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Signal Reconstruction with Generalized Sampling

Kaoru Yamamoto1, Masaaki Nagahara2, and Yutaka Yamamoto3

Abstract— This paper studies the problem of reconstructing
continuous-time signals from discrete-time uniformly sampled
data. This signal reconstruction problem has been studied
by the authors in various contexts, and led to a new signal
processing paradigm. The crux there is to employ a physically
realizable signal generator model, and design an (sub)optimal
filter via H∞(C+) optimal sampled-data control theory. The
present paper extends this framework to the situation where
sampling is more general having a generalized sampling kernel.
It is more consistent with a more general framework, for
example, wavelet signal expansion, and can lead to a more
general applications. We give a general setup along with a
solution via fast-sample/fast-hold approximation. A simulation
is presented to illustrate the result.

I. INTRODUCTION

A central problem in digital signal processing is that of
reconstructing the original analog signal from its sampled
data. When sampling is uniform and ideally performed,
i.e., reading out the sampled values precisely at sampled
points, the celebrated sampling theorem, e.g., [13], gives a
perfect answer as long as the frequency contents are strictly
band-limited below the Nyquist frequency π/h [rad/sec],
where h is the underlying sampling period. Based on this
perfect band-limiting assumption, Shannon [6] proposed his
signal processing paradigm. In spite of various drawbacks
such as non-causal construction, slow convergence, etc., this
paradigm has dominated digital signal reconstruction until
today.

In contrast to such developments, the present authors
have developed and proposed a completely new methodology
based on H∞ sampled-data control theory: [12], [4], [5].

The central idea there is quite different from that of
the Shannon paradigm in that it does not assume perfect
band-limiting hypothesis on the original signals to be recon-
structed. Instead, we assume that the signal class obeys a
certain decay curve in its frequency energy distribution that
is governed by a linear finite-dimensional system. This is
a much more realistic assumption in that in many signals
produced by physical devices, e.g., musical instruments,
there is always a signal generator and associated signal
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models, and they mostly obey a certain frequency decay
curve induced by such a model.

This new method has been applied to sound and image
processing, and has proven quite successful [8], [11]. In
particular, it is implemented in a sound-processing LSI chips,
whose cumulative production has reached over 65 million
chips.

In these applications, however, sampling is still limited
to be ideal, that is, we assume instantaneous signal values
{f(nh)}∞n=0 for a signal f . There are two representative
cases where we want to consider non-ideal sampling actions.
First, in reality, sampling is usually conducted by integrating
signals with a certain kernel function. Any physical sensing
devices are always accompanied with such an integration,
and pure ideal sampling is a limit of such a process. Another
notable and important situation is that of wavelet expansion
where we expand functions in terms of scaling or wavelet
functions. Expansion coefficients are obtained through the
inner product with a scaling or wavelet function, and we
again encounter a sampling process with integration.

In order to circumvent the limitation of ideal sampling and
expand the applicability of the method developed in [12] etc.,
this paper studies the signal reconstruction problem with such
a generalized sampling induced by integration with a kernel
function.

While the framework in [12] is basically compatible with
the current wavelet analysis, there also arise some technical
issues that require a careful generalization. For example,
the Daubechies scaling function 2φ ([2]) has support in
[0, 3h]. This means that in order to compute the values of
the generalized sampling, one has to hold the input function
for 3 sampling periods, and take the inner product of the
signal with the kernel function with 3 steps of delay. The
lifting technique [1], [9] gives a transparent formulation of
this setting. We then modify the design method developed
in [12] to the present context to obtain an optimal filter.
The detail of the precise problem formulation is given in the
subsequent section.

This method has an added advantage: In practice, we
generally do not have real continuous-time data but only
sampled values, ideal or non-ideal. This makes it difficult
to apply standard wavelet expansion analysis due to the
lack of information with higher resolution (referred to as
a wavelet crime in [7]). The present method can be used
to optimally interpolate the intersample behavior yielding
the lost information in detail. The objective here is then to
reconstruct the original analog signal including the intersam-
ple behavior (sub)optimally in the sense of H∞. Then one
obtains an optimal reconstruction including the intersample



behavior, enabling a higher-order expansion. The overall
analog information is controlled by a high-frequency decay
rate peculiar to the signal generator we consider. The detail
will be described below.

The paper is organized as follows: Section II gives the
basic signal reconstruction formulation. The difficulty here
is that the generalized sampling induces a certain amount of
delays, and this requires further modifications in the design
formulas. This will be discussed in the subsequent two sec-
tions. We give formulas for design via the fast-sample/fast-
hold approximation in Section III. A design example is given
in Section IV using the Daubechies 2 scaling function. Aside
from the fact that this treatment is new in this context, we
also see that while for the bare expansion it gives a rather
poor approximation result, it will be substantially improved
by introducing upsampling and corresponding filter design.
Concluding remarks are given to indicate issues for future
study in Section V.

II. PROBLEM FORMULATION

Consider the sampled-data system depicted in Fig. 1.

F (s)

S̃h ↑M K(z) Hh/M P (s)

e−mhs

wc

−
+ ec

Fig. 1: Signal reconstruction error system

The exogenous signal wc goes through a linear time-
invariant system F (s), and becomes band-limited to become
the actual target analog signal y. This F (s) models the
physical characteristic of the signal generator, e.g., a musical
instrument, and governs the decay rate of high frequency in
the signal y. The totality of such y constitutes the signal class
to be reconstructed. We take F to be rational and strictly
proper so that the resulting filter has a low-pass characteristic.
The filtered y is then processed by the generalized sampler
S̃h whose definition is given as follows:

(S̃h(y))[k] :=
∫ Lh

0

φ(t)y(kh+ t)dt (1)

=

L−1∑
i=0

∫ (i+1)h

ih

φ(t)y(kh+ t)dt,

where the kernel function φ is assumed to have support in
[0, Lh]. In the case of the Haar scaling function L = 1,
but for many applications, L is greater than 1. For example,
Daubechies N scaling function, L = 2N − 1; likewise for
other wavelet or scaling functions. Hence we must allow
step L delays to obtain the actual sampled values yd[k], k =
0, 1, 2 . . .. This is what is defined in (1).

Figure 2 (left) shows an example of the sampling kernel
φ(t).

The discrete-time signal yd is first upsampled by by factor
M by the upsampler ↑M :

↑M : yd 7→ xd : xd[k] =

{
yd[l], k =Ml, l = 0, 1, . . .
0, otherwise ,

0

φ(t)

t

0

φ(t)

t
Lh Lh

ih+
jh

N
ih+

(j + 1)h

N

αi,j

Fig. 2: Sampling kernel φ(t) (left) and fast discretization of
φ(t) (right)

and becomes another discrete-time signal xd with sampling
period h/M . The discrete-time signal xd is then processed
by a digital filter K(z) to be designed, and becomes a
continuous-time signal uc by going through the zero-order
holdHh/M (which works in sampling period h/M ), and then
becomes the final signal zc by passing through an analog
buffer filter P (s). Here P (s) can be assumed to be 1 for
simplicity. An advantage here is that one can use the fast
hold device Hh/M thereby making possible more precise
signal restoration. The objective here is to design a digital
filter K(z) for a given F (s), M and P (s), to optimally
reconstruct the filtered signal y.

Fig. 1 shows the block diagram for the error system for
the design. The delay in the upper portion of the diagram
corresponds to the fact that we allow a certain amount of
time delay for signal reconstruction. Let Tew denotes the
input/output operator from wc to ec(t) := y(t−mh)−zc(t).
Our design objective is as follows:

Problem 1: Given stable F (s) and P (s) and an attenua-
tion level γ > 0, find a digital filter K(z) such that

‖Tew‖∞ = sup
wc∈L2[0,∞)

‖Tewwc‖2
‖wc‖2

< γ.

Remark 2.1: The above L2-induced norm ‖Tew‖∞ is in-
deed the H∞-norm of the operator Tew [10].

III. SOLUTION METHOD VIA FAST-SAMPLE/FAST-HOLD
APPROXIMATION

The system given by Figure 1 can be cast into a single-
rate sampled-data system via lifting [1], [9], and the H∞

control problem can be solved. Particularly, it is practical to
employ the fast-sample/fast-hold approximation to obtain an
approximate solution. The details can be found in [12].

However, there is an extra issue here. Since the generalized
sampler (1) induces an extra delay term in obtaining sampled
values, we must derive the formula for the fast discretization
of S̃h.

Let us first discretize the sampling intervals
[0, h), [h, 2h), . . . with the fast sampling grid
{0, h/N, 2h/N, . . . , (N − 1)h/N}, {h, h + h/N, h +
2h/N, . . . , h + (N − 1)h/N}, etc. See Figure 2 (right) for
the fast sampling approximation of φ. Then Figure 3 shows
the block diagram for the fast discretization on these grids
to obtain the operator S = S̃hHh/N .
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Fig. 3: Fast discretization S of S̃h

According to this figure, we have

yd[k] = S̃h(y)

=

L−1∑
i=0

∫ (i+1)h

ih

φ(t)y(kh+ t)dt

=

L−1∑
i=0

N−1∑
j=0

∫ ih+(j+1)h/N

ih+jh/N

φ(t)y(kh+ t)dt

=

L−1∑
i=0

N−1∑
j=0

y(kh+ ih+ jh/N)

∫ ih+(j+1)h/N

ih+jh/N

φ(t)dt︸ ︷︷ ︸
=:αi,j

=

L−1∑
i=0

[
αi,0 αi,1 . . . αi,N−1

]
ỹi[k],

where αi,j is defined as

αi,j :=

∫ ih+(j+1)h/N

ih+jh/N

φ(t)dt (2)

and ỹi[k] as

ỹi[k] :=


y(kh+ ih)

y(kh+ ih+ h/N)
...

y(kh+ ih+ (N − 1)h/N)

 .
See Figure 2 (right) for αi,j . We assume (2) can be easily
computed. For example, by using the trapezoidal rule, we
can numerically compute αi,j by

αi,j =
φ(ih+ jh/N) + φ(ih+ (j + 1)h/N)

2
· h
N

Summarizing, we have the fast discretization of general-
ized sampler S̃h given by the matrix

Si =
[
αi,0 αi,1 . . . αi,N−1

]
.

Finally, we have

yd[k] =

L−1∑
i=0

Siỹi[k].

Figure 4 shows the block diagram of the discretized
operator S for L = 3 in Figure 3. Here LN is the discrete-
time lifting by down-sampling ratio N defined by

LN := (↓N)


1
z
...

zN−1



LN

z−1

z−1

S0

S1

S2

+

+

yd[k]

Fig. 4: Realization of fast discretization S for L = 3

where (↓N) denotes the downsampler

↓N : xd 7→ yd : yd[k] = xd[Nk].

We are now ready to employ the fast sample/hold approx-
imation to solve the H∞ control problem. For brevity of
notation, we adopt the following shorthand notation for the
transfer function D + C(zI −A)−1B:

[
A B
C D

]
:= D + C(zI −A)−1B.

Consider the generalized plant shown in Figure 5. The filter
K̃(z) is an LTI (linear and time-invariant), single-input /M -
output system. Introducing the inverse discrete time lifting
by upsampling ratio M as

L−1M :=
[
1 z−1 . . . z−M+1

]
(↑M),

K̃(z) can be written as

K̃(z) = LMK(z)(↑M)

= LMK(z)L−1M [1 0 . . . 0]T .

The sampled-data error system Tew can be approximated
by a discrete-time LTI system as in the following theorem.

Theorem 1: Let state-space realizations of F (s), P (s) and
K(z) be given by

F (s) =

[
AFc

BFc

CFc DFc

]
, P (s) =

[
APc

BPc

CPc DPc

]
,

K(z) =

[
AK BK
CK DK

]
.

Let N = Ml where l is a positive integer, and define the
discrete-time LTI system TN as follows:

TN (z) = z−mFN (z)− PN (z)HK̃(z)S(z)FN (z),



[
e−mhsF (s) −P (s)

F (s) 0

]
H̃hS̃h

K̃(z)

Gs

ec wc

yd ud

Fig. 5: Sampled-data control system

where

FN =



AN
F AN−1

F BF AN−2
F BF . . . BF

CF 0 0 . . . 0

CFAF CFBF 0
. . .

...
...

...
...

. . . 0
CFA

N−1
F CFA

N−2
F BF CFA

N−3
F BF . . . 0

 ,

PN =



AN
P AN−1

P BP AN−2
P BP . . . BP

CP DP 0 . . . 0

CPAP CPBP DP

. . .
...

...
...

...
. . . 0

CPA
N−1
P CPA

N−2
P BP CPA

N−3
P BP . . . DP

 ,

K̃(z) =


AM

K AM−1
K BK

CK DK

CKAK CKBK

...
...

CKA
M−1
K CKA

M−2
K BK

 ,

AF = eAFch/N , BF =

∫ h/N

0

eAFc tBFc dt,

AP = eAPch/N , BP =

∫ h/N

0

eAPc tBPc dt,

H := diag {Il} ∈ RN×M , Il := [1, 1, . . . , 1]T ∈ Rl,

S(z) :=

L−1∑
i=0

z−iSi ∈ R1×N .

Then, for each fixed K̃ and for each ω ∈ [0, 2π/h), the
frequency response

‖TN (ejωh)‖ → ‖Tew(ejωh)‖,

as N →∞, and this convergence is uniform with respect to
ω ∈ [0, 2π/h). Furthermore, this convergence is also uniform
in K̃ if K̃ ranges over a compact set of filters.
The proof is almost the same as in [12, Theorem 1].

IV. DESIGN EXAMPLE

In this section we demonstrate the effectiveness of the
present framework via two numerical examples.

Example 4.1: We design the filter K(z) with upsampling
factor M = 8, sampling period h = 1, and delay step m =
4. As the kernel function for the generalized sampling, we
employ the Daubechies 2-scaling function 2φ; hence L = 3.
We take the analog filters F (s) and P (s) as

F (s) =
1

(Ts+ 1)(0.1Ts+ 1)
, T = 7.0187, P (s) = 1.

Reflecting a typical energy distribution of orchestral music,
the time constant T = 7.0187 is taken to be equivalent to 1
kHz with sampling frequency 44.1 kHz, under normalization
of h = 1. The filter F (s) corresponds to an energy distri-
bution that decays by −20 dB per decade from 1 kHz and
−40 dB per decade from 10 kHz.

The simulation results are shown in Figures 6a – c.
Figure 6a shows the response of the designed filter against

the input sin(π/8)t. This is below the Nyquist frequency π,
and the response shows a good tracking performance. (The
original sinusoid is delayed to accommodate the delay in-
duced by the sampling and reconstruction process.) However,
comparing this with Figure 7a, we see that the advantage of
the current framework where the approximation is quite poor
without upsampling.

This is still for tracking in low frequency. In order to really
ensure the approximation quality of the present method, we
show the response against a signal that contains components
above the Nyquist frequency. This is not very adequate for
the conventional Shannon paradigm where the reconstruction
is limited below the Nyquist frequency. Figure 6b shows the
response against the input signal sin(π/8)t+0.05 sin(9π/8)t.
This result shows tracking to this signal with such a high-
frequency component. Although this shows a fairly good
tracking, its non-upsampled counterpart Figure 7b gives a
very poor tracking performance, almost indistinguishable
from the one shown in Figure 7a, ignoring the high-frequency
component 0.05 sin(9π/8)t. This clearly exhibits the ad-
vantage of the present framework allowing the intersample
interpolation with upsampler and signal generator F (s).

Figures 6c and 7c also further show the tracking results
for sin(π/8)t with phase-shifted 0.05 sin((9π/8)t + 10).
Again the upsampled result Figure 6c shows a better result
compared to Figure 7c. (Note that we have shifted the
response due to the delay e−mhs, to make the comparison
clearer.)

On the other hand, the present generalized sampling,
particularly with a continuous kernel, does not necessarily
work well for discontinuous signals or signals with much
high frequency. For example, the Daubechies kernels do not
work well for some discontinuous functions like rectangular
waves. This is not surprising since such kernel functions
were developed to allow for more efficient expansion for
continuous or smooth signals. The following example gives
some ideas.

Example 4.2: Figure 8 shows their responses against a
rectangular wave. The filters are designed with the same
F (s) as Example 4.1, but here we take h = 0.1 and M = 2
for simulation. Figure 8a shows the result with the 2nd
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Fig. 6: Reconstruction of sinusoids with upsampling factor
M = 8

order Daubechies kernel 2φ while Figure 8b shows the result
using a sampled-data filter with ideal sampler by the method
developed in [12]. The result by the Daubechies kernel shows
larger errors, particularly at discontinuities, which are a result
of the continuity of the kernel function, and also of the
difference between the ideal sampler and the length of the
kernel of this generalized sampler. For comparison, we also
show the result by the Haar scaling function in Figure 8c.
This shows less ringing than Figure 8a. This is due to the
fact that the Haar scaling function has smaller support, and
approximates the ideal sampling better.
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Fig. 7: Reconstruction of sinusoids without upsampling

V. DISCUSSION AND CONCLUDING REMARKS

We have generalized the sampled-data filter design
methodology given in [12] to the more general context
involving generalized sampling. This is in conformity with
the general situation where sampling is usually associated
with a integration with a kernel function, and also with the
situation in the wavelet expansion. In particular, we have
seen that we can improve the approximation quality by the
present method with upsampling. In practice, we do not
necessarily have sufficient resolution in the given data, and
it is possible to go over to the higher order expansion by
optimally interpolating the intersample behavior, and this can
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Fig. 8: Response against a rectangular wave

contribute to a higher-order wavelet expansion.
On the other hand, we also note that the performance of

the present generalized sampling method with continuous
kernels is limited in high frequency as compared to ideal
sampling. This performance limitation is in a sense inevitable
due to the very nature of generalized sampling that is
always accompanied with integration. In this sense, it cannot
supersede ideal sampling. The objective of the present study
is to generalize the method in [12] for ideal sampling to this
generalized context where sampling obeys a more practical
constraint. As noted in Examples 4.1 and 4.2, this can
be circumvented to some extent as noted above, e.g., as

contrasted in Figure 6 vs Figure 7.
To remedy the high frequency performance, one can also

resort to expand the residual error via higher-order wavelets,
or employ scaling/wavelet functions that are more adequate
for high-frequency reconstruction, for example, coiflets or
simply Haar scaling function ([2]). However, they cannot
outperform ideal sampling as far as the high frequency
performance is concerned. This is the consequence of the
integration involved in sampling. Some related aspects were
discussed in [3], but a more elaborate study is a topic for
future study.

We also note that it is possible to extend the present
framework to a more general context with non-orthogonal
scaling functions, in particular, box splines. In such a case,
although the scaling functions have compact support, the
corresponding expansion cannot be obtained by an inner
product with such scaling functions, but rather with their
duals. This was discussed partly in [3] as well, but it needs
to be explored also in detail in our future study.
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