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Abstract

We study the impact of dimension-six operators on single- and double-Higgs production rates

via gluon fusion at the Large Hadron Collider (LHC). If the top-Yukawa coupling is modified

by some new physics whose scale is of the TeV scale, its effect changes the cross sections of

single-Higgs production gg → H and double-Higgs production gg → HH through the top-loop

diagram. In particular, double-Higgs production can receive significant enhancement from the

effective top-Yukawa coupling and the new dimension-five coupling tt̄HH which are induced by

the dimension-six operator. Comparing these results to the forthcoming data at the LHC, one can

extract information of the dimension-six operators relevant to the top quark and the Higgs boson.

PACS numbers: 14.65.Ha, 12.60.Fr

Keywords: Higgs boson, Higher dimensional operator

∗Electronic address: kanemu@sci.u-toyama.ac.jp
†Electronic address: ktsumura@ictp.it

1

http://arxiv.org/abs/0810.0433v2
mailto:kanemu@sci.u-toyama.ac.jp
mailto:ktsumura@ictp.it


I. INTRODUCTION

Gauge symmetries of the standard model (SM) have been well confirmed at the CERN

Large Electron Positron collider (LEP) [1] and the Fermilab TEVATRON. However the

mechanism of spontaneous symmetry breaking has not been tested yet [2, 3]. The vacuum

expectation value of the Higgs boson triggers electroweak symmetry breaking and generates

masses of weak gauge bosons, quarks and charged leptons. Search for the Higgs boson is

the main purpose of the measurement at the CERN Large Hadron Collider (LHC).

In the SM, coupling constants of the Higgs boson with the weak gauge bosons and the

matter fields directly relate to their masses. In order to clarify the mass generation mecha-

nism, an independent determination of the particle masses and their couplings to the Higgs

boson is important, which will be the subsequent task at the LHC. It will give not only a

confirmation of the SM but also an indication of new physics beyond the SM.

At the LHC the dominant production mechanism of the Higgs bosons is gluon fusion

gg → H . The leading contribution to this process comes from top-quark loop diagrams.

Information of the top-Yukawa coupling can be extracted through this process as a com-

bination with the Higgs decay branching ratios. The gauge interaction of the Higgs boson

would be tested through processes of vector boson fusion V V ∗ → H(V = W−, Z) [4, 5] and

Higgs-strahlung qq̄′ → V H [6]. These processes are promising channels for Higgs searches

too because of the kinematic advantage in the reconstruction of signals. Measurement of

the triple-Higgs boson coupling has been discussed in the double-Higgs production mecha-

nism from gluon fusion, gg → HH , at the LHC [7]. In Ref. [8] the sensitivity to the Higgs

boson self-coupling is studied. The authors of this reference conclude that its experimental

accuracy could reach 20–30% at the SLHC with an integrated luminosity of L = 3000 fb−1

for mH = 150–200 GeV.

Measuring the top-Yukawa coupling accurately is important because the magnitude of

the coupling constant (ySMt ∼ 1) indicates that the physics of top quarks closely would relate

to that of electroweak symmetry breaking. Lots of models are proposed in this direction [9].

Measurements of the top-Yukawa coupling would be a key to uncover such possibilities.

In addition, the Higgs boson self-coupling is of great interest by itself to understand the

nature of spontaneous symmetry breaking. Its measurement can also be a probe of the new

physics beyond the SM. The coupling strength is also important being deeply related to the
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condition of successful electroweak baryogenesis[10].

New physics beyond the SM will be recognized by the discovery of non-SM particles or by

detecting the deviation from the SM relations between masses and coupling constants. For

the latter case, the low energy effective theory at the electroweak scale can be described by

the SM Lagrangian with additional higher dimensional operators. This approach has been

investigated to analyze non-standard interactions in a model independent way. Leading

order contributions of such non-standard interactions would be described by the dimension-

six operators [11]. Constraints on these operators and their phenomenology have been

discussed in the literature [12, 13, 14].

In this paper, we study new physics effects from dimension-six operators on single- and

double-Higgs production processes, gg → H and gg → HH . The dimension-six operators

correct to the top-Yukawa coupling and the triple-Higgs boson coupling, also induce the

tree level ggH and ggHH vertices. Effects due to the modified top-Yukawa coupling and

the tree level coupling on the effective ggH vertex are investigated. The former comes from

color blind new dynamics while the latter can come from some color dependent effects. The

experimental limits from the LEP precision data and the theoretical bounds such as the

unitarity bounds are taken into account. We find that the effects on these processes due to

the dimension-six operators can be significant even under these constraints. In particular the

double-Higgs production cross section is sensitive to these dimension-six operators. These

contributions from the dimension-six operators can be distinguished by comparing the data

for these Higgs boson production channels at the LHC experiments.

This paper is organized as follows. In Sec. II, we introduce the dimension-six operators

as a new physics effect. Its experimental and theoretical bounds are discussed. In Sec.

III, numerical evaluations of the effects of dimension-six operators on the Higgs production

processes at the LHC are shown. Conclusions and discussions are given in Sec. IV. A

detailed calculation is shown in the appendix.
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II. EFFECTIVE LAGRANGIAN

New physics effects on phenomena at the electroweak scale can be described by the higher

dimensional operators [11]. The effective Lagrangian is given by

Leff = LSM +
∑

i

∑

n≥5

Ci

Λn−4
O(n)

i , (1)

where LSM is Lagrangian of the SM, Ci are the coupling strengths of the dimension-n oper-

ators O(n)
i , and Λ is a cut off scale of the SM. The coefficients of these higher dimensional

operators can in principle be calculated by assuming new physics models which are defined

above the scale Λ. When Λ is much greater than the electroweak scale, the dimension-six

operators can give leading contributions to the deviations from the SM.

If the top-Yukawa interaction is modified by the dimension-six operators, its effect can be

observed in the processes of gg → H and gg → HH . The dimension-six operators relevant

to the gluon fusion mechanism are

Ot1 =

(
Φ†Φ− v2

2

)(
QtR Φ̃ + Φ̃ tR Q

)
, (2)

ODt =
(
QDµ tR

)
DµΦ̃ +

(
DµΦ̃

)† (
Dµ tR Q

)
, (3)

OtGΦ =
[(
QσµνλA tR

)
Φ̃ + Φ̃†

(
tR σµνλA Q

)]
GA

µν , (4)

where Q = (u, d)TL, G
A
µν is the field strength of gluons with SU(3) generators λA(A = 1–8),

Φ is a scalar-iso-doublet with hypercharge Y = 1/2, Φ̃ = i τ2Φ
∗, and v (∼ 246 GeV) is the

vacuum expectation value whose origin may come from color blind dynamics. The effective

top-Yukawa coupling deviates from the SM value due to Ot1 and ODt. There is only one

dimension-six operator OG [15] that contributes to ggH and ggHH vertices at the tree level;

i.e.,

OG =

(
Φ†Φ− v2

2

)
GA

µνG
Aµν

, (5)

whose origin can come from colored new dynamics at the TeV scale.

The triple-Higgs boson coupling also contributes to double-Higgs production gg → HH .

Dimension-six genuine-Higgs operators change the Higgs self-coupling, which are given
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by [14]

OΦ1 =
1

2
∂µ
(
Φ†Φ

)
∂µ
(
Φ†Φ

)
, (6)

OΦ2 = −1

3

(
Φ†Φ

)3
, (7)

OΦ3 = (DµΦ)
†ΦΦ† (DµΦ) . (8)

Normalization of the Higgs field is shifted by introduction of the operator OΦ1. All the Higgs

interactions are corrected after the wave function renormalization for the Higgs boson [14].

The Higgs potential is modified by OΦ2; then the triple-Higgs boson coupling is a function of

CΦ2 and the Higgs boson mass. The coefficient CΦ2 simply shifts the triple-Higgs coupling.

The coefficients Ct1, CΦ1 and CΦ2 are free from the current experimental data1. In

contrast, the coefficient ofOΦ3 (ODt) contributes to the electroweak rho parameter at the tree

level (and the one-loop level), which is strongly constrained by the experimental data [13, 16].

The effects of OtGΦ will be measured by top-pair production, gg → tt̄. Here we neglect the

operators ODt, OtGΦ and OΦ3 in the following discussion assuming that these operators

would be well constrained by the other processes, and we concentrate on the effects due

to the operators Ot1,OΦ1,OΦ2 and OG. In Ref. [15], the bounds on the operator OG are

evaluated through the process gg → H → WW for mH & 160 GeV,

−1.2 . aG

(αs

4π

)−1

. 0.5, (9)

where the scaled couplings are defined as ai = Ci
v2

Λ2 .

The theoretical upper bounds on these operators from tree level unitarity [17] have been

discussed in the literature [14, 18]. Such bounds on these less constrained operators are

given by

at1 .
16π

3
√
2

v

Λ
, (10)

aΦ1,Φ2 . 4π
v2

Λ2
. (11)

If we consider the low energy cut off Λ = 1–3 TeV, the upper bound on at1 are 3.0–1.0,

respectively [14].

1 The coefficient CΦ1 would be determined precisely at the ILC by using the gauge boson association

processes such as Higgs-strahlung and vector boson fusion.
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FIG. 1: Feynman diagrams for the single-Higgs production process via gluon fusion. Curled,

dashed and solid lines represent gluons, Higgs bosons and quarks, respectively. Dots denote the

new physics interaction. In the SM, there is no tree level contact interaction.

Set A B C D E F

at1 0 +0.5 −0.5 0 0 0

aG 0 0 0 +0.004 −0.004 0

aΦ2 0 0 0 0 0 +0.5

TABLE I: Parameter sets for the coefficients of the dimension-six operators.

III. NUMERICAL EVALUATION OF THE HIGGS PRODUCTION PROCESSES

By introducing the dimension-six operators Ot1 and OΦ1, the effective top-Yukawa cou-

pling is expressed as

yefft = ZΦ1

(√
2mt

v
− at1

)
, (12)

where ZΦ1 = (1 + aΦ1)
−1/2. Feynman diagrams for single-Higgs production via gluon fusion

is depicted in FIG. 1. For aG = 0, the new physics contribution to this process only appears

in the effective top-Yukawa coupling. Therefore gg → H only depends on at1 and aΦ1 by

the combination given in Eq. (12). We here define the parameter sets; Set A–Set F, for

the coefficients of dimension-six operators in TABLE I. Set A corresponds to the SM. The

effects of Ot1 are studied by Set B and Set C, and those of Ot1 are investigated by Set D

and Set E. Set F shows those of OΦ2. The values of at1 = ±0.5 correspond to the unitarity

bounds for Λ = 5 TeV, which change the effective top-Yukawa coupling by about 50%. If

we take a lower cut off scale (Λ < 5 TeV), the unitarity constraint on at1 becomes milder.

The hadronic production cross section for pp → ggX → HX is evaluated as a function

of mH at the LHC in FIG. 2. Detailed calculations are shown in Appendix A. The solid,

dotted, dashed, long-dashed and dot-dashed curves correspond to the parameter sets Set

A–Set E, respectively. The peak around mH ∼ 350 GeV in these curves is understood as
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FIG. 2: The cross section of pp → ggX → HX with
√
s = 14 TeV as a function of the Higgs boson

mass. Curves denote the cross sections derived in the SM (Set A), and in the SM with anomalous

dimension-six couplings (Set B–Set E).

the threshold effect due to the top-quark loop. If the effective top-Yukawa coupling deviates

from its SM value (Set B and Set C), the cross section can be enhanced by a factor ∼ 9/4 or

suppressed by ∼ 1/4 for entire range of the Higgs boson mass. These effects are determined

only by yefft . The differences from the SM for Set D and Set E are comparable to that for

top-Higgs coupling for Set B and Set C around mH ∼ 120 GeV. The effects on the cross

section from Set D and Set E are relatively small compared to Set B and Set C for the larger

Higgs boson masses. These structures are realized by the interference of the amplitudes

between the new physics contributions and the SM one.

In FIGs. 3 and 4, we evaluate the statistical sensitivities for anomalous parameters on

N = Lσ(pp → ggX → HX)B(H → WW, γγ) where the integrated luminosity is assumed

to be L = 300fb−1. The efficiencies of W bosons and photons are taken as 100% for the

illustration. Therefore, in these plots, the H → WW decay mode always gives a better

sensitivity than the H → γγ decay mode because the decay branching ratios hold the

relation B(H → WW ) ≫ B(H → γγ) for mH & 100 GeV. Note that we do not include

any backgrounds to calculate the statistical sensitivity. For larger Higgs boson masses, the

sensitivities become worse due to the decreasing of the cross section. For the WW decay

mode with mH . 120 GeV, it has also bad sensitivities because of the small branching
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FIG. 3: The plot of the statistical sensitivity for at1 on N = Lσ(pp → ggX → HX)B(H →

WW,γγ) where the integrated luminosity is L = 300fb−1. Each curve denotes the 1σ deviation

from the SM predictions.
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FIG. 4: The plot of the statistical sensitivity for aG on N = Lσ(pp → ggX → HX)B(H →

WW,γγ) where the integrated luminosity is L = 300fb−1. Each curve denotes the 1σ deviation

from the SM predictions.

fraction of H → WW .

In FIG. 5, we show the contour plot of the sensitivities in the at1–aG plane. There is a

strong correlation between at1 and aG. This means that at1 can mimic the effect of aG in

this process. It is understood by the destructive interference of the top-loop diagram, which

is shifted by at1 and the tree level diagram, which is induced by the dimension-six operator
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FIG. 5: The sensitivity plots in the at1–aG plane on N = Lσ(pp → ggX → HX)B(H → WW,γγ)

where the integrated luminosity is L = 300fb−1. Each contour represents the 1σ deviation from

the SM predictions.

FIG. 6: Feynman diagrams for the double-Higgs production process gg → HH are depicted. Dots

represent the new vertices of the dimension-six operators.

OG. Therefore, if the deviation from the SM is found in gg → H , we cannot distinguish the

effects of these anomalous couplings.

Next, let us discuss the double-Higgs production. In FIG. 6, we show the Feynman

diagrams for the process gg → HH . Invariant amplitudes for the sub-process are given

in Appendix A. For each diagram, appropriate crossing of external Higgs-boson and gluon

lines should be taken into account. In the SM, there are only two kinds of topology, the first

and second diagrams from the left. This process would be used to measure the triple-Higgs

boson coupling at the SLHC. The vertex function of HHH is modified by the introduction

of the genuine Higgs operators as

λHHH(ŝ) = Z
3/2
Φ1

(
Z−1

Φ1

m2
H

2v2
− ŝ+ 2m2

H

v2
aΦ1 +

aΦ2

3

)
v, (13)

where
√
ŝ is the center of mass energy of gg → HH . For Set F, the coefficient aΦ2 is taken

to be positive to ensure vacuum stability. The value aΦ2 = +0.5 corresponds to the 140%
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FIG. 7: The cross section for the Higgs pair production sub-process gg → HH as a function of

scattering energy for mH = 120 GeV in the SM. The dashed (long-dashed) curve denotes the

contribution coming from the triangle (box) diagram with the (+,+) helicity set of gluons. The

dotted curve is a composition of these two. The thin solid one represents the helicity set (+,−) in

the box diagram.

enhancement of the triple-Higgs boson coupling for mH = 120 GeV.

The cross sections for the Higgs boson pair production via the gluon fusion sub-process are

shown in FIG. 7 in the SM. The dotted and thin solid curves represent the cross section with

the helicity set (+,+) and (+,−) of the gluons. For mH = 120 GeV, the main contribution

comes from the box diagram (long-dashed) because the triangle diagram (dashed) contains

the Higgs boson self-coupling, which is proportional to the Higgs boson mass squared, and

it has the typical behavior of the s-channel process.

In FIG. 8, we show the effect of the dimension-six top–Higgs interaction on gg → HH

as a function of mH for Set B and Set C. These curves are used as the same manner as

in FIG. 8. The additional long-dot-dashed curve represents new vertex contribution. The

SM with gluon helicity sets (+,+) and (+,−) are also shown in thick and thin solid curves.

For Set B, it can be seen that the effective top-Yukawa coupling is suppressed in both the

triangle and the box diagrams. The cross section can also be enhanced by the dimension-five

interaction vertex of tt̄HH due to Ot1. On the contrary, for Set C the contributions from the

box diagrams become large because of the large effective top-Yukawa coupling. The synergy
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√
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B and C. Each curve is given in the same manner as in FIG. 7. The long-dot-dashed curve denotes

the contribution comes from the new vertex which is induced by the dimension-six operator. The

SM with helicity sets (+,+) and (+,−) of the gluons are also shown in thick and thin solid curves

as a reference.
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FIG. 9: The cross section of gg → HH for mH = 120 GeV with aΦ2 = +0.5 as a function of
√
ŝ.

The curves are defined in the same manner as FIG. 8.

effect of both the contributions enhances the sub-process cross section significantly.

In FIG. 9, we show the gg → HH cross section as a function of
√
ŝ for Set F. Each curve

is given as in FIG. 8. The contribution of aΦ2 only appears in the triple-Higgs boson vertex.
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FIG. 10: The cross section of gg → HH as a function of sub-process energy for mH = 120 GeV in

the SM with aG = ±0.004. The dotted and long-dashed curves denote the gluon helicity sets (+,+)

and (+,−) for Set D. The dashed and dot-dashed curves are those for Set E. The SM predictions

are also given by solid curves.

Around mH ∼ 350 GeV, a strong destructive interference between the triangle and the box

diagrams occurs. The effect in Set F is relatively small as compared to those in Set B and

Set C. There is also enhancement on the sub-process cross section near the threshold of HH

production. These effects turn out to give larger contributions to the hadronic cross section.

For completeness, we also show the case for Set D and Set E in FIG. 10. The dotted and

long-dashed curves represent the helicity set (+,+) and (+,−) of gluons for Set D. Those

for Set E are given by the dashed and dot-dashed curves. The SM prediction is also shown.

For Set D, there is a cancellation between the SM contribution and the anomalous tree level

vertex ggH in the tt̄ threshold region. In Set E, each contribution is constructive in the

same parameter region.

Convoluting the CTEQ6M parton distribution function [19], the full cross section is

evaluated for double-Higgs production via gluon fusion. In FIG. 11, we show the hadronic

cross sections as a function of the Higgs boson mass in the left figure and as a function of the

dimension-six couplings in the right figure. Significant enhancement from the dimension-six

operators Ot1 and OG can be seen in both figures for a wide range of parameter space. For

Set F, the curve and that of the SM one coincide for large mH values whose structure is
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FIG. 11: The total cross section of the double-Higgs production pp → ggX → HHX as a function

of the Higgs boson mass in the left figure and the anomalous couplings in the right figure with

center of mass energy
√
s = 14 TeV.

easily understood from Eq. (13). The effect of aΦ2 is reduced when we take larger Higgs

boson masses. The contributions from aΦ1 might be much larger than those of the other

operators. This effect will be first examined by gauge boson association processes.

In FIG. 12, we evaluate the statistical sensitivities for the anomalous parameters on

N = Lσ(pp → ggX → HHX)B(H → WW )B(H → WW ) where the integrated luminosity

is assumed to be L = 300fb−1. We focus on the anomalous parameters at1 and aG, because

this process is insensitive to aΦ2 as we showed in FIG. 11. Obtained sensitivities are less

smaller than those in gg → H process. However, this process is still sensitive to at1 for

mH ∼ 150 GeV on some level due to the large enhancement (suppression) in the box

diagram. On the other hand, it is insensitive to the anomalous parameter aG.

We show the contour plot of the sensitivities in the at1–aG plane in FIG. 13. To compare

the single- and double-Higgs production processes, we also show the results calculated from

gg → H . By using the insensitivity of gg → HH to aG, the anomalous parameter at1 can

be constrained.

The possibility of measuring the Higgs boson pair production has been discussed in Ref. [8]

to determine the triple Higgs boson coupling constant. Their background analyses can apply

to our setup because the dominant decay modes of the Higgs boson are almost the same as

in the SM. In our case, the double-Higgs production process can be observable if the cross
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FIG. 12: The plot of the statistical sensitivity for at1 on N = Lσ(pp → ggX → HHX)B(H →

WW )B(H → WW ) where the integrated luminosity is L = 300fb−1. Each curve denotes the 1σ

deviation from the SM predictions.

section receives the above enhancement. However it does not mean the improvement of the

sensitivity for the triple-Higgs boson coupling. The new vertex tt̄HH smears the effect of the

Higgs boson self-coupling. We find that gg → HH can still be sensitive to the dimension-six

top-Higgs interaction.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied the impact of the dimension-six operators on the Higgs

production processes via gluon fusion, i.e., gg → H and gg → HH at the LHC. Constraints

from the current experimental data and the theoretical consistencies on the dimension-six

operators are taken into account. We find that the contribution from the dimension-six top–

Higgs operators to single-Higgs production can significantly change the cross section by a

factor. The double-Higgs production process can also receive a large enhancement from the

anomalous top-Higgs couplings. The shift of the effective top-Yukawa coupling can enhance

the cross section significantly. In addition, the new diagrams from the tree level vertex

tt̄HH from Ot1 result in much larger cross sections than that in the SM. Combined results

of single- and double-Higgs production can be used to discriminate between the effects of

dimension-six operators Ot1 and OG.
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FIG. 13: The sensitivity plots in the at1–aG plane on N = Lσ(pp → ggX → HHX)B(H →

WW )B(H → WW ) where the integrated luminosity is L = 300fb−1 and mH = 150 GeV. Each

contour represents the 1σ deviation from the SM predictions. We also show the contour of the

sensitivity on N = Lσ(pp → ggX → HX)B(H → WW )

as a reference.

Finally, we comment on the potential for the coupling measurements at the international

linear collider. As an optional process the photon–photon collision γγ → HH has a similar

structure to gg → HH [20]. This process includes not only the top-quark loop but also

the W boson loop, so that this kind of enhancement from the top–Higgs interaction may be

weakened by the W boson loop. The coupling aΦ2 will also be measured at double-Higgs-

strahlung e−e+ → ZHH [21], and W boson fusion e−e+ → νν̄HH [22], as well as above the

photon–photon collision [23].
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APPENDIX A: CROSS SECTIONS WITH DIMENSION SIX OPERATORS

We present formulae for the single- and the double-Higgs production processes via the

gluon fusion mechanism.

The hadronic cross section at the leading order is calculated by convoluting with the

parton distribution function (CTEQ6M) as

σLO(gg → H) ≃ π2

8m3
H

ΓH→ggτ

∫ 1

τ

dx

x
g(x)g(τ/x), (A1)

where τ = m2
H/s, and g(x) is the gluon distribution function in a proton. In the SM with

higher dimensional operators, the decay rate for the Higgs boson into gluons is calculated

as

ΓH→gg =
GFm

3
H√

2π

∣∣∣∣aG +
αs(µ = mH)

8π

(
1− at1v√

2mt

)
4m2

t

m2
H

[
2−m2

H

(
1− 4m2

t

m2
H

)
C0(m

2
H)

]∣∣∣∣
2

,

(A2)

where C0(ŝ) = C0(0, 0, ŝ, m
2
t , m

2
t , m

2
t ) and αs(µ) is the running strong coupling constant.

We here use the Passarino–Veltman functions for loop calculations [24]. Large higher order

corrections are known for the gluon fusion mechanism [25, 26]. The next to the leading

order (NLO) correction for the cross section can be treated by the K-factor [25],

KNLO
gg→H =

σNLO(gg → H)

σLO(gg → H)
≃ 1 +

αs(µ)

π

(
π2 +

11

2

)
. (A3)

A naive introduction of dimension-six operator breaks renormalizability of the theory. How-

ever, these operators can be embedded in the more fundamental theory. Thus we here adopt

the correction only from gluon emissions to the effective ggH vertex in the heavy top-quark

mass limit as the NLO correction.

In the effective theory, loop integrations by four momenta are cut off at a some new

physics scale Λ,

SΛ
n =

(4π)2

i

∫
d4k

(2π)4
1

(k2 − C)n
= (−1)nC2−n

∫ Λ2/C

0

dt
t

(1 + t)n
. (A4)

These integrals are related to those in the dimensional regularization (DR) as

CΛ
0 =

∫ 1

0

dx

∫ 1−x

0

dy

[
− 1

HC

1

(1 +HC/Λ2)2

]
≃ CDR

0 +
1

Λ2
, (A5)

DΛ
0 =

∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

dz

[
1

H2
D

1 + 3HD/Λ
2

(1 +HD/Λ2)3

]
≃ DDR

0 − 3

2Λ2
, (A6)
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with

HC = (x r1 + y r2)
2 − x r21 − y r22 +m2

t , (A7)

HD = (x r1 + y r2 + z r3)
2 − x r21 − y r22 − z r23 +m2

t , (A8)

where ri =
∑

i pi. The D0 function will appear in the gg → HH cross section. We should

comment on the reduction formulae of the loop integrals in the Passarino–Veltman tech-

nique. These reduction formulae are fully supported by Lorentz invariance, but the cut off

regularization generally violates it. In our analysis, we omit the effect of the cut off Λ in the

loop integrals. The corrections due to the cut off are small (v/Λ)2 when the scale Λ is set to

be more than 3 TeV, so that the effects of the error turn out to be numerically unimportant.

Let us discuss the helicity cross section for the sub-process gg → HH . The differential

cross section is calculated as

dσ̂(gλgλ′ → HH)

dt̂
=

∣∣Mλλ′
∣∣2

16πŝ2
. (A9)

In the SM with dimension six operators Ot1,OΦ2 and OG, helicity amplitudes Mλλ′

are

given by

M++ = M−−

=
αsmtv√

2π

[
2− ŝ

(
1− 4m2

t

m2
H

)
C0(ŝ)

]{
3at1
v2

+
6(
√
2mt/v − at1)

ŝ−m2
H

[
m2

H

2v2
+

aΦ2

3

]}

+
αs(

√
2mt/v − at1)

2

8π
DX − 2aGŝ

v2

(
1 +

3m2
H

ŝ−m2
H

)
− 8a2Gŝ

v2
, (A10)

M+− = M−+ =
αs(

√
2mt/v − at1)

2

8π
DY − 4a2G(t̂ û−m2

H)

v2

(
1

t̂
+

1

û

)
, (A11)

where ŝ, t̂, and û are the Mandelstam variables and the box functions DX and DY are

defined by

DX = 4
{
2 + 4m2

t C0(ŝ)−m2
t

(
ŝ + 2m2

H − 8m2
t

) (
D123

0 +D213
0 +D132

0

)

+
m2

H − 4m2
t

ŝ

[
2
(
t̂−m2

H

)
Ct

0 + 2
(
û−m2

H

)
Cu

0 −
(
t̂ û−m4

H

)
D132

0

]}
, (A12)

DY = −2
{
−ŝ t̂ D123

0 − ŝ û D213
0 + 2 ŝ C0(ŝ+ 2

(
t̂−m2

H

)
Ct

0 + 2
(
û−m2

H

)
Cu

0

+
(
ŝ− 2m2

H + 8m2
t

) [
−2m2

t

(
D123

0 +D213
0 +D132

0

)
+ 2Cs

0

+
1

t̂ û−m4
H

(
−ŝ t̂2D123

0 − ŝ û2D213
0 − ŝ

(
ŝ− 2m2

H

)
C0(ŝ)

−ŝ
(
ŝ− 4m2

H

)
Cs

0 + 2 t̂
(
t̂−m2

H

)
Ct

0 + 2 û
(
û−m2

H

)
Cu

0

)]}
, (A13)
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where the scalar loop integrals are listed here:

Ct
0 =C0(0, t̂, m

2
H , m

2
t , m

2
t , m

2
t ), (A14)

Cu
0 =C0(0, û, m

2
H , m

2
t , m

2
t , m

2
t ), (A15)

Cs
0 =C0(ŝ, m

2
H , m

2
H , m

2
t , m

2
t , m

2
t ), (A16)

D123
0 =D0(0, 0, m

2
H, m

2
H , ŝ, t̂, m

2
t , m

2
t , m

2
t , m

2
t ), (A17)

D213
0 =D0(0, 0, m

2
H, m

2
H , ŝ, û, m

2
t , m

2
t , m

2
t , m

2
t ), (A18)

D132
0 =D0(0, m

2
H , 0, m

2
H , û, t̂, m

2
t , m

2
t , m

2
t , m

2
t ). (A19)

The NLO correction for the Higgs boson pair production in the gluon fusion mechanism has

been studied in the limit of the heavy top-quark mass [27]. The effect increases the cross

section to 1.9–2 times that at the leading order. We here take KNLO
gg→HH = 1.9 as the NLO

correction to the gg → HH process.

APPENDIX B: FEYNMAN RULES

When we introduce the dimension-six genuine Higgs operatorsOΦ1 andOΦ2, the Feynman

rules for the Higgs self-interaction are given by [14]

HHH :− 6 i v Z3
Φ1

(
Z−2

Φ1

m2
H

2v2
+

aΦ1

3v2

3∑

j<k

pj · pk +
aΦ2

3

)
(B1)

HHHH :− 6 i Z4
Φ1

(
Z−2

Φ1

m2
H

2v2
+

aΦ1

3v2

4∑

j<k

pj · pk + 2aΦ2

)
. (B2)

In the SM with the fermionic dimension-six operatorOt1, the effective top–Higgs interactions

are obtained as

ttH :− i ZΦ1

(
mt

v
− at1√

2

)
(B3)

ttHH :i Z2
Φ1

3at1√
2v

, (B4)

where the wave function renormalization due to the genuine Higgs operator OΦ1 is also taken

into account. The gluonic operator OG can induce gluon–Higgs vertices at tree level as

GA
µ (p1)G

B
ν (p2)H :− 2i ZΦ1

aG
v
p1 · p2

(
gµν −

p2µp1ν
p1 · p2

)
δAB (B5)

GA
µ (p1)G

B
ν (p2)HH :− 2i Z2

Φ1

aG
v2

p1 · p2
(
gµν −

p2µp1ν
p1 · p2

)
δAB. (B6)
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