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Abstract: In order to develop the robust technique for signal processing, the simulation signal 
has been developed and close frequency components associated to signal is analyzed using 
MATLAB. Further, same simulated signal is processed with three signal processing techniques viz. 
Empirical Mode Decomposition (EMD), Local Mean Decomposition (LMD) and merged Wavelet 
Denoising and Local Mean Decomposition (WDLMD) technique. The demodulated signals from 
these signal processing techniques have used for spectrum analysis. From the analysis it is inferred 
that the WDLMD technique is more efficient than EMD and LMD technique for frequency 
extraction. 
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1.  Introduction 
The analysis of signals and its associated frequency is 

the most important steps to identify the nature of signals. 
Signals are generally four types viz. linear signal, 
non-linear signal, stationary signal, and non-stationary 
signal 1,2). There are many applications where signals 
have mixed characteristics such as chatter signals 
acquired from machining process. The chatter signals are 
non-linear and non-stationary in nature 3,4). In the 
manufacturing industry, due to the fact that about 15% of 
the downtime is endorsed to tool replacement and tool 
failure. Some industries have switched to automatic tool 
changing system for minimizing the downtime 5,6,7). This 
reduces downtime and increases efficiency 8,9). However, 
the problem of sudden tool failure has not been sorted by 
time. Later on, it has been reported by several 
researchers that the sudden failure of the tool is due to 
the regenerative chatter. This self-excited phenomenon 
also results in the poor surface finish and excessive 
cutting force 10,11). To eliminate these problems the use of 
sensors came into existence to monitor the condition of 
tool and work piece 12,13,14). Condition monitoring has 
achieved a lot of importance. To monitor the tool state, 
the required sensor is mounted near the tool or any 
nearby suitable area 15,16). The choice of the sensor is 
subjected to the type of process and features to be 
extracted 17). 

In order to extract frequency components there is a 
need of a technique which can detect its components 

without mode mixing 18,19). Zhang Z et al. have proposed 
the decomposition based signal processing techniques for 
signal analysis 2).  Research shows that this technique is 
useful for non-stationary and linear signal only. Many 
researchers have used EMD technique for spectrum 
analysis 3,18,19). The EMD technique shows the mode 
aliasing problem and this problem has been resolved 
customarily by LMD 5,20,21) and shows better 
decomposition effects than EMD 22,23). However, LMD 
also has certain constraints which doesn’t allow it to 
eliminate the EMD’s problem completely 24,25,26). Hence, 
authors have proposed WDLMD to remove ambient 
noise and extract information from the signal. In order to 
the applicability of proposed method, a simulated signal 
has been taken and its frequency components have been 
extracted using EMD, LMD and WDLMD techniques. It 
has been found that WDLMD signal processing 
technique has capability to extract frequency components 
clearly. 

 
2.  Methodology 

The outlay proposed methodology has been 
represented in the form of flow chart as shown in Fig. 1. 
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Fig. 1. Outlay of methodology 

2.1.  Signal Simulation 
The signal is consisting three components which are 

shown in Fig. 2 as follows: 
Signal (a) 4sin(74 )tπ , Signal (b) 5sin(30 )tπ , 

Signal (c) noise, 
Signal (d) 4sin(74 ) 5sin(30 )t t noiseπ π+ +   
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Fig. 2 The simulated signal: (a) 4sin(74 )tπ ,        

(b) 5sin(30 )tπ , (c)  Noise                      
(d) 4sin(74 ) 5sin(30 )Signal t t noiseπ π= + +   

        
The sampling length 1008 is selected and the time 

domain waveforms are shown in Fig. 1. Using Fast 
Fourier Transform (FFT) the amplitude-frequency 
(spectrum) plots are drawn as shown in Fig. 3. From Fig. 
3, it is clear that the frequency components appear at f1 = 
37 Hz, and f2 = 15 Hz. 

 

(a) FFT of signal a 

 
(b) FFT of signal b 

 

(c) FFT of signal without noise (a + b) 
Fig. 3. IMFs and FFTs of attained signal 

 
2.2. Processing of Acquired Signal Using EMD 

EMD was first practiced and proposed by Huang in 
1998 13,27). EMD extracts the intrinsic physical features 
hidden in a non-stationary signal. EMD decomposed the 
signals into number of IMFs. Steps involved in EMD are 
as follows [9,7,10]: 

1. Identify all the extrema point ‘ki (t)’ of the 
signal ‘x(t)’. 

2. Using cubic spline create the upper envelope 
‘kmax(t)’ and lower envelop ‘kmin(t)’. 

3. Determine the local mean of the upper and 
lower envelopes, using the formula; 
 

max min( ) ( )( ) , where, 'm(t)' represents the mean
2

k t k tm t +
=  

4. Thereafter subtract the mean from the signal to 
obtain the mode function, using the formula;  

u(t)= x(t)-m(t),  
where, ‘u(t)’ represents the mode function 

 
The calculated mode function must satisfy the IMF 

condition ‘a and b’. If it does not satisfy, consider u(t) as 
a new signal and iterate the above steps until it fulfills 
the aforementioned conditions ‘a and b’. If u(t) satisfies 
these IMF conditions, then ‘hi(t)=u(t)’ refers to the IMF, 
where ‘i’ refers to the ‘ith’ IMF. Moreover, the residual 
signal is computed by subtracting the IMF from the 
original signal as given by: r(t) = x(t) – hi(t) 

The residue can be treated as the new signal and 
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perform the above steps to extract the rest of the IMFs 
until final residual signal becomes monotonic or constant. 
As a result, the original signal x(t) is decomposed into 
number of IMFs and residue. Finally, x(t) it can be 
expressed as; 

1

1
( ) ( ) ( )

n

i n
i

x t h t r t
−

=

= +∑
 

Adopting the above-mentioned procedure, simulated 
signal has been decomposed into intrinsic mode 
functions. These IMFs have been further processed using 
Fast Fourier transform (FFT). The demodulated results 
and FFTs are shown in Fig. 4. From Fig. 4, it is clear that 
when EMD is applied to decompose the signal, the 
severe mode aliasing problem can be seen. 

 
 
 
 
 
 

2.3. Processing of Acquired Signal Using LMD 

The following steps are involved in LMD technique as 
shown in Fig. 5. LMD decompose signal into number of 
product function (PFs) [11,12]. 

LMD reduces mode aliasing problem of EMD because 
of its moderate time–frequency analysis [13]. Further, 
LMD is adopted to decompose the signal as shown in Fig. 
6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(i) FFT of IMF 1             (ii) FFT of IMF 2                (iii) FFT of IMF 1+ IMF 2 
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Fig. 4. IMFs and FFTs of simulated signal 
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Fig.5. Steps of LMD 
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2.4. Processing of Acquired Signal Using WDLMD 

In WDLMD, wavelet denoising technique remove the 
unwanted ambient noise and LMD demodulates the 
signals into number of product functions, which 
separates the chatter frequencies. Wavelet denoising 
technique applied in simulated signal is shown in Fig. 7. 

Further, LMD has been applied for processing the 
wavelet denoised signal and get the demodulated signal. 
LMD decomposes the signal into a number of PFs as 
shown in Fig. 8.  LMD method extracts the hidden 
features of signals. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. Wavelet denoising  
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 Fig.6. PFs and FFTs of simulated signal 
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From the attain PFs the most influential PFs has been 

selected and signal has been reconstructed using 
correlation coefficient. Hence, signal reconstruction 
using first two PFs of high correlation coefficient is done. 
This can be seen that more than 90% of the energy of 
original signal is concentrated in reconstructed signal. 
Further, for amplitude-frequency analysis, Fast Fourier 
Transform (FFT) has been performed on simulated signal 
and on reconstructed signal. The frequency components 
appear at f1 = 37 Hz, f2 = 15 Hz as shown in Fig. 3 (e) 
but the noise is also recognized in Fig. 6 (a). From Fig. 6 
(b) it is displayed that the change trend of 
amplitude-frequency characteristic and reconstructed 
signals is the same. It is proven from the FFT of signal 
and FFT of reconstructed signal that the proposed 
methodology is valid to extract the chatter features 
because it gives same frequency at almost same 
amplitude. 
 
3. Conclusions 

In order to process the raw signal to extract 
information, it is important step to choose signal 
processing technique carefully as signal develops close 
frequency components.  

  The key findings of the present work are as follows: 
 

1. From the analysis on simulated signal the 
Inferences is drawn that EMD, LMD and 
WDLMD techniques are capable of 
preprocessing the acquired raw chatter signals 
efficiently.  

2. LMD has an added advantage over EMD, 
because it can predict the onset of signal’s 
features by not overlooking the incipient 
amplitude variations in the signal but still there 
are mode aliasing.  

3. Fast Fourier Transform (FFT) has been 
performed on simulated signal and on 
reconstructed simulated signal. The frequency 
components appear at f1 = 37 Hz, f2 = 15 Hz 
are displayed that the change trend of 
amplitude-frequency characteristic and 
reconstructed signals is the same. 

4. The proposed WDLMD technique is capable of 
removing the unwanted contaminations from 
the signal and can extract the frequency 
information.  
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Fig.8. Signal decomposition of denoised signal 
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