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Abstract
This paper is concerned with the synthesis problem of passive mechanical admittances that connect masses in a
chain. The mass chain is excited at one boundary point, and the admittances are designed to suppress the disturbance
independent of the length of the chain. The scalar transfer functions from the disturbance to a given intermass
displacement are studied. The disturbance rejection performance is optimised over a class of arbitrary positive real
mechanical admittances. The resulting admittance is synthesised mechanically using springs, dampers, and inerters
only.
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Introduction

In recent years, it has become of great interest to
consider the systems that involve very large numbers of
locally interconnected subsystems. In such applications,
the number of subsystems is often subject to change and
it is desirable to ensure the ability to control a system
behaviour independent of the size of the systems. We call
such ability as a scale-free property. For a system that
possesses a scale-free property, any design remains valid
even if the number of subsystems changes. A mass chain
is an ideal model to analyse such a property. The problem
of passive control of a mass chain arises in the design
of a variety of mechanical systems including multi-storey
buildings subjected to disturbances such as an earthquake
disturbance or wind,1,2 and dynamic vibration absorbers.3,4

Instead of the conventional interconnection configuration
consisting of springs and dampers only, we consider passive
interconnections of the most general type, as shown in Fig. 1,
which may require the use of inerters.5 In recent years,
mass chain systems including inerters have been intensively
studied6–8 because of its potential to give us much greater
flexibility in control design. For example, it is possible to
assign any arbitrary given set of positive distinct numbers as
the natural frequencies of the mass chain of Fig. 1 where each
interconnection is a parallel combination of a spring and an
inerter.9,10

This general mass chain model is also suitable to analyse
vehicle platoons, where the inter-vehicle spacing regulation
policy is modelled as a virtual impedance. In this application,
there is a phenomenon called string instability where the
disturbance entered in the platoon propagates along the string
causing instability as a whole despite each car is stable.11–13

Network incoherence phenomena are also reported in the
literature.14 Nonetheless, it appears that average or local
performance measures can sometimes be guaranteed in a
scale-free manner.15–18

In particular, the author has shown16,19 that the H∞-
norm of the transfer function from the disturbance at
one end to a given intermass displacement in the mass
chain is uniformly bounded with respect to N for certain
choices of interconnection admittances. The conditions have
been given with respect to a dimensionless parameter h
depending on the admittance and the mass. A graphical
means to design suitable interconnection admittances has
been proposed16,19–21 so that the supremum of the H∞-
norm over N is no greater than a prescribed value. This
can be thought of as a scale-free H∞ control design for
an infinite family of plants in which the interconnection
admittance is the controller. However, one drawback of this
graphical method is that one needs to manually shape the
Nyquist diagram of h(s). The procedure typically requires to
first fix the interconnection network configuration and then
tune the parameters of the passive components. Therefore,
it is difficult to search over a broad class of interconnection
admittances.

In the present paper we aim to seek a (sub)optimal
interconnection network configuration that minimises the
supremum of the H∞-norm over N in the mass chain
of Fig. 1. A class of arbitrary positive real mechanical
admittances of fixed degree is searched over for the
optimisation. The resulting admittance is then realised as
a network with springs, inerters, and dampers only.5 This
is a mechanical analogue of a key result from electrical
network synthesis,22 which is summarised in the next
section. To illustrate the concept of the proposed method,
we consider degree-3 positive real admittances since the

1Kyushu University, Japan

Corresponding author:
Kaoru Yamamoto, Faculty of Information Science and Electrical
Engineering, Kyushu University, Fukuoka 819-0395, Japan.
Email: yamamoto@ees.kyushu-u.ac.jp

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

Y m Y m Y m

x0

. . .

x1 x2 xN

Figure 1. Mass chain model consisting of N identical masses
m. Each mass is connected by mechanical admittance Y (s)
(impedance Z(s) = Y (s)−1).

balance between the disturbance suppression performance
and the computational complexity is reasonable. It is indeed
possible to extend the proposed method to higher degree
admittances. However, we note that the optimisation part
should be carefully treated due to the increase of the number
of variables and the highly non-convex cost function.

We may note that, using the terminology introduced
in the literature,23 the graphical method in our previous
paper16 is considered as a structure-based approach whereas
the proposed method in this paper may be classified as a
structure-immittance approach, in the sense that an optimal
topology is searched over a full set of network topologies
with a fixed degree of the impedance function while it is
possible to set constraints on the structural parameters.

Some background on passive mechanical networks and
classical network synthesis is summarised in the next section.
The problem formulation and some numerical examples will
follow to illustrate the proposed method.

General Notation
C and Z+ denote the set of complex numbers and positive
integers, respectively. C+ is the closed right-half plane.
Rm×n is the set of m by n real matrices. H∞ is the standard
Hardy space on the right-half plane and ‖·‖∞ represents the
H∞-norm. In particular, the H∞-norm of a stable scaler
transfer function G(s) is the supremum magnitude of the
frequency response G(jω), i.e.,

‖G(s)‖∞ = sup
ω∈R
|G(jω)| .

Background on Passive Mechanical
Networks
A mechanical one-port network with force-velocity pair
(F, v) is passive if for all square integrable pairs F (t) and
v(t) on (−∞, T ],

∫ T

−∞ F (t)v(t)dt ≥ 0.24 Furthermore, a
passive network is lossless if it satisfies the condition∫ T

−∞
F (t)v(t)dt = 0.

For a linear time-invariant network the admittance Y (s) is
defined by the ratio F̂ (s)/v̂(s) whereˆdenotes the Laplace
transform, and Z(s) = Y (s)−1 is called the impedance.
Such a network can be shown to be passive if and only if
Y (s) or Z(s) is positive real.25,26

Network Synthesis
The present paper considers three essential passive
components: springs, dampers and inerters. The inerter is a
mechanical two-terminal device with the property that the
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(a) First realisation of the admittance (1).

k
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c4b2
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(b) Second realisation of the admittance (1).

k

k1

k2c̃2

c̃1

(c) Spring-damper realisation of the admittance (1).

Figure 2. Realisations of the admittance (1).

applied force at the terminals is proportional to the relative
acceleration between the terminals. Since any real-rational
positive-real function can be realised as the admittance or
impedance of a network with springs, inerters, and dampers
only5, once we obtain a positive real admittance Y (s) that
gives a good disturbance suppression performance in a scale-
free manner, the resulting admittance can be realised only by
these three passive mechanical components.

Low Degree Positive Real Admittances
In this section, we briefly discuss the class of arbitrary
degree-3 positive real mechanical admittances and its
realisations. See the reference5 for the detailed discussion.

Consider the real-rational function

Y (s) = k
α0s

2 + α1s+ 1

s(β0s2 + β1s+ 1)
(1)

where β0, β1 ≥ 0 and k > 0. Then, Y (s) is positive real if
and only if the following three inequalities hold5:

a1 := α0β1 − α1β0 ≥ 0 (2)
a2 := α0 − β0 ≥ 0 (3)
a3 := α1 − β1 ≥ 0. (4)

Define also a4 := a22 − a1a3. If a2 > 0 and a4 > 0, then the
realisation of the admittance (1) can be obtained by the Brune
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procedure.25 The resulting realisations are shown in Figs. 2a
and 2b where

kb =
ka2
β0

c1 =
ka22a3
a4

c2 =
ka22
a1

b1 =
ka32
a4

c3 = ka3 c4 =
ka4
a1

b2 =
ka4
a2

.

It has been pointed out5 that a straightforward computation
gives c3 ≤ c1, c4 ≤ c2 and b2 ≤ b1, so the realisation of
Fig. 2b is the more efficient one.

Otherwise (if either a2 = 0 or a4 ≤ 0) the realisation is
given in the form of Fig. 2c. Note that if α0 = 0, β0 = 0 and
a3 > 0, Y (s) is realised with using springs and one damper.

Problem Formulation

Intermass displacements in a mass chain
We consider the mass chain of Fig. 1, where N point
masses m are connected by identical passive mechanical
admittances Y (s). We assume that the interconnection
consists of at least one spring in parallel with some passive
components, i.e.,

Y (s) = k/s+ Y1(s) (5)

where k > 0 and Y1(s) is a positive real admittance.
The mass chain is excited at one end, the displacement

of which is denoted by x0(t). The displacement of the
ith mass is denoted by xi(t), i = 1, 2, . . . , N. The initial
conditions of these displacements are assumed to be all zero.
The equations of motion are then written in the Laplace
transformed domain as

x̂ = (h(s)I− LN )−1φ1x̂0 (6)

where I is the identity matrix and

h(s) = sZ(s)m, Z(s) = Y (s)−1,

x̂ = [x̂1, . . . , x̂N ]T ∈ RN ,

φ1 = [1, 0, . . . , 0]T ∈ RN ,

LN =



−2 1 0 · · · 0

1 −2 1
. . .

...

0
. . . . . . . . . 0

...
. . . 1 −2 1

0 · · · 0 1 −1


∈ RN×N .

The characteristic polynomials di of Li ∈ Ri×i in the
variable h is given by

di = det(hI− Li). (7)

We find that

di(h) = (h+ 2)di−1(h)− di−2(h) for i = 1, . . . , N
(8)

where d−1 = 1 and d0 = 1. Using di, eq. (6) is written as

x̂ =
adj(h(s)I− LN )

det(h(s)I− LN )
φ1x̂0 =

1

dN

dN−1...
d0

 x̂0. (9)

Let F (i)
N (h(s)) denote the transfer function from x0 to

a given intermass displacement, xi−1 − xi, i = 1, 2, . . . , N.
The subscript N specifies the total number of masses in the
chain. Hence, for i = 1, 2, . . . , N,

F
(i)
N (h(s)) =

dN−i+1 − dN−i
dN

. (10)

Treating h as the independent variable, it is straightfor-
ward to see that the roots of di(h) lie in the interval (−4, 0)
by using the Gershgorin’s disc bound on the eigenvalues
of Hermitian matrix LN (guaranteeing the roots lie in the
closed interval [−4, 0]) and by directly checking that di(0)
and di(−4) are nonzero for all i ∈ Z+. (The interested reader
is referred to the proof of Theorem 1 in the reference.16)
The system of Fig. 1 is stable if dN (h(s)) 6= 0 for any s ∈
C+. For 0 6≡ Y (s) positive real, it is sufficient to guarantee
the stability if h(s) does not take values in the interval
(−4, 0) for any s with Re(s) = 0. This is equivalent to
the condition that h(jω) does not touch the imaginary axis
between (0, j4), which is a very mild condition that is hard
to violate in practice. Under this condition, it has been
previously proved16,19 that the H∞-norm of the transfer
function F (i)

N (h(s)) is uniformly bounded with respect to N
with the following additional sufficient condition:

Y1(0) > 0,

where Y1(s) is as defined in eq. (5).
In the sequel, we focus on the interconnection design that

suppresses the H∞-norm of F (i)
N (h(s)) well for an arbitrary

length of the mass chain. A (sub)optimal solution of such an
interconnection admittance Y (s) is searched over the class
of arbitrary degree-3 positive real mechanical admittances
(1). We now consider the following constrained optimisation
problem:

Problem 1.

Minimize γ(α0, α1, β0, β1)

subject to ‖W (s)F
(i)
N (h(s))‖∞ ≤ γ(α0, α1, β0, β1)

∀N, i ∈ Z+,

h(s) =
ms2(β0s

2 + β1s+ 1)

k(α0s2 + α1s+ 1)
, (11)

β0, β1 ≥ 0,

k,m > 0,

α0β1 − α1β0 ≥ 0,

α0 − β0 ≥ 0,

α1 − β1 > 0

where W (s) is a weighting function.
γ(α0, α1, β0, β1) is the upper bound of the H∞-norm of

W (s)F
(i)
N (h(s)), the weighted transfer function from the

disturbance to an i-th intermass displacement, over all N ∈
Z+ and i ≤ N . Note that F (i)

N (h(s)) is in the form of (10).
Using the recurrence relation (7), it is possible to efficiently
compute ‖F (i)

N (h(s))‖∞ for various N .
α0, α1, β0, β1 are the optimisation variables. Note that

h(s) = sY (s)−1m where Y (s) is the admittance (1). Hence,
the last three inequalities are the necessary and sufficient
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condition for Y (s) to be positive real (2)–(4) where the
final condition is replaced by a strict inequality. This is to
satisfy Y1(0) > 0, which is one of the sufficient conditions
to achieve uniform boundedness.16,19 Indeed, since

Y (s) = k
α0s

2 + α1s+ 1

s(β0s2 + β1s+ 1)

=
k

s
+
k(α0 − β0)s+ α1 − β1

β0s2 + β1s+ 1︸ ︷︷ ︸
Y1(s)

,

the inequality α1 − β1 > 0 implies Y1(0) > 0.
To solve this problem numerically, we need to search

over finite N , i.e., 1 ≤ N ≤ N0. We may note that this will
not affect the optimisation result as long as we choose a
large enough N0 in practice, based on the observation in the
reference16 that F (i)

N (h(s)) for each s ∈ C converges quickly
to its fixed point when we select the interconnection h(s)

such that ‖F (i)
N (h(s))‖∞ ≤ 1.

Once this problem is solved, the optimal configuration
is realised following the procedure stated in the previous
section “Low Degree Positive Real Admittances.”

Effect of β0
We first investigate how the parameter β0 affects the
objective function γ(α0, α1, β0, β1). Let us introduce a
complex variable g which is a reciprocal of h, i.e., g(s) :=
h−1(s) = Y (s)/(ms). Figure 3 shows the contour plot of
max1≤N≤200|F (i)

N (h)| in the g-plane. We see that the infinity
norm takes a large value if g is closer to the real axis between
(−∞,−1/4]. Since

g(s) =
Y (s)

ms
=

k

ms2
+
k(α0 − β0)s+ α1 − β1
ms(β0s2 + β1s+ 1)

,

the real part and the imaginary part of g(jω) are, respectively,

Re(g(jω)) = − k

mω2
+
k(a2(1− β0ω2)− a3β1)

m((1− β0ω2)2 + β2
1ω

2)

Im(g(jω)) = − k(a1ω
2 + a3)

m((1− β0ω2)2 + β2
1ω

2)
.

It is observed from the denominator of the imaginary part
of g(jω) that if β0 6= 0 Im(g(jω)) takes small values in
a wide frequency range. The loci of g(jω) with different
values of β0 are plotted on the contour plot in Fig. 4 where
α0 = 1, α1 = 1, β1 = 0.1. We see that g(jω) becomes closer
to the real axis between (−∞,−1/4] as we make β0 larger.
Hence, it is desired to set β0 = 0 when possible. This means
that kb = ka2/β0 =∞ in Fig. 2a and Fig. 2b. However,
some mechanical devices cannot be assumed to be totally
rigid, i.e., kb 6=∞. The effect of this is further investigated
through numerical examples.

Interconnection Design
For the numerical examples, we choose the following
parameters: m = 1.0 kg (normalised), k = 1700 Nm−1, and
N0 = 200 (the maximum number of N to be searched over).

Figure 3. Contour plot of max
1≤N≤200

|F (i)
N (h)| where h = g−1.

Figure 4. Loci of g(jω) with different values of β0 on the
contour plot of max

1≤N≤200
|F (i)

N (h)|.

Optimising over all frequency range
We first consider the case of optimising over all frequency
range without introducing any frequency weight W (s).
Observe that

γ(α0, α1, β0, β1) ≥ sup
i

sup
N≥i
‖F (i)

N (h(s))‖∞

≥ ‖F (1)
1 (h(s))‖∞

where

F
(1)
1 (h(s)) =

h(s)

h(s) + 1
,

which is obtained from (10). If h(s) takes the form (11)
and either β0 6= 0 or β1 6= 0, then |h(jω)| → ∞ as ω →∞.
Consequently, ‖F (1)

1 (h(s))‖∞, the lower bound of γ, takes a
value greater than or equal to 1. Hence, to further improve γ,
we need β0 = β1 = 0, which results in the admittance of the
form

Y (s) =
k

s
+ kα1 + kα0s, (12)

the realisation of which is the configuration consisting of one
spring k, one damper c = kα1, and one inerter b = kα0 in
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Figure 5. Optimal configuration when all the frequency range is
considered.

Figure 6. Plot of max
i≤N

max
1≤N≤200

‖F (i)
N (h(s))‖∞ versus α1.

Figure 7. Plot of max
i≤N

max
1≤N≤200

‖F (i)
N (h(s))‖∞ versus α0.

parallel as shown in Fig. 5. That is,

kb =∞, c1 = c3 = kα1,

c2 = c4 =∞, b1 = b2 = kα0

in Figs. 2a and 2b. Note that the configuration consists
of one spring and one damper only without an inerter,
i.e., α0 = 0, |F (1)

1 (h(jω))| again approaches 1 as ω →
∞ which results in γ(α0, α1, β0, β1) ≥ 1 as shown in
Fig. 6. It is also observed that for α1 ≥ 0.034, the value
maxi≤N max1≤N≤200 ‖F (i)

N (h(s))‖∞ stays 1. Adding an
inerter in parallel improves the performance as shown in
Fig. 7. It is also worth noting that the rate of decrease in the
objective function slows down at a certain value of α0 and
this value seems to have a correlation with α1. We remark
that the mass chain with N = 1 and the interconnection
admittance in (12) with (α0, α1) = (0, 0.0485) corresponds
to a critically damped harmonic oscillator, the damping ratio
of which is ζ = kα1/(2

√
mk) = 1.

Optimising over a certain frequency range with
constraints on structural parameters
In this subsection, we consider setting constraints on
structural parameters. We first set β0 = 0 corresponding to
kb =∞. Based on the observation in Section 2 that the
realisation of Fig. 2b is more efficient than that of Fig. 2a,
we derive the conditions on α0, α1, β0, β1 to set the upper
bounds b̄2, c̄3, c̄4 on b2, c3, c4 in Fig. 2b. Since

c3 = ka3, c4 =
ka4
a1

, b2 =
ka4
a2

,

noting β0 = 0, we have the following additional nonlinear
constraints on α0, α1, β0, β1 to Probelm 1:

a3 = α1 − β1 ≤
c̄3
k
,

a4
a1

=
α0

β1
− (α1 − β1) ≤ c̄4

k
,

a4
a2

= α0 − β1(α1 − β1) ≤ b̄2
k
.

In the following example, we set

c̄3
k

= 0.04,
b̄2
k

= 5× 10−4

without setting a constraint on the damping coefficient c4,
leaving the possibility of c4 =∞ open.

We now introduce the weight

W (s) =
1

0.05s+ 1
(13)

and solve Problem 1 with the above constraints on
structural parameters. MATLAB’s nonlinear programming
solver fmincon led to the following parameters :

α0 = 0.1250, α1 = 3.1522, β0 = 0, β1 = 3.1122.

The values for the constants in the realisations of Fig. 2b are
given by (after rounding small numbers) kb =∞ and

c3 = 68.00 Nsm−1, c4 = 0.2720 Nsm−1, b2 = 0.8466 kg
(14)

as illustrated in Fig. 8. The frequency domain plot of
maxi |W (jω)F

(i)
N (h(jω))| in Fig. 9 shows that the weighted

frequency response is well suppressed for various length
of mass chains. The time responses of the first intermass
displacements of these mass chains are also shown in Fig. 10
where the input is the recorded earthquake ground motion of
JMA Kobe NS 1995.27 We note that, in all the cases, the first
intermass displacements exhibited the maximum amplitude
over time among all the intermass displacements. The time
response of the uncontrolled mass chain of length 10 (N =
10) is also shown for comparison. Here ‘uncontrolled’ means
that the masses are connected by a spring k with 2 %
of structural damping. We may see that, comparing to
the uncontrolled case, the optimal configuration suppresses
the intermass displacements effectively with better transient
response. We may however note that our problem setting
of minimising the H∞-norm cannot directly consider the
transient response in general. For example, the slow decay
rate in a vehicle platooning reported in the reference28 may
still persist.
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Figure 8. Optimal configuration when a frequency weighting
and some constraints on structural parameters are introduced.
The parameters are given in (14).

Figure 9. maxi |W (jω)F
(i)
N (h(jω))| with the structural

parameters (14) and kb = ∞ for N = 1, 10, 100, 200.
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Figure 10. Time responses of the first intermass displacement
of various length of mass chains subjected to JMA Kobe NS
earthquake. The structural parameters are given in (14).

Effect of kb

In the previous two examples the optimal configurations
required β0 = 0, which gives kb =∞. However, some
mechanical devices cannot be assumed to be totally rigid,
i.e., kb 6=∞. In this example, we investigate how this affects
an optimal configuration. For kb 6=∞, β0 must be strictly
positive. Since kb = ka2/β0 = k(α0/β0 − 1), Problem 1

can be restated as

Minimize γ(α1, β0, β1),

subject to ‖W (s)F
(i)
N (h(s))‖∞ ≤ γ(α1, β0, β1)

∀N, i ∈ Z+,

h(s) =
ms2(β0s

2 + β1s+ 1)

k
((

1 + kb

k

)
β0s2 + α1s+ 1

) ,
β0 > 0, β1 ≥ 0,

k,m > 0,(
1 +

kb
k

)
β1 − α1 ≥ 0,

α1 − β1 > 0.

We set kb/k = 0.5 and employ the same weighting function
of (13).

MATLAB’s fmincon led to the following parameters:

α0 = 4.915× 10−4, α1 = 4.962× 10−2,

β0 = 3.277× 10−4, β1 = 3.308× 10−2.

where α0 was computed by α0 = β0(1 + kb/k). The values
for the constants in the realisations of Fig. 2a and Fig. 2b are
given by kb = 850 Nm−1 and

c1 = c3 = 28.12 Nsm−1, c2 = c4 =∞,
b1 = b2 = 0.2785 kg, (15)

i.e., one spring, one damper, and one inerter in
parallel as shown in Fig. 11. It is interesting that
a larger damping does not improve the vibration
suppression performance in this case. The value of
maxi≤N max1≤N≤200 ‖W (s)F

(i)
N (h(s))‖∞ is 1.867 for the

optimal configuration (15), whereas it is 4.471 when the
damping coefficient c1 (or c3) is replaced to 68.00Nsm−1.
The frequency domain plot of maxi |W (jω)F

(i)
N (h(jω))|

of the optimal configuration (15) in this example is shown
in Fig. 12. As a comparison, the frequency domain plot of
maxi |W (jω)F

(i)
N (h(jω))| of the optimal configuration (14)

for kb =∞ in the previous example in Section 4 is given
in Fig. 13. Note that here we set kb = 0.5k = 850Nm−1,
not kb =∞. We see that for N = 1 the peak value of the
frequency response is reduced significantly by using the
optimal configuration (15). However, it is worth noting that
for longer mass chains such as N = 10, 100, 200, the peak
values are suppressed better when using the configuration
(14). We may note that, if we rather focus on improving the
disturbance suppression performance for these N ’s, it is also
possible to tune the range of N in the optimisation problem
1. That is, we may try to minimise the objective function for
10 ≤ N ≤ 200 instead of 1 ≤ N ≤ 200 for example.

Remark 1. Due to its nonconvexity, achieving global
minima in Problem 1 cannot be guaranteed in general.
The numerical solutions given in this paper, i.e., the
configurations (14) and (15), are only guaranteed to be a
local minimum.

Remark 2. The default setting (an interior-point method)
of fmincon was used for the numerical simulations in this
paper.

Prepared using sagej.cls



Yamamoto 7

Figure 11. Optimal configuration when the effect of kb is
considered. The parameters are given in (15).

Figure 12. maxi |W (jω)F
(i)
N (h(jω))| with the structural

parameters (15) and kb = 0.5k for N = 1, 10, 100, 200.

Figure 13. maxi |W (jω)F
(i)
N (h(jω))| with the structural

parameters (14) and kb = 0.5k for N = 1, 10, 100, 200.

Conclusions

The synthesis problem of the passive interconnection in a
homogeneous mass chain has been studied. The chain is
excited at one end and the interconnection admittance is
designed to suppress the disturbance independent of the
length of the mass chain. An optimisation problem has been
proposed to achieve a scale-free disturbance suppression
performance. A suitable choice of such admittance has been
searched over a class of arbitrary positive real function of
a fixed (low) degree, which has the realisations consisting
of springs, at most two dampers, and one inerter. Although
the problem formulation can be extended to higher degree
cases, the selection of a more suitable optimisation algorithm
is required and considered as future work.
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