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Abstract

Lake eutrophication is associated with cyanobacterial blooms. The pennate

diatom Nitzschia palea (N. palea) inhibits the growth of the cyanobacterium

Microcystis aeruginosa (M. aeruginosa); therefore, increasing the relative abun-

dance of N. palea may contribute to the inhibition of Microcystis blooms. Sev-

eral studies have demonstrated that blue light irradiation promotes diatom

growth and inhibits cyanobacterial growth. In this study, we evaluated the

effects of blue light irradiation on N. palea and M. aeruginosa abundance.

Monocultures and co-cultures of N. palea and M. aeruginosa were exposed to

blue light and fluorescent light at 32 μmol photons m�2 s�1. The relative abun-

dance of N. palea under fluorescent light decreased gradually, whereas the

abundance under blue light was relatively higher (approximately 74% and 98%

under fluorescent light and blue light, respectively, at the end of the experi-

ment). The inhibition efficiency of blue light on the growth rate of

M. aeruginosa was related to the light intensity. The optimal light intensity

was considered 20 μmol photons m�2 s�1 based on the inhibition efficiency of

100%. Blue light irradiation can be used to increase the abundance of N. palea

to control Microcystis blooms.

Practitioner Points

• The effects of blue light irradiation on N. palea abundance was discussed.

• Monocultures and co-cultures of N. palea and M. aeruginosa were exposed

to blue light and to fluorescent light.

• The relative abundance of N. palea increased upon irradiation with blue

light in co-culture with M. aeruginosa.
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INTRODUCTION

Lake eutrophication is one of the most serious environ-
mental problems worldwide (Bhagowati &
Ahamad, 2019) and is associated with the occurrence of
water blooms (O'Neil et al., 2012). The increase in atmo-
spheric CO2 gas concentration promotes the growth of
the cyanobacterium Microcystis aeruginosa (Ma
et al., 2019). Consequently, the occurrence of water
blooms is expected to increase worldwide due to global
warming. The negative impacts of water blooms on vari-
ous organisms are well known. For example, phytoplank-
ton diversity decreases during cyanobacterial blooms
(Niu et al., 2011; Toporowska & Pawlik-
Skowro�nska, 2014) as it is inversely related to
cyanobacterial density (Bockwoldt et al., 2017).

Nitzschia palea is a widely distributed pennate diatom
(Kim Tiam et al., 2018), which is detected with
M. aeruginosa from lake water samples in several envi-
ronments (Haroon et al., 2020; Romo & Miracle, 1994);
we confirmed that it coexists with Microcystis spp. in res-
ervoirs. Diatoms are much higher food quality for zoo-
plankton than cyanobacteria (Brett & Muller-
Navarra, 1997; Gulati & Demott, 1997; Fujibayashi
et al., 2021). Furthermore, N. palea can destroy Micro-
cystis colonies (Hao et al., 2021). Therefore, artificially
promoting the growth of N. palea may represent an effec-
tive strategy for inhibiting Microcystis blooms.

Optimal growth conditions vary among algae.
Paerl (2014) reported that the optimal temperature for
cyanobacterial growth is relatively higher than that for
eukaryotic plankton, such as diatoms and green algae.
For example, the growth rate of M. aeruginosa increases
significantly with increasing temperature at 15–30�C
(Coles & Jones, 2000), whereas the pennate diatom Syn-
edra sp. attains the highest growth rate at 25�C (Li
et al., 2017). The maximum cell yield of N. palea
decreases at 30�C (Watanabe et al., 2020). However, it is
difficult to control environmental factors such as temper-
ature to increase the abundance of N. palea.

The wavelength of light affects the physiological char-
acteristics of algae. Irradiation with blue light has been
shown to promote diatom growth (Holdsworth, 1985; Li
et al., 2020; Shikata et al., 2009), whereas it adversely
affects the growth of various cyanobacteria (Wyman &
Fay, 1986), including M. aeruginosa (Khan et al., 2016;
Tan et al., 2020), Pseudanabaena mucicola (Khatoon
et al., 2018), Synechocystis PCC6803 (Bland &
Angenent, 2016), Cyanobacterium aponinum (Meng
et al., 2018), and Spirulina platensis (Chen et al., 2010;
Wang et al., 2007). Luimstra et al. (2018, 2019) reported
that growth is considerably reduced in the
phycobilisome-containing cyanobacterium Synechocystis

sp. upon absorbing blue light owing to phycobilisomes.
Since the introduction of blue light irradiation in lakes is
relatively easy, it may be used to increase the abundance
of N. palea.

In this study, we focused on the effects of blue light
irradiation on N. palea abundance. Blue light irradiation
may be an effective measure against water bloom in
small lakes where installing light-emitting diodes
(LEDs) is easier due to the small surface area. Monocul-
tures and co-cultures of N. palea and M. aeruginosa
were exposed to blue light and to fluorescent light as a
control.

MATERIAL AND METHODS

Algae cultivation

M. aeruginosa NIES-102 was obtained from the National
Institute for Environmental Studies (NIES), Ibaraki,
Japan. N. palea was isolated from a water bloom at
Fujinohira dam, Saga Prefecture, Japan, in 2015
(Watanabe et al., 2019). N. palea was identified via
electron microscopy. Both species were cultivated in a
WC medium (Guillard & Lorenzen, 1972) containing
11 mg Si L�1 at pH 8.0, as described by Amano
et al. (2012), which was used in all experiments. Cultures
were incubated at 25�C and exposed to 32 μmol photons
m�2 s�1 and a light–dark cycle of 12:12 h, and shaken
once daily.

Effects of blue light irradiation on
monocultures of M. aeruginosa and
N. palea

M. aeruginosa and N. palea were cultured individually in
150 mL medium in a 300 mL Erlenmeyer flask, with an
initial cell density of 4000 cells mL�1 for each species.
The cultures were irradiated using a 3 W blue LED
(Kashinoki Sogyo Co. Ltd., Tokyo, Japan) and fluorescent
light (control) at 32 μmol photons m�2 s�1, which has
not been specifically assessed in previous studies (Tan
et al., 2020; Watanabe et al., 2019; Wyman & Fay, 1986).
The light–dark cycle was 12:12 h. This experiment was
performed in triplicate at 25�C until the stationary
growth phase was attained. Sampling was performed
every 2 or 3 days to count cell density. At each sampling
time, 1 mL of culture was collected twice from each flask.
N. palea was separated from the flask bottom via vigorous
manual shaking and pipetting and collected using a ster-
ilized glass pipette. M. aeruginosa was collected without
vigorous shaking.
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Effects of blue light irradiation on co-
cultures of M. aeruginosa and N. palea

M. aeruginosa and N. palea were cultured together in
150 mL medium in a 300 mL Erlenmeyer flask. The ini-
tial cell density was 4000 cells mL�1 for each species. The
co-culture was irradiated using a blue LED or fluorescent
light in triplicate under the same conditions as described
in the monoculture experiment. The sampling was per-
formed as mentioned above.

Analysis of growth rate

Cell density was evaluated every 2 or 3 days using optical
plastic plankton counters (Matsunami Glass Industry,
Osaka, Japan) and a microscope (BH2-RFCA; Olympus,
Tokyo, Japan). The specific growth rate in each flask was
determined based on the cell density during the exponen-
tial growth phase using equation 1, where μ represents
the specific growth rate (day�1), and C1 and C2 represent
the cell density (cells mL�1) of M. aeruginosa and
N. palea at the culture times of t1 and t2 (day),
respectively.

μ¼ 1= t2� t1ð Þ lnC2=C1 ð1Þ

The growth rate was determined from the average of
growth rates in three flasks of the same treatment
system.

The relative abundance of N. palea under fluorescent
light and blue light was evaluated using equation
(2) based on the cell number as described by Chellappa
et al. (2009).

Relative abundance (%) = cell density of N. palea
(cells mL�1)/cell density of N. palea + M. aeruginosa
(cells mL�1) (2).

Statistical analysis

A Student's t test was performed to compare the differ-
ences in the specific growth rate of the monoculture
between fluorescent light and blue light. The effects of
light quality, presence of M. aeruginosa, and their interac-
tion effects on the growth rate of N. palea in co-culture
were analyzed via two-way analysis of variance
(ANOVA).

RESULTS

Effects of blue light irradiation on
monocultures of M. aeruginosa and
N. palea

M. aeruginosa showed growth under fluorescent light
until the end of the experiment and the growth rate was
0.33 day�1, whereas it showed minimal growth under
blue light. Exponential growth under blue light was
observed up to day 8 (Figure 1) and the growth rate was
0.11 day�1, which was significantly lower than that
obtained under fluorescent light (p < 0.01). N. palea
showed growth under both light conditions. The specific
growth rate for N. palea under fluorescent light
(0.62 day�1) was higher than that under blue light
(0.36 day�1) (p < 0.01). No significant difference was
observed in the maximum cell yield of N. palea between
fluorescent light and blue light (p > 0.05).

FIGURE 1 Change in cell density of

monocultures of Microcystis aeruginosa and

Nitzschia palea cultured under fluorescent light

or blue light irradiation. Error bars represent

standard deviation of triplicate
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Effects of blue light irradiation on co-
cultures of M. aeruginosa and N. palea

The growth of M. aeruginosa in co-culture with N. palea
was similar to that of the monoculture (Figure 2); the
growth rate was 0.26 day�1 and 0.30 day�1 under fluores-
cent light and blue light, respectively. N. palea reached
the stationary growth phase by day 14 under both light
conditions, and the growth rate was 0.60 day�1 and
0.36 day�1 under fluorescent light and blue light, respec-
tively. Two-way ANOVA showed that the presence of
M. aeruginosa and light conditions had no significant
interaction with the specific growth rate of N. palea. The
relative abundance of N. palea under fluorescent light
gradually decreased (Figure 3). N. palea had a relatively
higher abundance under blue light, and there was a

significant difference between the two light conditions on
day 14 (p < 0.01).

DISCUSSION

Blue light irradiation has been shown to promote diatom
growth and reduce the growth of cyanobacteria such as
M. aeruginosa. Therefore, it was hypothesized that blue
light irradiation can reduce the occurrence of Microcystis
blooms. The relative abundance of N. palea increased
upon irradiation with blue light in co-culture with
M. aeruginosa in this study.

The growth curves of M. aeruginosa were significantly
different under fluorescent and blue light conditions. The
specific growth rate of M. aeruginosa under fluorescent

FIGURE 2 Change in cell density of

Microcystis aeruginosa and Nitzschia palea in co-

culture under fluorescent light or blue light

irradiation. Error bars represent standard

deviation of triplicate

FIGURE 3 The relative abundance of

Nitzschia palea in co-culture with M. aeruginosa.

Error bars represent standard deviation of

triplicate
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light (0.33 day�1) was similar to that reported by Ohkubo
et al. (1991) obtained from the same strain cultivated
under similar conditions (0.32 day�1). However, the
growth rate obtained using blue light in this study
(0.11 day�1) was different from that reported in a previ-
ous study (0.00 day�1) (Watanabe et al., 2019). This dif-
ference may be attributed to light intensity because the
intensity used in the previous study was 20 μmol photons
m�2 s�1. Therefore, the relationship between light inten-
sity and inhibition effects was compared to that reported
in other studies. The extent of the inhibitory effect of blue
light on the growth of M. aeruginosa differed among the
studies (Figure S1). However, the culture conditions var-
ied among the studies (Table S1). For instance, Wyman
and Fay (1986) and Tan et al. (2020) used BG-11 medium
at different concentrations, suggesting that the available
nutrient concentrations must have differed between the
studies. The growth rate follows the Droop equation,
which is a model affected by the intracellular content,
and the nutrient uptake rate is calculated using the
Michaelis–Menten equation, which is affected by the
nutrient concentration in the medium (Ducobu
et al., 1998; Mikawa et al., 2016). Since the half-
saturation constant for nutrient uptake is usually smaller
than the concentration of the medium, it is considered
that the growth rate does not differ depending on the
type of medium unless the nutrient is depleted. Li
et al. (2014) demonstrated that there is no significant dif-
ference in the growth rate of M. aeruginosa even when a
medium with different nutrient concentrations is used.

Temperature is known to affect algal growth. It has
been reported that the growth rate of M. aeruginosa
increases with increasing temperature (Imai et al., 2009;
You et al., 2018). Li et al. (2014) demonstrated that the
growth rate of M. aeruginosa is higher at 25�C than that
at 20�C. Therefore, the growth rate reported by Wyman
and Fay (1986) is expected to increase further when cul-
tured at 25�C (as in this experiment). The growth rate at
20–45 μmol photons m�2 s�1 was obtained at the same
temperature. Therefore, the difference in the growth rates
at 20–45 μmol photons m�2 s�1 was related to factors
other than temperature.

The light–dark cycle used in the studies was not the
same. Zevenboom and Mur (1984) reported that the
growth rate of M. aeruginosa is approximately the same
in the 12:12 and 24:0 h light–dark cycles. Furthermore,
the difference in growth rate related to different light–
dark cycles is smaller under the light intensity, which is
insufficient to cause saturation with respect to the growth
rate (Zevenboom & Mur, 1984). Blue light intensities of
10, 20, and 32 μmol photons m�2 s�1 are not considered
sufficient to cause saturation (Figure S1). If the relation-
ship between the light–dark cycle and the growth rate is

similar to that of fluorescent light, then the difference in
the growth rate under blue light at different light–dark
cycles is presumed to be small.

The growth rate varies depending on the strain.
Despite cultivation under the same experimental condi-
tions including BG-11 medium at 25�C under fluorescent
light at 45 μmol photons m�2 s�1, different growth rates
of M. aeruginosa were reported by Li et al. (2014)
(0.60 day�1) and Tan et al. (2020) (0.32 day�1). However,
the growth rates of strains used in this study and that
reported by Watanabe et al. (2019) were the same. The
growth rate under blue light was 0 day�1 at 20 μmol
photons m�2 s�1 (Watanabe et al., 2019), whereas
that under 32 μmol photons m�2 s�1 was 0.11 day�1.
Overall, the observed difference in the growth rate of
M. aeruginosa was determined by the light intensity. The
growth rate tends to be minimum when the blue light
intensity is approximately 20 μmol photons m�2 s�1

(Figure S1).
The specific growth rate for N. palea under fluores-

cent light (0.62 day�1) was higher than that under blue
light (0.36 day�1). The specific growth rate under blue
light (0.23 day�1) has been reported to be higher than
that under fluorescent light (0.21 day�1) (Watanabe
et al., 2019). The difference in the specific growth rate at
each light condition between the previous and current
studies is likely due to the difference in light intensity.
The increase in the specific growth rate of N. palea was
not higher under blue light than that under fluorescent
light (Figure S1). Diatoms contain fucoxanthin, which is
a natural pigment (Wang et al., 2018). The adsorption of
fucoxanthins is optimal in the range of 480–560 nm,
although some light absorption occurs in the range of
420–470 nm, which represents the blue wavelength
(Papagiannakis et al., 2005). However, the growth rate of
N. palea did not increase considerably under blue light at
32 μmol photons m�2 s�1. Similarly, Mouget et al. (2004)
reported that the growth rate of diatom Haslea ostrearia
at 20 μmol photons m�2 s�1 was significantly higher
under blue light than under white light, whereas there
was no significant difference in the growth rates
between both light conditions at 100 μmol photons
m�2 s�1. Fucoxanthin promotes N. palea growth under
blue light; however, it may be slow to respond to
increased light intensity. Considering the competition
with M. aeruginosa, the best light intensity was 20 μmol
photons m�2 s�1. When fluorescent light was replaced
with blue light at 32 μmol photons m�2 s�1, the growth
rate of M. aeruginosa reduced by 67% (0.33 to 0.11 day�1),
whereas that of N. palea reduced by only 42%. Since the
reduction in growth rate of N. palea via blue light irradia-
tion at both 20 and 32 μmol photons m�2 s�1 (0% and
42%, respectively) was smaller than that of M. aeruginosa
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(100% and 67%, respectively), blue light irradiation was
considered successful in inhibiting the growth of
M. aeruginosa, indicating that M. aeruginosa was in rela-
tively disadvantageous conditions. We demonstrated that
N. palea was dominant in the co-culture upon irradiation
with blue light at 32 μmol photons m�2 s�1.

Irradiation with blue light may increase the relative
abundance of N. palea in small lakes where LEDs are rel-
atively easy to install, thereby inhibiting Microcystis
blooms. However, because the intensity of blue light is
much lower than the intensity of sunlight, Microcystis
blooms can increase and subsequently decrease the
effects of the increasing relative abundance of N. palea.
Blue light irradiation may be effective for treating water
bodies in which sunlight is difficult to reach. Irradiation
may be effective in the middle and bottom layers of the
water body, or where sunlight is artificially shielded. For
example, the use of black shade balls can suppress evapo-
ration of the reservoir by blocking sunlight; in addition, it
can prevent algal blooms (Haghighi et al., 2018). Irradia-
tion in such an environment may provide a competitive
advantage to N. palea. It has been reported that diatoms,
such as Nitzschia spp., can bloom and cause problems
like discoloration of water (Mitrovic et al., 2008). Irradia-
tion with blue LED while monitoring diatom growth is
required to control diatom blooms. Irradiation during the
night may be also effective. It is necessary to assess the
impact of irradiation on the ecosystem because an artifi-
cial light at night (ALAN) is recognized as a source of
light pollution (Falchi et al., 2016; Holker et al., 2010).
However, Grubisic et al. (2017) reported that the propor-
tion of diatoms increases when irradiation is performed
using white LEDs into the flumes for 3 weeks as an
ALAN. Therefore, irradiation with blue light instead of
white light is expected to increase the abundance of
N. palea.

CONCLUSIONS

The relative abundance of N. palea increased upon irradi-
ation with blue light in co-culture with M. aeruginosa.
Therefore, blue light can be used to increase the relative
abundance of N. palea to control Microcystis blooms.
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