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Abstract

The aim of this study is to propose stepwise multiple comparison procedures
for comparing sizes of normal means. Specifically, we construct Tukey-Welsh’s
step down procedure and a closed testing procedure called Ryan-Einot-Gabriel-
Welsch’s procedure based on Imada (2020)’s single step procedure and compare
them in terms of numerical results regarding power of the test. Furthermore, we
illustrate our procedures by an example.

Key Words and Phrases: Closed testing procedure, Power of the test, Tukey-Welsh’s step down

procedure.

1. Introduction

Assume there are K normal populations N(µk, σ
2) (k = 1, 2, . . . ,K). We occa-

sionally want to compare sizes of µ1,µ2,. . .,µK . Dunnett (1955), Dunnett and Tamhane
(1991) and Dunnett and Tamhane (1992) constructed the multiple comparison proce-
dures for detecting the pair µ1, µk satisfying µ1 > µk under the assumption that µ1 ≥ µk

for k = 2, 3, . . . ,K. They are called the multiple comparison procedures with a control.
Lee and Spurrier (1995) and Imada (2015) constructed the multiple comparison proce-
dures for detecting the pair µk, µk+1 satisfying µk > µk+1 under the assumption that
µ1 ≥ µ2 ≥ · · · ≥ µK . They are called the successive comparison procedures. Imada
(2020) constructed the procedures for detecting µk satisfying µk < max1≤l≤K µl.

The aim of this study is to construct multiple comparison procedures for comparing
sizes of µ1,µ2,. . .,µK based on Imada (2020)’s single step procedure. When there are
several treatments evaluated by normal response for a certain disease, we can clarify
specific relations regarding the superiority and the inferiority among them by our proce-
dures. Here, we construct two types of stepwise procedures. One is Tukey-Welsh’s step
down procedure (cf. Tukey (1953) and Welsch (1972)) and the other is the closed test-
ing procedure called Ryan-Einot-Gabriel-Welsch’s procedure (cf. Marcus et al. (1976),
Ryan (1960), Einot and Gabriel (1975) and Welsch (1977)). Although Tukey-Welsh’s
step down procedure is not more powerful compared to Ryan-Einot-Gabriel-Welsch’s
procedure, Tukey-Welsh’s step down procedure is simpler for practical use. We give
some numerical results regarding power of the test intended to compare two procedures.
Furthermore, we illustrate our procedures by an example.
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2. Imada (2020)’s multiple comparison procedures for finding non-maximum
normal means

First, we discuss Imada (2020)’s multiple comparison procedures for finding µk

satisfying µk < max1≤l≤K µl. Imada (2020) set up the null hypothesis Hk and its
alternative hypothesis HA

k as

Hk : µk = max
1≤l≤K

µl vs. HA
k : µk < max

1≤l≤K
µl

for k = 1, 2, . . . ,K and test them simultaneously using a sample Xk1, Xk2, . . ., Xknk

from N(µk, σ
2) for k = 1, 2, . . . ,K. Letting

X̄k =
1

nk

n∑
i=1

Xki (k = 1, 2, . . . ,K), N =

K∑
k=1

nk, s =

√√√√1

ν

K∑
k=1

nk∑
i=1

(Xki − X̄k)2

where ν = N −K, we use the statistic

Sk =

√
N(max1≤l≤K X̄l − X̄k)

s

for testing Hk. In the single step procedure for H1,H2, . . . , HK , we set up a critical
value c(> 0). If Sk > c, we reject Hk. Otherwise, we retain Hk. We determine c for a
specified significance level α. Specifically, we determine c so that

P ( max
k=1,2,...,K

Sk > c) = α

when all Hks are true. In the hereafter discussion, P (·) means the probability measure
under the assumption that all Hks are true. Imada (2020) derived

P ( max
k=1,2,...,K

Sk > c)

= 1−
K∑

k=1

∫ ∞

0

∫ ∞

−∞

∏
i ̸=k

{
Φ

(√
ni

nk
z

)
− Φ

(√
ni

nk
z − c

√
ni

N
v

)}
ϕ(z)g(v)dzdv.

Here, Φ(·) is the cumulative distribution function of N(0, 1), ϕ(·) is the probability
density function of N(0, 1) and g(v) is the probability density function of v = s/σ given
by

g(v) =
νν/2

2(ν−2)/2Γ[ν/2]
vν−1 exp

[
−νv2

2

]
.

If n1 = n2 = · · · = nK = n,
P ( max

k=1,2,...,K
Sk > c)

= 1−K

∫ ∞

0

∫ ∞

−∞

{
Φ(z)− Φ

(
z − c√

K
v

)}K−1

ϕ(z)g(v)dzdv.

In this case, c/
√
2K is the critical value for pairwise comparison of the all-pairwise

multiple comparison procedure proposed by Tukey (1953).
Furthermore, Imada (2020) constructed a sequentially rejective step down proce-

dure and a step up procedure. For three procedures, the power of the test was formulated
under a specified alternative hypothesis.
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3. Stepwise multiple comparison procedures for comparing sizes of normal
means

In this section, we construct two types of stepwise multiple comparison procedures
for comparing sizes of normal means based on Imada (2020)’s single step procedure. One
is Tukey-Welsh’s step down procedure and the other is Ryan-Einot-Gabriel-Welsch’s
procedure.

3.1. Tukey-Welsh’s step down procedure

First, we construct Tukey-Welsh’s step down procedure. Let Is be an arbitrary
subset of I = {1, 2, . . . ,K}. ♯(Is) denotes the cardinal number of Is. We consider Is
satisfying ♯(Is) ≥ 2. When Is = {s1, s2, . . . , sk}, define the hypothesis HIs and its
alternative hypothesis HA

Is
as

HIs : µs1 = µs2 = · · · = µsk vs. HA
Is : µsl < max{µs1 , µs2 , . . . , µsk} for some l.

We use the statistic

SIs = max
1≤l≤k

√
N(max1≤h≤k X̄sh − X̄sl)

s
(1)

for testing HIs . If ♯(Is) > K − 2, we determine the critical value cIs for testing HIs so
that

P (SIs > cIs) = α.

Otherwise, we determine the critical value cIs so that

P (SIs > cIs) = 1− (1− α)
♯(Is)
K .

Here
P (SIs > cIs)

= 1−
k∑

m=1

∫ ∞

0

∫ ∞

−∞

∏
i ̸=m

{
Φ

(√
nsi

nsm

z

)
− Φ

(√
nsi

nsm

z − cIs

√
nsi

N
v

)}
ϕ(z)g(v)dzdv.

If n1 = n2 = · · · = nK and ♯(Is1) = ♯(Is2), cIs1 = cIs2 . Therefore, if n1 = n2 = · · · = nK ,
cIs is denoted by c♯(Is). We carry out Tukey-Welsh’s step down procedure for all HIss
as follows.
Step 1.
We test HI .
Case 1. If SI ≤ cI , we retain all HIss and stop the test.
Case 2. If SI > cI , we reject HI and go to the next step.
Step 2.
We test all HIss satisfying ♯(Is) = K − 1.
Case 1. If SIs ≤ cIs , we retain HIs and all hypotheses induced by HIs .
Case 2. If SIs > cIs , we reject HIs .
Step 3.
If all HIss satisfying ♯(Is) = K − 2 are retained at Step 2, we stop the test. Otherwise,
we test all HIss satisfying ♯(Is) = K − 2 which are not retained at Step 2.
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Case 1. If SIs ≤ cIs , we retain HIs and all hypotheses induced by HIs .
Case 2. If SIs > cIs , we reject HIs .

We repeat similar judgments till up to Step K − 1. Let Is = {s1, s2}. If SIs > cIs
and X̄s1 < X̄s2 at the final Step K − 1, we reject HIs and judge µs1 < µs2 .

It is difficult to formulate the power of Tukey-Welsh’s step down procedure under a
specified alternative hypothesis. We calculate the power using Monte Carlo simulation.

3.2. Ryan-Einot-Gabriel-Welsch’s procedure

Next, we construct Ryan-Einot-Gabriel-Welsch’s procedure. Letting H be the fam-
ily of hypotheses consisting of all HIss and all sorts of intersections of plural HIss, H is
closed. Each hypothesis in H is equal to single HIs or HIs1

∩HIs2
∩ · · · ∩HIsm

where
Is1 , Is2 , . . . , Ism are disjoint. We determine the critical value cIs for testing HIs so that

P (SIs > cIs) = α.

If SIs > cIs , we reject HIs . Otherwise, we retain HIs . If n1 = n2 = · · · = nK , cIs is
denoted by c♯(Is).

Next, we discuss how to test HIs1
∩ HIs2

∩ · · · ∩ HIsm
where Is1 , Is2 , . . . , Ism are

disjoint. Let M = ♯(Is1) + ♯(Is2) + · · ·+ ♯(Ism). For l = 1, 2, . . . ,m we determine cIsl ,M
so that

P (SIsl
> cIsl ,M ) = 1− (1− α)

♯(Isl
)

M . (1)

If n1 = n2 = · · · = nK , cIsl ,M is denoted by c♯(Isl ),M . Intended to test HIs1
∩HIs2

∩· · ·∩
HIsm

we set up the critical value cIsl ,M for testing HIsl
for l = 1, 2, . . . ,m. If SIsl

>
cIsl ,M for at least one l, HIs1

∩HIs2
∩ · · · ∩HIsm

is rejected. Otherwise, it is retained.
Then, the probability thatHIs1

∩HIs2
∩· · ·∩HIsm

is rejected whenHIs1
∩HIs2

∩· · ·∩HIsm
is true is

P (SIsl
> cIsl ,M for some l) = 1− P (SIsl

≤ cIsl ,M for l = 1, 2, . . . ,m). (2)

Since
P (SIsl

≤ cIsl ,M for l = 1, 2, . . . ,m)

=

∫ ∞

0

P (SIsl
≤ cIsl ,M for l = 1, 2, . . . ,m|v)g(v)dv

=

∫ ∞

0

m∏
l=1

P (SIsl
≤ cIsl ,M |v)g(v)dv

≥
m∏
l=1

∫ ∞

0

P (SIsl
≤ cIsl ,M |v)g(v)dv

=

m∏
l=1

∫ ∞

0

P (SIsl
≤ cIsl ,M )

by Corollary A.1.1 in Hsu (1996), we obtain

P (SIsl
> cIsl ,M for some l) ≤ α
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by (1) and (2). Therefore, the probability that HIs1
∩ HIs2

∩ · · · ∩ HIsm is rejected
when it is true is not greater than α. We specified the way to test each hypothesis in H
satisfying the specified significance level α. We test the hypotheses in H hierarchically.
Specifically, if a hypothesis and all hypotheses inducing it are rejected, we reject the
hypothesis. Otherwise, we retain it.

It is difficult to formulate the power of the closed testing procedure under a specified
alternative hypothesis. We calculate the power using Monte Carlo simulation.

4. Numerical examples

We give some numerical examples regarding power. Let α = 0.05 and K = 5. We
set up two types of (n1, n2, n3, n4, n5) as

Sam.1 : (15, 15, 15, 15, 15), Sam.2 : (10, 20, 15, 20, 10).

Letting δ > 0, we consider the power of the test under four types of alternative hypothe-
ses as follows.

Case 1. µ1 = µ2 = µ3 = µ4 = 0, µ5 = δ.
Case 2. µ1 = µ2 = µ3 = 0, µ4 = δ, µ5 = 2δ.
Case 3. µ1 = µ2 = 0, µ3 = δ, µ4 = 2δ, µ5 = 3δ.
Case 4. µ1 = 0, µ2 = δ, µ3 = 2δ, µ4 = 3δ, µ5 = 4δ.

We focus on the all-pairs power defined by Ramsey (1978). The power of Case 1 is
the probability that

µ1 < µ5, µ2 < µ5, µ3 < µ5, µ4 < µ5

are detected. The power of Case 2 is the probability that

µ1 < µ4, µ1 < µ5, µ2 < µ4, µ2 < µ5, µ3 < µ4, µ3 < µ5, µ4 < µ5

are detected. The power of Case 3 is the probability that

µ1 < µ3, µ1 < µ4, µ1 < µ5, µ2 < µ3, µ2 < µ4, µ2 < µ5, µ3 < µ4, µ3 < µ5, µ4 < µ5

are detected. The power of Case 4 is the probability that

µ1 < µ2, µ1 < µ3, µ1 < µ4, µ1 < µ5, µ2 < µ3,

µ2 < µ4, µ2 < µ5, µ3 < µ4, µ3 < µ5, µ4 < µ5

are detected. Our procedures enable us not only to compare sizes of normal means, but
to detect the pair which has different means. Therefore, we compare our procedures and
conventional Tukey-Welsh’s step down procedure and Ryan-Einot-Gabriel-Welsch’s pro-
cedure for detecting the pair which has different means in terms of the power. TW1 and
CT1 mean our Tukey-Welsh’s step down procedure and Ryan-Einot-Gabriel-Welsch’s
procedure, respectively. TW2 and CT2 mean conventional Tukey-Welsh’s step down
procedure and Ryan-Einot-Gabriel-Welsch’s procedure, respectively. Tables 1,2 give the
power of four procedures for Sam.1 and Sam.2, respectively. Here δ = 1.00, 1.25, 1.50.
They are obtained by Monte Carlo simulation with 100,000 times of repetitions. The
difference of the power between TW1 and CT1 is small in Case 1 for Sam. 1 and Sam.
2. CT1 is more powerful compared to TW1 in Cases 2,3,4 for Sam. 1 and Sam. 2. The
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difference of the power is larger as the number of hypotheses which should be rejected
is larger. These aspects are similar for TW2 and CT2. The difference of the power
between TW1 and TW2 is small except for Case 1 of Sam. 2. TW1 is more powerful
compared to TW2 in Case 1 of Sam. 2. These aspects are similar for CT1 and CT2.

Table 1: Power of the test for Sam.1

Case 1 Case 2
TW1 CT1 TW2 CT2 TW1 CT1 TW2 CT2

δ = 1.00 0.328 0.333 0.329 0.330 0.175 0.203 0.175 0.203
δ = 1.25 0.633 0.635 0.633 0.633 0.546 0.585 0.551 0.583
δ = 1.50 0.866 0.869 0.869 0.869 0.848 0.870 0.851 0.869

Case 3 Case 4
TW1 CT1 TW2 CT2 TW1 CT1 TW2 CT2

δ = 1.00 0.122 0.202 0.121 0.201 0.099 0.265 0.100 0.262
δ = 1.25 0.506 0.621 0.507 0.622 0.487 0.700 0.485 0.700
δ = 1.50 0.838 0.892 0.839 0.895 0.833 0.927 0.832 0.926

Table 2: Power of the test for Sam.2

Case 1 Case 2
TW1 CT1 TW2 CT2 TW1 CT1 TW2 CT2

δ = 1.00 0.258 0.259 0.251 0.251 0.183 0.211 0.189 0.212
δ = 1.25 0.504 0.506 0.493 0.496 0.540 0.575 0.544 0.574
δ = 1.50 0.745 0.748 0.738 0.739 0.836 0.854 0.836 0.853

Case 3 Case 4
TW1 CT1 TW2 CT2 TW1 CT1 TW2 CT2

δ = 1.00 0.122 0.204 0.122 0.205 0.118 0.288 0.117 0.287
δ = 1.25 0.478 0.595 0.481 0.598 0.495 0.695 0.498 0.697
δ = 1.50 0.801 0.867 0.803 0.871 0.824 0.919 0.826 0.920

Illustration by an example
We illustrate our procedures. We refer to the example discussed by Hsu (1996)

(Table 2.3 and Table 2.4 (page 34)). There are six groups of female smokers. They are
given in Table 3. Table 4 gives FVC (forced vital capacity) data for six groups.

Table 3: Six groups of smokers

Group
label Definition

NS non-smokers
PS passive smokers
NI non-inhaling (cigar and pipe) smokers
LS light smokers

(1-10 cigarettes per day for at least the last 20 years)
MS moderate smokers

(11-39 cigarettes per day for at least the last 20 years)
HS heavy smokers

(≥ 40 cigarettes per day for at least the last 20 years)
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Table 4: FVC data for smoking and non-smoking female subjects

Group Group Sample Mean Std. dev.
label number size FVC FVC

NS 1 200 3.35 0.63
PS 2 200 3.23 0.46
NI 3 50 3.19 0.52
LS 4 200 3.15 0.39
MS 5 200 2.80 0.38
HS 6 200 2.55 0.38

µ1, µ2, µ3, µ4, µ5, µ6 denote population means of FVC for six groups. We compare
sizes of µ1, µ2, µ3, µ4, µ5, µ6. Let α = 0.05. Table 5 describes the process of rejecting
H{1,4} by TW. Specifically, since H{1,4} and all hypotheses inducing H{1,4} are rejected,
µ1 > µ4 is detected. H{1,4} is also rejected by CT.

Table 5: Process of rejecting H{1,4} by TW

Hypothesis Critical value Statistic Decision

H{1,2,3,4,5,6} 10.949 56.206 Reject

H{1,2,3,4,5} 10.859 38.641 Reject
H{1,2,3,4,6} 10.859 56.206 Reject
H{1,2,4,5,6} 8.861 56.206 Reject
H{1,3,4,5,6} 10.859 56.206 Reject

H{1,2,3,4} 11.671 14.051 Reject
H{1,2,4,5} 9.101 38.641 Reject
H{1,2,4,6} 9.101 56.206 Reject
H{1,3,4,5} 11.671 38.641 Reject
H{1,3,4,6} 11.671 56.206 Reject
H{1,4,5,6} 9.101 56.206 Reject

H{1,2,4} 9.129 14.051 Reject
H{1,3,4} 12.152 14.051 Reject
H{1,4,5} 9.129 38.641 Reject
H{1,4,6} 9.129 56.206 Reject

H{1,4} 9.140 14.051 Reject

Table 6 describes the process of retaining H{1,3} by TW. It shows that H{1,2,3} is
retained. It means that H{1,3} is retained. Specifically, µ1 > µ3 is not detected. Table 7
describes the process of retaining H{1,3} by CT. It shows that H{1,3}∩H{2,4} is retained.
It means that H{1,3} is retained.

Through the test

µ1 > µ4, µ1 > µ5, µ1 > µ6, µ2 > µ5, µ2 > µ6,

µ3 > µ5, µ3 > µ6, µ4 > µ5, µ4 > µ6, µ5 > µ6

are detected by TW. Same result is obtained by CT. In this illustration, the results for
two procedures coincide.
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Table 6: Process of retaining H{1,3} by TW

Hypothesis Critical value Statistic Decision

H{1,2,3,4,5,6} 10.949 56.206 Reject

H{1,2,3,4,5} 10.859 38.641 Reject
H{1,2,3,4,6} 10.859 56.206 Reject
H{1,2,3,5,6} 10.859 56.206 Reject
H{1,3,4,5,6} 10.859 56.206 Reject

H{1,2,3,4} 11.671 14.051 Reject
H{1,2,3,5} 11.671 38.641 Reject
H{1,2,3,6} 11.671 56.206 Reject
H{1,3,4,5} 11.671 38.641 Reject
H{1,3,4,6} 11.671 56.206 Reject
H{1,3,5,6} 11.671 56.206 Reject

H{1,2,3} 12.152 11.241 Retain

Table 7: Process of retaining H{1,3} by CT

Hypothesis Critical value Statistic Decision

H{1,2,3,4,5,6} 10.949 56.206 Reject

H{1,2,3,4,5} 10.859 38.641 Reject
H{1,2,3,4,6} 10.859 56.206 Reject
H{1,2,3,5,6} 10.859 56.206 Reject
H{1,3,4,5,6} 10.859 56.206 Reject

H{1,2,3,4} ∩H{5,6} 11.671, 9.140 14.051, 17.564 Reject
H{1,2,3,5} ∩H{4,6} 11.671, 9.140 38.641, 42.154 Reject
H{1,2,3,6} ∩H{4,5} 11.671, 9.140 56.206, 24.590 Reject
H{1,3,4,5} ∩H{2,6} 11.671, 9.140 38.641, 47.775 Reject
H{1,3,4,6} ∩H{2,5} 11.671, 9.140 56.206, 30.211 Reject
H{1,3,5,6} ∩H{2,4} 11.671, 9.140 56.206, 5.621 Reject
H{2,4,5,6} ∩H{1,3} 9.098, 12.959 47.775, 11.241 Reject

H{1,2,3} ∩H{4,5,6} 12.152, 9.129 11.241, 42.154 Reject
H{1,3,4} ∩H{2,5,6} 12.152, 9.129 14.051, 47.775 Reject
H{1,3,5} ∩H{2,4,6} 12.152, 9.129 38.641, 47.775 Reject
H{1,3,6} ∩H{2,4,5} 12.152, 9.129 56.206, 30.211 Reject

H{1,2,3} ∩H{4,5} 11.851, 8.925 11.241, 24.590 Reject
H{1,2,3} ∩H{4,6} 11.851, 8.925 11.241, 42.154 Reject
H{1,2,3} ∩H{5,6} 11.851, 8.925 11.241, 17.564 Reject
H{1,3,4} ∩H{2,5} 11.851, 8.925 14.051, 30.211 Reject
H{1,3,4} ∩H{2,6} 11.851, 8.925 14.051, 47.775 Reject
H{1,3,4} ∩H{5,6} 11.851, 8.925 14.051, 17.564 Reject
H{1,3,5} ∩H{2,4} 11.851, 8.925 38.641, 5.621 Reject
H{1,3,5} ∩H{2,6} 11.851, 8.925 38.641, 47.775 Reject
H{1,3,5} ∩H{4,6} 11.851, 8.925 38.641, 42.154 Reject
H{1,3,6} ∩H{2,4} 11.851, 8.925 56.206, 5.621 Reject
H{1,3,6} ∩H{2,5} 11.851, 8.925 56.206, 30.211 Reject
H{1,3,6} ∩H{4,5} 11.851, 8.925 56.206, 24.590 Reject
H{2,4,5} ∩H{1,3} 8.936, 12.635 30.211, 11.241 Reject
H{2,4,6} ∩H{1,3} 8.936, 12.635 47.775, 11.241 Reject
H{2,5,6} ∩H{1,3} 8.936, 12.635 47.775, 11.241 Reject
H{4,5,6} ∩H{1,3} 8.936, 12.635 42.154, 11.241 Reject

H{1,3} ∩H{2,4} 12.204, 8.706 11.241, 5.621 Retain
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On the other hand, assume µ1 ≥ µk for k = 2, 3, . . . ,K in advance and set up the
null hypothesis H1,k and its alternative hypothesis HA

1,k as

H1,k : µ1 = µk vs. HA
1,k : µ1 > µk

for k = 2, 3, . . . ,K. We test H1,2,H1,3,. . .,H1,K using the sequentially step down proce-
dure proposed by Dunnett and Tamhane (1991). Then

µ1 > µ4, µ1 > µ5, µ1 > µ6

are detected. Same result is obtained by the step up procedure proposed by Dunnett
and Tamhane (1992).

Next, assume µk ≥ µk+1 for k = 1, 2, . . . ,K − 1 in advance and set up the null
hypothesis Hk,k+1 and its alternative hypothesis HA

k,k+1 as

Hk,k+1 : µk = µk+1 vs. HA
k,k+1 : µk > µk+1

for k = 1, 2, . . . ,K − 1. We test H1,2,H2,3,. . .,HK−1,K using Imada (2015)’s procedure
based on Ryan-Einot-Gabriel-Welsch’s procedure. Then

µ4 > µ5, µ5 > µ6

are detected. In this example, our procedures enable us to induce the results of Dunnett
and Tamhane (1991), Dunnett and Tamhane (1992) and Imada (2015).

5. Conclusions

In this study, we discussed the stepwise multiple comparison procedures for com-
paring sizes of normal means. Specifically, we constructed Tukey-Welsh’s step down
procedure and the closed testing procedure called Ryan-Einot-Gabriel-Welsch’s proce-
dure based on Imada (2020)’s single step procedure. We gave some numerical results
regarding power of the test intended to compare two procedures and illustrated them
by an example. Although Tukey-Welsh’s step down procedure is not more powerful
compared to the closed testing procedure, we confirmed that the difference of the power
between two procedures is larger as the number of hypotheses to be rejected is larger.

However, there remain problems to be solved in the future. Although the closed
testing procedure is more powerful, it is a nuisance to set up many critical values in
advance of the test when sample sizes are unbalanced. We should construct a simpler
procedure for practical use. Furthermore, we want to construct more powerful procedure.
Ordered statistics and their distribution for sample means are available for constructing
more powerful stepwise multiple comparison procedures for comparing sizes of normal
means.

Acknowledgement

The author is deeply grateful to the referee and the editors for their valuable comments
and suggestions.



10 T. Imada

References

Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treat-
ments with a control. Journal of the American Statistical Association, 50, 1096-1121.

Dunnett, C. W. and Tamhane, A.C. (1991). Step down multiple tests for comparing
treatments with a control in unbalanced one-way layouts. Statistics in Medicine, 10,
939-947.

Dunnett, C. W. and Tamhane, A.C. (1992). A step-up multiple test procedure. Jour-
nal of the American Statistical Association, 87, 162-170.

Einot, I. and Gabriel, K. R. (1975). A study of the powers of several methods of mul-
tiple comparisons. Journal of the American Statistical Association, 70, 574-583.

Hsu, J. C. (1996). Multiple comparisons. Boca Raton : Chapman & Hall.

Imada, T. (2015). Successive comparisons between ordered normal means based on
closed testing procedure. Bulletin of Informatics and Cybernetics , 47, 25-36 .

Imada, T. (2020). Multiple comparison procedures for finding non-maximum normal
means. Communications in Statistics-Theory and Method, 49, Issue 16, 4073-4090.

Lee, R. E. and Spurrier, J. D. (1995). Successive comparisons between ordered treat-
ments. Journal of Statistical Planning and Inference, 43, 323-330.

Marcus, R., Peritz, E. and Gabriel, K. R. (1976). On closed testing procedures with
special reference to ordered analysis of variance. Biometrika, 63 (3), 655-660.

Ramsey, P. H. (1978). Power differences between pairwise multiple comparisons. Jour-
nal of the American Statistical Association, 73, 479-485.

Ryan, T. A. (1960). Significance tests for multiple comparison of proportions, vari-
ances, and other statistics. Psychological Bulletin, 57, 318-328.

Tukey, J. W. (1953). The problem of multiple comparisons. Unpublished manuscript,
Princeton University.

Welsch, R. E. (1977). Stepwise multiple comparison procedures. Journal of the Amer-
ican Statistical Association, 72, 566-575.

Welsch, R. E. (1972). A modification of the Newman-Keuls procedure for multiple com-
parisons. Working Paper 612-672, Sloan School of Management, M.I.T., Boston, MA.

Received: October 18, 2021
Revised: February 28, 2022
Accept: March 5, 2022


