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Abstract: In today’s world where complying with the requirements of a green economy is more and more imperative
for technological progress, energy and fuel-efficient navigation is a topic of primary importance in industrial engineering.
In the particular case of autonomous driving and cruise control, the inherent nonlinearity and complexity of the physical
dynamics result in a highly nonconvex control problem, which becomes even more challenging if one is to further account
for energy saving constraints. Leveraging on recent advancements, we propose a solution based on PANOC [19], a fast
optimization solver which can cope with nonconvex problems and enjoys very low computational requirements, provided
that some inner subproblems can be solved at negligible effort. In order to account for this binding requirement of the
algorithm, we propose a piecewise affine approximation strategy for the fuel consumption model based on the Douglas–
Peucker algorithm [7]. The effectiveness of the approach is showcased with numerical simulations on a real-time adaptive
cruise control problem for fuel consumption optimization.
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1. INTRODUCTION
In the automotive industry, fuel economy has become

an important indicator for assessing the performance of
road vehicles. The tightening of fuel economy standards
and the continued concern about environment pollution
have brought considerable challenges to the automotive
industry [22]. Weather and road conditions as well as
other exernal physical factors all concur in determining
the fuel consumption of a vehicle. Most of these factors
are however beyond human control, which singles out the
driving behavior as the key aspect that can be leveraged to
achieve the sought goals. In recent years, eco-driving has
received great attention, helping drivers to achieve fuel-
efficient driving through technological means [9]. In or-
der to meet the control of fuel consumption in real time,
model predictive control (MPC) is heavily applied in the
research of related fields. For example, in [8] MPC is
used to develop a fuel-optimized control algorithm for
heavy-duty diesel trucks based on terrain information,
and MPC and traffic data are used in [10] to calculate
vehicle speed profiles to reduce fuel consumption. How-
ever, these methods need to calculate the global optimal
strategy for the whole driving cycle before the vehicle
operation, and are not applicable to the real-time control
objectives of vehicle control at this stage. The inherent
nonconvexity in the vehicle fuel consumption model has
been ignored by researchers in the past studies, as this in-
herent nonconvexity makes it difficult to directly apply
the fuel consumption term in the traditional optimization
algorithm to obtain the optimal control strategy.

A successful application of an MPC strategy is in-
extricably linked to efficient optimization algorithms.
For nonlinear and possibly nonconvex problems, classi-
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cal methods such as sequential quadratic programming
(SQP) and interior-point (IP) algorithms are widely used.
Their high versatility and fast convergence properties,
however, come at the price of expensive operation ora-
cles, which confines their use on platforms and hardware
with high computing capability. Possibly in response to
this downside, recent years have witnessed a renewed in-
terest in algorithms of splitting nature [14], as they enjoy
simple iteration complexity and can handle both nons-
mooth and nonconvex penalties. However, their slow con-
vergence has long been the main hindrance against their
reliable application to real-time optimization.

In recent years, considerable amount of research has
been devoted to improving this aspect, see e.g. [3, 4, 13,
20, 21] and references therein. More recently, the PANOC
algorithm [19] has proven a viable solution that is also
amenable to cope with the limited computational and
memory capability of embedded hardware and the very
short sampling time prescribed by many real-time MPC
applications. PANOC is based on the proximal gradient
method, also known as forward-backward splitting (FBS)
in a more general setting [2], which is one of the most
well-known splitting algorithms. PANOC combines FBS
and (limited-memory) quasi-Newton methods, and while
preserving the operational simplicity of FBS it also inher-
its the fast convergence rates of quasi-Newton methods.

The efficiency of PANOC is however subject to the
binding requirement that one of its building blocks, and
specifically the so-called proximal mapping operator, see
(6) below, is available in close form or can be evaluated
at negligible effort. Being this not the case for the fuel-
efficient adaptive cruise control problem [6], we propose
a linear approximation strategy based on the Douglas–
Peucker (DP) algorithm [7] that can approximate with
aribtrary precision the vehicle fuel consumption model



while both preserving its nonconvexity and simplifying
the computation of the proximal mapping.

1.1. Paper organization
The paper is organized as follows. Section 2 introduces

the control problem at hand and frames it into a compos-
ite minimization suitable for an efficient real-time MPC
solver. The key algorithmic steps for an out-of-the-box
implementation are discussed in detail in Section 3, af-
ter an extensive description of the proposed Douglas–
Peucker approximation. Section 4 showcases the effec-
tiveness of the proposed methodology with numerical
simulations. Section 5 concludes the paper.

2. PROBLEM SETTING
We study a cruise control problem in which the objec-

tive is to maintain a constant distance from the preceding
vehicle while optimizing fuel consumption. To this end,
we consider the following continuous-time nonlinear dy-
namical system

x(t) =


s(t)
v(t)
Q(t)
sp(t)

 ẋ(t) = F(x(t), u(t)) :=


v(t)
a(t)

W(u(t))
vp(t)

,
where at each time instant t the state x(t) ∈ �4 comprises
position s(t) and velocity v(t) of the controlled vehicle,
total fuel Q(t) consumed up to time t, and position sp(t) of
the preceding vehicle, while the input u(t) ∈ � consists of
the power actuated on the vehicle. By taking into account
rolling friction of the wheels and viscous resistance of the
air against the vertical surface A of the vehicle (assumed
flat for simplicity), the acceleration a(t) is given by

a(t) =
u(t)

v(t)M
−

1
2CDρAv(t)2 + µMg

M
,

where M is the mass of the vehicle, CD its drag coeffi-
cient, ρ is the air density, and g the gravitational acceler-
ation. The quantity W(u(t)) = Q̇(t) represents the instan-
taneous fuel consumption rate when a power input u(t) is
actuated. The control objective in a time range [t0, t f ] can
thus be formulated as the following optimization problem

minimize
u(t) t∈[t0,t f ]

J(u) subject to Pmin ≤ u(t) ≤ Pmax, (1)

where Pmin and Pmax are minimum and maximum admis-
sible power, and

J(u) =

∫ t f

t0

((
(sp(t) − s(t)) − hdvp(t)

)2
+ ω0W(u(t))

)
dt. (2)

Here, hd is the desired time delay from the preceding ve-
hicle, and ω0 > 0 is a model parameter for trading-off

optimality of distance and fuel consumption.

2.1. Discretization and composite minimization form
We discretize the state equation of the continuous-

time optimal control problem (1) with backward Euler’s
method into intervals of width ∆t as

xk+1 − xk − F(xk, uk)∆t = 0 k = 0, . . . ,N − 1, (3)

where xk ∈ �4 denotes the state vector at the k-th time
step, and uk the (constant) input to be actuated between
the k-th and (k+1)-th time steps. The discretized problem
(1) can thus be recast as the following nonlinear compos-
ite minimization

minimize
u∈�N

ϕ(u; x0) = f (u) + g(u), (4)

where u = (u0, u1, . . . , uN−1) is the stacking of the input
variables, and by similarly stacking the states into �N-
vectors s, v, Q, and sp,

f (u) B ‖(sp − s) − hdvp‖2
is a smooth function, and

g(u) B ω0‖W(u)‖1 + δU(u) (5)

is a nonconvex and nonsmooth function that encodes
the input constraints through the indicator function δU ,
where U B [Pmin, Pmax]N . (The indicator function of a
set E ⊆ �n is δE : �n → � ∪ {∞} where δE(x) = 0 if
x ∈ E and∞ otherwise). Here, with an abuse of notation,
the application of W is meant in an elementwise fash-
ion as �N 3 u 7→ (W(u0),W(u1), . . . ,W(uN−1)) ∈ �N .
Since W ≥ 0, this allows for a compact representation of∑

k W(uk) through the `1-norm as in (5).

2.2. Receding-horizon control and warm-startable al-
gorithms

Problem (4) spans a time length N∆t, and is meant
to be addressed in the receding horizon fashion of MPC
in real time: an optimal input sequence is computed, but
only the first input is actuated. Then, the same problem
is solved again by sliding the time window of one time
step and by updating the initial state condition, whence
the parametric dependance on the initial state x0 as em-
phasized in (4). Since a new problem has to be repeat-
edly solved within each sampling time, it is imperative
to rely on an optimization method that can provide a so-
lution fast enough. For the purpose, we chose the opti-
mization solver PANOC [19], which on top of the addi-
tional benefit of embeddability (which makes it suitable
for a real-world onboard implementation), is also warm-
startable. This poses a great advantage with respect to
solvers based on interior point, since in an MPC setting
all problems differ only from the initial condition x0, and
every instance can thus conveniently be initialized at the
solution of the previous one, resulting in an asymptotic
even faster convergence, as also observed in [16, 19].

3. A PROXIMABLE FUEL
CONSUMPTION MODEL

The oracle complexity of PANOC amounts to proxi-
mal gradient evaluations, namely gradient descent steps
on the smooth function f and proximal operations on
the nonsmooth function g, where for a stepsize param-
eter γ > 0 the proximal mapping of g is given by

proxγg(u) B arg min
z∈�N

{
g(z) + 1

2γ ‖z − u‖2
}
. (6)



The main hindrance against an out-of-the-box implemen-
tation of PANOC is that, for g as in (5), the latter op-
eration is not available in close form for any fuel con-
sumption model W. In addition, an explicit expression
for W is not available in the first place, as its value has
to be determined experimentally. Estimating the instan-
taneous fuel consumption rate W has been the subject of
many works in the past decades, see e.g. [1, 5, 17] and ref-
erences therein. Several models exist based on different
assumptions on its form, such as quadratic models [12,
15] or concave-convex models [11]. Based on our exper-
iments and observations, we observed that instantaneous
fuel consumption profiles in terms of power inputs obey
the following three characteristics:
• W(P) = 0 for any P ≤ 0, as no fuel is consumed when a

negative power is actuated on the vehicle, that is, when
either idling or braking;

• Up to negligible errors, W(P) is convex and increasing
for P > 0;

• A discontinuity jump limP↘0 W(P) 	 0 = W(0) occurs
at P = 0, indicating that the total fuel consumed in-
creases in a nondifferentiable manner from a stationary
condition.

However, the proximal mapping of the estimated func-
tion W is still not available in close form. To bypass
this problem and thus make full use of the potential of
PANOC algorithm, we propose a solution based on the
piecewise linearization offered by the Douglas–Peucker
method, discussed in the following subsection.

3.1. Linear approximation with the DP algorithm
The Douglas-Peucker algorithm is a downsampling

technique. Given a curve to approximate, the algorithm
determines whether to keep the coordinate point by find-
ing the farthest distance between the line formed by the
start point and the end point and the original curve. Once
the farthest distance exceeds a predetermined distance
dimension e, the point is retained, and the original line
becomes two primary line segments from the start point
to the coordinate point and from the coordinate point to
the end point. Once again, the two primary line segments
are judged to be greater than the set distance dimension
e from the original function, until all the line segments
remain within the distance dimension e from the corre-
sponding original function. Eventually, the original poly-
nomial function can be linearly approximated as a super-
position of multiple segment primary functions. Clearly,
for small distance dimension e the more segments there
are the more the original function can be linearly approx-
imated with arbitrary accuracy.

Because of the discontinuity jump at P = 0, a lin-
ear approximation around the origin cannot satisfacto-
rily represent the behavior of W. Nevertheless, given that
W(P) is the constant null function for P ≤ 0, we construct
its approximation h as follows:

h(P) B


0 if Pmin ≤ P ≤ 0,
h̃(P) if P > 0,
∞ otherwise,

(7)

where h̃ : � → � ∪ {∞} is a polyhedral (convex) func-
tion defined by M linear pieces with domain [0, Pmax]
obtained by means of the DP method on W(P) with
P ∈ [0, Pmax]. By playing on the parameter e, the DP
method can reconstruct W with arbitrary precision; as we
are about to see next, also the resulting proximal mapping
is computable at negligible effort, overall resulting in al-
gorithmic requirements of simplicity and accuracy at the
same time. Therefore, we will consider g = h in (4), with
the usual convention of elementwise definition.

3.2. Calculation of proximal mapping
Denoting the n + 1 endpoints of the linear pieces of h̃

as (Pi, yi), i = 0, . . . , n, with P0 = 0 and Pn = Pmax,

h̃(P) =


yi + mi(P − Pi) if Pi ≤ P ≤ Pi+1,
∞ if P < P0 ∨ P > Pn,
i = 0, . . . , n − 1,

where mi B
yi+1−yi
Pi+1−Pi

. Notice that convexity of h̃ is equiva-
lent to having mi ≤ mi+1 holding for all i = 0, . . . , n − 1.
Moreover, the discontinuity jump of h at 0 is y0 > 0.

For any P ∈ �, computing P̃ = proxγh̃(P) amounts to

P̃ = arg min
w∈�

min
i

{
hi(w) + 1

2γ (w − P)2
}
,

where

hi B yi + mi( · − Pi) + δ[Pi,Pi+1] . (8)

Denoting wi B proxγhi
(P), namely,

wi = Π[Pi,Pi+1](P − γmi)

where ΠE is the projection operator onto set E, there are
two possibilities:
• either Pi < P−γmi < Pi+1 for an index i, in which case

clearly P̃ = P−γmi (since the derivative of h+ 1
2γ (·−P)2

is zero there);
• or there exists an index i ∈ {−1, 0, . . . , n} such that

P − γmi ≥ Pi+1 ≥ P − γmi+1, in which case P̃ = Pi+1
(the first and last angular coefficients are convention-
ally m−1 B −∞ and mn+1 B ∞).

In both cases, the index i is unique. Putting all toghether,
one has that

P̃ = min {Pi+1, P − γmi} (9a)

where i = arg max
j=0,...,n

{
j | P ≥ P j + γm j

}
. (9b)

Now, the computation of the proximal mapping of h can
be done by a simple comparison:

proxγh(P) =


max {Pmin, P} if P ≤ 0,
P̃ if P > 0 ∧ hi(P̃) < 1

2γP2,
0 otherwise,

where P̃ and i are as in (9), and hi is as in (8).
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(a) Polynomial measurement fit
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(b) DP piecewise linearization with e = 0.1
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(c) DP piecewise linearization with e = 0.01

Fig. 1: Generation of the fuel consumption map W. Apparently, the 9 line segments generated by the DP algorithm with accuracy e = 0.1 are enough to
produce a very good approximation of the polynomial fitting of the measurements.

4. NUMERICAL SIMULATIONS
To assess the effectiveness of the proposed method, we

consider a cruise control problem as described in Sec-
tion 2 where the velocity vp(t) of the preceding vehicle is
assumed known and constant vp = 30 m/s. The desired
time delay between the two vehicles is set to hd = 2 s.

The gravitational acceleration is approximated as g =

9.8 m/s2, and the model parameters of the control vehicle
are set as follows: M = 1400 kg, CD = 0.29, A = 2.6 m2,
ρ = 1.1841 kg/m3, and µ = 0.012. The control inputs are
constrained between a minimum value of Pmin = −104 W
and a maximum value of Pmax = 7 · 104 W. The various
initial values of the state quantities are s(0) = 0 m, v(0) =

20 m/s, Q(0) = 0 ml, and sp(0) = 100 m.
The total simulation time is set to tf = 300 s, the sam-

pling time interval to ∆t = 0.1 s, and the time window of
each MPC problem to 3 s, resulting in 3000 many MPC
problem instances with discrete-time horizon of N = 30.

The instantaneous fuel consumption W was generated
by polynomial interpolation of measurements using the
polyfit function in Matlab. To review the number of
polynomial fits, we solved the instantaneous fuel con-
sumption graph for a vehicle traveling at a fixed speed
and observed that the instantaneous fuel consumption
graph remained virtually unchanged when the number of
polynomial fits was greater than 9. We therefore opted
for a 9th-order polynomial approximation; the result is
given in Figure 1a. Figures 1b and 1c show the results
obtained by setting different distance dimensions e = 0.1
and e = 0.01 as accuracy parameters for the DP approx-
imation, which respectively correspond to piecewise lin-
earization with 9 and 30 line segments. Apparently, the
few line segments produced with accuracy e = 0.1 are
enough to well approximate the polynomial fit.

For the choice of distance dimension of the DP algo-
rithm, we also compared three cases when the distance
dimension was 0.1, 0.01 and 0.001, respectively, to see
whether the increase in accuracy would be computation-
ally burdensome. PANOC proved successful in all trials,
and the final cost was subject to negligible differences
within a 0.5% relative range in optimality.

A more important modeling factor is the weight ω0,
responsible for the trade-off between control stability and
fuel efficiency. The value was fine tuned among different

choices, and from our experiments the choice ω0 = 1 was
considered the most satisfactory in the performance.

4.1. Simulation results
The results of the simulation are shown in Figure 2.

From the state diagram, it can be learned that the speed
of the control vehicle is finally maintained in a similar
speed range as that of the preceding vehicle, and the dis-
tance between vehicles is succesfully kept around the tar-
get distance. Our results confirm the pulse-and-glide phe-
nomenon of fuel-efficient control [11]: to keep fuel con-
sumption low, instead of maintaining one speed contin-
uously, the vehicle is kept in a control mode that con-
stantly switches between acceleration and deceleration,
initially staying within the two speed intervals in the
form of bang-bang control [18]. A per-stage cost term
ω1(uk − uk−1)2 can be also included in function f to ac-
count for abrupt speed variations in the solution, so as to
trade-off a fuel-efficient and a smooth cruise.

Each problem is solved largely within sampling time,
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Fig. 2: Simulation results when the distance dimension e is 0.1



taking about 0.007 s on average. Thanks to the cheap iter-
ation oracle typical of proximal algorithms, the method is
well suited for an embedded implementation. This strikes
a tangible advantage of our approach if compared with
other techniques, such as based on SQP or IP methods,
which perform well if run on powerful processing units
but are penalized on low capacity platforms. Moreover,
our approach well copes with problems that are nons-
mooth and nonconvex at the same time, a scenario that
precludes the use of other embedded-friendly methods
whose applicability is bound to either smooth or convex
problems, such as (sub)gradient methods. We should also
remark that an ad hoc implementation should drastically
further reduce computation time.

Regarding the computation of the proximal mapping,
we compared our DP approach against a numerical solu-
tion of the subproblem with the original 9th-order polyno-
mial, both with a Newton method and by solving a poly-
nomial equation involving the derivative. Our method
was on average twice as fast than the Newton method, and
10 times as fast than the one with the polynomial equa-
tion, with an absolute and relative error of about 10−4.

5. CONCLUSION
We applied nonlinear model predictive control to ad-

dress a cruise control problem in a fuel efficient regime.
PANOC algorithm was chosen as optimization solver for
its fast solving time and low computational requirements.
Because of the complicated nonsmooth part of the prob-
lem at hand, however, PANOC was not readily applica-
ble. To account for this issue, we proposed a piecewise
linearization technique based on the Douglas–Peucker
method that, while not sacrificing optimality for it very
closely approximates the objective, it drastically simpli-
fies the optimization oracle. The application of PANOC
for the cruise control problem proved successful in all
our simulations. Given the low memory and computa-
tional requirements of the proposed method in combina-
tion with the PANOC algorithm, future work may con-
sider real-world implementations on on-board CPUs.
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