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Beyond-the-standard-model (BSM) particles should be included in effective field theory in order to
compute the scattering amplitudes involving these extra particles. We formulate an extension of Higgs
effective field theory which contains an arbitrary number of scalar and fermion fields with arbitrary electric
and chromoelectric charges. The BSM Higgs sector is described by using the nonlinear sigma model in a
manner consistent with the spontaneous electroweak symmetry breaking. The chiral-order counting rule is
arranged consistently with the loop expansion. The leading-order Lagrangian is organized in accord with
the chiral-order counting rule. We use a geometrical language to describe the particle interactions. The
parametrization redundancy in the effective Lagrangian is resolved by describing the on-shell scattering
amplitudes only with the covariant quantities in the scalar/fermion field space. We introduce a useful
coordinate (normal coordinate), which simplifies the computations of the on-shell amplitudes significantly.
We show that the high-energy behaviors of the scattering amplitudes determine the “curvature tensors” in
the scalar/fermion field space. The massive spinor—wave function formalism is shown to be useful in the

computations of on-shell helicity amplitudes.

DOI: 10.1103/PhysRevD.104.015001

I. INTRODUCTION

Four seemingly independent fundamental energy scales
that we know about in elementary particle physics, the
Planck scale ~1.2 x 10" GeV (energy scale of gravita-
tional interaction), the cosmological constant ~(2.2 meV)*
(accelerated expansion of the Universe), the weak scale v ~
246 GeV (masses of elementary particles), and the QCD
scale ~300 MeV (masses of hadrons).

Among these four known fundamental energy scales, the
most well understood one is the QCD scale. High-energy
hadronic particle collisions much above the QCD scale
can be successfully investigated perturbatively, while the
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low-energy hadron physics can be described in terms of
low-energy effective field theories. The QCD scale is
generated dynamically through the dimensional transmu-
tation mechanism in the SU(3) QCD gauge dynamics.
Since the scale generation is forbidden at the classical level,
the QCD scale is stable against quantum loop corrections.
Moreover, the global symmetry structure of QCD allows us
to develop systematic expansions in these effective field
theories. Specifically, low-energy pion physics can be
described in terms of chiral perturbation theory [1-5], in
which the pions are treated as pseudo-Nambu-Goldstone
bosons associated with the spontaneous breaking of the
global chiral symmetry. The low-energy theorems in the
pion scattering amplitudes are reproduced in chiral pertur-
bation theory at its leading order. It is also possible to
include higher-order corrections in a systematic manner by
computing the quantum loop corrections and by introduc-
ing higher-order terms in the effective chiral Lagrangian
arranged in accord with the chiral-order counting rules.
Although the chiral perturbation does not converge above
the resonance mass energy scale, the situation can be
improved by explicitly introducing resonances such as the
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spin-1p meson in the effective chiral Lagrangian [6-8].
Actually, it is possible to formulate chiral perturbation
theory even in the effective chiral Lagrangian including the
p meson [9-11].

On the other hand, the standard model (SM) of particle
physics provides a consistent gauge theory framework to
describe the physics associated with the weak scale. A
Higgs field and Higgs potential are introduced in the SM to
generate the weak scale. It has been shown that the
125 GeV scalar particle discovered at the LHC experiments
can be identified successfully as a Higgs particle associated
with the SM Higgs field [12]. Unlike the QCD scale
generation mechanism, however, in the SM, the Higgs
potential responsible for the weak scale is not classically
forbidden and the weak scale is subject to huge quantum
loop corrections. Fine-tuning of parameters is required in
the SM to explain the smallness of the weak scale relative to
the Planck scale (naturalness problem). It is a common
belief that the certain beyond-the-standard-model (BSM)
new physics exists not far above the weak scale, guarantee-
ing the naturalness of the weak scale. Unfortunately,
however, it turned out that the current collider energy is
not enough high to reveal the nature of BSM physics.
Currently, we have no direct collider physics evidence
supporting the existence of BSM physics. Compared with
the QCD scale, current understanding of the weak scale
physics is highly restricted in this sense, mainly due to the
lack of our knowledge about the physics far above the
weak scale.

It should be useful if we establish a weak scale analog
to chiral perturbation theory. Assuming that BSM is
weakly interacting, the standard-model effective field
theory (SMEFT) [13], along with recent reviews
[14,15] in which the electroweak symmetry SU(2) x
U(1) is realized linearly, can be used for such a purpose.
The SMEFT cannot be applied, however, to strongly
interacting BSM, in which heavy BSM particles do not
decouple from the low-energy physics. For strongly
interacting BSM, we can use the Higgs effective field
theory (HEFT) [16-31], in which the electroweak sym-
metry SU(2) x U(1) is realized nonlinearly.

Weak scale analogs to the resonance chiral perturbation
theory have also been studied. Phenomenologies of the
weak scale analogs to the spin-1 p resonance have been
investigated by using the resonance electroweak chiral
Lagrangian techniques [32-36]. We have proposed the
generalized Higgs effective field theory (GHEFT) frame-
work [37], in which arbitrary number of spin-0 resonances/
particles with arbitrary electric charges are introduced in
the HEFT Lagrangian. To explain the naturalness of the
weak scale, it is tempting to consider BSM scenarios
having larger global symmetry and thus with extra
pseudo-Nambu-Goldstone particles. Actually, in composite
Nambu-Goldstone Higgs models [38], global symmetries
larger than the SM gauge group are introduced. There are

extra pseudo-Nambu-Goldstone particles in nonminimal
composite Higgs models [39-45]. We emphasize that these
extra pseudo-Nambu-Goldstone particles can be success-
fully investigated in the GHEFT framework. We stress here
the difference between the weak scale v ~ 246 GeV and the
compositeness scale A ~4zf in the composite Higgs
scenarios. It is known that f needs to be several times
larger than the weak scale in order to keep the consistency
with electroweak and flavor precision constraints. In the
GHEFT framework, A ~ 4z f can be regarded as the scale
of perturbative unitarity violations, which can be pushed up
to high-energy scale independently of » enough to meet
these phenomenological constraints. Although the electro-
weak symmetry is realized nonlinearly in our GHEFT
Lagrangian, our theory should be regarded as valid below
the compositeness scale 4zf keeping the perturbative
unitarity. This fact motivates us to introduce TeV scale
resonances in the GHEFT framework.

There is a difficulty in the studies of effective field
theories, i.e., nonuniqueness of its parametrization meth-
ods. The Kamefuchi-O’Raifeartaigh-Salam (KOS) theorem
[46] tells us that there are equivalent classes of seemingly
different effective field theories which describe the same
physics. As the KOS theorem suggests, there are many
equivalent formulations of effective theories connected
with each other through the changes of effective field
variables (coordinates). This makes it difficult to compare
results computed in an effective field theory with results in
seemingly different but equivalent field theories which may
be generated more directly from UV physics. The Warsaw
basis [47] is often assumed to resolve the nonuniqueness in
SMEFT. The Warsaw basis should be understood to be a
symptomatic treatment effective only at the lowest order,
however. It does not provide a systematic prescription to fix
the issue beyond the leading order.

The same problem exists in electroweak resonance chiral
perturbation theories. Existing studies of electroweak
resonance chiral perturbation theories rely on particular
field parametrizations.

In our previous paper on GHEFT [37], we showed that
GHEFT (electroweak resonance chiral perturbation theory)
can be described by using the covariant tensors of the scalar
manifolds, which allows us to parametrize the particle
scattering amplitudes and the quantum corrections in a
covariant manner under the changes of effective field
variables (coordinates) [48,49]. It has been shown that
the uses of the normal coordinate simplify the computation
of the scattering amplitudes significantly. We have then
shown that, once the perturbative unitarity at the tree level
is ensured, then one-loop finiteness is automatically guar-
anteed in the GHEFT framework.

There remains an issue we need to investigate in the
electroweak resonance chiral perturbation theory analysis.
As far as we know, there have been no studies on the
electroweak resonance chiral perturbation theory including
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fermionic spin-1/2 particles strongly coupled with the
Higgs sector. It should be emphasized, however, that the
SM Higgs particle couples with the top quark (fermion)
most strongly. The existence of BSM spin-1/2 particles is
widely expected in BSM models, thus explaining the
naturalness of the weak scale. Actually, in the composite
Higgs models, a top-quark partner fermion is usually
introduced to explain the mass of the top quark.

In this paper, we generalize the findings we made in our
previous paper to include fermionic heavy particles in the
GHEFT Lagrangian. The particle scattering amplitudes are
expressed using covariant quantities of the bosonic and
fermionic field coordinates. The scattering amplitude for-
mulas given in this paper can therefore be easily compared
to the formulas computed in other equivalent formulation
of fermionic resonance electroweak chiral perturbation
theories.

This paper is organized as follows: In Sec. II, we
introduce an extended GHEFT Lagrangian including the
extra spin-1/2 fermionic particles. We then provide a
chiral-order counting rule which allows us to perform a
systematic expansion in the computation of the scattering
amplitudes in a manner similar to the well-known chiral
perturbation theory. In Sec. III, the normal coordinate
technique is generalized to include fermionic field coor-
dinates. We investigate tree-level spin-0 and spin-1/2
particle scattering amplitudes in Sec. IV by applying the
normal coordinate technique. It is shown that these scatter-
ing amplitudes can be expressed in terms of the covariant
quantities of the GHEFT field manifold. We conclude in
Sec. V. A quick review on HEFT is given in Appendix A.
Notation on the helicity eigenstate wave functions is
summarized in Appendix B. Appendix C is for the explicit
computations of higher-order coefficients in the normal
coordinate expansion, as well as a proof of Bianchi identity.

II. GENERALIZED HIGGS EFFECTIVE
FIELD THEORY

We need to incorporate new BSM particles into effective
field theories (EFTs) so as to compute production cross
sections and decay widths involving these new BSM
particles. These new particles are not included in minimal
EFTs such as SMEFT [13-15,47]and HEFT [16-31],
however. We proposed in our previous paper [37] the
GHEFT framework in which an arbitrary number of spin-0
resonances/particles with arbitrary electric charges were
introduced. In this section we further generalize our
GHEFT framework to incorporate BSM spin-1/2 fermions,
as well as the 125 GeV Higgs boson, BSM scalar particles,
quarks, and leptons.

The electroweak gauge symmetry G = SU(2)y, x U(1)y
is spontaneously broken to the electromagnetic H = U(1),,,
at the electroweak symmetry breaking (EWSB) scale. If the
EWSB is triggered by strong new dynamics in BSM, the
spontaneously broken symmetry G should be realized

nonlinearly at the low-energy scale. Electroweakly charged
particles, in such a case, transform nonlinearly under the
electroweak gauge symmetry. We use the celebrated Callan-
Coleman-Wess-Zumino (CCWZ) formalism [7,50,51] to
formulate the low-energy EFT Lagrangian in a manner
consistent with the EWSB. We note here that the CCWZ
formalism can also be applied even if the electroweak
symmetry is broken by perturbative dynamics.

We then provide a chiral-order counting rule in GHEFT
which allows us to perform a systematic expansion in the
computation of the scattering amplitudes in a manner
similar to the well-known chiral perturbation theory [1-5].

A. Leading-order GHEFT Lagrangian

We start the discussion in the gaugeless limit
(gw=gy=0) for simplicity. The couplings with the SM
gauge fields will be introduced at the end of this subsection.
The minimal EFT for strongly interacting EWSB is
described by the HEFT Lagrangian [16-31] in the gauge-
less limit,

Lygrr = LHEFT boson T LHEFT fermion (1)
with the bosonic sector Lagrangian Lygpt poson D€INE
ﬁHEFT,boson = G(h)tr[aﬂ Ut 8;4 U]

+ =G (h)u[UT0" UL (U9, UT)

+

N = N =

(0,h)(0"h) =V (h). (2)

The fermionic sector Lagrangian Lygpr fermion 15 given in
Appendix A. The bosonic sector HEFT Lagrangian (2)
should be regarded as the starting point of the GHEFT
framework [37]. The 125 GeV Higgs boson field is denoted
by h, while U is an exponential function of the Nambu-
Goldstone (NG) boson fields,

U = éwiy, 3)
where
w(x) =exp (i m4(x - , 4
() =e (1w ) @
’Z'3
6 =ex (0007 ). )

with ¢ and 7¢ (a = 1, 2, 3) being the Pauli spin matrices
and the NG boson fields. G(h), Gz(h), and V(h) are
arbitrary functions of 4, which determine the interactions
among the 125 GeV Higgs field and the NG boson fields.
Custodial symmetry implies G,(h) = 0. Here we do not
impose G,(h) = 0, however, to keep the generality.
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For later convenience, we rewrite the HEFT Lagrangian
(2) in terms of the CCWZ formalism, i.e., by using the G/H
Lie-algebra-valued Maurer-Cartan (MC) one-forms of the
NG boson fields,

@, —u[ LG =12 ©

and
@, =t 15* (D,Ew)7 | +tr l(a EELB|. (7)
1 = T T owlGuew F\Gusy)ey™ -

The HEFT Lagrangian (2) is expressed as

1 1
‘CHEFT,boson :EGab(h)aiya}iﬂ +§(aﬂh) (aﬂh) - V(h)’ (8)
where Gy (h) = Gy (h) = G(h), G33(h) = G(h) + Gz(h)
and G,,(h) =0 for a#b. In Eq. (8) and hereafter,
summation ), is implied whenever an index a is
repeated in a product.

The CCWZ formalism allows us to systematically
introduce extra BSM scalar particles in the low-energy
EFT. Here we introduce extra (ng — 1) BSM real scalars
and ne BSM complex scalars in addition to the 125 GeV
Higgs boson. Therefore, there are ng, = np + 2n, real
scalars in total. It is convenient to introduce a real scalar
multiplet ¢/ (I = 1,2, ...,n,) as

ng 2ne

¢I: (¢1,¢2“”’¢n,\,’¢n1\/+1.”¢n‘\.)’ (9)

where we identify ¢! as the 125 GeV Higgs boson, ¢! = h.
The H = U(1),,, transformation for the scalar multiplet is
defined as

&' lexp(i0,0,)]1 4, (10)

where 6, is a real constant parameter and the (n, X ny)
matrix Q is defined as

ng 2nc
0

—q102

—qn.02

Here 6, = 7% and ¢;(i = 1,2, ...n¢) denotes the U(1).,
charges of the scalar fields. The G = SU(2)y, x U(1)y
transformation of ¢’ is given by

¢Sl

where 6, is a real function of group -elements
aw € SU(2)y, gy € U(1)y, and the NG boson fields (z%).
There may be SU(3). colored scalar particles such as
leptoquark scalars and colored superpartner bosonic par-
ticles. The flavor indices I, J are understood to include the
color index for these colored bosons. It is straightforward to
write the SU(3) transformation matrix for ¢’.

Since the G transformation matrix p, depends on the NG
boson fields, the derivative of the scalar multiplet 8ﬂ¢’
transforms nonhomogeneously under G,

p(/) = eXp(iQ¢9[1(”’ gWa gY))’ (12)

8,0 Spg) 1 (0,87) + (upy) . (13)

Therefore, if ¢’ contains the charged scalar (namely,
py # 1), the kinetic operator (89,¢")(0"¢") is not invariant
under the G transformation. G-invariant kinetic terms for
the charged scalar fields are formulated by introducing the
covariant derivative on the G/H coset space. The covariant
derivative is defined as

DM¢I = aﬂ¢l + iv}ﬂQ(ﬁ]IngJ’ (14)

where

1
V3= —tr L, (aﬂgy)g;ﬁ} +cal,, (15)
with ¢ being an arbitrary constant. The Vi corresponds to
the H Lie-algebra-valued MC one-form, which plays the
role of the connection field on the G/H coset space. It is
straightforward to show that the covariant derivative D, ¢’

homogeneously transforms under G,

D' Slpy) (D). (16)

The “covariant” kinetic term (D,¢’)(D*¢') respects the G
invariance.

Using the G-covariant objects &, ¢/, and D,,¢)', we can
systematically write G-invariant Lagrangians. As we will
see later, the lowest-order Lagrangian is written as [37]

1
LGHEFT boson = EGa,,(gb)a‘iﬂa}i” + Gy (p)at, (D'p")

1
+5Gu(@) (D)D) = V(g).  (17)
Gap» Ga1» Gy, and V are functions of the scalar fields ¢’
which homogeneously transform under the G transforma-
tion. These functions determine the interactions among the
scalar fields. Again, we do not impose the custodial
symmetry in Eq. (17) to keep the generality. Once we
specify the ultraviolet completion of the EFT, G,,, G,
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Gy, and V are determined up to the uncertainty associated
with the field redefinition.

We next discuss the fermion sector. We need to at least
introduce SM quarks and leptons in our EFT framework.
Moreover, the existence of BSM spin-1/2 particles is
widely expected in BSM models, explaining the natural-
ness of the weak scale. For this purpose, we incorporate 71,
Majorana fermions and 71, Dirac fermions into the EFT
Lagrangian (17). We describe these fermions by using 71, =

iy + 2np two-component spinor fields 1//2,(? =1,....n 1)

iy 2itp

Vio= Whovi owdwd o yld), (18)

where o is the spinor index which takes 1 or 2. The
Hermitian conjugate of y, is denoted as y/' = (%)*. The
U(1),, transformation for the fermion multiplet (18) is
defined as

* H . P g
fo"[exp(leleh)] j'l//{l’ (19)

where 6, is a real constant parameter and the (7, x 7iy)
matrix Q,, is defined as

ny

(20)

Q
<

|
(e)

q4i03

497,03

1

Here o3 = 7° and ¢;(i = 1,2, - fip) denotes the U(1),,
charges of the fermion fields. There certainly are SU(3).
colored spin-1/2 particles. The flavor indices i, j are
understood to include the color index for these colored
fermions. It is straightforward to write the SU(3). trans-
formation matrix for z;/; X

The G = SU(2)y, x U(1), transformation of i, is
given by

vi sl vk py = exp(iQ,6,(z. aw.ay)). (21)

where 6, is a real function of group -elements
aw € SU22)y, gy € U(1)y, and the NG boson fields

(7%). We note that the derivative of the fermion field,
8”1//", nonhomogeneously transforms under the G trans-
formation as the derivative of the scalar field E)ﬂqbl does.

The covariant derivative can be defined as
Dﬂlljfl = aﬂlllfl + IVE, [Ql[/]i}wé? (22)

where the connection field Vﬁ is defined in Eq. (15). It is

easy to show that the covariant derivative Dﬂwg transforms
homogeneously under the G transformation,

+ G 2 .
Duwa—lpyl'(Duyra). (23)

It is now straightforward to construct a G-invariant
Lagrangian for the scalar and fermion fields. We can
systematically construct G-invariant operators by using
the G-covariant objects, af,, ', w', D', and Dy
Applying the chiral-order counting rule which we will

introduce in Sec. I B, we write down the leading-order
Lagrangian of GHEFT as

Leuprr = EGab (¢)0‘Laiﬂ +Gau (45)0‘3, (Drg') + %G,,(q&)(D"qﬁ’)(D,,qﬁ’) - V(g)

i o 4 ey o 'l\ a o 'l\
+5 Gy (D)W 3 (Dy') = (D™ )a"w") + Vi (O™ 3w e, + Vi (h)w™ 5y (D)

1 A oA 1
=5 M (Py'y! =

“x Nk 1 A A ~ 1 A n s .
i (@ TV S W) Y) 5 S (@) Ty Ty

2 2 8 8
1 s s e a
+ 23S (@)W ™y, (24)
where we use the spinor-index-free notation for the fermion . i .
bilinear operators [52], i.e., w'ety' =y (at) (27)
(w'v) = Py, (25) oty = eyl (o) Py, (28)
Wy ) =l ey (26) Wi oy T =yl @l 9)
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with &> = —¢?! = —¢, = £,; = 1. The spinor matrices

o, o#, o', 6"¥ are defined as
()% := (197, —(6*)™), (30)

(0") i = Eapa ()", (31)

() =

1[0V = (@)@, (32)

I T .
(8)% = 7 [(8)7(6") s = (8)7 (") 4], (33)
where 1 and ¢ (a = 1, 2, 3) denote a 2 x 2 unit matrix and
the Pauli spin matrices, respectively. Since ¢’ transforms
homogeneously under G transformation, the functions G,
Gal’ G”, GZJ s Vz] @ V?}'*I? Ml], Mz*]*’ S?}-m, S?*]‘*IQ*?*’ and
S;341 also transform homogeneously under G. They are

also assumed to satisfy the index-exchange symmetry,

Gup(#) = Gpa(9). (34)
Gu(h) = G (@) (35)
M3 () = M5;(h). (36)

My () = My (), (37)

$i311(@) = S3i11(¢) = Si31(d) = Sais(¢). (38)

Siier (@) = Sipr (@) = Sy (@) (39)
The Hermiticity of the Lagrangian requires

[Gap(@)]" = Gap(). (40)

[Gar(P)]" = Gur (). (41)

[Gu(@)]" = Gu(#), (42)

V() = V(). (43)

Gy (@) = Gy (9), (44)

Vira( @) = Vio(@), (45)

Vizer(@)]" = Vi), (46)

[M;5(P)]" = M35 (9), (47)

(S50 P)]" = Sijier (), (48)

S350 (D))" = Stazey (). (49)

These functions determine the interactions among the
scalar bosons and the spin-1/2 fermions. The operator

G;}.* (¢)Dﬂ(z/ﬂ~7x6"y/?) is absent from the Lagrangian (24)
because it can be eliminated by adding the total derivative
operator 9, (G (¢)y' 5y ) and redefining Vi, and Vi
appropriately.

As we will see in Sec. II B, four-fermion operators
should be introduced in the leading-order Lagrangian (24),
while we do not introduce operators like

(o yd)[ad,. ab,]. (50)

which seemingly possess lower mass dimensions. The four-
fermion operators

(o y)) (wro,ul),
(' ey’ ) (yio,u)

(" ey ) w 7).
'),

are Fierz rearranged to the standard forms

ey ) (w5,

Wy ) ), )y, Ty ™y
in the Lagrangian (24).

The HEFT Lagrangian (1) can be reproduced by restrict-
ing the particle contents and the structures of the coupling
functions. We summarize the relationship between GHEFT
(24) and HEFT (1) in Appendix A.

The minimal electroweak gauge interactions are intro-
duced in the EFT Lagrangian by replacing 0,y and 0,&y
with the covariant derivatives,

Dy = 0,&w — igwW, fw, (51)

3

v (52

D&y = 0,&y + igyéyB,
with Wy, (a = 1, 2, 3), B, gw. and gy being the SU(2)y,
and U(1), gauge fields and gauge coupling strengths. It is
also straightforward to introduce minimal QCD inter-
actions with gluons by gauging the bosonic indices 7, J
and fermionic indices 7, J, i*, J* in an appropriate manner.
We can also include nonminimal gauge interactions
through operators like gv(y/?a"”y/})vﬂy, with V. gy being
the field strength and the coupling strength of the gauge
boson. As we will discuss in Sec. II B, however, these
operators do not appear at the leading order in the chiral-
order counting rule.

B. Chiral-order counting rule

Low-energy effective theories are not renormalizable.
They therefore contain infinitely many free parameters. To
compute scattering amplitudes while keeping certain
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predictability in effective theories, we need to introduce an
order counting rule which enables us to distinguish
phenomenologically relevant parameters from irrelevant
ones. If the underlying physics behind the effective theory
is a perturbative theory, the operators in the effective
theory can simply be organized by their mass dimensions.
Higher-dimensional operators decouple from the low-
energy physics quickly, and the associated parameters
are suppressed by the inverse power of the cutoff scale.
SMEFT [13-15,47] is constructed based on this idea.

This idea cannot be applied to nonperturbative physics,
however. Chiral perturbation theory describing low-energy
pion scattering amplitudes in hadron physics is a well-
known example [1-5]. In chiral perturbation theory, the
operators in the effective theory are not organized by their
mass dimensions. They are instead organized by the
number of derivatives. The chiral-order counting rule in
chiral perturbation theory is known to be consistent with
the expansion in terms of the energy in the scattering
amplitudes, with the expansion in terms of loops, and also
with the expansion in terms of light quark masses.

How can we organize the chiral-order counting rule in
our effective Lagrangian? The rule should be consistent
with the expansion in terms of the energy and also with the
expansion in terms of loops. To construct such a chiral-
order counting rule, we next study divergence structure in
the radiative corrections, and we justify the contention that
Eq. (24) is regarded as the leading-order Lagrangian in the
loop expansion.

We first consider an amputated connected L-loop
Feynman diagram D made only from the interactions in
the Lagrangian (24). The diagram possesses [, scalar
internal propagators and [, fermion internal propagators.
The vertices in the diagram are labeled by an integer
n=1,2,...,N,, with N, being the total number of vertices
in the diagram. The superficial degree of divergence for D
is denoted by d(D). It can be calculated from

oz (i) (1) " #0)= nf;(#a)n. (53)

p p

Here the nth vertex appears from the operator with (#09),

derivatives and 2 x (#yy), fermions. We also introduce

spurions for later convenience. The nth vertex operator is

assigned to have (#s), spurion fields. These numbers for

the operators in the Lagrangian (24) are listed in Table 1.
We obtain

N,
d(D) =4L+> (#), - 21, —1,. (54)
n=1

We next expand the diagram D in terms of the external
momentum p,

TABLE I. The number of derivatives, the number of fermion
bilinears, and the number of spurions for operators in the lowest-
order Lagrangian.

Gap Ga GV Gy Vg Vi My Spu
(#9), 2 2 2 0 1 1 1 0 0
(hpw), 0 0 0 0 1 1 1 1 2
#s, 0 0 0 2 0 0 0 1 0
D= Z D(#p)p(#l’)
(#p)=0,1,2,-
=Dy +Dyp+Dyp*+---. (55)

The superficial degree of divergence for Dy, is thus

d(Dyy) = 4L+ S (#), = (#p) =21, I, (56)

The number of scalar propagators /, can be removed from
Eq. (56) by using the graph-theoretical Euler formula

L+N,—1,~1,=1. (57)

We find that
N,

d(Diyy) =2L+ Y _[(#0), =2] - (#p) +2+1,. (58)
n=1

We next turn to the renormalization of the effective theory.
We assume that the effective theory is nonanomalous. The
divergences associated with d(D,)) >0 can thus be
subtracted by introducing local operator counterterms O.
The number of derivatives, the number of fermions, and the
number of spurions in O are computed as

(#9)o = (#p),
() = > Chwy), — 1.
n=1
() = 3 (#5),. (59)
n=1

Using the relations above, the inequality d(D,) > 0
can be rewritten as

2L+ [(#0), + (), + (#s), - 2]

> (#0)o + (Hyy)o + (#s)p — 2. (60)

We define the “chiral dimension” of the operator O as

C(0) = (#0)o + (Hyw)o + (#s)o- (61)

015001-7



NAGAI, TANABASHI, TSUMURA, and UCHIDA

PHYS. REV. D 104, 015001 (2021)

The spurion field dependences (#s), in Table I are
determined so as to keep C(n) =2 in the lowest-order
Lagrangian. Here we define C(n) as the chiral dimension
for the operator from which the nth vertex arises in the
Feynman diagram D.

The counterterms O that we need to introduce to subtract
the divergences in the diagram D, therefore satisfy an

inequality
2L + Z [C(n)-2] > C(O) -2. (62)
n=1

Here the equality corresponds to the logarithmic diver-
gence. Since C(n) =2 for operators in the lowest-order
Lagrangian, we obtain

2L +2 > C(0). (63)

The divergences in the L-loop diagram made from the
lowest-order Lagrangian can thus be subtracted by using a
finite number of counterterms having chiral dimensions
less than or equal to 2L + 2.

We need to pay special attention to the four-fermion
operators [53-56] in the Lagrangian (24). These four-
fermion operators would arise at leading order, for instance,
from the exchange of a heavy resonance with a strong
coupling. The coefficients of the four-fermion operators do
not decouple and appear at the leading order in the low-
energy effective theory due to the strong interaction with
the heavy resonance. ' Moreover, the SM quarks and
leptons may be composite states arising from new strong
dynamics. The exchange of common constituents in the
composite state naturally produces a large coefficient
(47)%/A? for the composite four-fermion operators [58—
60]. Even if the SM quarks and leptons are assumed to be
elementary fermions, there may also be relatively light
partner fermions in the strongly interacting EWSB sector.
The four-fermion operators involving these strongly inter-
acting partner fermions appear at the leading order in our
effective Lagrangian. These are the reasons why we did not
assign (#s), > 0 for the four-fermion operators in Table I.
We also note that the assignments of the spurion field
dependences of V and M;; terms in Table I are determined
to balance the chiral dimensions of mass and kinetic terms
in scalar and fermion propagators.

'Four-fermion operators have been ignored in the HEFT
approach [16-31], however. This is because that, in the HEFT,
quarks and leptons are assumed to couple with the heavy
resonance only perturbatively. Therefore, the number of spurions
(#s), for the four-fermion operators is assigned to be (#s), > 0in
the HEFT approach. They therefore can be treated as the next-to-
leading-order Lagrangian in the HEFT [57]. The assumptions
made in the HEFT approach need not hold, however, if we do not
assume underlying UV physics behind our effective theory.

There are one-loop divergence which can be subtracted
by the counterterm sy'c*y/ [, o] . Note that, because
of the chirality-flip structure of the operator, the divergence
appears only with the chirality flipping spurion field s.
The chiral dimension of the counterterm is therefore
counted as 4. The appearance of the one-loop divergence
associated with this operator is consistent with the
expectation from the chiral-order counting rule (63). It

should also be stressed that, if we had included the operator

sy'otylaf,,ah,] in the lowest-order Lagrangian, we

would not be able to perform a systematic expansion in
the computation of the amplitudes based on the chiral-order
counting rule.

It is now straightforward to construct a systematic
expansion of the amplitudes based on the chiral-order
counting rule. Note here that the inequality (62) holds
even in a general L-loop diagram with C(n) > 2. It there-
fore assures us that we can obtain finite amplitude by
applying the standard subtraction procedure with these
counterterms. The loop expansion should therefore be
performed simultaneously with the expansion in terms of
the chiral dimension (61).

If we restrict ourselves to the operators with
(#yw)o = 0, this result is well known in the context of
chiral perturbation theory (low-energy effective theory for
the QCD pion) [1-5]. Our finding therefore can be regarded
as a fermionic generalization of chiral perturbation theory.

Finally, let us comment on the chiral-order counting of
the gauge sector. We remark that, in order for the gauge
boson kinetic Lagrangian

1 1
‘Cgauge,kin == Z WZIJWWD - ZBWB”D (64)

to be at the leading order (chiral dimension 2), we need to
assign the chiral dimensions of the field strengths as

c(wg,)=C(B,)=1. (65)
Since C(0) = 1, Eq. (65) implies

(W) = C(B,) =0. (66)
Furthermore, since the gauge bosons are introduced as

Egs. (51) and (52), the chiral dimension of the gauge
coupling parameters should be

Clgw) = C(gy) = 1. (67)
Computing the one-loop diagrams with an external

gauge line, we find that there are divergences in the
operator,

gvs(wlayi)V,,. (68)
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The chiral dimension of Eq. (68) is

Clgys(wio™yi)V,,) = 4. (69)

The appearance of the one-loop divergence associated with
this operator is consistent with the expectation from the
chiral-order counting rule (63). It should also be stressed
that, if we had included the operator gvs(y/ oyl )V, in
the lowest-order Lagrangian, we would not be able to
perform systematic expansion in the computation of the
amplitudes based on the chiral-order counting rule.

Leuprr = %gij(¢>(aﬂ¢i)(aﬂ¢j)

2 2 8
+ S @D ),

where gy;- and vy, satisfy
935 (D))" = g5 (), (72)
[0334(D)]" = v30:(9). (73)
The coefficients g;;- and vy, are calculated from Gy,

Visegs and Vi as

Gy = Gy, (74)

v = Vi —%V;}-xaﬂz

1 1
5 V;}*lﬂ'zﬂz + 5 V;}*zﬂ'lﬂ'z +0((x)*), (75)

L= gii (@W)’?’”(aﬂﬁw) 2

/*gi’i*,j*gii’* j) (Wﬂ*WU* ) (‘/’ill/j)»

- (P,
1 p
Z(gu Jir— 9

where P(¢) is the superpotential and the Kihler metric
gij- (¢, ¢") is computed from the Kihler potential K (¢, ¢"),

0*’K

oG (80)

gij+ (. ") =

1 L1 1 coa 1
— S M)y =S My (DT y T+ = S () v ) (W) + 2 S () (w Ty

o N
- 9" P,in,-* + 59 (w6 (O') —

C. Geometrical form
The scalar fields in the leading-order GHEFT
Lagrangian (24) consist of NG boson fields z¢ and the
non-NG boson fields ¢’. It is convenient to introduce a
scalar field multiplet notation ¢’ without distinguishing the
NG bosons from the non-NG bosons,

¢ = (z".¢') =

Using the scalar multiplet ¢, the EFT Lagrangian (24) can
be expressed in a geometrical form:

(' 22 @' .. p™).  (70)

Vig)+L 5 95 (@)W 50" = O )3"y) + vy ()0 5 (0,)

g Py

(71)

o — X n IR VR 1

——VM27z 7r1+6V 7w+ 0((x)?).  (76)

6
s = Viga +53 (G [0, + G [0, )
iV 0L+ O(x)), (77)
V,ﬂ, (78)

and the scalar metric tensor g;; are calculated from G,
Ga[, and G[J [37]

It may also be illuminating to point out a similarity
between our GHEFT Lagrangian (71) and the supersym-
metric nonlinear sigma model Lagrangian,

o i PP . .
(D)) + 5 W) (9ir j0ud = g #0,9™)

Pog"" giv ) wiyd) = (PL ) = Plg give ;) (')

(79)

|
Here we use a comma-derivative notation

3}

ad)“* Yii*» (81)

Gii* j = agbfg”’ Gii,j* =

to keep the expression as simple as possible. Not only the
scalar and fermion kinetic terms but also the counterparts to
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v3+(¢p) and the four-fermion terms in the GHEFT La-

grangian (71) are expressed in terms of Kihler manifold
geometry. Even though the scalar manifold of our GHEFT
Lagrangian (71) does not possess Kéhler properties, as we
will show later, the particle scattering amplitudes in the
GHEFT Lagrangian can also be described in terms of the
covariant tensors of the manifold.

III. NORMAL COORDINATE

A. Field coordinate transformations

The KOS theorem [46] tells us that seemingly different
effective Lagrangians connected through field coordinate
transformations can describe the identical scattering ampli-
tudes. An effective Lagrangian therefore cannot be deter-
mined uniquely. We summarize here the field coordinate
transformation properties in the effective Lagrangian.

We consider a field transformation which keeps the
chiral dimension of the fields. Under such a redefinition of
the field coordinates v, w'", ¢,

¢ — ().
v = [y,
yi = Ty (82)

the functions g;;(@), g5 (@), viyi(@), M;5(h), My5 (),
Siyxi(@)s Sppirr(@), and Sppg(¢) i Eq. (71)
transform as

-

gij(¢) - gi’j’(f(¢))fi/,i(¢)f] ,j(¢)’ (83)

G (D) = gy (F@VF DT 5 (8), (84)

Vi (@) = vy (FO) S AT 5(@) T 5 ()
20 GO BT 39)
— )T 5 (), (85)

Mi5(B) = Miy (§)f (D) 17 5(), (86)

Mo () = Mage D75 DFT 5@, (87)

and

$3321(#) = Sy (BF DT (D) (D) 3(h).  (88)

Sieyivr (¢)
= Spqir DT OUT O BT (9).

(89)

(o)

Sijier(4)

= Sy DS {5 D 1 @3 (). (90)
The model parametrization in the GHEFT Lagrangian (71)
is, therefore, not unique. Seemingly different Lagrangians
can describe the same scattering amplitudes if these
Lagrangians are connected with each other through the
field redefinitions (82). The GHEFT Lagrangian (71)
therefore contains redundancy in its model parametrization,
which leads to a lot of inconvenience in its phenomeno-
logical analysis. Clearly, we need a method which can
uniquely identify the class of GHEFT Lagrangians which
describe the same scattering amplitudes.

Note that the field redefinitions (82) can be regarded as a
general coordinate transformation in the field space mani-
fold. Therefore, the scattering amplitudes are expected to
be described in terms of covariantly transforming tensors
under these general coordinate transformations. We can
consider more general field redefinitions than Eq. (82) such
as ¢ — ¢ +yy and ¢ — ¢ + 0,0 ¢p. These field trans-
formations, however, violate the chiral-order counting rule.
Amplitudes computed at finite order in the chiral-order
counting are affected by these field redefinitions. We
therefore restrict ourselves to the field coordinate trans-
formations given in Eq. (82).

In our previous paper [37], we explicitly showed that the
scalar scattering amplitudes are described in terms of the
Riemann curvature tensor R; ;. (¢) in the scalar field
space and the scalar potential V(¢) and their covariant
derivatives. We have also shown that the use of the
Riemann normal coordinate (RNC) can reduce the com-
putational tasks significantly. In this paper, we generalize
these findings to the fermionic GHEFT Lagrangian (71).

B. Scalar sector

As we showed in Ref. [37], the use of the RNC
significantly reduces the computational task of the scalar
boson scattering amplitudes. This is because of the fact
that, in the RNC, the Taylor expansion of the field metric
tensor g;;(¢) is expressed in terms of covariant quantities,
i.e., the Riemann curvature tensor and its covariant deriv-
atives. On the other hand, although the RNC is defined by
using the geodesics on the manifold, there is no direct
connection between the computation of the scattering
amplitudes and the geodesic equations on the scalar
manifold. Moreover, the GHEFT Lagrangian that we gave
in Eq. (71) contains a complex valued fermion metric
i3+ (@), in addition to the real valued scalar manifold metric
gij(¢), and the meaning of the geodesic equations in
fermionic metric g;;-(¢) is not clear [61]. It should there-
fore be illuminating, before going to the fermionic sector of
the GHEFT Lagrangian, to reconsider the derivation of the
normal coordinate in the scalar manifold in a manner not
relying on the geodesic equations. Here the normal
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coordinate is defined as a coordinate in which Taylor

expansion coefficients of the metric tensor around the

vacuum are all expressed in terms of covariant tensors.
We introduce contravariant and covariant vectors,

a; (), (O1)

which transform as

V()= 0" (F ) (h). aild)—ar(f())fi(¢). (92)

The covariant derivatives of v’ and a; are expressed by
using the “semicolon” covariant-derivative notation,

i i i
v; =0+ Fi,j,

(93)

- i
ai; = a;;—ayly;,

with the bosonic affine connection I" j.k being defined as

1 .,
F;k = —9” (Gitjk + Gikj — Gjir)s (94)

with ¢ being the inverse of the metric tensor,
gii/gij = 5} (95)
We consider
l—"]k—l—l—" Fik Fikl—‘;})
= apR" ijk> (96)

Aisjk = Qiskj = ay (sz,

where we define Riemann curvature tensor as

Ri”ijk:rlkj F' k+1“;]l“§k F’,ijj. (97)

We also introduce
Rii’jk = gii”RiNi’jk (98)

for later convenience.

1
Ri/ijk = E (Gi/k(ij) - Gik(l',j) - Gi’j(ik) + Gl](l/k)) +

1

+ I (Gi’k(ijk]kz)
1
Z(G’ (k) T ij’(l"k]) - Gi’j(j’kl))5
1
Z(Gl R AT

1
3 (Girk(ijiy)

X (Griky) + Grating) =

Gin(i)8 7 (G gy + Grjingy) =

We assume that the field values at the vacuum are
@' = 0. If the elgenvalues of the scalar manifold metric g;;
are all positive definite,> we are able to find a normal
coordinate in which g;;(¢) is written as

9ij(@) =5, + % Giji i, " ¢ + % Giji ks 1 9200
+ %G,-,-klkzhkyk'qskwkwh .
= 0;j +%Gij(k1k2)¢kl¢kz + 5 GU ki koks) ¢k‘¢k2¢k;
+%Gij(k1k2k3k4>¢k'¢’<z¢ks¢k4 Fe 99

with coefficients Giji k,, Gijk k- - - being expressed in
terms of covariant tensors at the vacuum

Rijuka|, = Rijiak

pi=0’

Rijakas | = Rijh sk

#'=0
(100)

Here the indices between the parentheses are understood to
be symmetrized, i.e.,

1
Gijtkky) = E(Gijklkz + Gijigk, ) (101)
1
Gijitkaks) = 77 (Gijhakoks T Gijiatsk, + Gtk
+Gijt ik + Gijiokiky T Gijigik, ). (102)

Since the metric tensor g;; is symmetric under the i <> j

exchange, the coefficients Gjjx,k,» Gjjk,k,k;» -+ Deed to
satisfy
Gijkik, = Gjikykys Gijkikoks = Gjikikoky» (103)

The Riemann curvature tensor can be computed as

— Girrjk,)=Grjiikky) + Gijirkky)) "

= Gik(i jky) =G jiky ky) T Gij(i’kk1k2)>¢kl¢k2

Gix j”kz))¢kl Pk

ij(j”kz))¢k'¢k2 + (104)

*This condition guarantees the absence of ghost particles in the GHEFT framework. See [62,63] for discussions of the pseudounitarity

in theories with ghost particles.
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We therefore obtain an expression for the Riemann curva-
ture tensor at the vacuum,

1
Riigjlo = 2 (Gija2) = Gijiia) — Gioijy + Gragijy),  (105)
and thus
1
Rin)jlo = 2 (2Gij(12) = Gijin) — Guig)
= Gi1j) = Gpgiy + 2G1ij))- (106)

We here introduced a shorthand abbreviation with which
1,2, are understood to be ki, k, - - -, respectively. Note
that, as we explained earlier, the coefficient G;j,.., should
be expressed in terms of the Riemann curvature tensor and
its covariant derivatives at the vacuum. The form of Gyj;5)
is uniquely determined as

Gijiz) = aRiq2);lo; (107)

with a being a constant, thanks to the Riemann tensor
symmetry

Ri234 + Rip43 =0,

Ri234 + R34 = 0,

R1234 - R3412 =0. (108)

Actually, all other index structures, even under the 1 <> 2
exchange, can be reduced to the form of Eq. (107):

Rijin + Rijp1 =0, (109)
Riij2 + Ripji = —Ri1nj — Rio1j = —2R;12)), (110)
Ri1zj + Rin1j = 2R;(12);- (111)

Plugging Eq. (107) into the rhs of Eq. (106), we obtain

3
Ri12)jl0 = EaRi(12)j|Ov (112)
and therefore we find
2
=—. 113
a=3 (113)
The coefficient Gj(;2) is now determined as
2
Gijn2) :gRi(]Z)j|0- (114)

Note that, in our derivation of Eq. (114), we used the
1 < 2 symmetrized condition (106) only. We did not use
the original condition (105). Since Eq. (105) contains more

information than its symmetrized form [Eq. (106)], we
should check to see whether or not Eq. (114) satisfies the
original condition (105).

Plugging Eq. (114) in the rhs of Eq. (105), we see

—

5 (Gija2) = Giji2) — Gi1jy + Graij)

1
=3 (2Ri12; + Ri1j — Rijin)lo

= Riinjlos (115)
and Eq. (105) is actually satisfied with our result
[Eq. (114)]. On the last line of Eq. (115), we used the
Bianchi identity

Ri123 + Rip31 + Riz1n = 0. (116)
Since R;jp; # Rjp;; in general manifolds, the Bianchi
identity plays an essential role for the consistency of the
normal coordinates.

The higher-order terms in the Taylor expansion of g;; in
the normal coordinate are computed in Appendix C 1. We
find that the function g;;(¢) can be expanded in terms of the
covariant tensors as

1 1
9ij(@) = 6, + 5 Gijh i) P11 " + 31 Gij(k ko) P11 P2

1
+ 4 Gtttk PGP - (117)
with
2
Gijo) = gRi(IZ)j|0, (118)
1
Gij23) = 3 [Rin)js + Riga)ja + Rignjallo. - (119)

1
Gij23a) = 5 [Ri(12):34) T Ri34)j:12) T Ri(13):24) + Ri24):(13)
+Ri(14)j:23) T Ri23)j:19) o

8 A
+459" [Ri(12)iRj(34); + Ri(13)iR (24,

+ Ry (14)iRj23); T Ri3a)i R (12);

+Ri4)iRj(13) +Ri’(23)iRj’(14)j] lo- (120)

The Taylor expansion of the potential term V(¢) can also
be given in a similar manner. We obtain

Vialo =V

0 (121)

V23lo = Viiaslos (122)
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2
V 123slo = Viislo ——[V 1iR 234 + ViR 1314V 3R (12)4 + V.4iR (123 o

V 123slo = Viiazaslo — 3 {V;34iRi(12)5 + VisiR

fa2a + VasiR (123 + VouiR

+ VisiR 234 + VoasiR 105 + Va3iR 045 + Vi12iR 345 Ho

1 i
+ 5 {V.10i(R 45)2:3)

+ Vui(R 3512)

and therefore

Vizlo = Vialos (125)
Viaslo = Vs o, (126)
V 1234lo = V1234 los (127)

V 123slo = Vi(12345)los
(128)

in the normal coordinate. The potential term in the
Lagrangian (71) can also be expanded in terms of the
covariant tensors

1
V(g V’ += ka2 ¢k‘¢k2+* (ki kaks) ¢k'¢k2¢k‘

KA AU

1
+4 V. (kikoksky)

(129)

1
5 V' (ki kokskyks) 0¢k‘¢k2¢k3¢k“¢k5 +oe

in the normal coordinate.

C. Fermion bilinear sector

We next move to the fermion bilinear sector in the
GHEFT Lagrangian (71). The fermion bilinear sector
depends on the three kinds of coupling functions, g,

Vyy;» and M;s. We define a normal coordinate on the
fermion fleld space so that the coupling functions are
expanded in terms of the covariantly transforming tensors.

Before computing the expansion coefficients, we intro-
duce the covariant quantities on the fermion field trans-
formation. We first define the “affine connection” as

1o
=29 o+ 9iea — grl (130)
L 131
Ui =59" low; + 9 =90 (131

where ¢"/ is defined as the inverse of Giy» i€,

—5R 03)a5)) + Vo2i (R (45

—5R 19)355)) + Visi(R 3ay12)

(123)
“a3)s + VasiR (133 + V.aiR 03)s
)13) = SR 13)4:5)) + Vii(R 45)(12) = SR (12)(4:5))
- 5R' (12)3.4)) (124)
|
9 g =0 ¢ g =8 (132)

Got inspiration from the supersymmetric nonlinear
sigma model Lagrangian (79), we introduce g ; and
gy satisfying

i
vigi(#) = 5 (955(¢) = 955 (#)). (133)
which allows us to study supersymmetric theories in the
GHEFT framework. There is an ambiguity in the decom-

position (133) which will be discussed later. We introduce a
function y'(¢) and its covariant derivative

K=+ AT (134)
It is easy to show that the derivative (134) covariantly
transforms under the field transformation (82). Moreover,
the covariant derivative on the fermionic metric satisfies

gi}'*;i = g;} K gl/ *F g.;.,*l“j},* =0. (135)
Formulas (130) and (131) are therefore considered to be
affine connections. R

The covariant derivative of y!(¢) is also defined as

usual:

= (rk) ; + 2T = T (136)
We therefore obtain
Hhy =y =~ W = Ty, + Tl =TT
—y R’”J (137)

Here we define the “Riemann curvature” tensor R’ 1« as

wi=T, =T + T — Tt

K™ 1 iy (138)

Note that the definition of Riemann curvature tensor
leads to

015001-13



NAGAI, TANABASHI, TSUMURA, and UCHIDA

PHYS. REV. D 104, 015001 (2021)

O (139)

Itis easy to show that R;}'kl transforms covariantly under the

coordinate transformation given in Eq. (82). For the latter
convenience, we also define

Riius = i3 Ry (140)

Ri}'*kz = _R}'*?kz- (141)

We are now ready to compute the expansion coefficients
of the coupling functions in the normal coordinate. The
normal coordinate on the fermion field space is defined so
that the coupling functions g;;- and v;;.; are expanded in
terms of the covariantly transforming tensors. We first
focus on g;;-. Thanks to the Hermiticity of g, and since
gy does not depend on the fermion fields, it is always

possible to take a fermion coordinate satisfying

i (9) = & (142)
The expansion of the fermionic metric is therefore trivial.

We next consider the expansion of vy;.;. Neglecting the
anomaly factor only appearing in the loop level, we are

allowed to take a coordinate satisfying

vigi(@) = Ay (@) (143)
with
Ayij(9) = =Ayye (@) (144)
We resolve the ambiguity in Eq. (133) as
gz}*;(¢) = _iA?j*ij(¢)¢j1 gi?,}'* (¢) lAlj t](¢)¢j'
(145)
It is now straightforward to obtain
Fi} = —ig"k*Aj,;*iqu/, Fi, =ig" A/ (146)

We next determine the expansion coefficient of A;s;..

Combining Egs. (138) and (146), we obtain the master
formula for the determination of the coefficients:

i g A, 98
(147)

o = (A u ) = (A ) j+A
% k
—Avj i 9 A,

Plugging the vacuum condition ¢ = 0 in Eq. (147), we
obtain

Ri}'*ij

0= lA?}'* ji

0~ ’A?}*ij

0 (148)

Since the function Ay, ;(¢) is antisymmetric under the
exchange of i < j, Eq. (148) can be expressed as

Ron .

ieiflo = —2iAy

ijij10

(149)
and we thus obtain

i

Atyijlo = 5 Rigeijlo-

iyij

(150)

Combining Eq. (150) with Eq. (146), we obtain formulas
for the fermionic affine connections and their derivatives at
the vacuum,

e

1 5 1
ik — ki ~n
i].j 2 Jkeij 0’ i}*,] 0 __29 Rk] ij 0 (152)

The higher-order terms in the Taylor expansion of vy;.; in
the normal coordinate are computed in Appendix C2. We
find that

Gy (@) = o (153)

and the function vy;.;(¢) can be expanded in terms of the

covariant tensors as

1
V(@) = A?}*ik,¢k’ + 2_!A?j*iklk2¢k'¢kz
1
+ yAij*ik]kzkgﬁbklff’szf’h +oee (154)
with
Al}*ll = 2R1]*1l (155)
i
Agjring = gR?}'*i(l;z) 0 (156)
A?}'*im 4Ru*z 1;23) o+ 36[ i i’lRi/(23)i
+ Ry ioR” a1yi + Rige 3R (1))l
(157)

in the normal coordinate.

We next move to M;;(¢). Evaluating the affine con-
nection in the normal coordinate, we obtain Egs. (151) and
(152), as well as

Taslo = _§Rl}'1<2;3> 0 (158)
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It is now easy to evaluate

M?},1|0 =M

0> (159)

?}';1

1 3 i
M5 15lo = Mij0lo = 5 MR 510 + My RV 51500,

5 (160)

M?}.123|0 = Mi}';123|0

1 2 2 2
- B [M?’];IRI 3 T+ M?’];le HEE M?’];3Rl ?12] |0
1 7 ~r ]
) My R 5p5 + My o R 55 + My 3R 5] o
2 i
- gM?}';iR (12)3lo
2 ?/ }/
~3 [My3R 51 (23) + My R 51230 (161)
and therefore
M?}',1|0 = M?};1|0v (162)
M?},12|0 = M?}';(u) 0> (163)
M?}'.123|o = M?};(123)|0- (164)

The fermion mass term in the Lagrangian (71) can also be
expanded in terms of the covariant tensors

M;;(¢) = My;

1
0 T M5, log*t + ZM?};(klkz) logp 19"

1
+ —

5 (165)

Mij it o1 9205 -

in the normal coordinate.

It is worth emphasizing that the introduction of the
metriclike objects g5 and g5+ in Eq. (133) allows us to
express covariant formulas (154) and (165) in compact
forms. These metriclike objects, which mix the scalars and
fermions, may be understood as “‘convenient abbreviations”
in the present nonsupersymmetric case. They can be
regarded as “metrics,” however, in a real sense if we embed
the theory in supersymmetric models.

D. Holomorphic four-fermion sector

We consider holomorphic four-fermion operators

ORI = (ygey )y eyy).  (166)
We put the indices iy, Iy, I3, i; in parentheses so as to
emphasize the index-exchange symmetry,

OlID(3Y) — o(IDE3) — OEDED) — 0BHA) (167)

with ?1,?2, -+ being abbreviated as i,ﬁ, - - -. Furthermore,

multiplying the fermion fields wiw%w?wg to the Schouten
identity
ePer® 4 g e 4 el = (), (168)
we obtain a Bianchi-like identity
o233 4 o(13)E2) L o(IH23) = (. (169)

Using the Bianchi-like identity (169), we are able to
show that

oinan) + oUindn) 4 ouihdn) = 0, (170)
and therefore that
oindn) =g (171)
In a similar manner, we find that
o(12)(22) = g, (172)
oiD22) = _r((12)(12) (173)
oine3) = —20((15)(13))’ (174)

O(1D38) = _o32h) _ ohes),  (175)

We next count the independent degrees of freedom
(d.o.f.) of the four-fermion operators. The number of
independent d.o.f. satisfying the condition (167) is

. BN(M 1)] BN(N+ )+ 1]

(176)
Among them, the four-fermion operators having identical
flavor indices automatically vanish, as shown in Eq. (171),
which reduces the d.o.f. by N. In a similar manner, the
operator identities (172)—(175) reduce the d.o.f. by

NN =1, N1,

%N(N (N -2), %N(N CD(N=2)(N=3)

accordingly. We therefore find the d.o.f. of the four-fermion
operator O(1234) is given by
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% BN(N 4 1)} BN(N+ 1+ 1] _N-N(N-1)

1 1
~ZN(N=1) = N(N = 1)(N = 2)

—41!N(N- (N = 2)(N - 3)
1 2 2
= SNV - 1), (177)

which accords the d.o.f. of the N-dimensional Riemann
curvature tensor.

We are now ready to consider the holomorphic four-
fermion interactions of the type shown in Eq. (166),

1 3 4 'l\ ~
£35Sy, Wiev ) ' evy).
I

— N (9((?1%)(?3?4))‘ (178)
Thanks to the index-exchange symmetry (167), we are able
to show

g, OERED) =g o OERE) (179)
with
1
Siireay =3 0264 + Seaaz)
Si5)3a) = % [Si333 + 3133 + S12a3 + S3143),

which, of course, satisfies the index-exchange symmetry

Scineay = Sehaay = Siyay) = S@aiy)  (180)

Therefore, the d.o.f. of §j5)34), 1s counted as
vy Evev s +1 (181)
212 2 :

which is larger than the d.o.f. of the operator o((1934)
counted in Eq. (177). The S(;5)33), parametrization there-
fore contains redundancy. It is desired to describe the four-
fermion interactions in a nonredundant parametrization.
For such a purpose, we rewrite the four-fermion inter-
actions as
S(Guin) st OB

2 A A4S
=3 (St = St OGHIEW),

(182)

where we used the Bianchi-like identity (169) and the
index-exchange symmetry (180).

We are now ready to introduce a nonredundant para-
metrization for holomorphic four-fermion interactions,

Rig33 = S(i5)33) = S(i3)04) (183)
which satisfies the index-exchange symmetries
Ris33 + Ris35 =0, (184)
Ri335 +Ryi35 =0, (185)
Ri335 —Ry315 =0, (186)
and the Bianchi identity
Ri333+ Rizas + Rz = 0. (187)
The d.o.f. of Rii@i is
11 1
—[=N(N-1)| |zN(N -1 1
5 [svv =) v -1 1]
1
_EN(N_ 1)(N=2)(N-=3)
1
=—N*(N?-1), 188
SNAN =) (188)
which coincides with the d.o.f. of the operators o234,
The parametrization
r L g oGhE)  (189)
four-fermion — 12 iyigipis

therefore describes the holomorphic four-fermion inter-
actions in a nonredundant manner.

E. Nonholomorphic four-fermion sector
We next consider the nonholomorphic four-fermion
operators
(9(?172)(23?3) = <l//2} 8“/}1;/;2) (Wy;g&/}w};iz)_ (19())

Again, we put the indices in parentheses in order to
emphasize the index-exchange symmetry

with ?1, ?2, ?’3‘, ?Z{ abbreviated as 1, 2, 3%, 4*.
The d.o.f. of the four-fermion operators satisfying the
conditions (191) are

BN(N 4 1)]2. (192)

Note that
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(0126331 = oBH(I2), (193)
The d.o.f. as counted in Eq. (192) are therefore regarded as
the degrees of freedom counted in real parameters. This is
in contrast to the d.o.f. of holomorphic four-fermion
operators (177) counted in complex parameters.

Nonholomorphic four-fermion interactions in the lowest-
order GHEFT Lagrangian can be expressed as

1 T ap i
La-; ;1;2;;4(1# “ﬂw )(wd’*eaﬂv/ﬁ“)
— 1 AAAA*Olllz

194
~ 2 S (194)

Thanks to the index-exchange symmetry (191), we are able
to show that

52122;%;4(')(1'11'2)(1'31'2) — S(l,lz)(i 5 )O(iliZ)(léiZ)7 (195)

S(i2)(374) = SN = S(12)(3) (196)
Since the Hermiticity of the Lagrangian requires
[Sisyaan]” = Saayis (197)

we find the number of d.o.f. of S ;334 is N*(N + 1)?/4
real parameters, which agrees with the d.o.f. of the non-
holomorphic four-fermion operators (192). Therefore, the
nonholomorphic four-fermion interactions can be para-
metrized by using S(j3)3.3+) in a nonredundant manner.

We finally remark that the nonholomorphic four-fermion
operators appear in the supersymmetric nonlinear sigma
model as

1 2 4 e 45k
L5 7R i, (W) (y ™), (198)

where

(199)

Ri i = G — 9" GG i,
with g;;. being the Kéhler metric. We therefore define

Risas = S5 34 (200)

for the nonholomorphic four-fermion couplings, even in
nonsupersymmetric GHEFT.

IV. ON-SHELL AMPLITUDES

The purpose of the GHEFT Lagrangian is to compute
the production cross sections and the decay widths
involving the new BSM particles. As we showed in the
previous section, the nonuniqueness of the parametriza-
tion in the effective Lagrangian associated with the KOS
theorem [46] can be resolved by using the normal
coordinate. The scattering amplitudes can now be com-
puted straightforwardly in the normal coordinate as
functions of the covariant tensors. Applying the normal
coordinate in the GHEFT, the on-shell amplitudes are
expressed by covariant quantities on the coupling func-
tions evaluated at the vacuum.

In this section, we explicitly compute tree-level on-shell
helicity amplitudes applying the normal coordinate in the
lowest-order GHEFT Lagrangian. In the computation of the
on-shell amplitudes, we ignore the gauge boson contribu-
tions for simplicity. The computation on the on-shell
amplitudes including spin-1 gauge bosons will be pub-
lished elsewhere. The high-energy behavior of the longi-
tudinally polarized gauge boson scattering amplitudes can
be computed even in the gaugeless limit, thanks to the
equivalence theorem between the longitudinally polarized
gauge boson scattering amplitudes and the corresponding
would-be NG boson amplitudes [64—68]. In what follows,
we also study the high-energy behaviors of the on-shell
amplitudes and discuss their implications.

A. Notation

We express an N-particle invariant amplitude generally as

Ay(12---N). (201)

Generalized Mandelstam variables and particle masses are

m; = \/P,Z’

where the momentum of the ith particle p; is understood to
be outgoing. For example, the amplitude involving two
fermions and one scalar is denoted as

sij = (pi + p;)*, (202)

A3(123) = A;(14,2R,3), (203)
where 1%, 2% denote the momentum, helicity, and flavor
quantum numbers for the on-shell fermions, and 3 denotes
the momentum and flavor quantum numbers for the on-shell
bosons. 4; labels the helicity of the fermion state.

If the fermion masses can be neglected in the amplitude,
we are able to use the celebrated spinor-helicity formalism
in the massless limit [69]. The masses of heavy particles
including BSM particles cannot be neglected, however, in
the GHEFT framework. We therefore employ the Dreiner-
Haber-Martin notation [52] for the two-component fermion
wave functions in the amplitudes. The fermion wave
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function carrying three-momentum p is expressed by two-
component spinors

X(P-4). ya(PA), (204)

with x,(p,4) and y,(p,A) being positive and negative
frequency wave functions, respectively. 1 = +1 labels the
little-group representation index for the massive spin-1/2
fermion [70]. The explicit forms of the spinor wave
functions are summarized in Appendix B.

For later convenience, we introduce square/angle bras
and kets denoting massive spinor wave functions,

(1) = y*(By. 4y). (205)
(1)) = ya(B1. 1), (206)
(1) = x:;(l_))l’ ) (207)
(1)) = x ¥y, 4y), (208)
where
x*(B, 4) = ePx5(P, 2), (209)
Y (p.2) = e%ys(P. 2), (210)
x,(P,2) = £,x (B, ), (211)
V(P A) = ey (5, 4). (212)

Bracket notations for x, and )’2 do not need to be
introduced, since the amplitudes can be expressed without
using x, and y:fl. The inner products among these spinor
wave functions are expressed as

[1/1]2/12] :ya(ﬁhﬂl)ya(ﬁZvﬂZ)? (213)

(1h2k) = xl(ﬁl,ﬂl)xm(ﬁz, A). (214)

In the massless limit, these brackets reduce to the massless
angle/square brackets,

12) for Ay =4, = —1,
<1llzﬂz>_>{< ) fordy =4 (215)

0 otherwise,

12] for Ay = A, = +1,
g {2 A (216)

0 otherwise.

Here the massless spinor wave functions are denoted by
nonbold bras and kets (1, (2, [1, [2, 1), 2), 1], 2]. See
Ref. [69] for the details of the massless spinor formalism.
Note that the index 2 = +1 in (1* and [1* corresponds to
the helicity of the outgoing state.

Here we briefly summarize the properties of massless
spinor wave functions. The massless spinor wave functions
satisfy the exchange (anti)symmetries,

(12) = -(21),
[12] =-]21],
(16#2] = [20"1), (217)
and the Fierz identity

(16"2][30,4) = 2(14)[32]. (218)

Equation (168) leads to the Schouten identities,
[12][34] +[13][42] + [14][23] =0, (219)
(12)(34) + (13)(42) +(14)(23) =0. (220)

The matrices ¢ and 6* can be decomposed into spinor
products as

(PDa({P)a=Pu(0")aar  (P))¥([P)*=pu(a").  (221)
The complex conjugates are given by
(12) =21,  ([12)*=@21).  (222)

Combining Eqgs. (221) and (222), we are able to show that
(1)) = [[12]> =2py - pa = (P +p2)>  (223)

Similarly, the massive spinor wave functions satisfy the
exchange (anti)symmetries,

(14 22) = — (2210,
[1025] = —[2214],

(1h5#20] = [2he#1M), (224)
and the Fierz identity
(1116+20][3b0,4M) = 2(1h4%)[352%].  (225)

The Schouten identities among the massive spinor wave
functions are

(14202 [35 4] + [14 35][444 2] + [11 4] [2235] =0,
(226)

(1 20) (3 ) 4 (11 35) (420 1 (11 d)(2235) = 0.
(227)

The completeness relations are expressed as
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¢1
L p
&
FIG. 1. Feynman diagram for A5(1,2,3).
(T i) = @)
A==%1 aa
g p
S VPt =msl, (229)
I==1 a
(L rom)” = e @0
i=*1
(Z 1—4>,1<1ﬂ> = my 3, (231)
A=+l p
The complex conjugates are given by
((1h2%))" = [272174],
(125])* = (25174, (232)

The amplitude A, ., depends on the coupling functions
at the vacuum, e.g.,

V.(1234)los Ri234lo,

M3 530,

V.(123)l0»

Ri234:50- Ri534l0s (233)

Hereafter, we omit the vertical bar symbols so that

V. (1234), Ri234.

Mi s,

V;(123) >

Rin34:5. Rissn ooy (234)

are understood to be evaluated at the vacuum.

B. Three scalars

We start with a three-point scalar amplitude A5(1,2, 3),
which is given by the contact diagram shown in Fig. 1. We
have calculated the on-shell three-point scalar amplitude in
Ref. [37]. The amplitude is simply given by

1A3(1,2,3) - —l.V;(lzg,). (235)
As we showed in Ref. [37], if we do not use the normal

coordinate, we need to perform very involved computations
to get the final expression of the amplitude (235).

C. Two fermions and one scalar

We next consider a three-point amplitude with two
fermions and one scalar, A;(1%,2%,3). The amplitude

1/)Q

FIG. 2. Feynman diagram for A;(1*,2%, 3). We assign the
outgoing momenta p;, p,, and ps to w!, yw?, and ¢>.

is given by the diagram shown in Fig. 2, where the three-
point vertex is read from the normal coordinate for-
mula (165). The on-shell amplitude is given as

iA;(14,25,3) = —iMj5,4[112%] = iM .5 5 (1412%). (236)

We have confirmed formula (236) without using the normal
coordinate technique.

Once we specify the kinematics and helicities of the
external states, we can explicitly estimate the spinor inner
products in terms of the kinematical variables. See
Appendix B for the explicit expressions. For example,
we consider the decay process of the scalar 3 into the
fermion pair 1 and 2,

¢*(=p3) = v' (P )y (pa)- (237)
Initial state momentum is assigned to be —p; in our
notation of the amplitude.

We evaluate the decay amplitudes in the rest frame of ¢>.
Note that the final state angular momentum should vanish
in this process since the interaction vertex does not contain
derivatives. The conservation of the total angular momen-
tum implies that the final state spin momentum should also
be zero. We therefore expect

A;(1F,2%,3) =0, (238)
which actually is confirmed in our explicit computation
since [172F] = (1¥27F) = 0 in the center-of-mass frame, as
we show in Appendix B. On the other hand, A5 (1%, 2%, 3)
can be nonzero. The masses of fermions and scalar are
denoted as m, m,, and mjs, respectively. For m3 > m, m,,
we find

112%] ~ [12] = —mj, [1727]~0, (239)
(1727) 2 (12) = +ma, (1727) ~0, (240)
and thus
A3 (14,27, 3) = m3M; 530
A3(17,27,3) = —m3Mjese 3, (241)

where we ignore the O(m?/m3, m3/m3) corrections.
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¢1 (Z)Zi (/)1 d)ii (bl (b.‘i d)l ¢ZS
AN 7 AN ’ \Y/ \\ ,'
< e < | o
’ A ’ /k\ // '
¢2 ’ 0/1 ¢2 ’ ¢/1 (/)2 (/)4 (Z‘)Q (Z‘)4
FIG. 3. Feynman diagram for .44(1,2,3,4). We assign the

outgoing momenta p;, p,, p3, and py to @', ¢, ¢, and ¢*.

D. Four scalars

We next consider a four-point scalar amplitude
A4(1,2,3,4). The amplitude is given by the sum of the
contact diagram and the scalar-exchange diagrams, as
shown in Fig. 3:

A(1,2,3.4) = AY(1,2,3,4) + A7(1,2.3.4).  (242)
We have estimated the four-point amplitudes in Ref. [37].
The results are

. (e 2i 2i
lAz(l )(1’2’3’4) = —§R1(34)2512 - §R1(24)3313
2i

- §R1(23)4sl4 — V.1234) (243)

and
(1 2,3,4) ZV 12i) D(s2) jV(34])

—ZV 13i) D(Sn)]JV (24)

—ZV 141 D(s14) JV(23]) (244)
where [D(s)]"/ denotes the scalar propagator,

. I .
[D(s)]" = 597, (245)

S —m;
with m; being the scalar mass.

The scalar four-point amplitude diverges in the high-
energy limit, s = 51, > m?, m3, m3, m3. For example, we
consider

P (=p1)p*(=p2) = & (p3)d*(ps).  (246)
In the high-energy limit, the corresponding scattering
amplitude behaves as

1
A4(1,2,3,4)5R14233+§R1234S(1+C059)7 (247)

with 6 being the scattering angle in the center of mass.
This result implies that, with Ry43 # 0 or Rjx34 # 0, the
perturbative unitarity is violated in the high-energy

L R LI

,¢}l @3 wl
. . "
o Y
\\ \\ \
5 5 5 vl 5 vl
e ot g2 ot 2 ¢ " ¢

FIG. 4. Feynman diagram for A,(1%,2%,3,4). We assign the
outgoing momenta p,, p,, ps, and p, to w', w?, ¢°, and ¢*.

scattering amplitude among the scalar bosons. This obser-
vation indicates that the longitudinally polarized gauge
boson scattering amplitudes violates the perturbative uni-
tarity if the scalar manifold is curved [37,48,49]. The Lee-
Quigg-Thacker sum rules [71,72] for the perturbative
unitarity in the W, W; — W;W; amplitude can thus be
regarded as conditions on the scalar curvature ten-
sor R, =0.

E. Two fermions and two scalars
We next consider a four-point amplitude with two
fermions and two scalars, A,(1%,2%,3,4). As shown in
Fig. 4, the amplitude consists of contact, scalar-exchange,
and fermion-exchange diagrams,

Ag(1h 2% 3.4) = A9 (14 22 3,4) + AP (14 272 3. 4)

+ AV (14 27 3, 4). (248)
We first focus on the contact diagram A(C), which

appears from the vertices, jo* iR M;;;(ko, and M?xj*;(kl) in

the normal coordinate. We find that
A (14 2% 3, 4)

i

2R21 34(P3 = Pa) X a,(Plv/1 )(3)%y5(Pas 42)

i - -
=5 R 134(P3 = pa)y* (P1.4) (0) x ™ (P2, o)

x5(BrA)x(Pa. 4o)
- lMi j;(34)ya(51 s Al)ya(ﬁZ’ /12)

— iMise )
(249)

Rewriting the amplitude in terms of the angle/square
spinors (205)—(208), the spinor wave function structure
becomes clearer:

iAY (14 272 3. 4)

3 Rsiesa (DD (1137 15 [302) =) (1147 2,[442%))
Ay

A3
SRy (D3I (3720) =Y 1A (474 2) )
A N

=M ge34) (141252) = iM 13,34 [111 2], (250)
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where we decomposed (p3 — p4),6" and (p3 — p4),o"
into products of massive spinor wave functions using

Egs. (228)-(231).
The computation of the scalar-exchange amplitude is
easy. It is given by
iAW (14 2% 3 4)

:—E V34z 312

+ Ml*2*;j<1'1'2/12>)v

U(Mp,; 14275
(251)

where [D(s)]” is as defined in Eq. (245).
On the other hand, the computation of the fermion-
exchange amplitude Af;’l),

iAl(am 2% 3 4)

+iAY (14,22 3, 4)
+iAl (14 2% 3,4)
+iAl(1h 2 3,4),

iAY (14,203, 4) =

(252)

is a bitinvolved. Here we organized the amplitude in accord
with the spinor structure, i.e.,

Al 22 3, 4)

=D _Mi 11D} (p13)27 M55,

ij
+ Z:Mi2;4[1/1‘D]i[j(l?m)zb]M;Q;y (253)
L

Al (17,273, 4)

= ZMl (1 1D>(j (P13)22) M54

[

+ ZMI .4 (1 'D><] (P14)2" YM50 5, (254)
(e
A (14, 2%,3,4)
- ZMi?;3[ll‘D]i{ (P13)22) M55
+ Z:M 1M D] (pra)22)M;5.5, (255)
e
A(](lﬂl 2/12 3 4)
= ZM Pl%)zb] 54
+ ZMi*?*;4<1 ID;[J(p14)2/12]M}Q;3, (256)

[N

with

P13 = P11+ P3s D14 = P1 + P4 (257)

In the above expressions, the internal fermion propagators
are

(O (p)d = s 56118, (258)
O ()= T (259)
O (0 = Dlip)ye (20)
(D] () = FTp)((p).  (261)

The amplitudes (253) and (254) are computed by using

14D/ (p13)252] = (D(s13)) my[142%),  (262)
(D[] (pa)22) = (D(s13))7 7 my. (1425), (263
with
(D)7 = 6.
S — m;
(D(s))7 = ——5 67" (264)
S — m

£
1

In the computation of the amplitudes (255) and (256), we
use identities on the spinor wave functions,

[1 ]é (P13)2>
1 .
)7 ( (1422 4y [142]

2
- Z [14135]2

(1 4], (4 212>) ,

E

—/1z 24 >

(265)
Ju—t

(14D (p3)2*]
1 A YN
= SO (2] 4 my (102

+ Y (1437 (3027
Ja=+1

- Z (14147442 4/142/12]>

(266)
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with
(D)7 s= T (D(s)) To= 4.
5 —m; 5 —ms,
These identities are derived from
1
P13 = E(pl — P2+ P3 = Da)
1
D14 :E(pl — P2 = P3+ Pa)

(267)

(268)

and

14 (p1p0") = my (14, (Pz;ﬁ”)zlz] = —22)m,, (269)
(PM(prd”) =mi[1h,  (py0")2%) = =2"]m,. (270)
We are now ready to compute the fermion-exchange

amplitude (252). Combining the above formulas, we obtain
|

IAEW)(li‘,ZAQ, 3.4) = iAé(;/’J*)( Z [1/113/13]/13 <3—/132/12> _ Z [1/114/14]/14<4—/142/12>>

y—

Ju—=xl1

+ Ay/xv <Z <1/1,3—ﬂ3>13[3/132/12} _ Z <12|4—/14>i4[4/14212]

Az=

with

"Aftw’yX) = __Z 113

+M?i;4[D(Sl4)]” M5 5),

S13 ]sz*

| | )

+i Agw,yy) [142%] 4 i .AS’”XX) (14125,

V/yyi
iA ___mIE: ll3

——m2§ 113
—Zm

tl3

l//xx
iAy = _mIE: 113

__mZE: 113
—Em 113

We evaluate the scattering amplitude

¢3<—P3>¢4(—P4) - l//i (P1>W§(P2)

(271)
I
l.AS;I/' Y = _EZ(M}'*T*Q[D(SB)]J M?i;4
N
+ Mj*i*;4[D(sl4)]inM?ﬁ;3) (273)
(272)
and
S]3 ] jM}§;4+M§*T*;4[D(Slél)]i*jM}'ﬁ;?;)
D(s13)] }-*Q*;4+M?1;4[D(S14)]ij*M}'*i*;3)
D(513)) T M35,4+M; 1,4 [D(514)] T M55,5), (274)
D(s3)] M}*Q*;4+M21;4[D(S14)]U*M}*§*;3)
D(sy3 ] jM}-i;4+M?*i*;4[D(Sl4)}i*jM}2;3)
D(si3)) 7'M j*i*;4+M?*i*;4[D(S14)] ¥ M5 5). (275)
|
in the center-of-mass frame, which implies
(276) [1t27] =0, [172F] =0, (277)
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(1727) =0, (172%) = 0. (278)
The contact amplitudes (250) dominate in the computation
for the high-energy limit s = 51, > m3, m3, m3, m3. We
find that
1F2F] ~[12] = —/s, [1727]~0, (279)
(1727) = (12) = ++/s, (172%) ~0, (280)
and
S (17344342 = (13)[32]
A3
= —(13)[23]
$135235 (281)
D (a4 [4h27] = (14)[42]
Ay
= TV 514542, (282)
D (137 J[3024) =y (17474) 2, [44427]
s T
S13 — S14
~—m 283
' (283)
We obtain
Ay (17,21.3,4)
1
—\/—< 12:(34) 2(mzRié*34+m1Ri*i34)0059>7 (284)
1
A (17,27,3,4) zERTQ*MS sin 6, (285)

with @ being the scattering angle in the center-of-mass
frame,

S13 — S14

V513514
sin@ ~2+——, cosf ~

286
S12 S12 ( )

It is also straightforward to compute the 4,4(17,27,3,4)
and A4(17,27,3,4) amplitudes. Unless MTQ:(34) =
Mji5e 34 = 0 and Rjs.3, = Rjep3, = 0, these amplitudes
eventually violate the perturbative unitarity at the high-
energy scale. Considering the equivalence theorem, these
results indicate that the scattering amplitudes of the fermion
pair scattering to the longitudinally polarized gauge boson
violate the perturbative unitarity at a certain high-energy
scale unless Mj 5,54 = 0 and Rjs.5, = 0. The Appelquist-

Chanowitz sum rules [73-78] for the perturbative unitarity

in the W; W; — ff amplitude can thus be regarded as
conditions on R, and My.(zs).

F. Four fermions

The four-point fermion amplitude is computed from the
Feynman diagram (Fig. 5). We decompose the amplitude
into three categories,

AL (141,252 3 4
+ AE;C/> (1/11 , 2/12’ 323 , 4/14)
+ Aé(‘lﬁ)(l/l, 2% 3k, 424),

Ay(1i1,2% 35 4la) =

(287)

where A(“) and A(“), respectively, denote the holomorphic
and nonholomorphic contact diagrams, and A denotes
the scalar-exchange diagram.

Let us first focus on the contact diagram induced from the
holomorphic contact interactions (yyyy and 'y yy™).
The amplitude is given as

i) (14 202 3 4)
= iS7353 (11 27][3544] +iSj 55519 3444 27]
+ 08735311 44][2935]) S g03.4 (11202) (3 44)
FiSyggey (135) (4420 4 iSq 5. (14144) (2230),
(288)

Using the Schouten identities (226) and (227), the ampli-
tude are expressed in terms of nonredundant parameters

iAL) (14 2 3 4h)

2i 2i
=3 R 12213044 = TRy 517 3442
2i 2i

—§’R A34[11'4’14][2’123’“]—§R1 3403 (T1272) (3 4)

_%Ri*(i*&*)é*<12‘3ﬂ3><4/14222>
5

~ 2 Ri e (U 49) (2534), (289

tensors defined in
Eq. (183). Similarly, the amplitude from the nonholomor-
phic contact interaction (yyy ') is given by

with Ryspi being the “curvature”

Wl P ol o

vt vyt v
R /\ N N N
Ué 7/1;1 ’lﬁé 'l/)/] 11[/,2 1/)4 11[;2 1/)4

FIG. 5.
the outgoing momenta py, p,, ps, and p, to yw', w2, y>, and y*.

Feynman diagram for A,(1%,2%,3%, 4*). We assign
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.A( )(1/11 212 3/13 4/14> —

Rigeag (1112 (344%4) + iRqgo55- (11 35 (4442%) + iRpy 35, (1M 44 (223%)

Here the curvature tensor Ry is as defined in Eq. (200). The scalar-exchange amplitude is computed as

Ay)) (121 , 2/12 , 3/13 , 424)

(M3, [1M35] + M5,

411 44] + My

where [D(s)]” denotes the scalar propagator (245).
We are now ready to discuss the high-energy behavior of

:_Z( 154[112%] 4+ My, (11272))[D(s12)] 7 (M35

+ iRsj g (11202 [35 0] + iRgjp5 (11 35)[4420] + iRspq. (114%4)[2235]. (290
335 4] + Mg (3544))
S(V135))[D(s13)]7 (M3 3,[224%] + Mg, (2244))
A1) [D(514)]7 (M35,(2235] + My.5.,(223%)), - (291)
|
Ay(17,2+,3%,4)
= \/;Sm O(m Ri535 = m3Rsiez3 + maRsjezq0).  (298)

the four-fermion amplitude,

o

v (=p)y(=p2) = v (p3)y* (pa).  (292)
in the center-of-mass frame. Taking the high-energy limit,
s = s, > m3, m3, m3, mj, we find the eight helicity
amplitudes

A (11,27,37,47), Ay (17,27,37,47) (293)
and
A,(1F,27,37,47), Ay(17,27,37,47),
A,(11,27,37,41), Ay(17,27,37 .41,
Ay(17,27,37,47), Ay(17,27,37,47) (294)
grow as energy squared. We obtain
1
A4(1+,2+,3+,4+)ZRngS—f—ERng&S(l —l—COSH), (295)
A (17,27,37,47) = Rygage 5. (296)
We also find that 8 of the 16 helicity amplitudes,
A (17,27,37,47), Ay(17,27,37,47),
Ay (1F,27,37,41), Ay(17,21,3%,47),
A, (11,27,37,47), Ayg(17,21,37,47),
A,(17,27,37,47), Ay(17,27,37,47), (297)

behave as /s in the high-energy limit. For example, we
obtain

Note that the helicity structure determines the difference of
the high-energy behaviors.

V. SUMMARY

We have formulated an extension of Higgs effective field
theory (GHEFT) which includes an arbitrary number of
spin-0 and spin-1/2 particles with arbitrary electric and
chromoelectric charges. These particles include the SM
quarks and leptons, and also BSM Higgs bosons and
fermions. GHEFT can therefore describe the amplitude
involving these non-SM particles. This is in contrast to the
usual EFT frameworks such as SMEFT and HEFT, which
cannot compute the cross sections and decay widths of
these new particles, because these new particles are
integrated out in these EFTs. The leading-order GHEFT
Lagrangian has been expressed in accord with the GHEFT
chiral-order counting rule, which clarifies the relationship
between the loop expansion and the operator expansion.

The S matrix of a quantum field theory is unchanged by
field redefinitions. This fact, known as the KOS theorem,
tells us that seemingly different effective Lagrangians
connected through field coordinate transformations can
describe identical scattering amplitudes. The parametriza-
tion of the effective Lagrangian is therefore not unique. In
this paper, we proposed using geometric quantities such as
the curvature of field space in the GHEFT Lagrangian to
resolve the redundancy. We also showed that, by introduc-
ing a useful coordinate (normal coordinate) in the field
space manifold, the computations of the scattering ampli-
tudes are significantly simplified.

We also estimated tree-level on-shell amplitudes (in
Sec. IV). These on-shell amplitudes were expressed in
terms of the square and angle bracket notation of the spinor
wave function. The high-energy behaviors of the on-shell
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scattering amplitudes were computed. We found that the
four-point scattering amplitudes grow as the scattering
energy, and the coefficient of the energy-growing terms
relate with covariant tensors such as the curvature tensors
on the field space. Perturbative unitarity in the scattering
amplitudes requires the flatness in the scalar/fermion field
space around the vacuum, i.e.,

Rin34lo = Risaalo = Ris3alo

= Ri-y33:lo = Rizaarlo = 0.

The GHEFT framework should be studied further. To
apply the geometrical formulation in phenomenological
studies, we need to compute the on-shell amplitudes
involving the SM spin-1 particles W and Z in a geometrical
language. It should also be emphasized that extra spin-1
particles often appear in models beyond the SM. For
example, extra gauge bosons exist in the extensions of
the SM gauge group. Spin-1 resonances like techni-p may
appear in the strong dynamics models of the electroweak
symmetry breaking. These spin-1 particles have been
studied using electroweak resonance chiral perturbation
theories. It will be illuminating to investigate the geomet-
rical formulations for these spin-1 resonances in the
GHEFT framework.

Radiative corrections should also be incorporated. To
compute the yy decays of the Higgs particles, for an
example, we need to investigate radiative corrections in
the GHEFT framework. As we showed in this paper, the
chiral-order counting rule provides a basis for computing
these radiative corrections. A geometrical formulation for
the next-to-leading operators will also be useful in such a
computation.

ACKNOWLEDGMENTS

We thank Keisuke Izumi for valuable comments on the
manuscript. This work was supported by JSPS KAKENHI
Grants No. JP19K14701 (R. N.), No. JP19K03846 (M. T.),
and No. JP18HO05543 (K. T.). The work of R. N. was also
supported by the University of Padua through the “New
Theoretical Tools to Look at the Invisible Universe” project
and by Istituto Nazionale di Fisica Nucleare (INFN)
through the “Theoretical Astroparticle Physics” (TAsP)
project.

APPENDIX A: HIGGS EFFECTIVE
FIELD THEORY

HEFT [16-31] is one of low-energy effective field
theories for electroweak symmetry breaking. In the
gaugeless limit, the leading-order HEFT Lagrangian is
defined as

‘CHEFT = ‘CHEPT boson + ‘CHEFT fermion » (Al)

where Lygpr poson 18 found in Eq. (2), while Lygpr fermion 15
given as

['HEFT.fermion
= q,i6"0,q1 + qic"d,qr
+ 1}i"0,1, + Tqic"d,lg
+ 1L U(Fy, (s + Fy (h)7*)qr + Hee]

+ [[LU(Fy, (W1, + Fy (h)e*)lg + Heel, (A2)
with 1, being a 2 x 2 unit matrix. /& denotes the 125 GeV
Higgs boson. F’s are arbitrary functions of h. ¢g; and [}
denote the SU(2),, doublet SM quark and lepton fields,
respectively. gr and [ are vectors defined as

() ()
qdr = dR s R — er s

where ug, dg, e are the SU(2),, singlet up quark, down
quark, and electron, respectively. Here we consider only
one generation for simplicity. It is straightforward to
introduce the other generations.

Under the G = SU(2)y, x U(1), transformation, the
fields in Eq. (A1) transforms as

(A3)

U—- QWUQI” (A4)

h— h, (AS)

q. — eéHYQWQL’ qr — eéengQR’ (A6)
I, — e_%aygwlu lg — e_%gnglR’ (A7)

where gy € SU(2),, and gy € U(1),. We can easily check
to see that the HEFT Lagrangian (Al) respects G =
SU(2)y x U(1)y invariance.

Let us introduce fi; g, 1 g, and 7y, as

(3) =ew(gre)dha )
(5) =ew(ire)ea @9
(> T (‘5 ”3<X>>5€vlb (A10)
(o)) =oo(3mw)ete am)

where &y and &y were introduced in Eqgs. (4) and (5). We
note that, under the G transformation, the hatted fields

transform like the y/; that we introduced:
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ity g = exp(iq,Oy (7, gw, gy))iiL r, (A12)
ZJL,R — exp(iqOy(7, gw, Qy))aL,m (A13)

vy =0y, (A14)
err = exp(iq.Oy(m. gw, gy))eL g (Al15)

where (g, qq4.9.) = (2/3.-1/3,-1).

It is now easy to see that the GHEFT Lagrangian (24)
reproduces the HEFT Lagrangian. The matter particle
content of the HEFT corresponds to

¢i — (7[1’712’”3’]1)’ (Al6)

wi =(a. dy, iy, dbh. 0y, 27,0,2%). (A17)
where £ is the U(1),,, neutral scalar and the U(1),,, charges

for y are assigned as ¢; = (¢,. 94- —4u» =44+ 0. .. 0. —q.).
We introduce a zero component (0) in Eq. (A17) for later

convenience. We find that, in HEFT, G, Gy, Gy;-, and M
are taken as
G,, =0, (A18)
th - 1, (Alg)
G;}* = 5§} s (AZO)
0 Fy (h) 0 0
F,(h 0 0
M;; = o) . (A21)
0 0 0 Fi(h)
0 0 Fi(h) 0
where O denotes 2x2 zero matrix and F

q.l —
F Yq‘,12 + F 7, ]13. The other parameters are tuned to be

G11:G22:G(h)’ G33:Gz(h), (A22)
G, =0 fora#b, (A23)
“ 0 0 0
0 0 0 0
Vi = — =1,2 A24
i 0 0 < 0 (a ) (A24)
0 0 0 0
20 0 0
v 0 0 0 0
3T 1o 0 B0
0 0 0 0
- cdiag(q,» 44- —qu» —44-9.4..0,—q,.),  (A25)

Vis, =0, (A26)
where c is the arbitrary parameter which appeared in Eq. (15).
Furthermore, the four-fermion operators are assumed to be
next-to-leading order in HEFT. Namely, it is assumed that

Sis33 =0, (A27)
Sisgq =0, (A28)
Sis33 =0 (A29)

at the leading order.

APPENDIX B: HELICITY EIGENSTATE

We consider a spin-1/2 field carrying a four-momentum
p* = (E, p), where the direction of p is given by p =
(sin@,cos¢,,sinf,sin¢,,cosd,). The two-component
helicity spinor wave functions are given as [52]

xo(B.2) = 0_3(P)ra(P), (B1)
x4(5,2) = =do_y (Bl (P), (B2)
Val(P:2) = 40, (P)r—4(P), (B3)
(5. 2) = w(P)}(P), (B4)
x'%(p,4) = —Aw_y(P)x-1(P). (B5)
% (P.2) = o_,(P)x; (D). (B6)
Y4B, ) = @;(P)xa(p). (B7)
Vi(P.2) = 4y (P)xL (), (BS)

where
2= 2, ). (39)

ety sin®%
)= ( _ ) e
and

w(p) = VEEB.  E=\/[pE+m  (BID)
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The spinor inner products (213) and (214) are obtained as

1*2% =, (p1)o,(p>)

: 0, 0 , 0, 06
—i1 ginL cos—2 — e~ sin—2 cos—L
X (e sin—-cos——e™'*sin—cos- ), (B12)

1727 = w_(p1)o-(p2)

g O 0 0, 0
X <e’¢l sinElCOSEZ — el sin3200831> ., (B13)

[lizﬂ = q:wi(ﬁl)C‘)?(ﬁZ)

0 0 . 0 0
X <cos§cos?2+ eTildr=¢2) sinfsin%) , (B14)

(1727) = —o_(p1)o-(p2)
. 0 0 ) 17 0
X (e"¢1 sin%cos;2 — el sinizcos El>,
(B15)
(12) =00, (7)o, (7

‘ 0 2} . o 0
X <e"/’l sin;‘cosf—e"/’2 sinfcos§1> . (BI16)

<1i2$> =tws (ﬁl)a’i(ﬁz)

0 0 . 6, .0
X <cos§cos?2+ eTild1=¢2) sinfsinfl) . (B17)

where 0; = 0, and ¢; = ¢, .

We now confirm that, in the massless limit
m; = my = 0, the spinor inner products become indepen-
dent of the Lorentz frame:

1727 [massiess = —V/2P1 - P2, (B18)
1727 [ asstess = (152 [massiess = 0. (B19)
(1727 masstess = +V/2P1 P2, (B20)
(172 | masstess = (1527) [nasstess = 0. (B21)

It should be emphasized that massive spinor products
depend on the Lorentz frame. Taking the center of
mass (c.m.) frame (@, =0, 6, =x, ¢, = ¢, =0), we
obtain

[1727] = —V(E\ + [P1)(E> + |Pa]),

c.m.

(B22)

_ mimy (B23)

[1_2_]|C.m. - [1+2+] C'm.,

(1727 |em = +V(E + PI)(E2 + [P2]).  (B24)
(2 =155 (B25)

and
27|, = (1°27) e, = 0. (B26)

APPENDIX C: HIGHER-ORDER TERMS
IN THE NORMAL COORDINATE

1. Taylor expansion of g;(¢)
The Gjj(123) term in the Taylor expansion (117) can be
computed from the first covariant derivative of the Riemann
curvature tensor,

_ K
Ryijik, = Riijir, = Reipliy,

k/ k/ k/
= Ry, — Rl — Roiw Ty, - (C1)

Since the affine connection vanishes in the normal coor-
dinate at the vacuum,

Tilo =0, (C2)
we find that
Rinislo=Ri2;3l0
1
:E(Gij(123)_G1j(i23)_GiZ(j13)+G12(ij3))~ (C3)

Symmetrizing under the 1 <> 2 exchange, we obtain

1
Ri(lz)j;3|0 - Z (ZGij(123) - Gil(j23) - Gi2(j13)

=G1j(in3) — Gaj(i13) + 2G123ij3))- (C4)
Note that R;ji,.3 satisfies the second Bianchi identity

Riji23 + Rijp3.1 + Rijz10 = 0. (C5)

The coefficient Gj(15)3 should be expressed in terms of

covariant tensors in the normal coordinate. We assume here
a form

Giji2)3 = aRi(12)j3lo + bIRi(13)72 + Ri23)tllo-  (C6)
The second Bianchi identity implies
Ri(12)3;j + R3(12)j:i = 2Ri(12)73 — [Ri(23);:1 T Rii3)j2l- - (C7)

Therefore, the fifth-order independent covariant tensors
symmetric under the exchanges
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i< j, 1 <2 (C8)
are exhausted in the assumed form of Eq. (C6). The
condition (C4) can be expressed as

1
Ri12)j3l0 :E[Gij(123) +Graij3)]

1
_Z[Gil(j23) +Ginj13) +Gji(i23) +Gjoiinz))- (C9)

Using

1
Gij3) = 3 [Gij123 + Gijsn + Gijaiye

(C10)
and the assumption (C6), the condition (C9) can be
rewritten as

Ri(12)j:3 = (a + 2b)R;12)3- (C11)

We therefore find that

a+2b=1, (C12)

and thus
Gij(123=(1=2b)R;12)j3lo +b[Ri23)j;1 + Riiz1yjallo (C13)

satisfies Eq. (C4) with an arbitrary b.
We see that the dependence on the parameter b dis-
appears in

1

Gijiz) =3 [Ri12)j3 + Riayjr + Rignyjallo-  (C14)
The third-order Taylor expansion coefficient in Eq. (99) is
therefore uniquely determined in the normal coordinate.

We next check to see whether or not Eq. (C14) satisfies
the condition (C3), which is more severe than its sym-
metrized form [Eq. (C4)]. Plugging the result [Eq. (C14)]
into the rhs of Eq. (C3), we see that

1
3 (Gij123) = Gij(iz3) — Gio(j13) + Gragija))
1
-5 [4Ri12j3 +2Rp1:3 — 2R j103
+ [Rig3j + 2Rizpj + Rijpzl + [Rizij + 2R3 + Rijailo
+[Rj123 +2Rn13 + Rzl
+ [Ri213 + 2Ri123 + Rizai], o (C15)
The Bianchi identity implies
Rip1j — Rijio = Rinojs (C16)
Rinj + Rijp3 = Rz, (C17)

Riz1j + Rij31 = Rz, (C18)
Rji3 + Rj310 = Rjpy3, (C19)
Rip13 + Rizo1 = Ripns. (C20)

Using these results, the terms on the rhs of Eq. (C15) can be
simplified as

1
) (Gij23) = Guji23) — Gaa(jn3) + Graij3))

1
D [6R;12)3 4+ 3(R 231 + Rjn13:)

+ 3(Rizj2 + Riroz)] o (C21)

Using the implications of the second Bianchi identity,

Rjxi1 + Rjo13 = Rjp1izs (C22)

Ri13j0 + Ri23;j = Rinji3s (C23)

we can simplify Eq. (C21) further as

1

E(Gij(123) =Gyji23) = Gin(j13) + Gia(ij3)) = Rinzjia o (C24)

We see that the more severe condition (C3) is satisfied by
the solution (C14) of the weaker condition (C9).
We next compute the second covariant derivative

Riijiciks o
_ X %
= Ryijk ik lo = Rk’ijkri/kl,k2|o = Riow i, 1, lo

= Roiwn %4, 1o = Riijie T, 1, lo- (C25)

Using

1 2 i
r‘l |0 — __gll Ri’(l‘k)j 0> (C26)

ik,j 3
we obtain
2 "
Riijkkiilo = Riijkkiklo + §Rk’ijkgkk Rk )k, o
+ %Ri’k’jkgklk”Rk”(ikl)k2 0

2 k’k,/
+§Ri’ik’kg Ry,

2 1.0
+ = Riijw g Ri(aae iy 0 (C27)

3

On the other hand, from Eq. (104), we obtain
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1
Riijijk, = =35 (Gik(ijisky) = Gik(ijk k) =Gt j(ikki ko) T Gij(ikkykr))
1 / 1
=1 Gy + Giptny = Giik) )87 (Grritins) + Gpiinn) = Gk
1 / 1
=2 (Gijii) T Gijiii) = Gijii))8 (Gitusa) + Gragine) = G k)
1 / 1
+7 Gy + Grjin) = Gini))8 7 (Grigu) + Gprjtita) = Gij'ka)
1 / //
1_1 (Girjiy) + Grj(iky) = Girk(7i)) 7 (G i) + Gyrjinyy = Gijrey))- (C28)
We then use Eq. (114)
1
Riijijk, = =3 (Gikiijkiky) = Gik(ijkiky) = Gitjlikkiky) T Gijitkki k)
1 o
=g Rir)y + Riww)y = Rigre g (R + Ry = Ririob) ’o
1 o
=g Rit)y + Rin)y = Ry )9 Ry + Ryt = Riri i) )O
1 / ;1
+5 Rty + Runyy = Rirrp) 97 (Rinoyi + Rpriin); = Ririnj) |,
L g, R -R 7 (R R R C29
+5 Rty + Ruwin)y = Ritpiap )9 (Ryiyi + Ryt = Rigyria))| - (€29)
Combining Egs. (C27) and (C29), we now find that
1
5 (Gikiijiiky) = Gik(jkik) = Girjiikkko) + Gij(irkkyky))
2 / " 2
= Riijickkylo = 3 Ry g™ Ry i lo — R kg Rk’/(zk])k2
2 k/k// 2
_gRi’ik’kg Rk koo — 3R’z/k'9 Rk”(kk Yl
1 / ;1"
+§(R’(]k 1+ Rj) g = R )9 (Rina)i + Rjrtirg)k = Ri(j”b)k)‘o
1 I
+ 5 Rit)y + Rjia) = Ritia)i)9 (Rt + Ry i = Ri(/”kl)k>‘0
1 ;s
=g Riwe)y + Reiwyy = Ry 9 (Rpryi + Ripirg)j = Ri(j%)j)‘o
1 1
=g Rite)p + Riwia)y = Riirion )9 (Ryiyi + Ryrgin)j = Ri(j"kl)ﬂ‘o- (€30)
When we replace the indices
i =i, k—j, i—1, Jj=2, ky — 3, ky — 4, (C31)

the structure of the indices can be made more manifest:

015001-29



NAGAI, TANABASHI, TSUMURA, and UCHIDA PHYS. REV. D 104, 015001 (2021)

2 ;s
(Gij(1234) — Gij(in3a) — Gin(jiza) + Gragijaa)) = Rinnjzalo — ggl T[Rin2jRj(i3)4 + RirijoRjr(13)4 TRy jit R 23)4 + Rin1iR jr(j3)4] ‘0

| =

1 s s
+§(Ri(23)i’ + Roi3)r = Rir3)2) 9" (Rj(jay1 + Ry1a); — Ri(ya);) 0

1 s
+ 9 (Riaayi + Ragiayi — Ri(ira2) 9" (R + Rj1z); — Rij3)) ’0

l ;s
) (Ri(j3)r + Rjzyi — Ri3),)9" (Rj2ay1 + Rj1a2 — Ry(jan) ‘0

1 Y
) (Ri(jayi + Rjgiayr — Ri(ra);)9"7 (Rj23n + Ry1zp2 — Riya)lo- (C32)

It is convenient to rewrite formula (C32) as

1 ,
2 (Gij(1234) = Gij(i234) — Ginj134) + Gia(ijaa)) = Rinjizalo — ggl T[RinajRj(i3ya + RiijpR (1314 + Rirjit R (2314 + Ri1iR jr(j3)4) ‘0

1 ) 2
+g9” (Rir23)i + Rir(izy2 = Ri(in)3) (R jay1 + Rj1ay; — Rj(jnya) )O

1 o s

+§9' T (Ry24)i + Rirgiayy — Rirginya) (R iy + Rj13), — Ry j1)3) )0
1 o e

- 69’ T(Rir(ja)i + Riizy; — Rir(ij3) (Ryay + Ry1ay2 — Ryr12)4) ‘0

1 .,
—§g’ / (Ri’(j4)i + Ry (i4)) _Ri’(ij)4)(Rj’(23)1 +Rj(132 — Rj’(12)3) ‘o' (C33)

We are now ready to solve Eq. (C33). We first symmetrize the indices (1234) by replacing

1

Gij(inze) = 1 (G1j(i234) + Gajiinza) + G3j(inza) + Gajin3))» (C34)

1
Giasijza) = 5 (Giaij34) + Gaagijiz) + Gi3(ijoa) + Gaa(ijiz) + Graijez) + Gasijials (C35)

1
Ringjaa = ¢ [Ri(12):34) + Ri(3a)j:012) + Ri(13)js24) + Ricaa)js(13) T Ri14)j:23) + Ri(23)j(14))» (C36)
Ri12j = Ry (C37)
1

Rjiza = _ERj’(34)iv (C38)

o 1 o
9" Ry(12)jRj3ayi = ggl T[Ri(12)jRy3a)i + Ri3a)iR12)i + Rir13)R 24y + Rir(aa)iRy(13)i + Rir14)j Ry (23)i

+ Ri23);R 1)) (C39)
Rjq3a =0, (C40)
Rii32 — Ry(in)3 = 0. (C41)

We then obtain a symmetrized form of Eq. (C33):
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1 1 1

5@;(1234) ~3 (G j(i234) + Gaj(i134) + G3j(in2a) + Gajiinzz)] — 3 [G1i(j234) + Gaij134) + Gijioa) + Gaiji23)]
1

P [Gra(ij3a) + Gaaijiz) + Gis(ija) + Gaa(ijiz) + Graijoz) + Gosijia)]

[Ri(12)j:34) + Riaa)j:12) + Rir3)a) + Riaayz13) + Riqra)jia3) + Rics)jaa]|

+ o= +

4 o
ﬁgl T[Ry12)iR 34 + Ri(13)iRj(24); + Rir1a)iR j(23); + Rir3a)iRj(12); + Rio4)iRy(13); + Rir23)iRj(14);] o (C42)

The factor 4/27 in the expression above is obtained as

2 1\ /1 1\ /1 4
S (=) (=) %2+ (=) (=) x2=—.
(-3)(-2)E) =2+ () () 27
Here the factors —2/3 and 1/9 are from Eq. (C33), the factor —1/2 is from the symmetrization (C38), and the factor 1/6 is
from Eq. (C39). We assume here the form

a
Gij234) = ¢ [Ri(12)1:64) + Ri34)102) + Rig13)1:00) + Ri24)103) + Rig1a)j:03) + Ri23)j 1)) i

b <
+89” [Rir(12)iR34); T Rir(13)iR jr(24); + Ri14)iR j1(23); + R 34)iR (12 + Rir(24)iR j (13) + Rir(23)iR jr (14),] o (C43)

Using the Bianchi identity and the symmetries of the curvature tensor, it can be shown that

Gijinza) T Goj(i34) + G3jiinng) + Gajiinnz) = —Giji234)» (C44)
Grij234) T Gaigj134) + Gaigiioa) + Gaiizz) = —Gij1234)» (C45)
Gra(ija4) + Gaagijio) + Gu(ijos) + Goaijiz) T Guagijes) + Gasijiay = Gij(123a) (C46)

under the assumption (C43). Equation (C42) then reads

11 1 1 1
(5 +gtgt ﬁ) Gijazsa) = g[Rir2)j:00) + Rigaj02) + Rig3)500) + Riaj03) + Riayj3) + Rigayjel|

4 Y
+ 559" [Ri(12)iRy34); + Rir(13)iRj(24); + Rir14)iRjr(23); + Ri34)iRj(12);

27
+ RipaiRya3); + RiaiRyal| (C47)
and
6 16
- <> b —_ Tz C48
“7s 15 (C48)

We finally obtain

1
Gij1234) = 5[Ri12)564) + Risa):2) + Ri13)1:00) + Rigaa)03) F Riray o) + Rias ]|

8 ;s
+EQU [Ri(12)iR j(34); + Rir(13)iR j (24); + Ri(14)iR (23 + Rir34)iR j (12); + Rir(24)iR jr 13)j + R 23)iR (1)) o (C49)

The result is consistent with the Riemann normal coordinate coefficient
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6 16
Gijtkka) (o) = 5 Ritkita)sitioks) | + 15 Ritkta R k)i - (C50)

2. Taylor expansion of vy, (¢)

The Taylor expansion coefficient Aj.; 1, in Eq. (154) can be computed from the first covariant derivative of the half-
fermionic Riemann tensor:

» _ . T _p. ™ _p. T _p. T
Ryseiin, = Riyiju, Ri,j*iijl; Rl.j,*,.ij];,* Rij*i,jl“kll. Rij*ij’rklj' (C51)
Since the affine connections vanish at the vacuum in the normal coordinate, we see that
Rieijalo = Riij, lo- (C52)

We then use Eq. (147) to obtain

» o . . . _ . . _ . . . - _ » k
Rijoiin, = iAsjin, T Az a0 — A5k, — 1A%, T 1A% ki, — Asy ity i )P

?/}»/* " » " » k _ ’lf/}»/* ", » " » k
+ g (Ai/j*iklAl‘j/*jkz + Ai/j*l'szij/*jk] >¢ 2 g (Ai/j*jklAij/*ikz + Ai/j*jszl‘j/*ikl)¢ 2

21750

+ {gi/j/* (Azr}*ik3A2;~/*jk2 + A?’}'*isz?]’*jkg)],kl ¢k2¢k3 - [g' J (A?’}'*jlgA?}"*ikz + A?’}'*jsz?}"*ik3)],kl¢k2¢k3' (C53)

Now we are ready to find a relation between Ry;.;; . and Ay - at the vacuum,

Ripiinlo = ilAsia, + Avin i = Avrijn, = Avrin, jllo- (C54)

Combining the result with Eq. (C52), we obtain

R’}’\*. |0 g i[AM*

1j%i]3k 17" jky,i + Ay A?}'*ij.k| +A?}'*k|i,j]|0' (CSS)

iy jiky

Since the function Ax...(¢) is antisymmetric under the exchange of i <> j, Eq. (C55) can be expressed as

1j'ij
Rigeiji lo = A5 i+ Atrigi = 24558, o (€56)
We consider a Taylor expansion,
vipi(#) = Ay (#)¢
= A, oo™ + %A?}*i(kl,k2)|0¢kl¢k2 + %Af}*i(k,,kzkg)|0¢k1¢k2¢k3 T+ (C57)
The expansion coefficients Az o, Az ik, k) l0s A7ji(k, spky)lo» - - sShould be written in terms of the covariant tensors in the

normal coordinate. Noting the antisymmetry under the i <> j exchange, we assume the form
A?}'*ij,k, |0 = aR?}'*ij;l ‘0 + b[R?}'*jk,;i + Ri}'*kli;j]- (C58)

Plugging the assumed form of Eq. (C58) into the rhs of Eq. (C56), we obtain

ths = i(a - b) [Ri}'*jl;i + R?}*li;j - 2Ri}'*ij.1]|0- (C59)
We note that the Ry;-;;., satisfies the Bianchi identity
Ri}'*jl;i + R?}'*li;j = _R?}'*ij;h (C60)
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as we will discuss in Appendix C 3. Using the Bianchi identity, the expression can be simplified further as
ths = —=3i(a — b)R;;.*ij;] lo- (C61)

Comparing the result with Eq. (C56), we now obtain

a—b= i, (C62)
3
and thus
i
Agijtlo = <§ + b> Rizeija o + D[Ry j1i + Rizvijllo- (Co3)

Note that the b dependence is canceled in the Taylor expansion coefficient Ay 2o,

i i
Agji1.2) ‘0 = <§ + b> Rijit1) ‘0 + bRy (12 =~ Rijrii)] = 3 Rigricaz)lo- (Co4)

In the last line of Eq. (C64), we used the Riemann tensor symmetry
Rf]‘*l2 + R;le =0. (C65)

We next consider the second covariant derivative of the half-fermionic Riemann curvature tensor,

k)

” o " _ " A _ » }-/* _ » M _ » j/ _ »
Rije it = Rigeiie) o = Rigeija Ui = Rigeijaa Uiye = Rigtje Ui = Rigija Doy = Rigrijue Ui (Co0)
which can be computed at the vacuum
o ’i/}/* 1 ?/}-/* 1 i/j/
Riyijainlo = Rigijailo =597 RigeiiRiyeilo + 597 RigeijRigenilo + 3.9 Rigei (Rt + Ryieio)
|
+ 59’ TRy i (Rikyjk, + Ryjiyky)- (C67)
Here we used Egs. (C2), (C26), (151), and (152). We then obtain
R =R LR R LR R C68
Fijtk) |0 = Riji oo =397 RijiiRiwioyilo = 39" Rigio Ryt slo- (C68)

We next use Eq. (147) to find

R?}‘*ij,klk2|0 = ’[A?}* jikyiko + ZA?}* jlky k)i T A?}‘*ij,klkz - 2A?}‘*i(kl,k2) j]|o

R?'}'*jk, R?}"*ikz -+ R?’}'*jszf}"*ikl] ’0. (C69)

Q/A»/*[

] T 1 i
=297 Rigie, R i, + Ry, Ry j ] ‘ o797
Combining Egs. (C68) and (C69), we now find a formula which relates the function Agj.* ij with the Riemann curvature
tensor,

1 2k
1 A, A AA Ay A An
0 19 J (Ri’j*ik]Rij’*jkz + Ri’j*ikQRij’*jkl)‘O

1 )
o 59” Rz iiRj (ki) j

1 %
+297 Ry ji Rigreie, + Rige e R, ) ‘ . (€70)

. 1 ol
iAly = —R§}'*ij;(klk2)|0 - ggl TR iR (ke ky )i

Here we introduced a shorthand notation
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A= A?}*ija(klkz) - A;}*ﬁa(klkz) + ZA?}*i(klvkz)/ - ZA?}'*j(klakz)i’ (C71)

The function As;.;;(¢) should be expressed in a covariant form in the normal coordinate. We therefore assume that

an — o U T Ran — Ran 7T R i
Aij*ij,klkz‘o = aRij*ij;(k1k2)|0 + by [Rij*i’iRj’(klkz)j Rij*i’jRj'(klkz)i”O +cg [Rij*i’kle'kzij + Rij*i'szj’k]ij”o

5

+dg'" (Rys e, Ry jo, + Ry i Riye e Mo = 49" (Ryy e Ry, + Ry i Riei, o (C72)

Here a, b, ¢, d are constants. Plugging the form of assumption (C72) into the definition of the shorthand notation (C71) and

using the symmetry structure of R;;.;; and

» _ » o " ?/A » }»/; . » i ” j/
Ris it = Riyvizon, = RoieiiR sk + Rieii R 50+ Rigei R ity + Rigei o R ity (C73)

we find that

Alg = 4aRy .1yl + (—a+ b+ 2¢)g"7 (R iRy (k)i =R v iRk k)il o

a 3 w
+ <§ + Eb + 3C> g’ [Rﬁ'*i’klRj’kzij+Rfj*i’k2Rj’klij] o

ir“/* " » ", » ?/“/* ", » ", »
+ag"’ (Ri’j*iklRij'*jkz + Ri’j*iszij’*jkINO —ag"’ (Ri’j*jklRij’*ikz + Ri’j*jk2Ri/*ikl)|o- (C74)

Comparing Eqgs. (C74) and (C70), we obtain

dia = —1, (C75)
. 1
i(—a+Db+2c)= 3 (C76)
(4425 43¢) =0 (C77)
i\ z+5 c) =0,
22
@ — (C78)
fa=-7.
which can be solved as
i (C79)
a=—,
4
hb——'_2 (C80)
=-1 2%
Note that the coefficients ¢ and d are left as undetermined constants. We thus obtain an expression of Az, :
i i il
Aijijriialo = 3R ik lo = (E - 26) 97 R viRy (k)i = Riges iRy kil
+ g [Riyin, Rinksij + Rige i, Ririsllo + 97" (Rygea Rige o, + Rogeae, Rige e, o
= dg"" Ry ji, Ry, + Ry i Riie,o- (C81)
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The dependence on parameters ¢ and d is canceled in

i 1 1 1
A?A‘*i 23 |0 = _R;A‘*i ;23 |0 - < + 2C> |:Rl z’lR (123 Rl i Ry 23)i T Rl z’ZR 31 Rl 1’3R 12 :|
77i(1.23) 4 iri(1:23) 12 jriitty(123) T 3 A Ry (23)i T 3 A BN T 3 "(12)i o

2

=50 [RipnRy29itRig-iaRy v + RigrsRyy 1,
i
4

'I

l
R?}*i(1;23)‘0 + %9 "Ry i1 Ry 23)i+ Ry o Ry 31)i + Ry Ry (12)1] o (C82)

The third-order Taylor expansion coefficient in

vii(9) = Az (99

1 1
A ki Z Aan ki ko T AL
= Agp i, lo®" + 2Aij*i(k],k2) 0¢ P + 3!Aij*i(k1,k2k3)

0¢k1¢k2¢k3 R (C83)
is therefore uniquely determined in the normal coordinate.

3. A proof on the “half-fermionic Bianchi identity”
The half-fermionic curvature tensor defined in Eq. (138) satisfies a Bianchi type identity
R'5105 + Ripsy + R, = 0. (C84)
We give a proof of Eq. (C84) in this Appendix.
We first compute R's5.5:
i 7 J v J 7’ J J J
le12§3 - (F12}31 1"11] 23) + <F1 l—‘2]3 FI Fl/ 2) + (rl l—‘2]1 Fl Fl/ '%) + ( 1j 2 3} Fl2] 31—‘1]> + <Fllj 3F2j 1—‘[2] 1F3]>

o+ (T Ty = Ty T4y) = (I T4, = T Thy) o (T, 7, 1, = DT 1) 4 (0,0, 1 = T, 1 1)

+ 0 (DT = T3 1) + T (D, 1) — T, D). (C85)

The covariant derivatives R?)'23; , and R?}31;2 are obtained using the replacements 123 — 231 and 123 — 312 in Eq. (C85).

It is now almost straightforward to see the identity (C84). For example, we see in Eq. (C85) that the second derivative
terms of affine connection

FlZ/ 13 Fll] 23 (C86)

are contained in R'; 512,3- Combined with the contributions from R 53, and R 312> We see these second derivative terms
disappear in le123 + R, B2+ R 2310

(Flzj 31 le] 23) + (ng 12 lﬂlzj.31) + (Fll}',zs - Fl3},12) =0. (C87)
Note also that
—R?}*12;3 = R}*212;3 = (gk}*Rk?lz)s = 912}'*;3Rk§12 + gk}*Rk?12;3 = glzj*Rkhzﬁ- (C88)

Multiplying g;;- by Eq. (C84), we therefore obtain

R“ 12%‘|‘R *231+R*312—0 (C89)
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