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Abstract

We examine contributions from Majorana phases to lepton flavor violating processes in the

framework of the minimal supersymmetric standard model with heavy right-handed neutrinos.

All phases in the complex neutrino Yukawa matrix are taken into account in our study. We

find that in the scenario with universal soft-breaking terms sizable phase effects can appear on

the lepton flavor violating processes such as µ → eγ, τ → eγ, and τ → µγ. In particular, the

branching ratio of µ → eγ can be considerably enhanced due to the Majorana phases, so that

it can be much greater than that of τ → µγ.

PACS numbers: 12.60.Jv, 14.60.Pq, 14.60.St

Keywords: Lepton flavor violation, Supersymmetry, Majorana phases

∗Electronic address: kanemu@het.phys.sci.osaka-u.ac.jp
†Electronic address: matsuda@het.phys.sci.osaka-u.ac.jp
‡Electronic address: toshi@het.phys.sci.osaka-u.ac.jp
§Electronic address: shindou@sissa.it
¶Electronic address: takasugi@het.phys.sci.osaka-u.ac.jp
∗∗Electronic address: ko2@het.phys.sci.osaka-u.ac.jp

1

http://arxiv.org/abs/hep-ph/0507264v1
mailto:kanemu@het.phys.sci.osaka-u.ac.jp
mailto:matsuda@het.phys.sci.osaka-u.ac.jp
mailto:toshi@het.phys.sci.osaka-u.ac.jp
mailto:shindou@sissa.it
mailto:takasugi@het.phys.sci.osaka-u.ac.jp
mailto:ko2@het.phys.sci.osaka-u.ac.jp


1. INTRODUCTION

In the standard model lepton flavor violation (LFV) is negligible, while it can be

sizable in new physics models such as those based on supersymmetry (SUSY). Therefore

search for LFV can be a good probe of new physics. Observed tiny neutrino masses

may be explained by the seesaw mechanism[1], assuming heavy right-handed Majorana

neutrinos, which are compatible with the scenario of grand unified theories (GUTs). In

the framework of SUSY models, LFV is induced through one-loop diagrams with slepton

mixing[2]. In the SUSY model with right-handed neutrinos, the slepton mixing can

be induced from the renormalization group effect of the neutrino Yukawa interaction

between the scale of right-handed neutrino masses and the GUT scale, even when soft-

SUSY-breaking terms are universal at the GUT scale.

The neutrino mass matrix obtained via the seesaw mechanism generally includes two

Majorana phases[3]. They can be directly searched through neutrinoless double beta

decays[4]. The existence of these Majorana phases can play an important role in various

phenomena such as leptogenesis[5], lepton number violating processes and so on. Searches

for these phenomena could provide a hint for the neutrino Majorana mass matrix. Fur-

thermore, as we shall show below, the prediction on LFV can be drastically changed by

the Majorana phases.

In the present paper, we explore LFV processes such as µ → eγ in the framework

of the minimal supersymmetric standard model with right-handed Majorana neutrinos

(MSSMRN) under the assumption of universal soft-SUSY-breaking terms at the GUT

scale MGUT . Neutrino mass matrix mν is given by mν = Y T
ν D−1

R Yν〈φ0
u〉2, where Yν is the

neutrino Yukawa matrix, DR is the right-handed neutrino mass matrix which is diagonal,

and φ0
u is the neutral component of the Higgs doublet with hypercharge −1/2. In the

basis where the charged lepton mass matrix is diagonal, the neutrino Dirac mass matrix

mD ≡ Yν〈φ0
u〉 can be parameterized by[6, 7]

mD =
√

DRR
√

DνU
† , (1)

where Dν is the eigenmatrix of neutrino masses, R is a complex orthogonal matrix

(RTR = RRT = 1), and U is the neutrino mixing matrix. In Refs. [7, 8], the decay
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rates of ℓi → ℓjγ (i 6= j) are evaluated by assuming that R is a real orthogonal matrix

and that the right-handed neutrino masses are degenerate; i.e., DR = M × 1 where M

is the heavy Majorana mass scale. Under this assumption, the effect of Majorana phases

on the low energy phenomena is screened. The relation among the branching ratios is

given by

Br(µ → eγ) ≃ Br(τ → eγ)

Br(τ → ν̄eντe)
≪ Br(τ → µγ) , (2)

where current neutrino data have been used. The hierarchical DR case with a real R has

been analyzed in Ref. [6]. On the other hand, the importance of the treatment of R as a

complex matrix has been pointed out in Ref. [7], by showing that phases in R can give a

substantial effect on low energy phenomena.

In this paper, we discuss the role of the imaginary part of R, and study the combined

effect with Majorana phases in neutrino mixing matrix on the branching ratios of the

LFV processes. We assume that DR = M × 1. We obtain analytic expressions of the

branching ratios in two limiting cases: i.e., one is the case with R being approximately a

real orthogonal matrix, and the other is with R being a typical complex matrix. We find

that

Br(µ → eγ) ≃ Br(τ → eγ)

Br(τ → ν̄eντe)
≫ Br(τ → µγ) , (3)

in the wide range of the parameter space for a typical complex matrix R. The branching

ratio of µ → eγ can be enhanced in comparison with that of τ → µγ. This is a novel

feature with a complex R. We also give numerical calculations in order to see how these

two limiting cases are extrapolated.

2. EVALUATION OF LFV BRANCHING RATIOS

In this section, we briefly review LFV in the MSSMRN, and discuss the Majorana

phase effects on LFV processes.

In the model based on SUSY, LFV processes can occur at the low energy scale through

the slepton mixing. In the MSSMRN, sizable off-diagonal elements of the slepton mass
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matrix can be induced by renormalization group effects due to the neutrino Yukawa

interaction between MGUT and M , even when universal soft-breaking masses are assumed

at MGUT . The induced off-diagonal elements are approximately expressed as[2]

(m2
L̃
)ij ≃

6m2
0 + |A0|2
16π2

ln
MGUT

M
(Y †

ν Yν)ij (i 6= j) , (4)

where m0 and A0 are universal soft-SUSY-breaking parameters. The decay rates for LFV

processes ℓi → ℓjγ (i 6= j) are given by

Γ(ℓi → ℓjγ) ≃
α3
EMm5

ℓi

192π3

|(m2
L̃
)ij |2

m8
SUSY

tan2 β , (5)

where αEM is the fine structure constant, mSUSY represents the typical mass scale of

SUSY particles, and tan β is the ratio of vacuum expectation values of the two Higgs

doublets. The branching ratios are related to each other as

Br(µ → eγ)

Br(τ → µγ)
≃ 1

Br(τ → ν̄eντe)

|(m†
DmD)12|2

|(m†
DmD)23|2

∼ 5.6× |(m†
DmD)12|2

|(m†
DmD)23|2

,

Br(τ → eγ)

Br(τ → µγ)
≃ |(m†

DmD)13|2
|(m†

DmD)23|2
, (6)

where experimental result Br(τ → ν̄eντe) = 0.1784 is used. These ratios are determined

only by the neutrino Yukawa matrix.

We work on the basis that the right-handed neutrino mass matrix is diagonal, and

assume that the matrix is approximately proportional to the identity matrix; i.e. DR ≃
M × 1. By using Eq. (1) we obtain

m†
DmD ≃ MU

√

DνR
†R

√

DνU
† = MU

√

DνQ
†Q

√

DνU
† . (7)

Here we have introduced a real orthogonal matrix O by R = OQ, where Q is a product

of Qa(a = 1-3) with

Q1 =











cosh y1 i sinh y1 0

−i sinh y1 cosh y1 0

0 0 1











, Q2 =











1 0 0

0 cosh y2 i sinh y2

0 −i sinh y2 cosh y2











, Q3 =











cosh y3 0 i sinh y3

0 1 0

−i sinh y3 0 cosh y3











.

(8)
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The matrices Qa satisfy that Q†
a = Qa and Q2

a(ya) = Qa(2ya). The matrix Q plays a

role not only to introduce the complex phases but also to change the size of Yukawa

couplings.∗

The neutrino mixing matrix U is separated into two parts, U = UMNSP , where UMNS

is the Maki-Nakagawa-Sakata matrix[9] in the phase convention of Ref. [10] and P is the

Majorana phase matrix given by P = diag(1, eiα0 , eiβ0) with α0 and β0 being Majorana

CP violation phases [3]. In order to see qualitative features, we here take the Bi-maximal

mixing solution[11]

UBi−max
MNS =











1√
2

1√
2

0

−1
2

1
2

1√
2

1
2

−1
2

1√
2











, (9)

for analytic calculations. In particular, we consider the following three cases for Dν ;

the normal hierarchical (NH) case (m1 ≪ m2 ≪ m3), the inverse hierarchical (IH) case

(m3 ≪ m1 ∼ m2), and the quasi-degenerate (QD) case (m1 ≃ m2 ∼ m3);

NH : m1 ≃ 0 , m2 ≃
√

∆m2
⊙ , m3 ≃

√

∆m2
atm , (10)

IH : m1 ≃
√

∆m2
atm

(

1− 1

2

∆m2
⊙

∆m2
atm

)

, m2 ≃
√

∆m2
atm , m3 ≃ 0 , (11)

QD : m1 ≡ m , m2 ≃ m+
∆m2

⊙
2m

, m3 ≃ m+
∆m2

atm

2m
. (12)

Here, ∆m2
⊙ ≡ m2

2 −m2
1(= 8.0× 10−5eV2)[12] is the squared mass difference for the solar

neutrino mixing, and ∆m2
atm ≡ |m2

3−m2
2|(= 2.5×10−3eV2)[13] is that for the atmospheric

neutrino mixing.

To evaluate m†
DmD, we consider the following two limiting cases.

(a) The small ya limit (R is real.) :

We have Q = 1, and thus m†
DmD = MUBi−max

MNS DνU
Bi−max
MNS

†
, where the elements of

∗ We note that fine tuning of order O(eya) is necessary to obtain the light neutrino mass scale in the

case of ya > 1.
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m†
DmD are determined by neutrino masses and the mixing matrix as

(m†
DmD)12 = (m†

DmD)13 = − M

2
√
2
(m2 −m1) ,

(m†
DmD)23 =

M

4
(m1 +m2 − 2m3) . (13)

We then obtain from Eq. (6) that

Br(µ → eγ)

Br(τ → µγ)
≃



















5.6× 1
2

(

∆m2

⊙

∆m2

atm

)

≃ 0.23 for NH

5.6× 1
8

(

∆m2

⊙

∆m2
atm

)2

≃ 7.7× 10−4 for IH

5.6× 1
2

(

∆m2

⊙

∆m2
atm

)2

≃ 3.1× 10−3 for QD

. (14)

For all the cases, it turns out that Br(µ → eγ) ≃ 5.6×Br(τ → eγ) ≪ Br(τ → µγ),

as pointed out in Refs. [7, 8]. In this limit, the Majorana phases do not affect the

LFV processes.

(b) The large ya case :

The matrix Q has a simple form. First, the matrices Qa behave as

Qa ≃
eya√
2
Qa , (15)

where

Q1 =
1√
2











1 i 0

−i 1 0

0 0 0











,Q2 =
1√
2











0 0 0

0 1 i

0 −i 1











,Q3 =
1√
2











1 0 i

0 0 0

−i 0 1











. (16)

They satisfy Q†
a = Qa and Q2

a =
√
2Qa. As for the product of Qa such as Q ∈

{Qa,QbQa,QcQbQa}, we find an interesting relation as

Q†Q =
√
2Qa . (17)

By using Eq. (17) Q†Q is expressed by

Q†Q ≃ e2(y1+y2+y3)

4
√
2

Qa . (18)

This means that Q†Q is characterized by three independent matrices Qa(a = 1-

3) for large ya. Thus, we examine the following three cases, taking R = OQa ≃
eyaOQa/

√
2.
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(b-1) R = OQ1

We have

(m†
DmD)12 = −(m†

DmD)13 =

(

Me2y1

2

)

m2 −m1 + i2
√
m1m2 cosα0

2
√
2

,

(m†
DmD)23 = −

(

Me2y1

2

)

m1 +m2 − 2
√
m1m2 sinα0

4
. (19)

Thus the LFV branching ratios are related as Br(µ → eγ) ≃ 5.6×Br(τ → eγ)

for all cases. For the NH case, we obtain Br(µ → eγ) ≃ 11.2 × Br(τ → µγ).

For the IH and the QD cases, one finds

Br(µ → eγ)

Br(τ → µγ)
≃ 11.2× cos2 α0

(1 + sinα0)2
. (20)

This ratio is a function of α0. It is 11.2 for α0 = 0 or π, and 0 for α0 = π/2.

(b-2) R = OQ2

The difference of the Majorana phases α0 − β0 enters into m†
DmD,

(m†
DmD)12 =

(

Me2y2

2

)

m2 + i
√
2
√
m2m3e

i(α0−β0)

2
√
2

,

(m†
DmD)13 =

(

Me2y2

2

) −m2 + i
√
2
√
m2m3e

i(α0−β0)

2
√
2

,

(m†
DmD)23 =

(

Me2y2

2

) −m2 + 2m3 + 2
√
2i
√
m2m3 cos(α0 − β0)

4
. (21)

For the NH case and the IH case, the branching ratios of ℓi → ℓjγ are related

to each other as Br(µ → eγ) ≃ 5.6× Br(τ → eγ), and

Br(µ → eγ)

Br(τ → µγ)
≃







5.6×
√

∆m2

⊙

∆m2

atm

≃ 1.0 for NH

11.2 for IH
. (22)

For the QD case, we obtain

Br(µ → eγ)

Br(τ → µγ)
≃ 11.2× 3 + 2

√
2 sin(α0 − β0)

1 + 8 cos2(α0 − β0)
,

Br(τ → eγ)

Br(τ → µγ)
≃ 2(3− 2

√
2 sin(α0 − β0))

1 + 8 cos2(α0 − β0)
. (23)

We have Br(µ → eγ) ≃ 5.6×Br(τ → eγ) ≃ 3.7×Br(τ → µγ) for α0 − β0 = 0

or π. The ratio Br(µ → eγ)/Br(τ → µγ) takes its minimum value 1.9 at

α0 − β0 ≃ −π/2.
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small ya large ya

Q = 1 Q1 Q2 Q3

Br(µ→eγ)
Br(τ→µγ) NH 0.23 11.2 1.0 ≪ 1

IH 7.7× 10−4 11.2 × cos2 α0

(1+sinα0)2
11.2 11.2

QD 3.1× 10−3 11.2 × 3−2
√
2 sin(α0−β0)

1+8 cos2(α0−β0)
11.2 × 3+2

√
2 sinβ0

1+8 cos2 β0

Br(µ→eγ)
Br(τ→eγ) NH 5.6 5.6 5.6 5.6

IH

QD 5.6× 3−2
√
2 sin(α0−β0)

3+2
√
2 sin(α0−β0)

5.6× 3+2
√
2 sinβ0

3−2
√
2 sinβ0

TABLE I: Summary of the ratios of the LFV processes.

(b-3) R = OQ3

The Majorana phase β0 enters into m†
DmD. We obtain

(m†
DmD)12 =

(

Me2y3

2

) −m1 + i
√
2
√
m1m3e

−i β0

2
√
2

,

(m†
DmD)13 =

(

Me2y3

2

)

m1 + i
√
2
√
m1m3e

−i β0

2
√
2

,

(m†
DmD)23 =

(

Me2y3

2

) −m1 + 2m3 − i2
√
2
√
m1m3 cos β0

4
. (24)

In this case
∣

∣

∣
(m†

DmD)ij

∣

∣

∣

2

can be obtained from case (b-2) by replacing m2

with m1 and α0 − β0 with π − β0. The branching ratio Br(µ → eγ) is

suppressed in the NH case because of Br(µ → eγ) ≃ 5.6 × Br(τ → eγ) ≃
5.6 × (m2

1/∆m2
atm)Br(τ → µγ) ≪ Br(τ → µγ). For the IH case, the branch-

ing ratios are related to each other as Br(µ → eγ) ≃ 5.6 × Br(τ → eγ) ≃
11.2× Br(τ → µγ). For the QD case, relation among the ratios of branching

ratios is obtained from Eq.(23) by changing α0 − β0 to π − β0.

The results are summarized in Table 1.

For the ratio Br(µ → eγ)/Br(τ → eγ), Q does not contribute except for the QD case

with Q = Q2 or Q3 where the Majorana phases give a significant effect. The drastic effect

occurs for Br(µ → eγ)/Br(τ → µγ) by Q or by the interplay between Q and the Majorana
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phases. The substantial enhancement arises in Br(µ → eγ), which is a quite different

feature from the case with Q = 1. By the introduction of Q( 6= 1), the Majorana phases

can affect the LFV processes. This fact is a quite interesting because the observation of

the LFV processes would give useful information of Majorana phases.

3. NUMERICAL RESULTS

In the previous section, we consider the two limiting cases for the parameter ya. When

ya take the intermediate values, we may guess the result by extrapolating from the two

limits, but some non-trivial structure might appear. Therefore, we perform the numerical

evaluation of the LFV branching ratios for three typical cases, R = OQa(a = 1-3).

Neutrino mixing parameters are taken to be tan2 θ⊙ = 0.45[12], sin 2θatm = 1[13], and

sin θ13 = 0. The values for M and MGUT are taken as M = 1010GeV and MGUT =

2 × 1016GeV. The SUSY parameters are taken to be m0 = A0 = mSUSY = 100GeV

and tanβ = 10. For standard model parameters αEM = 1/137 and v = 246GeV are

used. It will be shown that the ratios of the branching ratios are not sensitive to SUSY

parameters, right-handed neutrino mass scale, and the GUT scale.

We analyze the ya dependences of Br(µ → eγ)/Br(τ → µγ). The result for the NH case

is shown in Fig. 1. We find the smooth extrapolation in Br(µ → eγ)/Br(τ → µγ) between

O(0.1) and O(1) for R = OQ2 with α0 − β0 = 0 and between O(0.1) to O(10−6) ≪ 1

for R = OQ3. For R = OQ1, some structure is observed between O(0.1) and O(10).

The ratio blows up around y ∼ 1.3 due to the vanishing Br(τ → µγ). There is no α0

dependence.

The IH case is shown in Fig. 2. The dotted (dashed) curve represents Br(µ →
eγ)/Br(τ → µγ) for R = OQ2 (OQ3) where the smooth extrapolation is found between

very small value to about 50 (2), where there is no α0 dependence. The case R = OQ1 is

shown for solid curves, which has the Majorana phase α0 dependence. For all cases, we

find the smooth extrapolations between two limiting values, the small ya and the large

ya.

For the QD case with R = OQ2, the ratio of the branching ratios depends on α0 − β0,

9
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FIG. 1: The ratio of the branching ratios is shown in the NH case for Q1 (solid curve), for Q2

with α0 − β0 = 0 (dotted curve), and for Q3 (dashed curve).

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

ya

α0 = 3π/4

α0 = 0

α0 = 3π/2B
r(
µ
→

eγ
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B
r(
τ
→

µ
γ
)

FIG. 2: The ratio of the branching ratios is shown in the IH case for Q1 with α0 = 0, 3π/4, 3π/2

(solid curve), for Q2 (dotted curve), and for Q3 (dashed curve).

and is roughly obtained by replacing β0 to π − (α0 − β0) in the formula for R = OQ3.

The results for R = OQ1 are similar to those for the IH case with R = OQ1. In Fig. 3,

we show the y3 dependence for the case with R = OQ3 for α0 − β0 = 0, 3π/4, 3π/2. The

enhancement occurs for α0 − β0 = 3π/4 because Br(τ → µγ) is suppressed.

In Fig. 4, Br(µ → eγ) with R = OQ1 is shown as a function of y1. As y1 grows, the

neutrino Yukawa couplings become large for all the neutrino mass spectrum. Thus, the

smooth extrapolation is obtained, so that the two limiting cases give the general trend
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FIG. 3: The ratio of the branching ratios is shown in the QD case for Q3 with β0 = 0, 3π/4, 3π/2.

0 0.5 1 1.5 2 2.5 3

1.´ 10-15

1.´ 10-13

1.´ 10-11

1.´ 10-9

y1

NH

IH
wit

h α0
= 3π/

4QD
wit

h α0
= 3π/

4

B
r(
µ
→

eγ
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FIG. 4: The LFV branching ratios Br(µ → eγ) are shown in the NH case, the IH case with

α0 = 3π/4 and the QD case with α0 = 3π/4 for R = OQ1.

of the ya dependence. In many cases, the Majorana phases play an important role on

the prediction of the LFV processes. Therefore, we can obtain useful information of the

Majorana phases from the experimental data of the LFV processes.

4. CONCLUSION

We have shown the importance of the complex nature of the neutrino Yukawa matrix

for the case of the degenerate right-handed neutrino masses. With the complex R, the
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Majorana phases play an important role for the prediction of the LFV processes. In

order to see the effect analytically, we have taken the parameterization, R = OQ. We

have considered the two limiting cases; the small ya case with Q = 1 and the large ya

case with complex matrix Q. We have obtained the analytic expressions for ratios of the

branching ratios of µ → eγ, τ → µγ and τ → eγ, which are shown in Table 1. The effect

of Q is sizable and gives enhancement of Br(µ → eγ)/Br(τ → µγ) in many cases. In

particular, the Majorana phases contribute to some cases. This would give a possibility

to obtain useful information of Majorana phases by observing the LFV processes. This

is quite interesting and important because extracting the information for the Majorana

phases can be used to examine the nature of neutrinos.

It may also be interesting to discuss the possibility to determine the neutrino Yukawa

matrix by analysing the double beta decay, the µ− → e+ [4, 14] and µ− → µ+ conversion

[15], the LFV processes which occur through SUSY contributions, and the leptogenesis.
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