Pinning in a Contact and Noncontact Manner: Direct Observation of a Three-Phase Contact Line Using Graphene Liquid Cells

Hirokawa, Sota Department of Aeronautics and Astronautics, Kyushu University

Teshima, Hideaki Department of Aeronautics and Astronautics, Kyushu University

Solis-Fernandez, Pablo Global Innovation Center, Kyushu University

Ago, Hiroki Global Innovation Center, Kyushu University

他

https://hdl.handle.net/2324/4793219

出版情報:Langmuir. 37 (42), pp.12271-12277, 2021-10-26. American Chemical Society バージョン: 権利関係:

1	Pinning in contact and non-contact manner: Direct observation of
2	three-phase contact line using graphene liquid cells
3	Sota Hirokawa ^{1, 2} , Hideaki Teshima ¹ , Pablo Solís-Fernández ³ , Hiroki Ago ³ , Qin-Yi Li ^{1,2} ,
4	Koji Takahashi* ^{1,2}
5	¹ Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395,
6	Japan
7	² International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka,
8	Nishi-ku, Fukuoka 819-0395, Japan
9	³ Global Innovation Center, Kyushu University, 6-1 Kasuga-koen, Kasuga-city, Fukuoka 816-8580, Japan
10	* email: takahashi@aero.kyushu-u.ac.jp phone: +81-92-802-3015
11	
12	Abstract
13	Pinning of a three-phase contact line at the nanoscale cannot be explained by
14	conventional macro-scale theories, and thus requires an experimental insight to
15	understand this phenomenon. We performed in-situ TEM observation of the three-
16	phase contact lines of bubbles inside graphene liquid cells to experimentally
17	investigate the causes of nanoscale pinning. In our observations, the three-phase
18	contact line was not affected by the 0.6 nm-thick inhomogeneity of the graphene
19	surface, but thicker metal nanoparticles with diameters of 2–10 nm and nano-flakes

20	caused pinning of the gas-liquid interface. Notably, we found that flake-like objects
21	can cause pinning that prevents the bubble overcome the flake object in a non-
22	contact state, with a 2-nm-thick liquid film between them and the bubble. This
23	phenomenon can be explained by the repulsive force obtained using the Derjaguin,
24	Landau, Verwey, and Overbeek theory. We also observed the flake temporally
25	prevented the gas-liquid interface moving away from the flake. We discussed the
26	physical mechanism of the attractive force-like phenomenon by considering the
27	nanoconfinement effect of liquid sandwiched by two graphene sheets and the
28	hydration layer formed near the solid surface.
29	
30	Introduction
31	Pinning, which interferes with the dynamics of the solid-liquid-gas three-phase
32	contact line, governs the motion, growth, collapse and even the shape of droplets and
33	bubbles. Pinning affects many applications, including microfluidics ¹ , self-cleaning
34	materials ² , and phase-change heat transfer ³ , and becomes more pronounced at the
35	sub-micron scale. For example, surface nanobubbles are expected to self-collapse

36	within a few milliseconds due to the Laplace pressure of several MPa caused by their
37	radius of curvature of several hundred nanometers. However, in reality, the strong
38	pinning at the three-phase contact line makes the bubbles very flat and enlarges the
39	radius of curvature, enabling the bubbles to have a long lifetime of several hours to
40	several days ^{4,5} . In addition, interfacial nanobubbles are resistant to disturbances such
41	as ultrasonic waves and heating to near boiling point; which is also attributable to
42	pinning, according to both experimental and theoretical studies ⁶⁻⁹ . In the case of
43	nanodroplets, deviations from the macroscopic contact angle with decreasing size are
44	also observed, which cannot be explained by line tension, suggesting the involvement
45	of pinning ¹⁰ . These experimental findings suggest that pinning plays a more
46	dominant role in nanoscale fluid behavior than surface tension does.

47

According to conventional theories confirmed by macroscopic experiments, pinning
is caused by chemical and mechanical inhomogeneities on the solid surface, just
below the three-phase contact line^{11,12}. However, the origin of pinning at the

51	nanoscale is still unclear. As mentioned above, it has been reported that the three-
52	phase contact line of interfacial nanobubbles is strongly pinned ¹³ , but most of the
53	interfacial nanobubbles that have been studied were generated on graphite substrates,
54	which are atomically smooth with no surface inhomogeneity. Therefore, the
55	macroscopic factors considered in the classical theories cannot explain the nanoscale
56	pinning phenomenon. One possible origin of nanoscale pinning is the friction
57	between solid-liquid interfaces caused by local potential waveforms brought about by
58	discrete solid surface atoms14; however, molecular dynamics (MD) simulations of
59	droplets using Lennard Jones (LJ) fluids have demonstrated that Young's equation
60	holds at the nanoscale for the surfaces ¹⁵ . In addition, recent experimental and
61	simulation studies showed that, on a solid surface impregnated with a liquid,
62	structures on the scale of several nanometers, such as adsorbed gas-molecule layers
63	and hydration structures, are formed ¹⁵⁻¹⁸ . Because such structures (which are
64	overlooked in conventional macroscopic studies) locally change the properties of the
65	fluids ^{16,19,20} , it is important to take them into consideration to correctly understand

66 the fundamental pinning mechanism.

67

In this study, we conducted nanoscale in situ observations in the vicinity of the three-68 phase contact lines using transmission electron microscopy (TEM) to investigate the 69 70 causes of pinning. While sufficiently small chemical and mechanical heterogeneities 71 did not affect the three-phase contact lines, relatively large particles and flake-like 72 contamination pinned them. While pinning was caused by particles in contact with the three-phase contact line, it was observed that pinning also occurs when a thin 73 liquid film is maintained between the flakes and the three-phase contact line (i.e., a 74"non-contact" scenario). This physical mechanism was qualitatively explained by 75 discussing the forces between the bubble and the flake using the Derjaguin, Landau, 76 Verwey, and Overbeek (DLVO) theory, and considering the effect of the hydration 77 78 structure.

79

80 **Experimental**

81 Sample fabrication

82 To visualize bubbles and water using TEM, we encapsulated them between the two

bilayer graphene sheets; it is known as graphene liquid cells (GLCs)²¹. A schematic 83 84 image of TEM observation and cross-section of the GLC is shown in the supporting information. Our bilayer graphene was synthesized on a Cu/Ni film on a sapphire 85 86 substrate by chemical vapor deposition (CVD). Detailed methods for our graphene synthesis are given in reference²². A TEM grid (R1.2/1.3 Au 200 mesh, Quantifoil 87 Micro Tools GmbH, Germany) was placed directly onto the graphene and Cu/Ni; 88 89 the Cu/Ni-graphene grid system was then immersed in 0.2 M ammonium persulfate 90 solution to etch the Cu/Ni film. The resulting graphene-TEM grid was moved from 91 the etchant to pure water and washed three times, changing the water each time. 92 After drying in a clean room environment for 2 hours, approximately 0.5 µL air-93 saturated pure water was dropped on the graphene side of the TEM grid. Another 94 graphene-TEM grid was then gently placed on top of the water bead to create a sandwich structure with water trapped between the two graphene sheets. The droplet 95

96	was broken up into many small liquid cells when the two graphene sheets came into
97	contact. Because upper and lower graphene sheets were firmly stacked via the van
98	der Waals force, and they are gas-impermeable23-25, the encapsulated water was
99	effectively protected from the ultrahigh vacuum environment of the TEM column.
100	The atomic thinness of graphene allows for the observation of liquid samples with
101	highest spatial resolution. In addition to GLCs, a dry graphene-TEM grid sample was
102	prepared to measure the graphene height profiles and observe any features which
103	might induce pinning.

104

105 Observation method

106 We used the frequency modulation (FM) mode of an SPM-8100FM atomic force 107 microscope (AFM) made by Shimadzu Corp., Japan for observation of the graphene 108 surface. An AC200TN cantilever (OLYMPUS Corp., Japan) with a tip radius of 7 nm 109 was used. The height data were captured with a resolution of 256×256 pixels and 110 scan rate of 0.8 Hz. Because bilayer graphene is atomically thin, its surface profile on

111	any substrate will inevitably be influenced by the surface condition of the substrate.
112	Thus, we aimed to analyze the part of our graphene-TEM grid where the graphene
113	was suspended over the holes in the support membrane.

114

The Graphene-TEM grid sample was also imaged in a transmission electron 115 microscope (JEM-2100Plus, JEOL Ltd., Japan), operating at an accelerating voltage 116 117 of 200 keV. Comparing the AFM images and the TEM images provided us with more detailed information about the graphene surface. We also used a JEM ARM200CF 118 (JEOL Ltd., Japan) at 60 keV for the in-situ imaging of the GLCs. This TEM has a 119 cold field-emission electron gun, whose brightness reaches $\sim 1 \times 10^9$ A/cm², thus 120 enabling us to obtain higher spatial resolution images than those obtained with the 121 122 LaB₆ electron gun used in the JEM-2100Plus.

123 **Results and Discussion**

124 Graphene surface inhomogeneity and its influence

125 Although graphene is widely regarded as an atomically-smooth two-dimensional material, its real surface contains inhomogeneities due to the inevitable 126 127 contamination. In the TEM image of the graphene transferred onto the TEM grid (Figure 1(a)), the contamination appears as camouflage-like pattern with a slightly 128 129 darker color than the color of the clean area. Considering that TEM electron beam penetration is affected by the atomic number of the material and that both clean and 130 contaminated areas have similar gray values, these impurities were assumed to be 131 132 carbon atoms that did not crystallize during the CVD process, or hydrocarbon 133 contamination from liquids or air that absorbed on the surface during the transfer. 134 Similar camouflage patterns on graphene have also been observed in previous studies and treated as contamination²⁶⁻²⁸. Figure 1(b) shows the height image of the 135 136 suspended graphene surface obtained by FM mode AFM. Figure 1(c) shows the 137 height profiles including the contamination peaks (upper left and right). The orange line profile in Figure 1(c) shows that the contamination creates a terrace structure 138

148 height profiles measured along the orange and blue lines in (b). Both (a) and (b)

149 were taken from the same sample, but they were not in the exact same area.

150

151 TEM observations of the sample prepared by sandwiching water droplet between 152 these graphene-TEM grids showed that there were many GLCs in a single sample, 153 and more than half of the GLCs contained bubbles, as shown in Figure 2(a). The 154 GLCs ranged from 100 nm to 1 μm in diameter, and the bubbles occupied about 155 20%–85% of their GLC area.

156

The main point of interest is the shape of the bubble. The contour line of the bubble shown in Figure 2(a), i.e., the three-phase contact line, is not affected by the inhomogeneity of the graphene surface and maintains a thermodynamically stable circular shape. We identified that surface inhomogeneity can be neglected due to the sufficiently small size of the terrace structure created by contamination. We previously estimated that the thickness of the liquid cell prepared by the same

163	procedure as this study was about 10 nm, based on the Brownian motion of the
164	nanoparticles inside the liquid cell ²⁹ . We also mentioned that the bubbles were in
165	contact with both the upper and lower graphene layers and existed in cylindrical
166	shapes. Assuming that the characteristic length of the GLC surface is 0.6 nm from
167	the height of the terrace structure shown in Figure. 1(c), the bubble height is
168	approximately 16 times larger than that of the surface structure. In addition, the effect
169	of chemical heterogeneity between the graphene surface and the contamination was
170	negligible. This may be because the airborne contamination is mainly composed of
171	carbon atoms, as is the graphene.

175	bubble whose interface was pinned by the nanoparticle and (c) The enlarged view of
176	the yellow box area in (b). Water is colored blue, and the bubble is colored orange.
177	The original TEM image of (c) is shown in Figure S2 in the supporting information.
178	

179 Pinning in contact manner

180 In contrast to the carbon-based surface inhomogeneities, nanoparticles with diameters of 2-10 nm, assumed to be residues from the Cu/Ni film, have a pinning 181 effect when in contact with the gas-liquid interface, as shown in Figure 2(b, c). The 182 contour of the deformed liquid-gas interface was almost logarithmic as predicted in 183 previous study³⁰ (the detail is shown in supporting information). The nanoparticles 184 that caused pinning were sandwiched between the top and bottom graphene sheets, 185 and were therefore completely immobile. When the nanoparticles are not fixed, 186 Brownian motion is usually expected²⁹. Since the Figure 2(b, c) show the contact 187 point of gas-liquid interface on the nanoparticle, it seems that the contact angle of 188 the nanoparticle can be determined by measuring the angle between the tangential 189

190 line of the particle and the gas-liquid interface (the TEM image of the contact angle 191 on the nanoparticle is shown as Figure S4 in the supporting information). However, 192 it is very difficult to accurately evaluate the contact angle on such nanoparticles from this TEM image, because of the three-dimensional nature of the nanoparticles, and 193 194 the insufficient resolution of the gas-liquid interface in the image. The gas-liquid interface will appear as a hazy region, even at sufficiently high resolutions. This is 195 because there is no well-defined gas-liquid interface as described in thermodynamics 196 (Gibbs' dividing plane) at this scale³¹, instead there is a subnanometer-thick region 197 198 in which the molecular density changes continuously, as is often observed in MD simulations³². Therefore, it would be difficult to apply the thermodynamic definition 199 200 of contact angle at this scale, which considers the gas-liquid interface to be a definite surface. Also, we would like to clarify that the size of these nanoparticles (~ 2 nm) is 201 202 not the threshold for pinning caused by structural inhomogeneity, because its strength is determined not only by structural heterogeneity but also by chemical 203 heterogeneity, which may be significantly large between the metal particle and the 204

205 graphene.

206

Figure 3 (a) TEM image of a bubble pinned by flake-like objects. (b) The enlarged view of the yellow box region in (a). The flake is colored in red. The original TEM image of (b) is shown in the supporting information.

211

212 Non-contact pinning

213 Further observation revealed that the gas-liquid interface was deformed by flake-like

214 materials that appear as areas which are darker than the water but lighter than the

215 particles, as shown in Figure 3(a). The flakes were observed only when an

216	acceleration voltage of 60 keV was used in the ARM200CF TEM equipped with a
217	field-emission electron gun. The field-emission electron gun provides a more stable
218	electron beam, with a high current density; and, using a low-energy electron beam
219	increases the collision rate between the flake atoms and the electrons, which made
220	their observation possible. This suggests that the flakes were very thin and made of
221	light atoms, such as carbon, which are easily penetrated by electron beams.
222	Interestingly, there was no direct contact between the flakes and the gas-liquid
223	interface, instead they were separated by a 2 nm thin film of water, as depicted in
224	Figure 3(b). The presence of a thin water film between gas-liquid interface and the
225	flake is clearly shown in Figure S5 in the supporting information.
226	
227	Figures 3 clearly showed that the flakes pinned the three-phase contact line without
228	contact; however, it has been widely accepted that the pinning force is generated

when the three-phase contact line touches surface roughness or chemical

229

230 heterogeneity. Therefore, our observations cannot be explained by the conventional

theory which assumes that contact between the gas-liquid interface and the solid
surface is necessary for pinning. To reveal the principle of the non-contact pinning
by the flakes, we consider the DLVO theory to discuss the balance between the van
der Waals force and the electric double layer force between the bubble and the flake.

236 At first, the bubble interface and the flake are treated as two different parallel plates.

237 The van der Waals force per unit area, Π_{vdW} , between two parallel plates separated 238 by distance *h* is calculated as follows:

$$\Pi_{vdw} = -\frac{A}{6\pi h^3} \tag{1}$$

where *A* is the Hamaker constant, which depends on the objects' properties. In the systems under consideration, there were three different objects, thus the Hamaker

242 constant is expressed as eq. $(2)^{33}$:

243
$$A = \frac{3}{4} k_B T \left(\frac{\epsilon_1 - \epsilon_3}{\epsilon_1 + \epsilon_3} \right) \left(\frac{\epsilon_2 - \epsilon_3}{\epsilon_2 + \epsilon_3} \right) + \frac{3h_p \nu_e}{8\sqrt{2}} \frac{(n_1^2 - n_3^2)(n_2^2 - n_3^2)}{(n_1^2 + n_3^2)^{1/2}(n_2^2 + n_3^2)^{1/2} \{(n_1^2 + n_3^2)^{1/2} + (n_2^2 + n_3^2)^{1/2} \}} (2)$$

244 Where k_B is the Boltzmann constant, T is temperature, h_p is the Planck constant, v_e

245 is the main electronic absorption frequency in the UV range (typically around $3 \times$ 246 10¹⁵ s⁻¹), ϵ is the relative dielectric permittivity, and *n* is the refractive index. The 247 subscript numbers indicate bubble $(_1)$, flake $(_2)$, and water $(_3)$. The relative dielectric 248permittivities were assumed to be $\epsilon_1 = 1$, $\epsilon_2 = 2.25$, $\epsilon_3 = 80$, and the refractive indices were $n_1 = 1$, $n_2 = 1.5$, $n_3 = 1.3$ ³³. Given the above, at T = 298 K, the 249 Hamaker constant took negative value of $A = -2.0 \times 10^{-20}$ J. Substituting into eq. 250 251 (1), the van der Waals force acting between the bubble and the flake becomes repulsive, $\Pi_{vdW} = 1.35 \times 10^5 \text{ N/m}^2$. 252

253

Next, we consider the electric double layer force. When a solid or a bubble is covered with an electrolyte solution, the electric double layer is formed on the surface through the adsorption and bonding of ions to the surface and the ionization or detachment of surface groups. The electric double layer force, Π_{EDL} , between two different materials is expressed as in eqs. (3) and (4)³⁴.

259
$$\Pi_{EDL} = \frac{2\epsilon_0 \epsilon [(e^{+\kappa h} + e^{-\kappa h})\psi_1\psi_2 - (\psi_1^2 + \psi_2^2)]}{(e^{+\kappa h} - e^{-\kappa h})^2}$$
(3)

Here, $1/\kappa$ is the Debye length, ψ is the surface potential, ϵ_0 is the permittivity of a vacuum, ρ_i is the number density of ion *i*, and z_i is its valence. For pure water at room temperature (T = 298 K), κ is:

264
$$\kappa = 3.288\sqrt{I}, \text{ [nm}^{-1]}$$
 (5)

I is the ionic strength of pure water, $I_{pure \ water} = 2.5 \times 10^{-6}$ M. Since the surface potential ψ is often approximated by the value of the ζ -potential, we assume that the surface potentials of bubbles and flakes in pure water are $\psi_1 = -20.10$ and $\psi_2 =$ -45 mV, respectively^{35,36}. Applying these values to eq. (3), the electrostatic force between the bubble and flake in pure water is an attractive force for h < 3.5 nm, and $\Pi_{EDL} = 18.5$ N/m² for h = 2 nm. This value is four orders of magnitude smaller than the van der Waals force $\Pi_{vdW} = 1.35 \times 10^5$ N/m².

273 Even if we take into account the increase in the number density of ions due to the

274 radiolysis of water by TEM electrons³⁷, which changes the value of ion density from around 3.0 × 10⁻⁶ mol/L to 6.5 × 10⁻⁵ mol/L, the force of attraction is only Π_{EDL} = 275 276 48.1 N/m² at a distance of 2 nm; this is still far smaller than the obtained van der 277 Waals force. Therefore, the force acting between the bubble and the flake is always 278 repulsion. The fact that the van der Waals force becomes repulsion and the electric double layer force becomes attractive is a common phenomenon between asymmetric 279 surfaces^{33,34}; thus it is qualitatively correct that a repulsive force acts between flakes 280 281 and bubbles. We will compare the magnitude of this pressure with the pressure 282 calculated from the deformation of the gas-liquid interface, shown in Figure 3. $\Delta E = \gamma_{LG} \{ (l_2 - l_1)h \} + (\gamma_{SL} - \gamma_{SG})A$ 283 (6)

284
$$\Pi = \frac{\Delta E}{x} \frac{1}{l_1 h} \tag{7}$$

Eq. (6) evaluates the change in surface energy due to bubble deformation, and equation (7) gives the pressure required for that deformation. Derivation of eq. (6) is described in the supporting information. Here γ is the surface tension, l_1 and l_2 are the lengths of the gas-liquid interface before and after deformation (which can be

289	measured from Figure 3), h is the thickness of the bubble, x is the distance the flake
290	pushed into the gas-liquid interface, and A is the newly wetted area. Subscripts S , L ,
291	and G denote the solid, liquid, and gas phases, respectively. Since we assumed that
292	the bubble is cylindrical, i.e., has a contact angle of 90°, the second term on the right-
293	hand side of eq. (6) can be ignored, according to Young's equation. We estimated the
294	bubble height to be 10 nm. The dimensions and other quantities for the three flakes
295	shown in Figure 3 are listed in the supporting information. Using the surface tension
296	$\gamma_{LG}~=0.07286~N/m^2$, the average value of the pressure was 1.17 \times 10 6 N/m^2 , which
297	is one order of magnitude larger than the one obtained from the DLVO theory. From
298	this comparison, although there are inevitable errors caused by the assumption of the
299	physical properties used in the van der Waals force and electrostatic force calculations,
300	the DLVO theory can qualitatively explain the phenomenon of non-contact pinning
301	when a thin water film is pushed by a growing bubble, as shown in Figure 3. A more
302	rigorous comparison between experimental results and theoretical prediction will be
303	achieved by using a non-polarized liquid such as n-hydrocarbons and/or by

quantifying the hydration force³³, but it is beyond the scope of the present paper.
305

306 Attractive force-like phenomenon

Furthermore, we observed that two flakes temporarily stopped the gas-liquid 307 interface moving away from them, as shown in Figure 4. The bubble started to grow 308 309 as soon as the observation started (Figure 4 (b and c)), which indicated that the 310 bubble absorbed the hydrogen and oxygen molecules generated by the radiolysis of water by the electron beam³⁷. During the growth of the bubble, the water films 311 312 between flakes 1 and 2 also maintained their thickness of approximately 2 nm, same as Figure 3. Thirteen seconds after the start of observation (Figure 4(c)), the bubble 313 began to shrink. This shrinkage was caused by electron beam damage to the graphene 314 315 covering the bubble, and subsequent leakage of the gas into the TEM column²⁹. 316 During the shrinkage, the upper right and lower left gas-liquid interfaces pinned by flakes 1 and 2, as depicted by dashed red lines in Figure 4(a), did not move; instead, 317 the shrinkage proceeded from the unpinned areas (Figure 4(c-f)). As a result, the 318

gas-liquid interface pinned by flake 1 became spiky (Figure 4(f)). After 19 seconds
from the start of observation, the bubble was no longer stopped by flake 1, and the
gas-liquid interface near flake 1 suddenly moved to make a more thermodynamically
favorable shape (Figure 4(f-h)).

Figure 4 Schematic of a GLC with a bubble temporarily pinned by two flakes (a). Blue part is water and the pink part is a bubble. Snapshots of the bubble (b–h). The pinned part of the three-phase contact line is indicated by the dashed red lines in (a). Two flakes are colored red in (b). The scale bar is 50 nm.

330 As discussed above, the repulsive force derived from van der Waals force is dominant 331 in the 2 nm-thick water film, so the attractive force that occurred when the bubble 332 began to shrink, shown in Figure 4, cannot be explained by DLVO theory. We believe 333 that this phenomenon can be explained by the unique behavior of water molecules trapped in nanoscale space. It has been reported that water molecules near the solid 334 335 surface (in this case, the graphene and the flakes) form a tightly ordered structure, or 336 hydration layer, caused by their strong interaction with the solid surface³⁸. AFM 337 measurements of graphite, mica, and other substrates in water revealed the hydration layer extends at least 1 nm from the solid surface^{39,40}. The size of the liquid film in 338 339 the height direction in Figure 4 is less than 5 nm, judging from the diameter of the nearby nanoparticle that was sandwiched by the upper and bottom graphene sheets. 340 341 If we estimate the thickness of the liquid film to be 2 nm, the water molecules inside 342 the liquid film surrounded by solid surfaces on three sides are likely to be regularly 343 aligned for the most part. It can be concluded that the force required to break this

344	ordered molecular structure is the other origin of attractive force-like phenomenon.
345	The force to break the hydration layer was mentioned in a previous study ³⁸ ; Fukuma
346	et al. reported a comparison of AFM data and MD results, and noted that the
347	hydration layer can be measured with AFM because the force is applied when the
348	probe contacts the hydration layer and pushes it away ⁴¹ . Moreover, it is known that
349	the interaction with a solid surface also reduces the mobility of water molecules near
350	the hydration layer. The diffusion coefficient of water, 10^{-9} m ² /s, decreases
351	significantly inside "nanospaces"42-44; Lu et al. studied Brownian motion of gold
352	nanoparticles and revealed that diffusion coefficient became 10^{-18} m ² /s in 10-20 nm
353	diameter droplets ⁴⁵ . This means that the local viscosity of water is much higher in the
354	vicinity of the solid, whereas the local mobility of water is much lower than in the
355	bulk. This reduced mobility delays the supply of new water molecules, which would
356	be needed for the liquid film to expand. Therefore, the attractive force-like
357	phenomenon shown in Figure 4 can be qualitatively explained by the fact that energy
358	is required to rearrange the ordered structure of water molecules inside the liquid

359	film, and that the high viscosity near the solid slows down the influx of water
360	molecules from the surrounding liquid. It is important to note that these two factors
361	explaining the attractive force between the bubble and flake are only applicable to the
362	nano-confined situations. Altogether, our results provide an important insight
363	towards nanoscale pinning and is an important step forward to control the fluids in
364	nano-space.
365	
366	Conclusions
367	Using liquid phase electron microscopy, we observed the nanoscale bubbles enclosed
368	in a graphene liquid cell to explore the origin of the pinning of the solid-liquid-gas
369	three-phase boundary. The highlight of our study is the observation of two different
370	liquid-gas interface pinning models: contact and non-contact pinning. We confirmed
371	that the sub-nanometer surface contaminations on the graphene surface did not
372	affect the dynamics or shape of the gas-liquid interface of the bubbles as the bubble
373	is sufficiently taller than the surface heterogeneities. We found that nanoparticles

374	with diameters of $2-10$ nm can pin the gas-liquid interface via direct contact, however,
375	the contact angle could not be determined due to the inherent difficulty in
376	determining the exact position of the gas-liquid interface. Interestingly, we observed
377	non-contact pinning of the gas-liquid interface near a flake-like material. This
378	observation expands the conventional idea of pinning which considers surface
379	roughness and chemical inhomogeneity to be the origin of pinning. To explain this
380	non-contact pinning, we considered the effect of van der Waals forces and the electric
381	double layer forces between the gas-liquid interface and the flake. We also observed
382	the tendency of flakes to prevent the gas-liquid interface from moving away, which
383	cannot be explained by DLVO theory. We conclude that the attractive force-like
384	phenomenon can be qualitatively explained by taking two factors into account: (1)
385	energy is required to reorient aligned water molecules inside the liquid film, and (2)
386	the high viscosity near the solid surface decreased the inflow of water molecules from
387	the surrounding area. We believe that our study is a major step forward in our
388	understanding of the origin of contact line pinning behavior at nanoscale.

390	Acknowledgments
	9

- 391 This work was partially supported by the Japan Science and Technology Core
- 392 Research for Evolutional Science and Technology (CREST) (Grant No.
- 393 JPMJCR18I1), the Japan Society for the Promotion of Science Grants-in-Aid for
- 394 Scientific Research (KAKENHI) (Grant Numbers. JP20H02089, JP20H02090),
- 395 Japan, and Grant-in-Aid for JSPS Fellows (Grant Number. 21J21976). TEM
- 396 observations were performed at the Ultramicroscopy Research Center at Kyushu
- 397 University. We thank Mr. Tatsuya Ikuta, Mr. Sarthak Nag, and Mr. Ryota Kimura for
- 398 fruitful discussions and technical support.
- 399

400 Supporting Information

401 File includes original TEM images, calculation of ion density, and data for flakes;
402 supporting movie shows the attractive force-like phenomenon shown in Figure 4.

403

References

405	(1)	Shen, F.; Li, Y.; Liu, Z.; Li, X. J. Study of Flow Behaviors of Droplet Merging
406		and Splitting in Microchannels Using Micro-PIV Measurement. Microfluid.
407		<i>Nanofluidics</i> 2017 , <i>21</i> , 1–25.
408	(2)	Lu, Y.; Sathasivam, S.; Song, J.; Crick, C. R.; Carmalt, C. J.; Parkin, I. P.
409		Robust Self-Cleaning Surfaces That Function When Exposed to Either Air or
410		Oil. <i>Science</i> 2015 , <i>347</i> , 1132 – 1135.
411	(3)	Daniel, S.; Chaudhury, M. K.; Chen, J. C. Fast Drop Movements Resulting
412		from the Phase Change on a Gradient Surface. <i>Science</i> 2001, <i>291</i> , 633 – 636.
413	(4)	Lohse, D.; Zhang, X. Pinning and Gas Oversaturation Imply Stable Single
414		Surface Nanobubbles. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 2015,
415		<i>91</i> , 1–5.
416	(5)	Alheshibri, M.; Qian, J.; Jehannin, M.; Craig, V. S. J. A History of
417		Nanobubbles. <i>Langmuir</i> 2016 , <i>32</i> , 11086–11100.
418	(6)	Brotchie, A.; Zhang, X. H. Response of Interfacial Nanobubbles to Ultrasound

419		Irradiation. Soft Matter 2011, 7, 265–269.
420	(7)	Dockar, D.; Borg, M. K.; Reese, J. M. Mechanical Stability of Surface
421		Nanobubbles. <i>Langmuir</i> 2019 , <i>35</i> , 9325–9333.
422	(8)	Zhang, X.; Lhuissier, H.; Sun, C.; Lohse, D. Surface Nanobubbles Nucleate
423		Microdroplets. Phys. Rev. Lett. 2014, 112, 1-5.
424	(9)	Liu, Y.; Bernardi, S.; Widmer-Cooper, A. Stability of Pinned Surface
425		Nanobubbles against Expansion: Insights from Theory and Simulation. J.
426		Chem. Phys. 2020, 153, 024704.
427	(10)	Heim, L. O.; Bonaccurso, E. Measurement of Line Tension on Droplets in
428		the Submicrometer Range. <i>Langmuir</i> 2013 , <i>29</i> , 14147–14153.
429	(11)	Paxson, A. T.; Varanasi, K. K. Self-Similarity of Contact Line Depinning from
430		Textured Surfaces. Nat. Commun. 2013, 4, 1-8.
431	(12)	Encarnación Escobar, J. M.; García-González, D.; Dević, I.; Zhang, X.; Lohse,
432		D. Morphology of Evaporating Sessile Microdroplets on Lyophilic Elliptical
433		Patches. Langmuir 2019, 35, 2099–2105.

434	(13)	Zhang, X.; Chan, D. Y. C.; Wang, D.; Maeda, N. Stability of Interfacial
435		Nanobubbles. <i>Langmuir</i> 2013, <i>29</i> , 1017–1023.
436	(14)	Tocci, G.; Joly, L.; Michaelides, A. Friction of Water on Graphene and
437		Hexagonal Boron Nitride from Ab Initio Methods: Very Different Slippage
438		despite Very Similar Interface Structures. Nano Lett. 2014, 14, 6872–6877.
439	(15)	Yamaguchi, Y.; Kusudo, H.; Surblys, D.; Omori, T.; Kikugawa, G.
440		Interpretation of Young's Equation for a Liquid Droplet on a Flat and Smooth
441		Solid Surface: Mechanical and Thermodynamic Routes with a Simple
442		Lennard-Jones Liquid. J. Chem. Phys. 2019, 150, 044701.
443	(16)	Teshima, H.; Takata, Y.; Takahashi, K. Adsorbed Gas Layers Limit the
444		Mobility of Micropancakes. Appl. Phys. Lett. 2019, 115, 071603.
445	(17)	Yen, T. H.; Chen, Y. L.; Lin, C. H. Effects of Gas Adsorption and Surface
446		Conditions on Interfacial Nanobubbles. Langmuir 2021, 37, 2759–2770.
447	(18)	Umeda, K.; Zivanovic, L.; Kobayashi, K.; Ritala, J.; Kominami, H.; Spijker, P.;
448		Foster, A. S.; Yamada, H. Atomic-Resolution Three-Dimensional Hydration

449		Structures on a Heterogeneously Charged Surface. Nat. Commun. 2017, 8, 1-
450		9.
451	(19)	Umeda, K.; Kobayashi, K.; Minato, T.; Yamada, H. Atomic-Level Viscosity
452		Distribution in the Hydration Layer. Phys. Rev. Lett. 2019, 122, 116001.
453	(20)	Fang, C. K.; Ko, H. C.; Yang, C. W.; Lu, Y. H.; Hwang, I. S. Nucleation
454		Processes of Nanobubbles at a Solid/Water Interface. Sci. Rep. 2016, 6, 1–10.
455	(21)	Park, J.; Koo, K.; Noh, N.; Chang, J. H.; Cheong, J. Y.; Dae, K. S.; Park, J. S.;
456		Ji, S.; Kim, I. D.; Yuk, J. M. Graphene Liquid Cell Electron Microscopy:
457		Progress, Applications, and Perspectives. ACS Nano 2021, 15, 288–308.
458	(22)	Takesaki, Y.; Kawahara, K.; Hibino, H.; Okada, S.; Tsuji, M.; Ago, H. Highly
459		Uniform Bilayer Graphene on Epitaxial Cu-Ni(111) Alloy. Chem. Mater.
460		2016 , <i>28</i> , 4583–4592.
461	(23)	Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; Van Der Zande, A. M.; Parpia, J.
462		M.; Craighead, H. G.; McEuen, P. L. Impermeable Atomic Membranes from
463		Graphene Sheets. Nano Lett. 2008, 8, 2458–2462.

- 464 (24) Berry, V. Impermeability of Graphene and Its Applications. *Carbon N. Y.*
- **465 2013**, *62*, 1–10.
- 466 (25) Leenaerts, O.; Partoens, B.; Peeters, F. M. Graphene: A Perfect Nanoballoon.
- 467 *Appl. Phys. Lett.* **2008**, *93*, 11–13.
- 468 (26) Barreiro, A.; Börrnert, F.; Avdoshenko, S. M.; Rellinghaus, B.; Cuniberti, G.;
- 469 Rümmeli, M. H.; Vandersypen, L. M. K. Understanding the Catalyst-Free
- 470 Transformation of Amorphous Carbon into Graphene by Current-Induced
- 471 Annealing. *Sci. Rep.* **2013**, *3*, 1-6.
- 472 (27) Algara-Siller, G.; Lehtinen, O.; Turchanin, A.; Kaiser, U. Dry-Cleaning of
- 473 Graphene. Appl. Phys. Lett. 2014, 104, 3–6.
- 474 (28) Lin, L.; Zhang, J.; Su, H.; Li, J.; Sun, L.; Wang, Z.; Xu, F.; Liu, C.; Lopatin, S.;
- 475 Zhu, Y.; et al. Towards Super-Clean Graphene. *Nat. Commun.* 2019, *10*, 1–7.
- 476 (29) Hirokawa, S.; Teshima, H.; Solís-Fernández, P.; Ago, H.; Tomo, Y.; Li, Q. Y.;
- 477 Takahashi, K. Nanoscale Bubble Dynamics Induced by Damage of Graphene
- 478 Liquid Cells. *ACS Omega* **2020**, *5*, 11180–11185.

- 479 (30) Joanny, J. F.; Gennes, P. G. De; Introduction, I. A Model for Contact Angle
- 480 Hysteresis. J. Chem. Phys. 1984, 81, 552–562.
- 481 (31) Andrews, D. H. The Collected Works of J. Willard Gibbs. Two Volumes. J.
- 482 *Chem. Educ.* **1929**, *6*, 591.
- 483 (32) Naeiji, P.; Woo, T. K.; Alavi, S.; Varaminian, F.; Ohmura, R. Interfacial
- 484 Properties of Hydrocarbon/Water Systems Predicted by Molecular Dynamic
- 485 Simulations. J. Chem. Phys. 2019, 150, 114703.
- 486 (33) Israelachvili, J. N. Chapter 13 Van Der Waals Forces between Particles and
- 487 Surfaces; Israelachvili, J. N. B. T.-I. and S. F. (Third E., Ed.; Academic Press:
- 488 San Diego, 2011; pp 253–289.
- 489 (34) Israelachvili, J. N. Chapter 14 Electrostatic Forces between Surfaces in
- 490 Liquids; Israelachvili, J. N. B. T.-I. and S. F. (Third E., Ed.; Academic Press:
- 491 San Diego, 2011; pp 291–340.
- 492 (35) Meegoda, J. N.; Hewage, S. A.; Batagoda, J. H. Application of the Diffused
- 493 Double Layer Theory to Nanobubbles. *Langmuir* **2019**, *35*, 12100–12112.

494	(36)	Bepete, G.; Anglaret, E.; Ortolani, L.; Morandi, V.; Huang, K.; Pénicaud, A.;
495		Drummond, C. Surfactant-Free Single-Layer Graphene in Water. Nat. Chem.
496		2017 , <i>9</i> , 347–352.
497	(37)	Schneider, N. M.; Norton, M. M.; Mendel, B. J.; Grogan, J. M.; Ross, F. M.;
498		Bau, H. H. Electron-Water Interactions and Implications for Liquid Cell
499		Electron Microscopy. J. Phys. Chem. C 2014, 118, 22373-22382.
500	(38)	Teshima, H.; Li, Q. Y.; Takata, Y.; Takahashi, K. Gas Molecules Sandwiched
501		in Hydration Layers at Graphite/Water Interfaces. Phys. Chem. Chem. Phys.
502		2020 , <i>22</i> , 13629–13636.
503	(39)	Suzuki, K.; Oyabu, N.; Kobayashi, K.; Matsushige, K.; Yamada, H. Atomic-
504		Resolution Imaging of Graphite-Water Interface by Frequency Modulation
505		Atomic Force Microscopy. Appl. Phys. Express 2011, 4, 125102.
506	(40)	Yang, C. W.; Miyazawa, K.; Fukuma, T.; Miyata, K.; Hwang, I. S. Direct
507		Comparison between Subnanometer Hydration Structures on Hydrophilic
508		and Hydrophobic Surfaces via Three-Dimensional Scanning Force

509		Microscopy. Phys. Chem. Chem. Phys. 2018, 20, 23522-23527.
510	(41)	Fukuma, T.; Reischl, B.; Kobayashi, N.; Spijker, P.; Canova, F. F.; Miyazawa,
511		K.; Foster, A. S. Mechanism of Atomic Force Microscopy Imaging of Three-
512		Dimensional Hydration Structures at a Solid-Liquid Interface. Phys. Rev. B -
513		Condens. Matter Mater. Phys. 2015, 92, 1–7.
514	(42)	Zheng, H.; Claridge, S. A.; Minor, A. M.; Alivisatos, A. P.; Dahmen, U.
515		Nanocrystal Diffusion in a Liquid Thin Film Observed by in Situ
516		Transmission Electron Microscopy. Nano Lett. 2009, 9, 2460–2465.
517	(43)	Grogan, J. M.; Rotkina, L.; Bau, H. H. In Situ Liquid-Cell Electron
518		Microscopy of Colloid Aggregation and Growth Dynamics. Phys. Rev. E -
519		<i>Stat. Nonlinear, Soft Matter Phys.</i> 2011, <i>83</i> , 1–5.
520	(44)	Verch, A.; Pfaff, M.; De Jonge, N. Exceptionally Slow Movement of Gold
521		Nanoparticles at a Solid/Liquid Interface Investigated by Scanning
522		Transmission Electron Microscopy. <i>Langmuir</i> 2015, <i>31</i> , 6956–6964.
523	(45)	Lu, J.; Aabdin, Z.; Loh, N. D.; Bhattacharya, D.; Mirsaidov, U. Nanoparticle

524	Dynamics in a Nanodroplet. <i>Nano Lett.</i> 2014 , <i>14</i> , 2111–2115.
525	
526	

527 Graphic Abstract

