuously differentiable on int domh ̸= ∅, the Bregman distance Dh : Rn×Rn → R
is defined as

(2.2) Dh(x, y) :=

{
h(x)− h(y)− ⟨∇h(y), x− y⟩ if y ∈ int domh,
∞ otherwise.

Function h will be referred to as a distance-generating function.

Definition 2.2 (Legendre kernel). A proper, lsc, and strictly convex function
h : Rn → R with int domh ̸= ∅ and such that h ∈ C1(int domh) is said to be a
Legendre kernel if it is (i) 1-coercive, i.e., such that lim∥x∥→∞ h(x)/∥x∥ = ∞, and (ii)
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essentially smooth, i.e., if ∥∇h(xk)∥ → ∞ for every sequence (xk)k∈N ⊆ int domh
converging to a boundary point of domh.

Fact 2.3. Let h : Rn → R be a Legendre kernel, x ∈ Rn, and y, z ∈ int domh.
Then we have the following:

(i) h∗ ∈ C1(Rn) is strictly convex and ∇h−1 = ∇h∗ [52, Thm. 26.5 and Cor.
13.3.1].

(ii) Dh(x, z) = Dh(x, y) + Dh(y, z) + ⟨x− y,∇h(y)−∇h(z)⟩ [22, Lem. 3.1].

(iii) Dh(y, z) = Dh∗(∇h(z),∇h(y)) [8, Thm. 3.7(v)].

(iv) Dh( · , z) and Dh(z, · ) are level bounded [9, Lem. 7.3(v)–(viii)].

(v) If domh is closed and Dh(xk, yk)→ 0 for some xk ∈ domh and yk ∈ int domh,
then (xk)k∈N converges to a point x iff so does (yk)k∈N [56, Thm. 2.4].

Moreover, for any convex set U⊆ int domh and u, v ∈ U the following hold:
(vi) If h is µh,U-strongly convex on U, then

µh,U
2
∥v − u∥2 ≤ Dh(v, u) ≤ 1

2µh,U
∥∇h(v)−∇h(u)∥2.

(vii) If ∇h is ℓh,U-Lipschitz on U, then

1

2ℓh,U
∥∇h(v)−∇h(u)∥2 ≤ Dh(v, u) ≤ ℓh,U

2
∥v − u∥2.

Definition 2.4 (relative smoothness [7]). We say that a proper, lsc function f :
Rn → R is smooth relative to a Legendre kernel h : Rn → R if dom f ⊇ domh, and
there exists Lf ≥ 0 such that Lfh ± f are convex functions on int domh. We will
simply say that f is Lf -smooth relative to h to make the modulus Lf explicit.

Fact 2.5. Let f : Rn → R be Lf -smooth relative to a Legendre kernel h : Rn → R.
Then, f ∈ C1(int domh) and the following hold:

(i)
∣∣f(y)− f(x)− ⟨∇f(x), y − x⟩

∣∣ ≤ Lf Dh(y, x) for all x, y ∈ int domh.

(ii) −Lf∇2h ⪯ ∇2f ⪯ Lf∇2h on int domh, provided that f, h ∈ C2(int domh).

(iii) If ∇h is Lipschitz continuous with modulus ℓh,U on a convex set U, then so is
∇f with modulus ℓf,U = Lf ℓh,U [1, Prop. 2.5(ii)].

Relative to a Legendre kernel h : Rn → R, the Bregman proximal mapping of ψ
is the set-valued map proxhψ : int domh⇒ Rn given by

proxhψ(x) := arg min
z∈Rn

{ψ(z) + Dh(z, x)},(2.3)

and the corresponding Bregman–Moreau envelope is ψh : Rn → [−∞,∞] defined as

ψh(x) := inf
z∈Rn

{ψ(z) + Dh(z, x)}.(2.4)

Fact 2.6 (regularity properties of proxhψ and ψh [35]). The following hold for a

Legendre kernel h : Rn → R and a proper, lsc, lower bounded function ψ : Rn → R:
(i) proxhψ is locally bounded, compact-valued, and osc on int domh.

(ii) ψh is real-valued and continuous on int domh; in fact, it is locally Lipschitz if
so is ∇h.

Fact 2.7 (relation between ψ and ψh). Let h be a Legendre kernel and ψ : Rn → R
be proper, lsc, and lower bounded on domh. Then, for every x ∈ int domh, y ∈ domh,
and x̄ ∈ proxhψ(x)
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(i) ψh(x)
(def)
= ψ(x̄) + Dh(x̄, x) ≤ ψ(y) + Dh(y, x), and in particular ψh(x) ≤ ψ(x).

(ii) if ψ is convex, then ψh(x) ≤ ψ(y) + Dh(y, x)− Dh(y, x̄) [59, Lem. 3.1].
Moreover, if range proxhψ ⊆ int domh, then the following also hold [1, Prop.3.3]:

(iii) infdomh ψ ≤ inf int domh ψ = inf ψh and arg minψh = arg minint domh ψ.

(iv) ψ + δdomh is level bounded iff so is ψh.

3. A block-coordinate interpretation. By introducing N copies of x, prob-
lem (P) can equivalently be written as

minimize
x=(x1,...,xN )∈RnN

Φ(x) =

F (x)

1
N

∑N
i=1 fi(xi)+

G(x)

1
N

∑N
i=1 g(xi)+ δ∆(x) subject tox ∈ C × · · · × C,

(3.1)

where ∆ :=
{
x = (x1, . . . , xN ) ∈ RnN | x1 = x2 = · · · = xN

}
is the consensus set.

The equivalence between (3.1) and the original problem (P) is formally established
in Lemma A.1. Note that Assumption I.a1 implies that F as in (3.1) is smooth with
respect to the Legendre kernel

(3.2) H : RnN → R defined as H(x) =
∑N
i=1 hi(xi),

making Bregman forward-backward iterations

x+ ∈ arg min{⟨∇F (x), · ⟩+G( · ) + 1
γ DH( · ,x)}

for some stepsize γ > 0 a suitable option to address problem (3.1). In fact, it can be
easily verified that LF = 1

N maxi=1...N Lfi is a smoothness modulus of F relative to H,
indicating that fixed point iterations x← x+ under Assumption I converge (in some
sense to be made precise) to a stationary point of the problem whenever γ ∈ (0, 1/LF ).
Notice that a higher degree of flexibility can be granted by considering an N -tuple
of individual stepsizes Γ = (γ1, . . . , γN ), giving rise to the forward-backward operator

TF,GΓ : RnN ⇒ RnN in the Bregman metric (z,x) 7→
∑N
i=1

1
γi

Dhi
(zi, xi), namely,

(3.3) TF,GΓ (x) := arg min
z∈RnN

{
F (x) + ⟨∇F (x), z − x⟩+G(z) +

∑N
i=1

1
γi

Dhi
(zi, xi)

}
.

This intuition is validated in the next result, which asserts that whenever the stepsizes
γi are selected as in Algorithm 1 the operator TF,GΓ coincides with a proximal mapping

on a suitable Legendre kernel function Ĥ. This observation leads to a much simpler
analysis of Algorithm 1, which will be shown to be a block-coordinate variant of a
Bregman proximal point method.

Lemma 3.1. Suppose that Assumption I.a1 holds and let γi ∈ (0,N/Lfi
) be se-

lected as in Algorithm 1. Then, ĥi := 1
γi
hi − 1

N fi (with the convention ∞−∞ =∞)

is a Legendre kernel with dom ĥi = domhi, i ∈ [N ], and thus so is the function

(3.4) Ĥ : RnN → R defined as Ĥ(x) =
∑N
i=1 ĥi(xi).

Moreover, for any (z,x) ∈ RnN × RnN it holds that

Φ(z) + DĤ(z,x) = F (x) + ⟨∇F (x), z − x⟩+G(z) +
∑N
i=1

1
γi

Dhi
(zi, xi),(3.5)

and in particular the forward-backward operator (3.3) satisfies

TF,GΓ (x) = proxĤΦ (x).(3.6)
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When Assumption I is satisfied, then the following also hold:

(i) DĤ(z,x) ≥
∑N
i=1( 1

γi
− Lfi

N ) Dhi(zi, xi).

(ii) proxĤΦ (x) =
{

(z, · · · , z) | z ∈ T (
∑N
i=1∇ĥi(xi))

}
with T as in (2.1), is a

nonempty and compact subset of C × · · · × C for any x ∈ int domh1 × · · · ×
int domhN .

(iii) If z ∈ proxĤΦ (x), then ∇Ĥ(x)−∇Ĥ(z) ∈ ∂̂Φ(z); the converse also holds when
Φ is convex.

(iv) If ∇hi is ℓhi,Ui
-Lipschitz on a convex set Ui ⊆ int domhi, then ∇ĥi is ℓĥi,Ui

-

Lipschitz on Ui with ℓĥi,Ui
≤

(
1
γi

+
Lfi

N

)
ℓhi,Ui

. If, in addition, fi −
µfi,Ui

2 ∥ · ∥2

is convex on Ui for some µfi,Ui
∈ R, then ℓĥi

≤ ℓhi,Ui

γi
− µfi,Ui

N .

(v) If hi is µhi,Ui-strongly convex on a convex set Ui ⊆ domhi, then ĥi is µĥi,Ui
-

strongly convex on Ui with µĥi,Ui
≥

(
1
γi
− Lfi

N

)
µhi,Ui

.

Proof. The claims on ĥi are shown in [1, Thm. 4.1], and (3.5) and (3.6) then
easily follow.

3.1(i) This is an immediate consenquence of Fact 2.5(i).

3.1(ii) Let x be as in the statement, and observe that x ∈ int dom Ĥ; nonemp-

tyness and compactness of proxĤΦ then follow from Fact 2.6(i). Let now u ∈ proxĤΦ (x)
be fixed, and note that the consensus constraint encoded in Φ ensures that ui = uj
for all i, j ∈ [N ]. Thus,

ui = arg min
w∈Rn

{
Φ(w, . . . , w) + Ĥ(w, . . . , w)− ⟨∇Ĥ(x), (w, . . . , w)⟩

}
= arg min

w∈Rn

{
1
N

∑N
i=1 fi(w) + g(w) +

∑N
i=1

(
ĥi(w)− ⟨∇ĥi(xi), w⟩

)}
= arg min

w∈Rn

{
g(w) +

∑N
i=1

1
γi
hi(w)− ⟨

∑N
i=1∇ĥi(xi), w⟩

}(2.1)
= T

(∑N
i=1∇ĥi(xi)

)
⊆ C,

where the inclusion follows from Assumption I.a4.

3.1(iii) Observe first that necessarily x ∈ int domhi × · · · × int domhN , for
otherwise no such z exists. Moreover, from assertion 3.1(iii) it follows that z also
belongs to such an open set, onto which Ĥ is continuously differentiable. The claim
then follows from the necessary condition for optimality of z in the minimization
problem (2.4) — which is also sufficient when Φ is convex, for so is Φ + DĤ( · ,x) in
this case — having

0 ∈ ∂̂[Φ + DĤ( · ,x)](z) = ∂̂[Φ + Ĥ − ⟨∇Ĥ(x), · ⟩](z) = ∂̂Φ(z) +∇Ĥ(z)−∇Ĥ(x).

The last equality follows from [53, Ex. 8.8(c)], owing to the smoothness of Ĥ at z.

3.1(iv) and 3.1(v) Observe that
(3.7)
N−γiLfi

Nγi
hi ⪯

N−γiLfi
Nγi

hi +

convex

1
N
(Lfihi − fi) = ĥi =

N+γiLfi
Nγi

hi −
convex

1
N
(Lfihi + fi) ⪯

N+γiLfi
Nγi

hi,

where for notational convenience we used the partial ordering “⪯,” defined as α ⪯ β
iff β − α is convex. The claimed moduli ℓĥi,Ui

≤
(

1
γi

+
Lfi

N

)
ℓhi,Ui

and µĥi,Ui
≥(

1
γi
− Lfi

N

)
µhi,Ui

are thus readily inferred. In case fi is µfi,Ui
-strongly convex on Ui,

we may write
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Algorithm 3 Block-coordinate proximal point formulation of Algorithm 1.

Require Legendre kernels hi such that fi is Lfi-smooth relative to hi
stepsizes γi ∈ (0,N/Lfi

)
initial point xinit ∈ ∩Ni=1 int domhi = C

Denote x0 = (xinit, . . . , xinit), ĥj := 1
γi
hj − 1

N fj , Ĥ(x) :=
∑N
i=1 ĥi(xi)

Repeat for k = 0, 1, . . . until convergence

1: uk ∈ arg minw∈RnN

{
Φ(w) + Ĥ(w)− ⟨∇Ĥ(xk),w⟩

}
= arg minw∈RnN {Φ(w)

+ DĤ(w,xk)}
2: Select a subset of indices Jk+1 ⊆ [N ]
3: xk+1

Jk+1 = uk
Jk+1 and xk+1

[N ]\Jk+1 = xk[N ]\Jk+1

ĥi = hi

γi
− µfi,Ui

2N ∥ · ∥
2 − 1

N (

convex

fi −
µfi,Ui

2 ∥ · ∥2) ⪯ hi

γi
− µfi,Ui

2N ∥ · ∥
2

to obtain the tighter bound ℓĥi,Ui
≤ ℓhi,Ui

γi
− µfi,Ui

N .

3.1. Block-coordinate proximal point reformulation of Algorithm 1.
Algorithm 3 presents a block coordinate (BC) proximal point algorithm with the
distance generating function Ĥ. Note that in a departure from most of the existing
literature on BC proximal methods that consider separable nonsmooth terms (see,
e.g., [63, 47, 12, 19, 31]), here the nonsmooth function G in (3.1) is nonseparable.
It is shown in the next lemma that this conceptual algorithm is equivalent to the
Bregman Finito/MISO Algorithm 1.

Lemma 3.2 (equivalence of Algorithms 1 and 3). As long as the same initializa-
tion parameters are chosen in the two algorithms, to any sequence (sk, s̃k, zk,Ik+1)k∈N
generated by Algorithm 1 there corresponds a sequence (xk,uk,Jk+1)k∈N generated
by Algorithm 3 (and vice versa) satisfying the following identities for all k ∈ N and
i ∈ [N ]:

(i) Ik+1 = Jk+1.

(ii) (zk, . . . , zk) = uk.

(iii) ski = 1
γi
∇hi(xki )− 1

N∇fi(x
k
i ) (or, equivalently, xki = ∇ĥ∗i (ski )).

(iv) s̃k =
∑N
i=1∇ĥi(xki ).

(v) φ(zk) = Φ(uk) = ΦĤ(xk)−DĤ(uk,xk).

(vi) ΦĤ(xk) = L(zk, sk), where L is as in (1.1).

Proof. Let the index sets Ik+1 and Jk+1 be chosen identically, k ∈ N. It follows
from Lemma 3.1(ii) that uki = ukj for all k ∈ N and i, j ∈ [N ] with

uki = arg min
w∈Rn

g(w) +
∑N
i=1

1
γi
hi(w)− ⟨

:=vk∑N
i=1∇ĥi(xki ) , w⟩

.(3.8)

We now proceed by induction to show assertions 3.2(ii), 3.2(iii), and 3.2(iv). Note
that the latter amounts to showing that vk as defined in (3.8) coincides with s̃k; by
comparing (3.8) and the expression of zk in step 1, the claimed correspondence of uk

and zk as in assertion 3.2(ii) is then also obtained and, in turn, so is the identity in
3.2(v).
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For k = 0 assertions 3.2(iii) and 3.2(iv) hold because of the initialization of s̃0

in Algorithm 1 and of x0 in Algorithm 3; in turn, as motivated above, the base case
for assertion 3.2(ii) also holds. Suppose now that the three assertions hold for some
k ≥ 0; then,

vk+1 =
∑N
i=1∇ĥi(x

k+1
i ) =

∑
i∈Ik+1

∇ĥi(uki ) + vk −
∑

i∈Ik+1

∇ĥi(xki )

(induction) =
∑

i∈Ik+1

∇ĥi(zk) + s̃k −
∑

i∈Ik+1

ski

=
∑

i∈Ik+1

sk+1
i + s̃k −

∑
i∈Ik+1

ski = s̃k+1,

where the last two equalities are due to steps 2 and 3. Therefore, vk+1 = s̃k+1 and thus
uk+1 = (zk+1, . . . , zk+1). It remains to show that sk+1

i = 1
γi
∇hi(xk+1

i )− 1
N∇fi(x

k+1
i ).

For i ∈ Ik+1 this holds because of the update rule at step 3 and the fact that xk+1
i =

uki = zk owing to step 3. For i /∈ Ik+1 this holds because (xk+1
i , sk+1

i ) = (xki , s
k
i ).

Finally,

ΦĤ(xk)
(def)
= Φ(uk) + DĤ(uk,xk)

3.2(v)

= φ(zk) +

N∑
i=1

Dĥi
(zk, xk

i )
3.2(iii)

= φ(zk) +

N∑
i=1

Dĥi
(zk,∇ĥ∗

i (s
k
i )),

and the last term is L(zk, sk) (cf. Facts 2.3(i) and 2.3(iii)), yielding assertion
3.2(vi).

4. Convergence analysis. The BC interpretation of Algorithm 1 presented in
section 3 plays a crucial role in the proposed methodology, and leads to a remarkably
simple convergence analysis. In fact, many key facts can be established without con-
fining the discussion to a particular sampling strategy. These preliminary results are
presented in the next subsection and will be extensively referred to in the subsequent
subsections that are instead devoted to a specific sampling strategy.

4.1. General sampling results. Unlike classical analyses of BC proximal meth-
ods that employ the cost as a Lyapunov function (see, e.g., [10, sect. 11]), here, the
nonseparability of G precludes this possibility. To address this challenge, we instead
employ the Bregman–Moreau envelope equipped with the distance generating func-
tion Ĥ (see (3.4)). Before showing its Lyapunov-type behavior for Algorithm 3, we
list some of its properties and its relation with the original problem. The proof is a
simple consequence of Facts 2.6(ii) and 2.7 and the fact that Ĥ is a Legendre kernel
with dom Ĥ = domh1 × · · · × domhN (cf. Lemma 3.1).

Lemma 4.1 (connections between φ+ δC and ΦĤ). If Assumption I holds, then

(i) ΦĤ is continuous on dom ΦĤ = int domh1 × · · · × int domhN , in fact, locally
Lipschitz if ∇hi is on int domhi, i ∈ [N ].

(ii) minC φ ≤ infC φ = inf ΦĤ and arg min ΦĤ = {(x⋆, . . . , x⋆) | x⋆ ∈ arg minC φ}.
(iii) ΦĤ is level bounded iff so is φ+ δC .

Lemma 4.2 (sure descent). Suppose that Assumption I holds, and consider the
iterates generated by Algorithm 3. Then, uk = (uk, . . . , uk) for some uk ∈ C and
xk ∈ C×· · ·×C ⊆ int dom Ĥ for every k ∈ N, and the algorithm is thus well defined.
Moreover, the following hold:

(i) ΦĤ(xk+1) ≤ ΦĤ(xk) − DĤ(xk+1,xk) = ΦĤ(xk) −
∑
i∈Jk+1 Dĥi

(uk, xki ) for
every k ∈ N; when Φ is convex (i.e., when so is φ), then the inequality can be

strengthened to ΦĤ(xk+1) ≤ ΦĤ(xk)− DĤ(xk+1,xk)− DĤ(uk,uk+1).
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(ii) (ΦĤ(xk))k∈N monotonically decreases to a finite value φ⋆ ≥ infC φ ≥ minC φ.

(iii) The sequence (DĤ(xk+1,xk))k∈N has finite sum (and in particular vanishes);
the same also holds for (DĤ(uk,uk+1))k∈N when Φ is convex (i.e., when so
is φ).

(iv) If φ+ δC is level bounded, then (xk)k∈N and (uk)k∈N are bounded.

(v) If domhi is closed, a subsequence (xki )k∈K converges to a point x⋆ iff so does

(xk+1
i )k∈K .

(vi) If C = Rn, then ΦĤ is constantly equal to φ⋆ as above on the limit set of
(xk)k∈N.

Proof. It follows from Lemma 3.1(ii) that uk ∈ C holds for every k ∈ N. Notice
that for every i ∈ [N ] and k ∈ N, either xki = xinit ∈ C (by initialization), or there
exists ki ≤ k such that xki = zki ∈ C. It readily follows that xk ∈ C × · · · × C ⊆
int domH = int dom Ĥ, hence, that proxĤΦ (xk) ̸= ∅ for all k ∈ N by Lemma 3.1(ii),
whence comes the well definedness of the algorithm. We now show the numbered
claims.

4.2(i) It follows from Facts 2.7(i) and 2.7(ii) that ΦĤ(xk+1) ≤ Φ(uk)+
DĤ(uk,xk+1) − ck, where ck ≥ 0 can be taken as ck = DĤ(uk,uk+1) when Φ is
convex. Therefore,

ΦĤ(xk+1) ≤ Φ(uk) + DĤ(uk,xk+1)− ck = ΦĤ(xk)− DĤ(uk,xk) + DĤ(uk,xk+1)− ck
2.3(ii)

= ΦĤ(xk)− DĤ(xk+1,xk)− ⟨uk − xk+1,∇Ĥ(xk+1)−∇Ĥ(xk)⟩ − ck.

The claim follows by noting that the inner product is zero:

⟨uk − xk+1,∇Ĥ(xk+1)−∇Ĥ(xk)⟩ =
∑
j∈[N ]

⟨uk − xk+1
j

=uk for j∈Jk+1

,∇ĥj(

=xk
j for j /∈Jk+1

xk+1
j )−∇ĥj(xkj )⟩ = 0.

4.2(ii) Monotonic decrease of (ΦĤ(xk))k∈N follows from assertion 4.2(i). This
ensures that the sequence converges to some value φ⋆, bounded below by minC φ in
light of Lemma 4.1(ii).

4.2(iii) It follows from assertion 4.2(i) that∑
k∈N DĤ(xk+1,xk) ≤ ΦĤ(x0)− inf ΦĤ ≤ ΦĤ(x0)− infC φ <∞

owing to Lemma 4.1(ii) and Assumption I.a3. When φ is convex, the tighter bound
in assertion 4.2 yields the similar claim for (DĤ(uk,uk+1))k∈N.

4.2(iv) It follows from assertion 4.2(ii) that the entire sequence (xk)k∈N is con-

tained in the sublevel set {w | ΦĤ(w) ≤ ΦĤ(x0)}, which is bounded provided that
φ+ δC is level bounded as shown in Lemma 4.1(iii). In turn, boundedness of (uk)k∈N
then follows from local boundedness of TF,GΓ = proxĤΦ ; cf. (3.6) and Fact 2.6(i).

4.2(v) Follows from Fact 2.3(v), since xki ∈ int domhi = int dom ĥi for every k
(with equality owing to Lemma 3.1), and Dĥi

(xk+1
i , xki )→ 0 by assertion 4.2(iii).

4.2(vi) Follows from assertion 4.2(ii) and the continuity of ΦĤ ; see Fact
2.6(ii).

In conclusion of this subsection we provide an overview of the ingredients that are
needed to show that the limit points of the sequence (zk)k∈N generated by Algorithm
1 are stationary for problem (P). As will be shown in Lemma 4.4, these amount
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to the vanishing of the residual DĤ(uk,xk) together with some assumptions on the
distance-generating functions hi. For the iterates of Algorithm 1, this translates to
Dĥ∗

i
(ski ,∇ĥi(zk)) → 0 for all indices i ∈ [N ], indicating that all vectors sk+1

i in the

table should be good estimates of∇ĥi(zk+1) = 1
γi
∇hi(zk+1)− 1

N∇fi(z
k+1), as opposed

to 1
γi
∇hi(zk)− 1

N∇fi(z
k) and for the indices in Ik+1 only (cf. step 3). As a result, we

may view this property as jointly having zk−zk+1 vanish, desirable if any convergence
of (zk)k∈N is expected, and the fact that a consensus is eventually reached among the
sampled blocks.

In line with any result in the literature we are aware of, a complete convergence
analysis for nonconvex problems will ultimately require C = Rn. For convex prob-
lems, that is, when the cost function φ is convex without any among fi and g being
necessarily so, the following requirement will instead suffice to our purposes in the
randomized sampling setting of (S1).

Assumption II (requirements on the distance-generating functions). For i ∈ [N ],
domhi is closed, and whenever int domhi ∋ zk → z ∈ bdry domhi it holds that
Dhi

(z, zk)→ 0.

Remark 4.3.
(i) Assumption II is vacuously satisfied when domhi = Rn, having bdryRn = ∅.

(ii) While Assumption II always holds on R, it may fail in higher dimensions [8, Ex.
7.32].

(iii) For any i ∈ [N ], function hi complies with Assumption II iff so does ĥi, owing

to the inequalities
N−γiLfi

Nγi
Dhi ≤ Dĥi

≤ N+γiLfi

Nγi
Dhi (cf. (3.7)).

Lemma 4.4 (subsequential convergence recipe). Suppose that Assumption I holds,

and consider the iterates generated by Algorithm 1. Let xki = ∇ĥ∗i (ski ) and zk = uk

be the corresponding iterates generated by Algorithm 3 as in Lemma 3.2, and suppose
that

a1. DĤ(uk,xk)→ 0 (or equivalently, Dĥ∗
i
(ski ,∇ĥi(zk))→ 0, i ∈ [N ]).

Then, letting φ⋆ be as in Lemma 4.2(ii), the following hold:
(i) φ(zk) = Φ(uk)→ φ⋆ as k →∞.

(ii) If domhi is closed, i ∈ [N ], then having (a) (zk)k∈K → z, (b) (xki )k∈K → z ∃i ∈
[N ], and (c) (zk+1, xk+1

i )k∈K → (z, z) ∀i ∈ [N ], are all equivalent conditions.
In particular, if (zk)k∈N is bounded (e.g., when φ + δC is level bounded), then
∥zk+1− zk∥ → 0 holds, and the set of its limit points, be it ω, is thus nonempty,
compact, and connected.

(iii) Under Assumption II, φ ≡ φ⋆ on ω (the set of limit points of (zk)k∈N).

(iv) If C = Rn, then every z⋆ ∈ ω is stationary for (P).

Proof. Lemma 4.4.a1 can be written as Dĥi
(zk,∇ĥ∗i (ski )) → 0, i ∈ [N ]. In turn,

by the conjugate identity in Fact 2.3(iii), the equivalent expression in terms of ski and
zk is obtained.

4.4(i) As shown in Lemma 4.2(ii), (ΦĤ(xk))k∈N monotonically decreases to
φ⋆. In turn, Lemma 3.2(v) and Assumption 4.4.a1 then imply that φ(zk) = Φ(uk)
converges to φ⋆.

4.4(ii) The equivalences owe to Fact 2.3(v) and Lemma 4.2(v) (as dom ĥi =
domhi), and imply ∥zk+1 − zk∥ → 0 if (zk)k∈N is bounded. The claim on ω then
follows from [19, Rem. 5].
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4.4(iii) Let z⋆ ∈ ω be fixed, and let (zk)k∈K be a subsequence converging to z⋆.
Assertion 4.4(ii) ensures that (xk)k∈K → z⋆ := (z⋆, . . . , z⋆), hence

φ⋆
4.2(ii)←−−−−
k∈K

ΦĤ(xk)− DĤ(z⋆,xk)
2.7(i)

≤ Φ(z⋆)
lsc

≤ lim inf
k∈K

Φ(uk)
4.4(i)

= φ⋆,

where Assumption II is used in the first limit.

4.4(iv) Suppose that C = Rn and (zk)k∈K → z⋆ for some infinite K ⊆ N and
z⋆ ∈ Rn, so that, by virtue of assertion 4.4(ii), (xk,xk+1)k∈K → (z⋆, z⋆). Since

(zk, . . . , zk) = uk ∈ proxĤΦ (xk), the osc of proxĤΦ (Fact 2.6(i)) ensures that z⋆ ∈
proxĤΦ (z⋆), hence 0 ∈ ∂̂Φ(z⋆) owing to Lemma 3.1(iii). By invoking Lemma A.1(iv)
we conclude that z⋆ is stationary for (P).

4.2. Randomized sampling rule (S1). The analysis for the randomized case
dealt in this section will make use of the following result, known as the Robbins–
Siegmund supermartingale theorem, and stated here in simplified form following [13,
Prop. 2].

Fact 4.5 (supermartingale convergence theorem [51]). For k ∈ N, let ξk and ηk
be random variables, and Fk ⊆ Fk+1 be sets of random variables such that

a1. Fk ⊆ Fk+1;

a2. 0 ≤ ξk, ηk are functions of the random variables in Fk;

a3. E[ ξk+1 | Fk ] ≤ ξk − ηk.
Then, a.s.,

∑
k∈N ηk <∞ and ξk converges to a (nonnegative) random variable.

The sets Fk in the above formulation will represent the information available at
iteration k, and the notation Ek[ · ] will be used as a shorthand for E[ · | Fk ].

Theorem 4.6 (subsequential convergence of Algorithm 1 with randomized rule
(S1)). Suppose that Assumption I holds. Then, denoting pmin = mini pi, the iterates
generated by Algorithm 1 with indices selected according to the randomized rule (S1)
satisfy

(4.1) Ek
[
L(zk+1, sk+1)

]
≤ L(zk, sk)− pmin

N∑
i=1

Dĥ∗
i
(ski ,∇ĥi(zk)) ∀k ∈ N,

where L is as in (1.1) (and satisfies L(zk, sk) = ΦĤ(xk); cf. Lemma 3.2(vi)).
Moreover, letting ω denote the set of limit points of (zk)k∈N, the following assertions
hold a.s.

(i) The sequence (Dĥ∗
i
(ski ,∇ĥi(zk)))k∈N has finite sum (and in particular vanishes),

i ∈ [N ].

(ii) The sequence (φ(zk))k∈N converges to the finite value φ⋆ ≤ φ(xinit) of Lemma
4.2(ii).

(iii) If Assumption II is satisfied, then φ ≡ φ⋆ on ω.

(iv) If C = Rn, then 0 ∈ ∂̂φ(z⋆) for every z⋆ ∈ ω.
When φ is convex (without g or any fi necessarily being so) and domhi is closed,
i ∈ [N ],

(v) (φ(zk))k∈N converges to minC φ with minℓ=0,...k{φ(zℓ)} −minC φ ≤ o(1/k).
(vi) the limit points of (zk)k∈N all belong to arg minC φ.

(vii) if either Assumption II holds and φ + δC is level bounded, or C = Rn, then

(zk)k∈N and (∇ĥ∗i (ski ))k∈N, i ∈ [N ], converge to the same point in arg minC φ.
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Proof. By Lemma 3.2, we will consider the simpler setting of Algorithm 3. We
have

Ek

[
L(zk+1, sk+1)

]3.2(vi)
= Ek

[
ΦĤ(xk+1)

]4.2(i)
≤ Ek

[
ΦĤ(xk)−

∑
i∈Ik+1

Dĥi
(uk, xk

i )
]

= ΦĤ(xk)−
N∑
i=1

pi Dĥi
(uk, xk

i )

≤ ΦĤ(xk)− pmin DĤ(uk,xk)
3.2(vi), 2.3(iii)

= L(zk, sk)− pmin

N∑
i=1

Dĥ∗
i
(ski ,∇ĥi(z

k)),

which is (4.1). We thus infer from Fact 4.5 that (DĤ(uk,xk))k∈N has a.s. finite sum,
and the proof of assertions 4.6(i)–4.6(iv) then follows from Lemma 4.4.

In what follows, suppose that φ is convex and domhi is closed, i ∈ [N ], so that

C =
⋂N
i=1 int domhi =

⋂N
i=1 domhi [14, Prop. 1.3.8], and in particular Dĥi

(y, x) <

∞ holds for any (y, x) ∈ domhi × int domhi ⊇ C × C.
4.6(v) For any x⋆ ∈ arg minC φ, so that x⋆ := (x⋆, . . . , x⋆) ∈ arg minC×···×C Φ

(cf. Lemma A.1(v)), the three-point identity (Fact 2.3(ii)), convexity of Φ (Lemma

A.1(vii)), and the inclusion ∇Ĥ(xk) − ∇Ĥ(uk) ∈ ∂̂Φ(uk) (Lemma 3.1(iii)) give the
bound

DĤ(x⋆,uk) = DĤ(x⋆,xk)− DĤ(uk,xk) + ⟨∇Ĥ(xk)−∇Ĥ(uk),x⋆ − uk⟩
≤ DĤ(x⋆,xk)− DĤ(uk,xk) + Φ(x⋆)− Φ(uk).(4.2)

Next,

Ek

[
N∑
i=1

p−1
i Dĥi

(x⋆,xk+1
i )

]

=

N∑
i=1

p−1
i

( pi

Pk
[
Ik+1 ∋ i

]
Dĥi

(x⋆,uk)+

1−pi

Pk
[
Ik+1 ̸∋ i

]
Dĥi

(x⋆,xk)
)

= DĤ(x⋆,uk)+

N∑
i=1

(1−pi)p−1
i Dĥi

(x⋆,xki )(4.3)

(4.2)≤ DĤ(x⋆,xk)− DĤ(uk,xk)+Φ(x⋆)−Φ(uk)+

N∑
i=1

(p−1
i −1)Dĥi

(x⋆,xki )

Lemmas A.1(v) and 3.2 =

N∑
i=1

p−1
i Dĥi

(x⋆,xki )− DĤ(uk,xk)−
(
φ(zk)−min

C
φ
)
,

where uk = (uk, . . . , uk). From Fact 4.5 we conclude that∑
k∈N

DĤ(uk,xk) <∞ and
∑
k∈N

(
φ(zk)−min

C
φ
)

=: c <∞(4.4)

a.s., and
N∑
i=1

p−1
i Dĥi

(x⋆, xki ) converges a.s. for any x⋆ ∈ arg min
C

φ.(4.5)

It now follows from (4.4) that φ(zk) converges a.s. to minC φ. Moreover, since the
sequence (minℓ=0,...k φ(zℓ))k∈N is nonincreasing, (4.4) also yields the claimed rate.

4.6(vi) Suppose that (zk)k∈K → z⋆. Then, (uk)k∈K → u⋆ for uk = (zk, . . . , zk)

and u⋆ = (z⋆, . . . , z⋆). Notice that z⋆ ∈ C, since zk ∈ C for all k (cf. Lemma 4.2).
We have

min
C

φ
A.1(v)

= min
C×···×C

Φ ≤ Φ(u⋆)
lsc

≤ lim inf
k∈K

Φ(uk)
3.2(v)

= lim inf
k∈K

φ(zk)
4.6(v)

= min
C

φ.(4.6)
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Therefore, u⋆ is a minimizer of Φ on C × · · · ×C, and thus z⋆ is a minimizer of φ on
C by virtue of Lemma A.1(v).

4.6(vii) If φ+δC is level bounded, then by Lemma 4.2(iv) (xk)k∈N and (uk)k∈N
are bounded. Alternatively, if C = Rn, then boundedness of the former sequence fol-
lows from Fact 2.3(iv), (4.5), and Assumption I.a3, and in turn that of the latter from
(4.4). In either case Assumption II holds, as discussed in Remark 4.3(i). Boundedness
of the sequences ensures the existence of K ⊆ N, z⋆ and u⋆ as in the proof of assertion
4.6(vi). The vanishing of DĤ(uk,xk) shown in (4.4) implies through Lemma 4.4(ii)
that (xk)k∈N and (uk)k∈N have the same limit points, and that (xk)k∈K → u⋆. In

turn, (
∑N
i=1 p

−1
i Dĥi

(u⋆, xki ))k∈K → 0 holds by Assumption II. Hence, since the entire

sequence is convergent (by (4.5)) we have (
∑N
i=1 p

−1
i Dĥi

(u⋆, xki ))k∈N → 0, which by

Fact 2.3(v) implies (xki )k∈N → u⋆, i ∈ [N ]. As discussed above, this implies that
(uk)k∈N → u⋆, and the identity uk = (zk, . . . , zk) of Lemma 3.2(ii) yields the claimed
convergence.

In Theorem 4.6(vii) the assumption that φ+ δC is level bounded can be relaxed
by instead requiring that for every v ∈ domhi and α ∈ R, the level set

{w ∈ int domhi | Dhi(v, w) ≤ α}

is bounded, as this would suffice to ensure boundedness of the sequences. In fact,
together with the closed-domain requirement this is a standing assumption in many
works dealing with Bregman distances, specifically those involving Bregman functions
with zone S (S being the interior of the domain); see, e.g., [56].

We conclude this subsection with an analysis of the strongly convex case, in which
linear convergence (in expectation) will be shown. Remarkably, strong convexity of
the cost function φ alone will suffice, without imposing any such requirement on the
individual terms fi or g which, in fact, are even allowed to be nonconvex.

Theorem 4.7 (linear convergence with randomized rule (S1) for strongly con-
vex problems). Consider the iterates of Algorithm 1. Additionally to Assumption I,
suppose that

a1. φ is µφ-strongly convex;

a2. hi has a locally Lipschitz gradient on the whole space Rn, i ∈ [N ] (hence
C = Rn).

Let U be a convex compact set containing xinit and the sequence (zk)k∈N, and let ℓhi,U

be a Lipschitz modulus for ∇hi on U, i ∈ [N ].1 Let x⋆ = arg minφ, φ⋆ = minφ, and

(4.7) cU =
mini pi

1 + 1
µφ

∑
i

( ℓhi,U

γi
− σfi,U

N

) ,
where σfi,U ≥ −Lfiℓhi,U is a (weak) convexity modulus of fi on U.2 Then, for all
k ∈ N

Ek
[
L(zk+1, sk+1)− φ⋆

]
≤ (1− cU)

(
L(zk, sk)− φ⋆

)
, and(4.8)

1U exists by Lemma 4.2(iv), owing to strong convexity and consequent level boundedness of φ.
For i ∈ [N ], a finite ℓhi,U then exists because of Theorem 4.7.a2 and since U ⊂ C (as opposed to

U⊆ C), having C = Rn.
2fi is σfi,U-weakly convex on U if fi−

σfi,U

2
∥ · ∥2 is convex on U, thus coinciding with convexity

(resp., σfi,U-strong convexity) on U when σfi,U ≥ 0 (resp., σfi,U > 0). The lower bound on σfi,U

owes to Fact 2.5(iii).
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E
[µφ

2 ∥z
k − x⋆∥2

]
≤ E

[
φ(zk)− φ⋆

]
≤ (1− cU)k

(
φ(xinit)− φ⋆

)
.(4.9)

Proof. See Appendix B.

In the Euclidean case, hi = 1
2∥ · ∥

2 has a 1-Lipschitz gradient on Rn, and the
results of Theorem 4.7 hold with U = Rn and ℓhi

= 1, improving those of [37,
Cor. 3.3] (limited to the Euclidean case) both by providing tighter rates and by
relaxing (strong) convexity assumptions on individual fi. For the uniform sampling
strategy pi = 1/N the rate 1 − O(1/N) is obtained. The same arguments still hold
for the Bregman extension of Algorithm 1 dealt with in this paper, as long as each
hi is Lipschitz differentiable. This fact is stated in the following corollary, where, by
using the fact that µφ ≥ 1

N

∑N
i=1 σfi under a convexity assumption on g, a simplified

expression for the constant c in (4.7) is obtained. We remark that in the Euclidean
case a variant of SVRG [34] has also been studied in [2] under similar assumptions.

Corollary 4.8 (global linear rate). Additionally to Assumption I, suppose
that

a1. g is convex, and f := 1
N

∑
i fi is µf -strongly convex (yet each fi can be non-

convex);

a2. ∇hi is Lipschitz on Rn (hence so is fi with modulus ℓfi ; cf. Fact 2.5(iii)),
i ∈ [N ].

Set γi = αN/Lfi
with α ∈ (0, 1) and κf :=

1
N

∑
i ℓfi

µf
. Then, (4.8) and (4.9) hold with

cRn ≥
αmini pi

κf
.

4.3. Essentially cyclic sampling rule (S2). The convergence results in this
subsection require convexity of the nonsmooth term g and local strong convexity and
smoothness of hi (as is the case when hi ∈ C2(Rn) with ∇2hi ≻ 0). The proof of
subsequential convergence is an adaptation of that of [37, Thm. 2.8].

Theorem 4.9 (subsequential convergence with essentially cyclic rule
(S2)). Additionally to Assumption I, assume that g is convex, C = Rn, and that
either one of the following assumptions holds:

(A) (either) each hi is strongly convex and Lipschitz differentiable,

(B) (or) φ is level bounded and each hi is locally strongly convex and locally
Lipschitz differentiable.

Then, all the claims in Theorems 4.6(i) to 4.6(iv) hold surely.

Proof. See Appendix B.

We remark that linear convergence in the strongly convex case may be obtained
in a similar fashion to [37, Thm. 2.9] and [12, Thm. 3.9]. This however results in
a rate more conservative than the one obtained for the randomized case (cf. [37,
eq. (2.21)]), which is not consistent with what is observed in practice. Although a
refined analysis not relying on conservative triangle inequalities may be possible, this
direction is not investigated here.

Our next goal is to establish global (and linear) convergence results without
convexity assumptions on fi or their sum. To this end, we leverage the KL prop-
erty [38, 36], which has become the standard tool in the analysis of nonconvex
proximal methods, and most notably holds for the class of semialgebraic functions
[18, 17, 3, 4, 5, 19].

Definition 4.10 (KL property with exponent θ). A proper lsc function q : Rn →
R has the KL property with exponent θ ∈ (0, 1) if for every w̄ ∈ dom ∂q there exist
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ε, η, ϱ > 0 such that ψ′(q(w) − q(w̄)) dist(0, ∂q(w)) ≥ 1 holds for every w satisfying
∥w − w̄∥ < ε and q(w̄) < q(w) < q(w̄) + η, where ψ(s) := ϱs1−θ.

As will be detailed in Theorem 4.11, global convergence is established when the
model M : RnN × RnN → R defined as M(w,x) := Φ(w) + DĤ(w,x) has the KL
property. The next assumption provides easily verifiable requirements in terms of fi,
hi, and φ.

Assumption III (global convergence requirements). In problem (P),
a1. for i ∈ [N ], fi, hi ∈ C2(Rn) (hence C = Rn) with ∇2hi ≻ 0;

a2. φ has the KL property with exponent θ ∈ (0, 1) (e.g., when fi and g are
semialgebraic) and is level bounded.

Theorem 4.11 (global and linear convergence with essentially cyclic rule (S2)).
Suppose that Assumptions I and III are satisfied and that g is convex. Then, the
following holds for the iterates generated by Algorithm 1 with an essentially cyclic
rule (S2):

(i) (zk)k∈N converges to a stationary point z⋆ for φ.

(ii) If θ > 1/2, then there exists c > 0 such that φ(zk) − φ(z⋆) ≤ ck−
1

2θ−1 holds for
all k ∈ N.

(iii) If θ ∈ (0, 1/2], then (zk)k∈N and (φ(zk))k∈N converge at R-linear rate.

Proof. Notice that Assumption III.a1 along with level boundedness of φ in As-
sumption III.a2 ensures that the requirement in Theorem 4.9(B) is satisfied. By

the first claim of Theorem 4.9, the sequence (Dĥ∗
i
(ski ,∇ĥi(zk)))k∈N converges to zero,

and thus we may invoke Lemma 4.4 to conclude that the set ω of limit points of
(zk)k∈N is nonempty, compact, connected, and made of stationary points for φ, with

φ ≡ φ⋆ := limk→∞ ΦĤ(xk) on ω. If ΦĤ(xk) = φ⋆ holds for some k ∈ N, then it
follows from Lemma 4.2(i) that (xk)k∈N is asymptotically constant, and the assertion

holds trivially. In what follows we thus assume that ΦĤ(xk) > φ⋆ holds for all k.
The assumptions together with Lemma A.1(iii) ensure that Φ enjoys the KL property
with exponent θ. Since Ĥ is locally strongly convex, we may invoke [68, Lem. 5.1] to
infer that the function M : RnN ×RnN → R defined as M(w,x) = Φ(w) + DĤ(w,x)
has the KL property with exponent ϑ := max {θ, 1/2} at every point of the com-
pact set Ω := {(z⋆, z⋆) | z⋆ ∈ ω}, where ω := {z = (z, . . . , z) | z ∈ ω}.3 Notice that

ΦĤ(xk) = M(uk,xk) and M(z⋆, z⋆) = ΦĤ(z⋆) = φ⋆ hold for every k ∈ N and z⋆ ∈ ω
(cf. Theorem 4.9), and that ∂M(w,x) = (∂Φ(w)+∇Ĥ(w)−∇Ĥ(x),∇2Ĥ(x)(x−w)).
By Lemma 3.1(iii) we have ∇Ĥ(xk)−∇Ĥ(uk) ∈ ∂Φ(uk), which in turn implies

(4.10) dist
(
0, ∂M(uk,xk)

)
≤ ∥∇2Ĥ(xk)∥∥xk − uk∥ ≤ C∥xk − uk∥,

where C = supk ∥∇2Ĥ(xk)∥ is finite due to boundedness of (xk)k∈N and continuity

of ∇2Ĥ. Let ψ(t) := ρt1−ϑ be a desingularizing function for M on Ω [3, Lem. 1(ii)],
namely, such that

ψ′(M(w,x)− φ⋆
)

dist
(
0, ∂M(w,x)

)
≥ 1

3Consistently with the locality of the KL property and the compactness of ω, the global strong
convexity requirement in [68, Lem. 5.1] can clearly be replaced by local strong convexity. Similarly,
if Φ is a KL function with exponent θ, then it is trivially a KL function with exponent ϑ, thus
complying with the requirement in the reference.
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holds for some ε > 0 and all (w,x) ε-close to Ω such that 0 < M(w,x) − φ⋆ < ε.

Since M(uk,xk) = ΦĤ(xk) ↘ φ⋆ (cf. Lemma 4.2(ii)) and (uk,xk)k∈N is bounded
and accumulates on Ω, by discarding early iterates we may assume that the inequality
above holds for (w,x) = (uk,xk), k ∈ N, which combined with (4.10) results in

(4.11) ρ−1(1− θ)−1
(
ΦĤ(xk)− φ⋆

)θ
= ψ′(ΦĤ(xk)− φ⋆

)−1 ≤ C∥xk − uk∥.

Let ∆k := ψ(ΦĤ(xk) − φ⋆), so that ΦĤ(xk) − φ⋆ = (∆k/ρ)1/1−θ. By concavity of ψ
we have

∆T (ν+1) −∆Tν ≤ ψ′(ΦĤ(xTν)− φ⋆)
(
ΦĤ(xT (ν+1))− ΦĤ(xTν)

)
(4.11)

≤ ΦĤ(xT (ν+1))− ΦĤ(xTν)

C∥uTν − xTν∥
(B.6)

≤ − c∥uTν − xTν∥,(4.12)

for some constant c > 0. As argued in the proof of Theorem 4.9, by suitably shifting,
we conclude that for all k ∈ N

(4.13) ∆k+T −∆k ≤ − c∥uk − xk∥.

The rest of the proof is standard (see [3, Thm. 2]), and is provided for completeness.
Since ∆k ≥ 0, by telescoping we conclude that (∥uk−xk∥)k∈N has finite sum, and since
∥xk+1−xk∥ ≤ ∥uk−xk∥ for all k ∈ N, (xk)k∈N has finite length. Therefore, (xk)k∈N
and (uk)k∈N converge to the same stationary point, be it z⋆, owing to Theorem 4.9.

We now show the convergence rates. It follows from (4.11) that

Cρ
1/1−ϑ(1− ϑ)∥xk − uk∥ ≥ ρϑ/1−ϑ

(
ΦĤ(xk)− φ⋆

)ϑ
= ∆

ϑ/1−ϑ

k .

Combined with (4.13), it results in c1∆
ϑ/1−ϑ

k ≤ ∆k − ∆k+T for some c1 > 0. We
may now invoke Lemma A.3 to infer that, for every t ∈ [T ], (∆t+νT )ν∈N converges

Q-linearly (to 0) if θ ≤ 1/2 (which corresponds to ϑ = 1/2), and ∆t+νT ≤ c3ν
− 1−θ

2θ−1

for some c3 > 0 otherwise (that is, if ϑ = θ > 1/2). Note that the former case implies

that (∆k)k∈N converges R-linearly, whereas the latter implies that ∆k ≤ c4k
− 1−θ

2θ−1

holds for every k and some c4 ≥ c3. Recalling that ΦĤ(xk) − φ⋆ = (∆k/ρ)1/1−θ, the
claimed rates of for the cost function follow from Fact 2.7(i). Similarly, when (∆k)k∈N
converges Q-linearly then so does (∥xk−uk∥)k∈N, as it follows from (4.13), and in turn
so does (∥xk − xk+1∥)k∈N owing to the inequality ∥xk − xk+1∥ ≤ ∥xk − uk∥. These
two facts imply that (xk)k∈N and (uk = (zk, . . . , zk))k∈N are R-linearly convergent.

4.4. Low-memory variant. We now analyze Algorithm 2, which, as shown
next, is simply a particular implementation of Algorithm 1.

Lemma 4.12 (Algorithm 2 as an instance of Algorithm 1). As long as the same
parameters are chosen in Algorithms 1 and 2, to any sequence (s̃klm, z

k
lm,I

k+1
lm )k∈N

generated by Algorithm 2 there corresponds an identical sequence (s̃k, zk,Ik+1)k∈N
generated by Algorithm 1. Moreover, the indices (Ik+1

lm )k∈N comply with the essen-
tially cyclic rule (S2) with T = N .

Proof. See Appendix B.

As a consequence of Lemma 4.12, Algorithm 2 inherits all the convergence results
of subsection 4.3. In addition, here, the convexity requirement of g in Theorems 4.9
and 4.11 can be lifted thanks to the periodic full sampling of the indices.
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Theorem 4.13 (subsequential convergence of Algorithm 2). Suppose that
Assumption I holds and let ω be the limit set of the sequence (z̃k)k∈N generated by
Algorithm 2. Then,

(i) the sequence (φ(z̃k))k∈N converges to the finite value φ⋆ ≤ φ(xinit) as in Lemma
4.2(ii).

(ii) if Assumption II is satisfied, then φ ≡ φ⋆ on ω.

(iii) if C = Rn, then 0 ∈ ∂̂φ(z⋆) for every z⋆ ∈ ω.

Proof. As shown in Lemma 4.12, Algorithm 2 coincides with Algorithm 1 with an
essentially cyclic sampling rule (S2), and there exists an indexing subsequence (kr)r∈N
with 0 < kr+1 − kr ≤ N + 1 such that Kkr = ∅. Then, the z̃-update rule (cf. steps 4
and 9) yields

(4.14) zkr = z̃kr = z̃kr+1 = · · · = z̃kr+1−1 ∀r ∈ N.

We have

ΦĤ(xkr+1) ≤ ΦĤ(xkr )−
∑

i∈Ikr+1

Dĥi
(ukr , xkri ) (Lemma 4.2(i))

= ΦĤ(xkr )− DĤ(ukr ,xkr ) (Ikr+1 = [N ])(4.15)

≤ ΦĤ(xkr−1+1)− DĤ(ukr ,xkr ) (Lemma 4.2(i), kr ≥ kr−1 + 1)

holding for every r ∈ N. By telescoping and by using the fact that ΦĤ ≥ minφ > −∞,
it follows that (DĤ(ukr ,xkr ))r∈N has finite sum and in particular vanishes. Since
zkr = z̃kr ,

φ⋆
4.2(ii)←−−−−
r→∞

ΦĤ(xkr ) = φ(zkr ) + DĤ(ukr ,xkr ) = φ(z̃kr ) + DĤ(ukr ,xkr ),

whence assertion 4.13(i) follows. Assertions 4.13(ii) and 4.13(iv) follow by patterning
the arguments of Lemma 4.4(iii) and 4.4(iv).

In the next theorem global convergence results are provided under Assumption
III in a fully nonconvex setting. Moreover, in the spirit of Theorem 4.11, linear and
sublinear convergence rates are obtained according to the KL exponent.

Theorem 4.14 (global and linear convergence of Algorithm 2). Suppose that
Assumptions I and III hold. Then, the following hold for the iterates generated by
Algorithm 2:

(i) (z̃k)k∈N converges to a stationary point x⋆ for φ.

(ii) If θ > 1/2, then there exists c > 0 such that φ(z̃k) − φ(x⋆) ≤ ck−
1

2θ−1 holds for
all r ∈ N.

(iii) If θ ∈ (0, 1/2], then (z̃k)k∈N and (φ(z̃k))k∈N converge at an R-linear rate.

Proof. Notice that Assumption III entails local strong convexity and Lipschitz
differentiability of each hi. Thus, as discussed in the proof of Theorem 4.9, Ĥ is
µĤ,U-strongly convex on a convex compact set U containing the iterates. Let the

indexing subsequence (kr)r∈N be as in the proof of Theorem 4.13, and observe that
kr ≤ (N + 1)r holds for every r ∈ N. The assertions are established with the same
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arguments as in Theorem 4.11 with the difference that here we examine the generated
iterates at subindices kr. That is, (4.12) is replaced by

∆kr+1
−∆kr ≤

ΦĤ(xkr+1)− ΦĤ(xkr )

C∥ukr − xkr∥
(4.16)

≤
4.2(i)

ΦĤ(xkr+1)− ΦĤ(xkr )

C∥ukr − xkr∥
≤ − CµĤ,U∥u

kr − xkr∥,

where the last inequality follows from (4.15) and Fact 2.3(vi). Subsequently, by pat-
terning the arguments of Theorem 4.11, we obtain that (∆kr )r∈N converges Q-linearly

if θ ≤ 1/2, and ∆kr ≤ cr−
1−θ
2θ−1 for some c > 0, if θ > 1/2. The claims follow by noting

that z̃k = zkr = ukr for all k satisfying kr ≤ k < kr+1 (cf. (4.14)), and arguing as in
the last part of Theorem 4.11.

5. Application to phase retrieval and numerical simulations. In this sec-
tion we study two examples related to the phase retrieval problem, which consists of
recovering a signal based on intensity measurements, and arises in many important
applications including X-ray crystallography, speech processing, electron microscopy,
astronomy, and optical imaging; see, e.g., [21, 41, 55, 58]. Here, we consider phase
retrieval problems with real-valued data, that is, given ai ∈ Rn \ {0} and scalars
bi ∈ R+, i ∈ [N ], the goal is to find x ∈ Rn such that

(5.1) bi ≈ ⟨ai, x⟩2, i ∈ [N ],

accounting for the fact that in real-world applications the recorded intensities are
likely corrupted by noise, and may involve outliers due to measurement errors. To
tackle such problems, we consider the following sparse phase retrieval formulation,

(5.2) minimizex∈Rn
1
N

∑N
i=1 L(bi, ⟨ai, x⟩2) + g(x),

where L is a loss function, and g is a sparsity inducing function (e.g., l1- or l0-norm).
In particular, we study the case of squared loss L(y, z) = 1

4 (y − z)2 [21, 58], and
Poisson loss L(y, z) = z − y log(z) [23, 69], suitable when measurements follow the

Poisson model (bi ≈ Poisson(⟨ai, x⟩2)). Other formulations with l1-loss have been
studied in the literature [29, 26].

5.1. Sparse phase retrieval with squared loss. Consider the nonconvex min-
imization (5.2) with squared loss L(y, z) = 1

4 (y − z)2, and either g = λ∥ · ∥1, λ ≥ 0,
or g = δBκ

, where Bκ is the l0-norm ball of radius κ. This problem is written in the
form of (P) with

(5.3) fi(x) = 1
4 (⟨ai, x⟩2 − bi)2 and hi(x) = 1

4∥x∥
4 + 1

2∥x∥
2.

The next lemma is a simple adaptation from [20] for finding the smoothness mod-
uli of fi relative to the Legendre kernel hi, and for computing the solutions to the
subproblem (2.1). For l1-regularization, the inner subproblems amount to compu-
tations involving the soft-thresholding operator, whereas in the case of l0-norm ball
they amount to computing projections onto Bκ, that is, setting to zero n−κ elements
among the smallest in absolute value.

Lemma 5.1 ([20, Lem. 5.1, Props. 5.1 and 5.2]). Let fi and hi be as in (5.3).
Then, fi is Lfi-smooth relative to hi with Lfi = (3∥ai∥4 + ∥ai∥2|bi|). Moreover,

denoting γ̄ = (
∑N
i=1

1/γi)−1, for any y(s) ∈ proxγ̄g(γ̄s) the operator T as defined in
(2.1) may be computed as follows:
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(i) If g = λ∥ · ∥1, λ ≥ 0, then T (s) = t⋆y(s), where t⋆ is the real positive root of the
equation ∥y(s)∥2t3 + t− 1 = 0.4

(ii) If g = δBκ
(x), then T (s) ∋ −t⋆∥y(s)∥−1y(s), where t⋆ is the real nonnegative

root of t3 + t− ∥y(s)∥ = 0 (see footnote 4).

5.2. Sparse phase retrieval with Poisson loss. We now assume that the
recorded intensities follow the Poisson model (bi ∼ Poisson(⟨ai, x⟩2)). In this setting
we adapt the Poisson loss L(y, z) = z− y log(z) and consider the regularized problem
(5.2) with g = λ∥ · ∥1, λ ≥ 0. This problem may be written in the form of (P) by
setting

(5.4) fi(x) = − bi log(⟨ai, x⟩2) + ⟨ai, x⟩2 and hi(x) = ∥ai∥2∥x∥2− 2bi

n∑
j=1

log(xj).

As shown next, the nonconvex function fi is smooth relative to hi, and the operator
T as in (2.1) is easily computable.

Lemma 5.2. Let fi and hi be as in (5.4), with ai ∈ Rn+\{0} and b = (b1, . . . , bN ) ∈
Rn+ \ {0}. Then, hi is a 2∥ai∥2-strongly convex Legendre kernel (with domhi =
Rn++), and fi is Lfi-smooth relative to hi with Lfi = 1. Moreover, denoting ca =∑N

i=1
4
γi
∥ai∥2 and cb =

∑N
i=1

4
γi
bi, the operator T as defined in (2.1) with g = λ∥ ·∥1,

λ ≥ 0, is given by

(5.5) T (s) = (w1, . . . , wM ) with wj = 1
ca

(
sj − λ+

(
(sj − λ)2 + cacb

)1/2
)
.

Proof. To avoid clutter, we drop the subscripts i. The assertion on h is of im-
mediate verification. Since both f and h are C2 on int domh, once we show that
∇2h − ∇2f ⪰ 0 on int domh the claim will follow. From direct computations,
∇2h(x) = 2∥a∥2 + 2bdiag(x−2

1 , . . . , x−2
n ) and ∇2f(x) = 2

(
1 + b

⟨a,x⟩2
)
aa⊤. In particu-

lar, M(x) := ∇2h(x)−∇2f(x) = 2b
(
diag(x−2

1 , . . . , x−2
n )− 1

⟨a,x⟩2 aa
⊤)+ 2∥a∥2− 2aa⊤.

For every y ∈ Rn it holds that (here ak is the kth coordinate of a)

⟨y,M(x)y⟩ ≥ 2b

n∑
j=1

y2j
x2j
− 2b

⟨a, y⟩2

⟨a, x⟩2
≥ 2b

n∑
j=1

y2j
x2j
− 2b

n∑
j=1

ajxj
⟨a, x⟩

y2j
x2j
≥ 0,

where the first inequality follows by the Cauchy–Schwarz inequality, the second one

from Jensen’s inequality ⟨a, y⟩2 =
∑n
j=1

(
ajxj(

yj
xj

)
)2 ≤ ∑n

i=1 aixi
∑n
j=1 ajxj(

yj
xj

)2,

and the third one from the fact that
∑
i αi

∑
j βj ≥

∑
i αiβi for every αi, βi ≥ 0,

i ∈ [n]. The closed-form solution for the proximal mapping T (s) follows directly from
its first-order optimality conditions.

5.3. Experimental setup. We test Algorithm 1 with sampling rules (S1) (using
single-index selection with uniform sampling), (Sshuf

2 ), (Scycl
2 ), and the low-memory

Algorithm 2 with a cyclic inner loop (corresponding to Ik+1 = [N ] if mod(k,N+1) =
0, and Ik+1 = {mod(k,N + 1)} otherwise). We also consider the full mirror descent
(MD) algorithm for nonconvex problems under the relative smoothness assumption
[20], and SMD, its stochastic extension [25, 32]. The incremental method PLIAG [70]
was not tested, as the problem setting does not comply with the requirements therein;

4Nonnegative real roots of the cubic equation t3 + pt + q = 0 for some p > 0 and q ≤ 0 are given
by Cardano’s formula t⋆ = (c− q/2)1/3 −

(
c + q/2)1/3, where c = (q2/4 + p3/27)1/2; see, e.g., [57].
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cf. [70, Assump. 8]. For the problem of subsection 5.1 with g = δBκ
, the (shuffled)

cyclic rules in Algorithm 1 do not comply with Theorem 4.9 (since g is nonconvex),
but are, however, provided as empirical evidence.

Parameters selection. For Algorithms 1 and 2, we always use γi = 0.99N/Lfi
.

For SMD we used the popular square-summable stepsize γk = α/(Lfk), where k is

the iteration counter, Lf is the smoothness modulus of f = 1/N
∑N
i=1 fi relative to

a suitable Bregman kernel h, and α > 0 is tuned for performance. In particular,
for SMD in the problems described above, Lf =

∑N
i=1

1
NLfi and h(x) = 1

4∥x∥
4 +

1
2∥x∥

2 for simulations related to subsection 5.1, and h(x) = 1
N

∑N
i=1 ∥ai∥2∥x∥2 −

2
N

∑N
i=1 bi

∑n
j=1 log(xj) for those related to subsection 5.2.

Optimality criteria. As a measure of suboptimality, we consider

(5.6) D(zk) := ∥zk − vk∥ for some vk ∈ T (
∑N
i=1∇ĥi(zk)),

since it satisfies

1
N dist(0, ∂̂φ(vk))

A.1(ii)

= infw∈∂̂Φ(vk)
1
N ∥

∑N
i=1 wi∥

3.1(iii)

≤ 1
N

∥∥∑N
i=1

(
∇ĥi(zk)−∇ĥi(vk)

)∥∥(5.7)

≤ 1
N

∑N
i=1 ∥∇ĥi(zk)−∇ĥi(vk)∥ ≤ η∥zk − vk∥ = ηD(zk),

where vk = (v1, . . . , vN ), and η is some positive constant that exists by virtue of
local Lipschitz continuity of hi, Lemma 3.1(iv), and boundedness of the sequences

(zk)k∈N and (vk)k∈N. Although, in a similar fashion to (5.7), dist(0, ∂̂φ(zk)) may be

upper bounded by ∥s̃k −
∑
i∇ĥi(zk)∥ which would be an equally good estimate of

dist(0, ∂̂φ(zk)), this quantity is not readily available in other methods such as SMD.
The introduction of vk, instead, offers a viable algorithm-independent alternative that
only requires access to output variables.5

Simulations. In the first set of simulations we consider 16× 16 gray-scale images
from a digits dataset [30]6 and a QR code dataset [43]. The images are vectorized
resulting in the signal x ∈ Rn with n = 256. The data matrix A ∈ RN×n (ai being
the ith row) with N = nd, d = 5, is generated following the procedure described in
[29, sect. 6.3]. Let M ∈ Rn×n be a normalized Hadamard matrix. We generate d
many independent and identically distributed diagonal sign matrices Si with diago-
nal elements in {−1, 1} selected uniformly at random, and set A = [MS1, . . . ,MSd].
Typically d ≥ 3 is sufficient for near complete recovery on noiseless data. In our sim-
ulations, we corrupted a fraction of the measurements bi = ⟨ai, x⟩2 independently by
setting bi = 0 with probability pc = 1/50. All of the plotted algorithms are initialized
using the initialization scheme described in [29, sect. 3].

For the l1-regularized problem we performed tests with different values of the
regularization parameter λ and found λ = 0.1/N to lead to a visually favorable recovery.
When g = δBκ

, we set κ = 160 and κ = 125 for the digit and QR data, respectively.
The convergence behavior in terms of D(zk) (see (5.6)) is plotted in Figure 1 for a
representative digit 8 image. With the above described initialization, the algorithms
converge to the same cost. In our simulations SMD had the slowest performance,

5Using almost sure nondegeneracy of the fixed points of proxĤ
Φ (cf. [1, Def. 3.5 and Lem. 3.6]

and discussion therein), hence that of T ◦
∑

i ∇hi by Lemma 3.1(ii), it can be deduced that D(zk)
vanishing is necessary for optimality of the limit point(s) of zk. We, however, omit the technical
details, as this behavior is anyway confirmed in the plots.

6https://web.stanford.edu/∼hastie/ElemStatLearn/data.html.
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Fig. 1. Representative convergence plots for problem (5.2) with squared loss on a digits image:
(first row) ℓ1-regularization; (second row) ℓ0-norm ball constraint. The related plots for the QR code
images follow a very similar trend and are therefore omitted.

(a) original image. (b) initialization. (c) tolerance 10−5. (d) tolerance 10−7.

Fig. 2. Image recovery with corrupted measurements for tolerances {10−5, 10−7}. The sparsity
parameters κ = 160 and κ = 125 are used for the digit and the QR code, respectively.

and the cyclic rule (Scycl
2 ) in Algorithm 1 was observed to consistently outperform all

others. The low-memory Algorithm 2 has a comparable performance, almost always
superior to the randomized variant. As is evident from Figure 2, despite corrupted
measurements a reasonably good recovery is achieved with the l0-norm ball. A similar
recovery is observed with l1 regularization.

In the last set of simulations we consider synthetic data. We generate a standard
random Gaussian matrix A ∈ RN×n with n = 200, N ∈ {400, 1000}. The data vector
ai, i ∈ [N ], is set equal to the absolute value of the ith row of A. We also drew a
random vector from N(0, In) and set the signal x equal to its absolute value. We
generated the measurements according to the Poisson model bi ∼ Poisson(⟨ai, x⟩2),
i ∈ [N ], and further corrupted the measurements bi by setting them equal to the near-
est integer to the absolute value of ∥x∥2N(0, 1) with probability pc = 1/10. All methods
were initialized at the same random point. We ran simulations with regularization
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Fig. 3. Representative convergence plots for the l1-regularized problem with Poisson loss.

parameter λ ∈ {0.01/N, 0.1/N, 1/N}. We only report the results for λ = 0.1/N due to
space limitations, nevertheless remarking that for other values similar plots were ob-
served. The results are illustrated in Figure 3. Similarly to the previous experiments,
SMD performed the worst, while the best results are observed for Algorithm 1 with
cyclic rule (Scycl

2 ). The low-memory Algorithm 2 usually outperforms the randomized
variant of Algorithm 1.

6. Conclusions. A Bregman incremental aggregated method was developed
that extends Finito/MISO [28, 42] to non-Lipschitz and nonconvex settings. The
basic algorithm was studied under randomized and essentially cyclic sampling strate-
gies. Furthermore, a variant with O(n) memory requirements is developed that is
novel even in the Euclidean case. A sure descent property established on a Bregman–
Moreau envelope leads to a surprisingly simple convergence analysis. As one partic-
ularly interesting result, in the randomized setting linear convergence is established
under strong convexity of the cost function without requiring convexity of the indi-
vidual functions fi or g. Future research directions include extending the analysis to
the framework of the Douglas–Rachford splitting, momentum-type schemes, as well
as applications to nonconvex distributed asynchronous optimization.

Appendix A. Auxiliary results.

Lemma A.1 (equivalence between (3.1) and (P)). Let Φ and ∆ be as in (3.1).
Then the following hold:

(i) Cost Function: Φ(x) = φ(x) if x = (x, . . . , x), and Φ(x) =∞ otherwise.

D
ow

nl
oa

de
d 

09
/1

6/
22

 to
 1

06
.1

54
.1

60
.1

09
 b

y 
A

nd
re

as
 T

he
m

el
is

 (
an

dr
ea

s.
th

em
el

is
@

ee
s.

ky
us

hu
-u

.a
c.

jp
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BREGMAN FINITO/MISO FOR FINITE SUM MINIMIZATION 2255

(ii) Subdifferential:

∂̂(Φ + δC×···×C)(x) =

{
v = (v1, . . . , vN ) ∈ RnN |

n∑
i=1

vi ∈ ∂̂(φ+ δC)(x)

}

if x = (x, · · · , x) for some x ∈ Rn, and is empty otherwise; the same relation

still holds if the regular subdifferential ∂̂ is replaced by the limiting subdifferential
∂.

(iii) KL property: φ has the KL property at x iff so does Φ at x = (x, . . . , x), in
which case the desingularizing functions are the same up to a positive scaling.

(iv) Stationary points: a point x⋆ is stationary for problem (3.1) iff x⋆ = (x⋆, . . . , x⋆)
for some x⋆ ∈ Rn which is stationary for problem (P).

(v) Minimizers: x⋆ is a (local) minimizer of problem (3.1) iff x⋆ = (x⋆, . . . , x⋆) for
some x⋆ ∈ Rn which is a (local) minimizer for problem (P); in fact, infC×···×C Φ
= infC φ.

(vi) Level boundedness: φ+ δC is level bounded iff so is Φ + δC×···×C .

(vii) Convexity: φ : Rn → R is convex iff so is Φ : RNn → R.

Proof. For notational convenience, up to possibly replacing g with g+ δC we may
assume without loss of generality that C = Rn.

A.1(i) Trivial consequence of the fact that dom Φ ⊆ ∆ (the consensus set; cf.
(3.1)).

A.1(ii) In light of the previous point, having x = (x, . . . , x) for some x ∈ Rn is

necessary for the nonemptiness of ∂̂Φ(x). Let x = (x, . . . , x) and v ∈ ∂̂Φ(x) be fixed.
Then,
(A.1)

0 ≤ lim inf
x ̸=y→x

Φ(y)− Φ(x)− ⟨v,y − x⟩
∥y − x∥

= lim inf
x ̸=y→x

φ(y)− φ(x)− ⟨
∑
i vi, y − x⟩√

N∥y − x∥
,

where the equality comes from the fact that dom Φ ⊆ ∆ together with assertion A.1(i).

This shows that
∑
i vi ∈ ∂̂φ(x). Conversely, let u ∈ ∂̂φ(x) and v ∈ RnN be such that∑

i vi = u. By reading (A.1) from right to left we obtain that v ∈ ∂̂Φ(x). Having
shown the identity of the regular subdifferential, the same claim with the limiting
subdifferential follows by definition.

A.1(iii) It follows from assertion A.1(ii) that

1
N dist(0, ∂φ(x))2 = inf

v∈∂Φ(x)

1
N ∥

∑N
i=1 vi∥2 ≤ inf

v∈∂Φ(x)

∑N
i=1 ∥vi∥2 = dist(0, ∂Φ(x))2.

On the other hand, for any v ∈ ∂φ(x) one has (v, 0, . . . , 0) ∈ ∂Φ(x). Thus implying
that dist(0, ∂Φ(x))2 ≤ infv∈∂φ ∥v∥2 = dist(0, ∂φ(x))2.

A.1(iv)–A.1(vii) Directly follow from assertions A.1(i) and A.1(ii).

Lemma A.2. Let U := U1×· · ·×UN with Ui ⊆ int domhi nonempty and convex,
i ∈ [N ]. Additionally to Assumption I, suppose that g is convex, and hi, i ∈ [N ], is
ℓhi,Ui

-Lipschitz differentiable and µhi,Ui
-strongly convex on Ui. Then, the following

hold for function Ĥ as in (3.4) with γi ∈ (0,N/Lfi
), i ∈ [N ]:

(i) proxĤΦ is Lipschitz continuous on U.
If in addition fi and hi are twice continuously differentiable on Ui, i ∈ [N ], then
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(ii) ΦĤ is continuously differentiable on U with ∇ΦĤ = ∇2Ĥ ◦ (id− proxĤΦ ).

(iii) dist(0, ∂ΦĤ(x)) = ∥∇ΦĤ(x)∥ ≤ CU∥x−z∥ for any x ∈ U, where z = proxĤΦ (x)

and CU = maxi
{(

1 +
γiLfi

N

) ℓhi,Ui

γi

}
.

Proof. It follows from Lemma 3.1(iv) and 3.1(v) that ĥi is ℓĥi,Ui
-Lipschitz dif-

ferentiable and µĥi,Ui
-strongly convex on Ui with ℓĥi,Ui

=
(
1 +

γiLfi

N

) ℓhi,Ui

γi
and

µĥi,Ui
=

(
1 − γiLfi

N

)µhi,Ui

γi
. Then, Ĥ is Lipschitz differentiable and strongly con-

vex on U (with respective moduli ℓĤ,U = maxi ℓĥi,Ui
and µĤ,U = mini µĥi,Ui

), and

therefore so is its conjugate Ĥ∗ on Ĥ(U) (with respective moduli ℓĤ∗,U = µ−1

Ĥ,U
and

µĤ∗,U = ℓ−1

Ĥ,U
). Notice that convexity of g, this being equivalent to that of G, implies

that Ĥ(x) + Φ(x) = G(x) +
∑N
i=1

1
γi
hi(xi) is strongly convex on U. We may thus

invoke [35, Thm. 4.2] and Fact 2.3(i) to conclude that proxĤΦ = ∂(Ĥ + Φ)∗ ◦ ∇Ĥ =

∇(Ĥ + Φ)∗ ◦ ∇Ĥ is the composition of Lipschitz-continuous mappings on U, which
shows assertion A.2(i). In turn, assertion A.2(ii) follows from [35, Cor. 3.1]. Fi-
nally, ℓĤ,U-Lipschitz continuity of ∇Ĥ on U entails the bound ∥∇2Ĥ∥ ≤ ℓĤ,U on U,

leading to assertion A.2(iii).

Lemma A.3. Let (αk)k∈N ⊂ R+ be a sequence, and suppose that there exist c > 0
and δ ∈ [1,∞) such that αδk+1 ≤ c(αk − αk+1) holds for every k ∈ N.

(i) If δ = 1, then (αk)k∈N is Q-linearly convergent (to 0).

(ii) If δ ∈ (1,∞), then there exists c′ > 0 such that αk ≤ c′k−
1

δ−1 holds for all
k ∈ N.

B. Omitted proofs of section 4.

Proof of Theorem 4.7 (linear convergence with randomized rule (S1)).
We will use the equivalent BC reformulation of Algorithm 3, through the identities
shown in Lemma 3.2. We start by observing that xki ∈ {xinit, zk | k ∈ N} ⊆ U holds
for any k ∈ N and i ∈ [N ], as it follows from the x-update at step 3 and the fact that
uki = zk; cf. Lemma 3.2(ii). Let x⋆ = (x⋆, . . . , x⋆) be the unique minimizer of Φ (cf.

Lemma A.1(v)). As shown in (4.2), denoting vk := ∇Ĥ(xk)−∇Ĥ(uk) ∈ ∂̂Φ(uk) we
have

ΦĤ(xk)− min Φ = Φ(uk) + DĤ(uk,xk)− Φ(x⋆)

Fact 2.3(ii) = Φ(uk) + DĤ(x⋆,xk)− DĤ(x⋆,uk) + ⟨vk,x⋆ − uk⟩ − Φ(x⋆)

Lemma A.1(i) = φ(uk) + DĤ(x⋆,xk)− DĤ(x⋆,uk) + ⟨
∑N
i=1 v

k
i , x

⋆ − uk⟩ − φ(x⋆)

Lemma A.1(ii) ≤ DĤ(x⋆,xk)− DĤ(x⋆,uk)− µφ

2 ∥u
k − x⋆∥2

Fact 2.3(ii) = DĤ(uk,xk) + ⟨∇Ĥ(uk)−∇Ĥ(xk),x⋆ − uk⟩ − µφ

2 ∥u
k − x⋆∥2

= DĤ(uk,xk)+
∑N
i=1⟨∇ĥi(uk)−∇ĥi(xki ), x⋆−uk⟩−µφ

2 ∥u
k−x⋆∥2,(B.1)

where the inequality follows from strong convexity of φ. For any εi > 0, i ∈ [N ], one
has

⟨∇ĥi(uk)−∇ĥi(xki ), x⋆ − uk⟩ ≤ εi
2 ∥x

⋆ − uk∥2 + 1
2εi
∥∇ĥi(uk)−∇ĥi(xki )∥2.

D
ow

nl
oa

de
d 

09
/1

6/
22

 to
 1

06
.1

54
.1

60
.1

09
 b

y 
A

nd
re

as
 T

he
m

el
is

 (
an

dr
ea

s.
th

em
el

is
@

ee
s.

ky
us

hu
-u

.a
c.

jp
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BREGMAN FINITO/MISO FOR FINITE SUM MINIMIZATION 2257

Plugged into (B.1) with εi > 0 such that
∑N
i=1 εi = µφ, so as to cancel the square

norm therein,

ΦĤ(xk)− min Φ ≤ DĤ(uk,xk) +
∑N
i=1

1
2εi
∥∇ĥi(uk)−∇ĥi(xki )∥2

Fact 2.3(vii) ≤ DĤ(uk,xk) +
∑N
i=1

ℓĥi,U

εi
Dĥi

(uk, xki )

=
∑N
i=1

(
1 +

ℓĥi,U

εi

)
Dĥi

(uk, xki ),

where ℓĥi,U
is a Lipschitz constant for ∇ĥi on U as in Lemma 3.1(iv). By choosing

εi = ℓĥi,U/κ with κ :=

∑
j ℓĥj ,U

µφ
(which satisfies

∑N
i=1 εi = µφ), we obtain

ΦĤ(xk)− min Φ ≤ (1 + κ)
∑N
i=1 Dĥi

(uk, xki ) = (1 + κ) DĤ(uk,xk).

Combining this with (4.1) (recall the equivalences in Lemma 3.2) yields

Ek
[
ΦĤ(xk+1)−min Φ

]
≤

(
1− pmin

1+κ

)(
ΦĤ(xk)−min Φ

)
= (1−cU)

(
ΦĤ(xk)−min Φ

)
,

where cU as in the statement is obtained by using the estimates of Lemma 3.1(iv)

for the moduli ℓĥi,U
appearing in the constant κ (since ĥi = hi/γi − fi/N and ℓfi,U :=

ℓhi,ULfi is a Lipschitz modulus for ∇fi on U by Fact 2.5(iii), one has σfi,U ≥ −ℓfi,U
and ℓĥi,U

≤ ℓhi,U/γi−σfi,U/N). This concludes the proof of (4.8). In turn, (4.9) follows

by taking unconditional expectation and using the fact that φ(zk) = Φ(uk) ≤ ΦĤ(xk),
owing to Lemma 3.2(v) and Fact 2.7(i).

Proof of Theorem 4.9. (subsequential convergence with essentially cyclic rule
(S2)). We use the simpler setting of Algorithm 3 owing to the equivalence between
the algorithms shown in Lemma 3.2. Note that if φ is level bounded, then by Lemma
4.2(iv) a bounded convex set U exists that contains (xk)k∈N and (uk)k∈N. Local
Lipschitz differentiability and local strong convexity thus imply through Lemmas
3.1(iv) and 3.1(v) that Ĥ is µĤ,U-strongly convex and ℓĤ,U-Lipschitz differentiable
on U for some constants ℓĤ,U ≥ µĤ,U > 0. If, instead, those properties hold globally,

then the same claims can hold with U = RnN . Therefore, since g is assumed to
be convex, either one among Theorems 4.9(A) and (B) is enough to invoke Lemma

A.2(i), implying that proxĤΦ is λ-Lipschitz continuous on U for some λ > 0.
Since all indices are updated at least once every T iterations, one has that

tν(i) := min {t ∈ [T ] | i is sampled at iteration νT + t− 1}

is well defined for each index i ∈ [N ] and ν ∈ N. In other words, since i is sampled at
iteration νT + tν(i) − 1 and not in any one between νT and νT + tν(i) − 2, it holds
that

xνTi = xνT+1
i = · · · = x

νT+tν(i)−1
i and x

νT+tν(i)
i = uνT+tν(i)−1 ∀i ∈ [N ], ν ∈ N,

(B.2)
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recalling uk = (uk, . . . , uk). We now proceed to establish a descent inequality for ΦĤ

holding every interval of T iterations. First,

ΦĤ(xT (ν+1))− ΦĤ(xνT ) =
∑T
τ=1

(
ΦĤ(xνT+τ )− ΦĤ(xνT+τ−1)

)
4.2(i)

≤−
∑T
τ=1 DĤ(xνT+τ ,xνT+τ−1)

≤ −DĤ(xνT+t,xνT+t−1)
2.3

≤ − µĤ,U

2 ∥x
νT+t − xνT+t−1∥2(B.3)

holds for all t ∈ [T ]. Next, for every i ∈ [N ] it holds that

∥uνT+tν(i)−1 − uνT ∥ = 1√
N
∥uνT+tν(i)−1 − uνT ∥ ≤ λ√

N
∥xνT+tν(i)−1 − xνT ∥

≤ λ√
N

∑tν(i)−1
τ=1 ∥xνT+τ − xνT+τ−1∥(B.4)

(B.3)

≤ λT√
N

√
2

µĤ,U

(
ΦĤ(xνT )− ΦĤ(xT (ν+1))

)
,

where the first inequality uses the λ-Lipschitz continuity of proxĤΦ , the second one
the triangular inequality, and the last one the fact that tν(i) ≤ T . For all i ∈ [N ], it
follows from Fact 2.3(vii) and the triangular inequality that

∥xνTi − uνT ∥ ≤ ∥xνTi − uνT+tν(i)−1∥+ ∥uνT+tν(i)−1 − uνT ∥

(B.2) = ∥xνT+tν(i)−1
i − xνT+tν(i)

i ∥+ ∥uνT+tν(i)−1 − uνT ∥

(B.3) (B.4) ≤
√

2
µĤ,U

(
1 + λT√

N

)√
ΦĤ(xνT )− ΦĤ(xT (ν+1)).(B.5)

By squaring and summing over i ∈ [N ] we obtain

(B.6) ΦĤ(xT (ν+1))− ΦĤ(xνT ) ≤ − µĤ,U

2(1+λT/
√
N )2
∥xνT − uνT ∥2.

Since by (S2) in any interval of length T every index is updated at least once, by
suitably shifting, for every t ∈ [T ] the same holds for the sequences (xνT+t)ν∈N and
(uνT+t)ν∈N. Thus,

ΦĤ(xk+T )− ΦĤ(xk) ≤ − µĤ,U

2(1+λT/
√
N )2
∥xk − uk∥2(B.7)

Fact 2.3(vii) ≤ − µĤ,U

LĤ,U(1+λT/
√
N )2

DĤ(uk,xk) ∀k ∈ N.

By telescoping the inequality and using the fact that the envelope is lower bounded
(Lemma 4.1(ii) and Assumption I.a3), all the assertions follow from Lemma 4.4.

Proof of Lemma 4.12 (Algorithm 2 as an instance of Algorithm 1). Note that,

in Algorithm 1,
∑N
i=1 s

0
i = s̃0. By induction, suppose that

∑N
i=1 s

k
i = s̃k for some

k ≥ 0. Then,
(B.8)

s̃k+1 = s̃k +
∑
i∈Ik+1(sk+1

i − ski ) =
∑N
i=1 s

k
i +

∑
i∈Ik+1(sk+1

i − ski ) =
∑N
i=1 s

k+1
i ,

where the first equality follows by step 3, the second one from the induction hypothesis,
and the last one from the fact that sk+1

i = ski for i /∈ Ik+1 as in step 3.
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In what follows, let Nfull :=
{
k |Kk = ∅

}
, and observe that k ∈ Nfull iff the if

statement at step 2 is true. In particular, it follows from step 3 that

(B.9) Nfull ⊆
{
k | Ik+1

lm = [N ]
}
.

We now proceed by induction on k to establish that (zklm)k∈N and (s̃klm)k∈N are se-
quences generated by Algorithm 1 with index sets being chosen as

(B.10) Ik+1 := Ik+1
lm ∀k ∈ N.

The claim is true for k = 0; suppose it holds up to iteration k ≥ 0. We consider two
cases:

Case 1: k ∈Nfull. We have

(B.11) s̃k+1
lm =

∑N
i=1∇ĥi(zklm) =

∑N
i=1∇ĥi(zk) =

∑N
i=1 s

k+1
i = s̃k+1,

where the first equality follows by step 5, the second one by induction, the third one
by the fact that Ik+1 = Ik+1

lm = [N ] (cf. (B.9) and (B.10)), and the last one from
(B.8). It follows that the minimization problems defining zk+1 and zk+1

lm (at step 1
of Algorithm 1 and step 1 of Algorithm 2, respectively) coincide, thus ensuring that
zk+1 = zk+1

lm is a feasible update for Algorithm 1.
Case 2: k /∈Nfull. Let t(k) := max {t ≤ k | t ∈Nfull} be the last iteration before k

at which the condition at step 2 holds, so that, according to steps 4 and 9, z̃klm = z
t(k)
lm .

We have

s̃k+1
lm = s̃klm +

∑
i∈Ik+1

lm

[
∇ĥi(zklm)−∇ĥi(z̃klm)

]
(step 10)

= s̃k +
∑

i∈Ik+1

[
∇ĥi(zk)−∇ĥi(zt(k))

]
(induction and (B.10))

= s̃k +
∑

i∈Ik+1

[
sk+1
i − st(k)+1

i

]
(step 3, (B.9), and (B.10)),(B.12)

where (B.9) was used to infer that s
t(k)+1
i = ∇ĥi(zt(k)) for all i ∈ [N ] (hence for all

i ∈ Ik+1). To conclude, note that the selection rule for Ik+1
lm (cf. steps 7 and 8)

ensures through (B.10) that the index sets It(k)+1,It(k)+2, . . . ,Ik+1 are all pairwise

disjoint, hence that s
t(k)
i = s

t(k)+1
i = · · · = ski for all i ∈ Ik+1, as is apparent from

step 3. We may thus replace s
t(k)+1
i with ski in (B.12) to obtain the s̃-update of step

3, and conclude that s̃k+1
lm = s̃k+1. As discussed in the last part of Case 1, this in turn

shows that zk+1 = zk+1
lm is a feasible update for Algorithm 1.
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