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Abstract: This paper studies the disturbance suppression problem for a homogeneous mass
chain, i.e., a chain of identical point masses interconnected by identical mechanical impedances.
The particular focus is placed on whether the disturbance attenuation level of the chain of
arbitrary length can be uniformly bounded with a size-independent controller. We explicitly
represent the scalar transfer functions from the disturbances to a given intermass displacement
as a function of the number of masses. This is an extension of the previous work by the author
that established a boundedness of the H-infinity norm when one end of the chain is perturbed.
We propose a new method that drastically simplifies its derivation process and provide the
complete forms of all the transfer functions of our interest.
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1. INTRODUCTION

We study the disturbance propagation in the mass chain
of Fig. 1. More specifically, we investigate how the length
of the mass chain affects the transfer functions from the
disturbances to a given intermass displacement.

With the prevalence of large-scale networked systems, it
has become of great interest to consider the systems that
involve very large numbers of locally interacting subsys-
tems. Examples of such systems include the platooning
of vehicles (Levine and Athans (1966)), frequency and
voltage regulation problems in electrical power systems
(Machowski et al. (1997); Simpson-Porco et al. (2016)),
and flocking and consensus phenomena (Bamieh et al.
(2012)). In such applications, the numbers of subsystems is
often subject to change. Therefore, one problem is ensuring
the ability to control a system behaviour independent of
the size of the systems.

In practice, however, such criteria are rarely satisfied.
This is due to the fact, at least in part, that several
key performance measures relating to global behaviours of
large-scale networks simply do not scale. Notable examples
include the string instability (e.g., Seiler et al. (2004); Feng
et al. (2019)) or network incoherence phenomena (e.g.,
Bamieh et al. (2012)). Also bidirectional control, which
our problem formulation corresponds to in the context of
vehicle platooning, is often subject to the inevitable string
instability (Barooah and Hespanha (2005); Herman et al.
(2015)) except for few favourable situations (Farnam and
Sarlette (2017)). Nevertheless, it appears that average or
local performance measures, for example those in (Carli
et al. (2009); Pates (2015); Bamieh et al. (2012); Ya-
mamoto and Smith (2016); Pates and Yamamoto (2018)),
can be guaranteed independent of the size of the network.

For a simple mass chain depicted in Fig. 1, the author
has shown that the H∞-norm of the transfer function
from the movable point displacement to a given intermass
displacement is uniformly bounded with respect to N for
certain choices of interconnection admittances (Yamamoto
and Smith (2016)). The conditions have been given with
respect to a dimensionless parameter h depending on
the admittance and mass. This has been achieved by
deriving the form of complex iterative maps to evaluate
how the transfer function changes with N . A graphical
means to design a suitable interconnection admittances
was provided so that the supremum of the H∞-norm
over N is no greater than a prescribed value. This can
be thought of as a scale-invariant H∞ control design for
an infinite family of plants in which the interconnection
admittance is the controller.

One drawback of the method that Yamamoto and Smith
(2016) provided is that the derivation process for the
complex iterative maps was rather complicated and hard
to generalize. In the present paper we provide a much
simpler way to evaluate the system dynamics as a function
of N. The closed-form expressions are given not only for
the transfer function from the movable point displacement
but also from the disturbances on each mass.

2. PROBLEM FORMULATION

2.1 General notation

The set of natural, real and complex numbers is denoted
by N, R, C, respectively. Rm×n is the set of m-by-n real
matrices. C+ is the closed right-half plane. H∞ is the
standard Hardy space on the right-half plane and ‖·‖∞
represents the H∞-norm. The (i, j) entry of a matrix A is
denoted by [A]i,j .
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1. INTRODUCTION

We study the disturbance propagation in the mass chain
of Fig. 1. More specifically, we investigate how the length
of the mass chain affects the transfer functions from the
disturbances to a given intermass displacement.

With the prevalence of large-scale networked systems, it
has become of great interest to consider the systems that
involve very large numbers of locally interacting subsys-
tems. Examples of such systems include the platooning
of vehicles (Levine and Athans (1966)), frequency and
voltage regulation problems in electrical power systems
(Machowski et al. (1997); Simpson-Porco et al. (2016)),
and flocking and consensus phenomena (Bamieh et al.
(2012)). In such applications, the numbers of subsystems is
often subject to change. Therefore, one problem is ensuring
the ability to control a system behaviour independent of
the size of the systems.

In practice, however, such criteria are rarely satisfied.
This is due to the fact, at least in part, that several
key performance measures relating to global behaviours of
large-scale networks simply do not scale. Notable examples
include the string instability (e.g., Seiler et al. (2004); Feng
et al. (2019)) or network incoherence phenomena (e.g.,
Bamieh et al. (2012)). Also bidirectional control, which
our problem formulation corresponds to in the context of
vehicle platooning, is often subject to the inevitable string
instability (Barooah and Hespanha (2005); Herman et al.
(2015)) except for few favourable situations (Farnam and
Sarlette (2017)). Nevertheless, it appears that average or
local performance measures, for example those in (Carli
et al. (2009); Pates (2015); Bamieh et al. (2012); Ya-
mamoto and Smith (2016); Pates and Yamamoto (2018)),
can be guaranteed independent of the size of the network.

For a simple mass chain depicted in Fig. 1, the author
has shown that the H∞-norm of the transfer function
from the movable point displacement to a given intermass
displacement is uniformly bounded with respect to N for
certain choices of interconnection admittances (Yamamoto
and Smith (2016)). The conditions have been given with
respect to a dimensionless parameter h depending on
the admittance and mass. This has been achieved by
deriving the form of complex iterative maps to evaluate
how the transfer function changes with N . A graphical
means to design a suitable interconnection admittances
was provided so that the supremum of the H∞-norm
over N is no greater than a prescribed value. This can
be thought of as a scale-invariant H∞ control design for
an infinite family of plants in which the interconnection
admittance is the controller.

One drawback of the method that Yamamoto and Smith
(2016) provided is that the derivation process for the
complex iterative maps was rather complicated and hard
to generalize. In the present paper we provide a much
simpler way to evaluate the system dynamics as a function
of N. The closed-form expressions are given not only for
the transfer function from the movable point displacement
but also from the disturbances on each mass.

2. PROBLEM FORMULATION

2.1 General notation

The set of natural, real and complex numbers is denoted
by N, R, C, respectively. Rm×n is the set of m-by-n real
matrices. C+ is the closed right-half plane. H∞ is the
standard Hardy space on the right-half plane and ‖·‖∞
represents the H∞-norm. The (i, j) entry of a matrix A is
denoted by [A]i,j .
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means to design a suitable interconnection admittances
was provided so that the supremum of the H∞-norm
over N is no greater than a prescribed value. This can
be thought of as a scale-invariant H∞ control design for
an infinite family of plants in which the interconnection
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(2016) provided is that the derivation process for the
complex iterative maps was rather complicated and hard
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simpler way to evaluate the system dynamics as a function
of N. The closed-form expressions are given not only for
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Fig. 1. Chain of N masses m connected by a mechanical
admittance Y and connected to a movable point x0.

Yc(s)

Fig. 2. Interconnection configuration. Y (s) = k/s+ Yc(s).

2.2 Chain model

We consider a chain of N identical point masses m con-
nected by identical mechanical networks (Fig. 1). Each
mechanical network provides an equal and opposite force
on each mass and is assumed here to have negligible mass.
It is also assumed that each mechanical network consists
of a spring component in parallel with other components
(Fig. 2). Here we assume that the spring coefficient k is a
given parameter and our task is to find a controller rep-
resented by an admittance Yc(s) that effectively supresses
the disturbance in the chain.

The system is excited by a movable point x0(t) and exter-
nal force acting on the ith mass, wi(t), i ∈ {1, 2, . . . , N}.
The displacement of the ith mass is then denoted by xi(t).
We assume that the initial conditions of the movable point,
external forces, and the mass displacements are all zero.

The equations of motion in the Laplace transformed do-
main are then

ms2x̂i = sY (s)(x̂i−1 − x̂i) + sY (s)(x̂i+1 − x̂i) + ŵi

for i = 1, . . . , N − 1,

ms2x̂N = sY (s)(x̂N−1 − x̂N ) + ŵN

where ˆ denotes the Laplace transform. Letting h(s) :=
sZ(s)m where Z is a mechanical impedance defined by
Z = Y −1, we obtain

x̂ = (h(s)I − LN )−1φ1x̂0 +
1

sY (s)
(h(s)I − LN )−1ŵ (1)

where I is the identity matrix,

x̂ = [x̂1, . . . , x̂N ]�, ŵ = [ŵ1, . . . , ŵN ]�,

φ1 = [1, 0, . . . , 0]� ∈ RN ,

LN :=




−2 1 0 · · · 0

1 −2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 −1



∈ RN×N .

(2)

Then the dynamics of the intermass displacement ei :=
xi−1 − xi is given by

ê = Gex0
(s)x̂0 +Gew(s)ŵ (3)

where ê = [ê1, . . . , êN ]� and

Gex0
(s) =

(
I +M(h(s)I − LN )−1

)
φ1,

=: [Ge1x0
(s), . . . , GeNx0

(s)]�

Gew(s) =
1

sY (s)
M(h(s)I − LN )−1,

M =




−1 0 · · · · · · 0

1 −1
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 −1



∈ RN×N .

(4)

To obtain an explicit inverse of the tridiagonal matrix
hI − LN , let us introduce the characteristic polynomials
of Li ∈ Ri×i in the variable h:

di := det(hI − Li), (5)

and also the characteristic polynomials of Li ∈ Ri×i in h:

di := det(hI − Li) (6)

where

Li :=




−2 1 0 · · · 0

1 −2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 −2



. (7)

Then d1 = h + 1 and d1 = h + 2. Using the Laplace
expansion, we find that

di(h) = (h+ 2)di−1(h)− di−2(h), (8)

di(h) = (h+ 2)di−1(h)− di−2(h), for i = 1, . . . , N (9)

with initial conditions

d−1 = 1, d0 = 1, d−1 = 0, d0 = 1. (10)

Using di and di, the inverse of hI − LN can be written
explicitly as[

(hI − LN )−1
]
i,j

= dj−1(h)dN−i(h) for i ≥ j, (11)

which can be easily deduced from the theorem provided
by Usmani (1994). Note that hI − LN is symmetric and
hence

[
(hI − LN )−1

]
i,j

=
[
(hI − LN )−1

]
j,i

.

The transfer functions Geix0(s) and Gew(s) in (3) are then
written as (suppressing the dependence on h(s) in di and
di)

Geix0
(s) =

dN−i+1 − dN−i

dN
, (12)

Geiwj
(s) =





1

sY (s)

1

dN
dj−1(dN−i+1 − dN−i) for i > j,

1

sY (s)

1

dN
dN−j(di−2 − di−1) for i ≤ j,

(13)

where Geiwj (s) is the (i, j)-entry of Gew(s).



	 Kaoru Yamamoto  et al. / IFAC PapersOnLine 54-9 (2021) 78–83	 79

Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Y m Y m Y m

x0

. . .

x1 x2 xN

w1 w2 wN

Fig. 1. Chain of N masses m connected by a mechanical
admittance Y and connected to a movable point x0.

Yc(s)

Fig. 2. Interconnection configuration. Y (s) = k/s+ Yc(s).

2.2 Chain model

We consider a chain of N identical point masses m con-
nected by identical mechanical networks (Fig. 1). Each
mechanical network provides an equal and opposite force
on each mass and is assumed here to have negligible mass.
It is also assumed that each mechanical network consists
of a spring component in parallel with other components
(Fig. 2). Here we assume that the spring coefficient k is a
given parameter and our task is to find a controller rep-
resented by an admittance Yc(s) that effectively supresses
the disturbance in the chain.

The system is excited by a movable point x0(t) and exter-
nal force acting on the ith mass, wi(t), i ∈ {1, 2, . . . , N}.
The displacement of the ith mass is then denoted by xi(t).
We assume that the initial conditions of the movable point,
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3. STABILITY OF INTERCONNECTION

Treating h as the independent variable, we first state
the following properties of the sequence di(h) given in
Yamamoto and Smith (2016).

Proposition 1. (Yamamoto and Smith (2016)). di(h) has
negative real distinct roots which interlace the roots of
di+1(h) for i = 1, 2, . . . . The roots of di(h) lie in the
interval (−4, 0) for i = 1, 2, . . . .

Proof. See (Yamamoto and Smith, 2016, Theorem 1).

We will say that the mass chain of Fig. 1 is stable if
all poles in the transfer functions Gex0

(s) and Gew(s)
have negative real parts. We may observe that poles in
Gex0

(s) can only occur at an s for which dN (h(s)) = 0.
Hence, from Proposition 1, we see that all poles in Gex0

(s)
have negative real parts (in the s-domain) if and only
if h(s) ∈ C \ (−4, 0) for all s ∈ C+. This test can be
conducted with standard tools such as the Routh-Hurwitz
stability criterion.

Proposition 2. Let n(s) and d(s) be coprime polynomials
such that h(s) = n(s)/d(s). If the polynomial n(s)+Kd(s)
is Hurwitz for any K ∈ (0, 4), Gex0(s) is stable.

Proof. Since dN (h(s)) = 0 only if h(s) ∈ (−4, 0), the
condition of the proposition implies that h(s) ∈ C\(−4, 0)
for all s ∈ C+, and consequently that Gex0

(s) is stable. �

For Gew(s), we further need to check if sY (s) �= 0 for all
s ∈ C+. Putting these conditions together, we have the
following proposition.

Proposition 3. The mass chain of Fig. 1 is stable if
h(s) ∈ C \ (−4, 0) and sY (s) �= 0 for all s ∈ C+.

Example. Consider a parallel spring–damper combina-
tion with admittance Y (s) = k/s + c for the interconnec-
tion. Then

h(s) = sZ(s)m =
ms2

cs+ k
. (14)

Since m, k, c are positive constants, the polynomial ms2+
K(cs + k) is Hurwitz for all K > 0. From Proposition 2,
h(s) ∈ C \ (−4, 0) and hence dN (h(s)) �= 0 for all s ∈ C+.
Furthermore, sY (s) = cs + k �= 0 for all s ∈ C+. Hence
the mass chain is stable.

Remark 1. We note that Hara et al. (2014) have inves-
tigated the stability of systems described by “generalized
frequency variables,” which is h(s) in our case. Here we
provide an explicit condition for stability specific to our
model.

Remark 2. If we only consider passive interconnections,
the stability of Gex0(s) can be tested by only looking at
the imaginary axis. That is, for a positive real impedance
Z(s) �≡ 0, Gex0(s) is stable if h(jω) does not take values in
the interval (−4, 0) (Yamamoto and Smith, 2016, Theorem
2).

4. INTERMASS DISPLACEMENTS

We now define the following functions:

F
(i,j)
N (h) :=





1

dN
dj−1(dN−i+1 − dN−i) for i > j,

1

dN
dN−j(di−2 − di−1) for i ≤ j.

(15)
Then, for h(s) = sZ(s)m,

Ge1x0
(s) = 1 + F

(1,1)
N (h(s)) ,

Geix0
(s) = F

(i,1)
N (h(s)) for i > 1,

Geiwj
(s) =

1

sY (s)
F

(i,j)
N (h(s)) .

(16)

Yamamoto and Smith (2016) have shown that, for any
i ≤ N, ‖Geix0

(s)‖∞ is uniformly bounded for all N ∈ N
with a suitable choice of interconnection by deriving a
form of an iterated Möbius transformation to represent

F
(i,1)
N (h). Closed-form solutions of F

(i,1)
N (h) have been

given by making use of a conjugacy transformation to
establish the formal upper bounds. However, the deriva-
tion process of these iterated Möbius transformations was
rather complicated and hard to generalize.

The following theorem gives these closed-form expressions
in much simpler way and also gives the expressions of

F
(i,j)
N (h) for all (i, j).

Theorem 4. Let ζ ∈ C be the root of

z2 − (h+ 2)z + 1 = 0 (17)

satisfying |ζ| ≤ 1. For any i, j ∈ N,

F
(i,j)
N =




ζi−j(1− ζ2j)
(
1− ζ2(N−i+1)

)
(1 + ζ) (1 + ζ2N+1)

for i > j,

−
ζj−i+1(1 + ζ2i−1)

(
1 + ζ2(N−j)+1

)
(1 + ζ) (1 + ζ2N+1)

for i ≤ j.

(18)

suppressing the dependence on h in F
(i,j)
N and ζ.

Proof. We first solve the recurrence relations (8) and (9).
Observe that the other root of (17) is ζ−1 and

ζ + ζ−1 = h+ 2. (19)

Substituting this into (8) gives

di =
(
ζ + ζ−1

)
di−1 − di−2 (20)

which implies

di − ζdi−1 = ζ−1(di−1 − ζdi−2) = ζ−i(d0 − ζd−1)

= ζ−i(1− ζ) (21)

and

di − ζ−1di−1 = ζ(di−1 − ζ−1di−2) = ζi(d0 − ζ−1d−1)

= ζi(1− ζ−1). (22)

Subtracting (21) from (22) and rearranging give

di =
1 + ζ2i+1

ζi(1 + ζ)
. (23)

Similarly, from the following equations

di − ζdi−1 = ζ−1(di−1 − ζdi−2) = ζ−i(d0 − ζd−1) = ζ−i

(24)
and

di − ζ−1di−1 = ζ(di−1 − ζ−1di−2) = ζi(d0 − ζd−1) = ζi,
(25)

we obtain

di =
1 + ζ2i+2

ζi(1− ζ2)
. (26)

Substituting (23) and (26) into (15) gives the closed-form
expression (18). �

4.1 Limits of the Sequences

It may be observed that the sequence
(
F

(i,j)
N

)
in (18) is

convergent for a fixed ζ ∈ C with |ζ| < 1 or ζ = ±1, and
divergent otherwise. The following theorem provides the
condition for the convergence on h and its limit.

Theorem 5. The sequence
(
F

(i,j)
N

)
converges pointwise to

a limit µ(i,j) for each h ∈ C \ (−4, 0) but fails to converge
otherwise. In particular,

(1) For h ∈ C \ [−4, 0),

µ(i,j)(h) =





ζi−j(1− ζ2j)

(1 + ζ)
for i > j,

−ζj−i+1(1 + ζ2i−1)

(1 + ζ)
for i ≤ j.

(27)

(2) For h = −4,

µ(i,j)(h) =

{
(−1)j−12j for i > j,

(−1)i−j−2(2i− 1) for i ≤ j.
(28)

Proof. Recall that ζ is the root of (17) satisfying |ζ| ≤ 1.
Since ζ + ζ−1 = h+ 2,

|ζ| = 1 ⇐⇒ h = 2(cos(∠ζ)− 1) ∈ [−4, 0]. (29)

For h = 0, ζ = 1 and from (18),

F
(i,j)
N (0) =

{
1 for i > j,

−1 for i ≤ j.
(30)

For h = 4, ζ = −1. Since it is tricky to compute F
(i,j)
N (−4)

from (18), we use the expression (15). It is straightforward
to obtain that, from (8) and (9),

di(−4) = (−1)i(2i+ 1), di(−4) = (−1)i(i+ 1). (31)

Substituting these into (15) gives

F
(i,j)
N (−4) =




(−1)j−12j
2(N − i+ 1)

2N + 1
for i > j,

(−1)i−j−2(2i− 1)
2(N − j + 1)

2N + 1
for i ≤ j

(32)

and limN→∞ F
(i,j)
N (−4) = µ(i,j)(−4) given in the theorem.

For h ∈ (−4, 0), ζ is imaginary with |ζ| = 1 and hence the

sequence
(
F

(i,j)
N

)
does not converge as observed from (18).

For h ∈ C \ [−4, 0], |ζ| < 1 and evaluating limits of (18)
gives µ(i,j)(h). �

Hence, if h(s) ∈ C \ (−4, 0) for all s ∈ C+,

sup
ω

lim
N→∞

|F (i,j)
N (h(jω))| = sup

ω
|µ(i,j)(h(jω))|. (33)

Furthermore,

sup
N

‖F (i,j)
N (h(s))‖∞ ≥ sup

ω
|µ(i,j)(h(jω))|. (34)

That is, supω |µ(i,j)(h(jω))| gives a lower bound of the

supremum of H∞-norm of F
(i,j)
N (h(s)) over N. A contour

Fig. 3. Contour plot of max
i,j

|µ(i,j)(h)| with 1 ≤ i, j ≤ 100.

The thick curve represents a contour of level 0 dB.

Fig. 4. Nyquist diagram of h(s) = s2/(2s+1) (red, dashed)

and contour plot of max1≤N≤200 |1+F
(1,1)
N |. The thick

black curve represents a contour of level 0 dB.

plot of the maximum magnitude of µ(i,j)(h) over (i, j) with
0 ≤, i, j ≤ 100 in the h-plane is shown in Fig. 3. The thick
black curve represents maxi,j |µ(i,j)(h)| = 0 (dB). The

figure shows that the asymptotic value of F
(i,j)
N (h(jω)) as

N → ∞ is directly related to the proximity of h(jω) to the
point −4. From Theorem 5 we see that the magnitude of
|µ(i,j)(−4)| grows as we increase the indices and we must
avoid this region.

4.2 Uniform Boundedness

When the interconnection is restricted to be passive,
Yamamoto and Smith (2016) have derived a sufficient
condition such that ‖Geix0

(s)‖∞ is uniformly bounded
for any N ∈ N. We demonstrate the boundedness re-
sult in Fig. 4. The figure shows a contour plot of

max1≤N≤200 |1 + F
(1,1)
N (h)| with the thick black curve rep-

resenting a contour of level 0 dB. (We may note that
N = 200 is large enough to accurately determine the
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we obtain

di =
1 + ζ2i+2

ζi(1− ζ2)
. (26)

Substituting (23) and (26) into (15) gives the closed-form
expression (18). �

4.1 Limits of the Sequences

It may be observed that the sequence
(
F

(i,j)
N

)
in (18) is

convergent for a fixed ζ ∈ C with |ζ| < 1 or ζ = ±1, and
divergent otherwise. The following theorem provides the
condition for the convergence on h and its limit.

Theorem 5. The sequence
(
F

(i,j)
N

)
converges pointwise to

a limit µ(i,j) for each h ∈ C \ (−4, 0) but fails to converge
otherwise. In particular,

(1) For h ∈ C \ [−4, 0),

µ(i,j)(h) =





ζi−j(1− ζ2j)

(1 + ζ)
for i > j,

−ζj−i+1(1 + ζ2i−1)

(1 + ζ)
for i ≤ j.

(27)

(2) For h = −4,

µ(i,j)(h) =

{
(−1)j−12j for i > j,

(−1)i−j−2(2i− 1) for i ≤ j.
(28)

Proof. Recall that ζ is the root of (17) satisfying |ζ| ≤ 1.
Since ζ + ζ−1 = h+ 2,

|ζ| = 1 ⇐⇒ h = 2(cos(∠ζ)− 1) ∈ [−4, 0]. (29)

For h = 0, ζ = 1 and from (18),

F
(i,j)
N (0) =

{
1 for i > j,

−1 for i ≤ j.
(30)

For h = 4, ζ = −1. Since it is tricky to compute F
(i,j)
N (−4)

from (18), we use the expression (15). It is straightforward
to obtain that, from (8) and (9),

di(−4) = (−1)i(2i+ 1), di(−4) = (−1)i(i+ 1). (31)

Substituting these into (15) gives

F
(i,j)
N (−4) =




(−1)j−12j
2(N − i+ 1)

2N + 1
for i > j,

(−1)i−j−2(2i− 1)
2(N − j + 1)

2N + 1
for i ≤ j

(32)

and limN→∞ F
(i,j)
N (−4) = µ(i,j)(−4) given in the theorem.

For h ∈ (−4, 0), ζ is imaginary with |ζ| = 1 and hence the

sequence
(
F

(i,j)
N

)
does not converge as observed from (18).

For h ∈ C \ [−4, 0], |ζ| < 1 and evaluating limits of (18)
gives µ(i,j)(h). �

Hence, if h(s) ∈ C \ (−4, 0) for all s ∈ C+,

sup
ω

lim
N→∞

|F (i,j)
N (h(jω))| = sup

ω
|µ(i,j)(h(jω))|. (33)

Furthermore,

sup
N

‖F (i,j)
N (h(s))‖∞ ≥ sup

ω
|µ(i,j)(h(jω))|. (34)

That is, supω |µ(i,j)(h(jω))| gives a lower bound of the

supremum of H∞-norm of F
(i,j)
N (h(s)) over N. A contour

Fig. 3. Contour plot of max
i,j

|µ(i,j)(h)| with 1 ≤ i, j ≤ 100.

The thick curve represents a contour of level 0 dB.

Fig. 4. Nyquist diagram of h(s) = s2/(2s+1) (red, dashed)

and contour plot of max1≤N≤200 |1+F
(1,1)
N |. The thick

black curve represents a contour of level 0 dB.

plot of the maximum magnitude of µ(i,j)(h) over (i, j) with
0 ≤, i, j ≤ 100 in the h-plane is shown in Fig. 3. The thick
black curve represents maxi,j |µ(i,j)(h)| = 0 (dB). The

figure shows that the asymptotic value of F
(i,j)
N (h(jω)) as

N → ∞ is directly related to the proximity of h(jω) to the
point −4. From Theorem 5 we see that the magnitude of
|µ(i,j)(−4)| grows as we increase the indices and we must
avoid this region.

4.2 Uniform Boundedness

When the interconnection is restricted to be passive,
Yamamoto and Smith (2016) have derived a sufficient
condition such that ‖Geix0

(s)‖∞ is uniformly bounded
for any N ∈ N. We demonstrate the boundedness re-
sult in Fig. 4. The figure shows a contour plot of

max1≤N≤200 |1 + F
(1,1)
N (h)| with the thick black curve rep-

resenting a contour of level 0 dB. (We may note that
N = 200 is large enough to accurately determine the
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Fig. 5. The magnitude plot of Ge1x0(jω) with h(s) =
s2/(2s+ 1) for N = 1, 20, 50, 100.

Fig. 6. Nyquist diagram of h(s) = s2/(2s+1) (red, dashed)

and contour plot of max1≤N≤200 |hF (1,N)
N |. The thick

black curve represents a contour of level 0 dB.
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Fig. 7. The magnitude plot of Ge1wN
(jω) with h(s) =

s2/(2s+ 1) for N = 1, 20, 50, 100.

shape of the boundary as discussed in (Yamamoto and
Smith (2016)).) If the Nyquist diagram of h(s) lies inside
a contour of level γ, this indicates that ‖Geix0

(s)‖∞ ≤ γ
for any N ∈ N. To demonstrate this, the Nyquist diagram
of h(s) = s2/(2s+ 1) is also plotted in Fig. 4. Since it lies
inside the curve of level 0 dB, ‖Geix0

(s)‖∞ ≤ 1 for any
N ∈ N, as we can confirm in Fig. 5 for N = 1, 20, 50, 100.

To evaluate Geiwj (s) in a similar way, we first rewrite it
as

Geiwj (s) =
1

sY (s)
F

(i,j)
N (h(s))

=
1

ms2
h(s)F

(i,j)
N (h(s))

(35)

and draw a contour plot of maxN |hF (i,j)
N (h)|. Figure. 6

shows the contour map for (i, j) = (1, N) again with the
Nyquist diagram of h(s) = s2/(2s + 1). Figure 6 is very
similar to Fig. 4 in appearance. However, since 1/ms2 is
multiplied, the same interconnection h(s) = s2/(2s + 1)
will result in large frequency response of Ge1wN

(s) in the
low frequency range, which is indeed the case as seen in
Fig. 7. To remedy this, we need to shape the locus of
h(jω) at ω ≈ 0 suitably. However, because of the existence
of the parallel spring, the limiting behaviour of h(jω)
as ω → 0 cannot be drastically changed using passive
interconnection, i.e., positive-real Y (s). Whether the use
of an active controller may lead to an improvement is yet
to be explored.

5. CONCLUSION

Convenient representations of transfer functions from dis-
turbance to a given intermass displacement in a homo-
geneous mass chain have been presented to evaluate how
the system dynamics change as the number of masses N
changes. The limiting behaviour of these transfer functions
as N tends to infinity has been studied. Moreover, the
possibility of designing a scale-invariant controller that
achieves the disturbance attenuation level independent of
N has been explored. This may not be achieved by passive
interconnection when the disturbance on each mass is
present. The use of active controllers is considered as a
future work.
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