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Tracking of Signals Beyond the Nyquist Frequency

Yutaka Yamamoto1, Kaoru Yamamoto2 and Masaaki Nagahara3

Abstract— This paper studies the problem of tracking or
disturbance rejection for sampled-data control systems, where
the tracking signal can have frequency components higher than
the Nyquist frequency. In view of the well-known sampling
theorem, one recognizes that any high-frequency components
may be detected only as an alias in the low base band, and hence
it is impossible to recover or detect such frequency components.
This paper examines the basic underlying assumption, and
shows that this assumption depends crucially on the underlying
analog model. We show that it is indeed possible to recover such
high-frequency signals, and also that, by introducing multirate
signal processing techniques, it is possible to track or reject such
frequency components. Detailed analysis of multirate closed-
loop systems and zeros and poles are given. It is shown via
examples that tracking of high-frequency signals beyond the
Nyquist frequency can be achieved with satisfactory accuracy.

I. INTRODUCTION

This note raises and studies the following question: Sup-
pose we are given a sampled-data control system with
the objective of tracking a reference signal or rejecting a
disturbance having frequency components higher than the
Nyquist frequency, i.e., half the sampling frequency.

Can we track such a high-frequency tracking signal
by suitably designing a digital controller?

In view of the well-known sampling theorem, this may
appear to be asking something impossible. The sampling
theorem (e.g, [11], [18]) tells us that if the target signal is
beyond the so-called Nyquist frequency, it may appear only
as an aliased signal in the base band that is below the Nyquist
frequency, and cannot be recovered from such knowledge.
The formula given by the sampling theorem recovers only
those residing in the base band that is below the Nyquist
frequency.

On the other hand, such a problem is not at all an artificial
one, given various practical constraints in constructing a
control system. Consider, for example, frequency regulation
in electric power supply. Today many power supply systems
(for example, battery backup systems) go through an inverter,
and the produced power needs to be regulated to a standard
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power frequency, say 60 [Hz]. Due to various limitations,
we cannot necessarily take advantage of the capacity of
microprocessors or sensors, so that the sampling rate in
sensing the output power signals may be limited. It would
be very desirable to accomplish such a tracking objective
without demanding much on sensing and sampling. Such an
objective is also quite common in position control of hard
disk drives. Due to physical limitations, the sampling rate
cannot be taken fast enough to cover resonance disturbances.
In such a case, it is also desired to reject such disturbances
based on a low sampling rate; see, e.g., [2], [19] for details.

A close examination of the sampling theorem reveals that
the signal recovery limitation below the Nyquist frequency
arises from the very basic assumption on the analog signal
model. Namely, in the sampling theorem, one assumes that
the original analog signal is perfectly band limited below
the Nyquist frequency. It does not say anything about the
situation where this basic assumption does not hold.

In fact, the authors have initiated a new signal processing
approach based on H∞ sampled-data control, assuming an
analog signal generator model that is not fully band limited
below the Nyquist frequency [16]. The method has been
successful in sound processing and other applications [8],
[9]; in particular, sound-processing chips produced by the
SANYO corporation has proven to be successful to the extent
of producing over 60 million chips [14], [15].

This success suggests that there is some room for improve-
ment in controlling signals beyond the Nyquist frequency
which was considered to be an absolute limit of signal pro-
cessing in the past. The same idea was applied to repetitive
control to allow for high frequency tracking [10]. However,
these are basically open-loop type signal shaping problem,
and not directly applicable to feedback control.

The objective of the present paper is to show that it
is indeed possible to achieve the above tracking objective
provided that
• we have proper a priori knowledge about the plant and

the tracking signal, and
• we can produce intersample input signals via upsam-

pling.
Let us briefly review pertinent facts on sampled-data

control. Since the introduction of lifting [4], [12], what
modern sampled-data control theory has established is that
one can control and optimize the intersample behavior with a
discrete-time controller; details may be found, for example,
in [3], [5], [13]. Such developments usually assume that
the sampling occurs at the same timing both at sensing and
control. On the other hand, in the signal processing literature,
multirate processing, utilizing up- and down-samplers, are



known to be quite effective [17]. In particular, it allows more
elaborate signal manipulation in the intersampling periods.
The combination of this multirate processing and H∞ control
is fully used in [16]. The advantage of introducing multirate
processing, particularly upsampling, is that it gives more
freedom in handling and reconstructing intersample signals.

Multirate sampled-data control has had some history in
the control literature; see, e.g., [1], [6], [7]. However, they
use full information obtained by multirate sampling, and the
focus is on extending the capability of control. In contrast,
here once output is sampled, we do not perform further so
the basic sampling period is fixed. Upsampling is performed
only on the side of computing the control signals.

In this framework, we propose a new design method for
tracking sinusoids by allowing upsampled input signals while
maintaining the advantage of analog signal generating model.

II. PROBLEM FORMULATION

Consider the sampled-data system depicted in Fig. 1.
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Fig. 1. Sampled feedback system

P(s) is a linear, time-invariant, continuous-time plant, and
K(z) is a linear, time-invariant, discrete-time controller. The
error e is sampled with sampling period h, and after sampled,
it is upsampled by factor M to allow for a faster control
processing. The action of ↑M is given as follows:

(↑M)(e)[kh+ `] =

{
e[kh] if `= 0
0 `= h/M, . . .(M−1)h/M.

(1)

Hh/M is the zero-order hold that holds the output as constant
for the period of h/M.

We consider the following problem:
Problem 1: In the block diagram Fig. 1, consider the
reference input sinωt where ω is greater than the Nyquist
frequency π/h. Find a discrete-time controller K(z) such that
the output y(t) nearly tracks the reference r(t) = sinωt or
its delayed signal r(t−L) = sinω(t−L).

We attack this problem according to the following sce-
nario:
• Lift the system Fig. 1 as a state space model [5], [3],

[12].
• Describe transmission/invariant zeros in the obtained

state space model.
• Characterize the transmission zero directions, which

governs the intersample behavior of the real tracking
performance.

We then convert this problem to a H∞ sampled-data
control problem, and show that our objective is indeed
achieved.

A. State Space Description of the Lifted Multirate System

It is necessary to describe the system in Fig. 1 as a time-
invariant discrete-time system with a single sampling period
h. A complication arises due to the mixture of continuous-
time plant P(s) and also upsampler ↑M. In order to deal with
these, we need to introduce both continuous-time lifting and
discrete-time lifting (blocking) for the upsampler.

Let P(s) and K(z) be described by the following state
space equations:

P(s) :

{
d
dt xc(t) = Acxc(t)+Bcu(t)
y(t) =Ccxc(t)

(2)

K(z) :

{
xd [k+1] = Adxd [k]+Bdwd [k]
yd [k] =Cdxd [k]+Ddwd [k].

(3)

Here, and in what follows, we employ the convention that
function values are specified as f (t) with parentheses when t
is a continuous variable, and as g[k] when k takes on integer
values.

In order to give a unified description of the equations
above as a single discrete-time system, we introduce the
continuous-time lifting [5], [4], [3], [12]:

L : L2
loc[0,∞)→ `2(L2[0,h)) : x(·) 7→ {x[k](·)}∞

k=0,(4)
x[k](θ) := x(kh+θ).

Lifting the continuous-time plant P(s) in the period h, we
obtain

Σ̃P :

{
xc[k+1] = eAchxc[k]+

∫ h
0 eAc(h−τ)Bcu[k](τ)dτ

yc[k](θ) =CceAcθ xc[k]+
∫

θ

0 CceAc(θ−τ)Bcu[k](τ)dτ.
(5)

We also need to perform discrete-time lifting (i.e., blocking)
for the discrete-time controller combined with upsampler (1),
because upsampler makes it time-varying in the activating
timing. To remedy this, we must lift it with period h.

Proposition 2.1: When lifted with period h, the discrete-
time controller K(z) is expressible as

Σ̃K : xd [k+1] := xd(kh+h) = AM
d xd [k]+AM−1

d Bde[k](0)

=: Adxd [k]+Bde[k](0)

yd [k] :=


yd(kh)

yd(kh+h/M)
...

yd(kh+(M−1)h/M)



=


Cd

CdAd
...

CdAM−1
d

xd [k]+


Dd

CdBd
...

CdAM−2
d Bd

e[k](0)

=: Cdxd [k]+Dde[k](0).

Define a generalized hold function H(θ) by

H(θ) := [χ[0,h/M)(θ),χ[h/M,2h/M)(θ), . . . ,χ[(M−1)h/M,h)(θ)],
(6)



where χ[ih/M,(i+1)h/M)(θ), i = 0, . . . ,M−1 denotes the char-
acteristic function of the interval [ih/M,(i+ 1)h/M). Then
the lifted input u[k](θ) for P can be written simply as

u[k](θ) = H(θ)yd [k]. (7)
Proof Observe first that, between time kh and (k+1)h, the
following formulas hold inductively, in light of the definition
(1) of the upsampler ↑M:

xd(kh+h/M) = Adxd(kh)+Bded(kh)
xd(kh+2h/M) = Adxd(kh+h/M) = A2

dxd(kh)
+AdBded(kh)

...
xd(kh+h) = Adxd(kh+(M−1)h/M)

= AM
d xd(kh)+AM−1

d Bded(kh).

yd(kh) =Cdxd(kh)+Dded(kh)
yd(kh+2h/M) =Cdxd(kh+h/M)

=CdAdxd(kh)+CdBded(kh)
...

yd(kh+(M−1)h/M) =Cdxd(kh+(M−1)h/M)

=CdAM
d xd(kh)+CdAM−1

d Bded(kh).

Stacking them up together yields the formula for yd [k], and
then u[k]. 2

Now define

B(θ) :=
∫

θ

0
eAc(θ−τ)BcH(τ) dτ. (8)

Then the lifted Σ̃K and Σ̃P are represented as

Σ̃K : xd [k+1] =: Adxd [k]+Bde[k](0) (9)

yd [k] =: Cdxd [k]+Dde[k](0)
u[k](θ) =: H(θ)yd [k]

Σ̃P : xc[k+1] = eAchxc[k]+B(h)yd [k] (10)

y[k](θ) =CceAcθ xc[k]+CcB(θ)yd [k].

It is important to note that by introducing the generalized
hold H(·), and Ad ,Bd ,Cd ,Dd , the multirate system with
upsampler ↑M can be placed in the same form as the single-
rate system. This is a great advantage in deriving the closed-
loop system equation in the next section.

III. CLOSED-LOOP EQUATION

Substituting (9) and (10) into the block diagram Fig. 1,
we readily obtain the following closed-loop equations (with
e taken as output):[

xd [k+1]
xc[k+1]

]
=

[
Ad −BdCc

B(h)Cd eAch−B(h)DdCc

][
xd [k]
xc[k]

]
+

[
Bdδ0

B(h)Ddδ0

]
r[k](θ)

(11)

where δ0 is Dirac’s delta, acting on r[k](θ) as δ0r[k](θ) :=
r[k](0). That is, it represents the sampler at each time k.

We then have the following formula for e[k](θ):

e[k](θ) = r[k](θ)− y[k](θ)

= r[k](θ)−CceAcθ xc[k]−CcB(θ)v[k]

= r[k](θ)−CceAcθ xc[k]

−CcB(θ)(Cdxd [k]+Dde[k](0))

= r[k](θ)−CceAcθ xc[k]

−CcB(θ)
(
Cdxd [k]+Dd(r[k](0)−Ccxc[k])

)
=
[
−CcB(θ)Cd −CceAcθ +CcB(θ)DdCc

][xd [k]
xc[k]

]
+(I−CcB(θ)Ddδ0)r[k](θ). (12)

IV. ZEROS AND TRACKING

According to [12], the tracking performance of the closed-
loop system (11), (12) (i.e., Fig. 1) is determined by

1) transmission zero, and
2) the corresponding zero direction, which is the initial

intersample function of the tracking signal.
Hence we here characterize such zeros and corresponding

directions. According to the equations (11), (12), a complex
λ is an invariant zero, with a corresponding initial function
v(·) if and only if

λ I−Ad BdCc Bdδ0

−B(h)Cd λ I− eAch +B(h)DdCc B(h)Ddδ0

CcB(θ)Cd CceAcθ −CcB(θ)DdCc I−CcB(θ)Ddδ0




xd

xc

v(θ)

= 0.

(13)
The third row yields

v(θ)−CcB(θ)Ddv(0) =−CcB(θ)Cdxd−CceAcθ xc

+CcB(θ)DdCcxc. (14)

Substituting v(0) =−Ccxc into (14) gives

v(θ)+CcB(θ)DdCcxc =−CcB(θ)Cdxd−CceAcθ xc

+CcB(θ)DdCcxc. (15)

Hence
v(θ) =−CcB(θ)Cdxd−CceAcθ xc. (16)

Now let us make the following assumption:
Assumption A: There is no pole-zero cancellation between
the lifted discrete-time controller and the continuous-time
plant.

Under this assumption, and also closed-loop stability, we
readily see that an unstable λ (i.e., |λ | ≥ 1) is an invariant
zero with associated zero direction v(θ) (i.e., satisfying (13)
and (16)) if and only if

Ger(λ )[v] = 0,

where Ger(z) denotes the transfer operator from r to e. That
is, the value λ is an invariant zero if and only if it is a
transmission zero from r to e, with associated initial direction
v(θ).



Now from (13) and v(0) =−Ccx, we obtain

(λ I−Ad)xd +BdCcxc−BdCcxc

= (λ I−Ad)xd = 0, (17)

−B(h)Cdxd +(λ I− eAch +B(h)DdCc)xc

=−B(h)Cdxd +(λ I− eAch)xc = 0. (18)

Existence of a nonzero solution to (17) and (18) is a
necessary and sufficient condition for λ to be a transmission
zero of Ger(z) with v(θ) = −CcB(θ)Cdxd −CceAcθ xc as an
associated zero direction function. Now note that (17) and
(18) can admit a solution in the following ways:

1) there exists a solution [xT
d ,x

T
c ]

T with nonzero xd , or
2) a solution of type [0,xT

c ]
T with nonzero xc exists.

In the first case, xd is an eigenvector of the discrete-time
controller and λ is a pole of K(z). In the second case,
λ is a pole of the lifted continuous-time plant and xc is
a corresponding eigenvector. This means that, under the
above Assumption A, the poles of K or lifted P always
yields a transmission zero. Since we have started with the
characterization of invariant zeros as above, we can reverse
the argument as well, and thus have the following theorem:

Theorem 4.1: Under the assumption A, and the assump-
tion of the closed-loop stability, the unstable poles of lifted K
and P induce a transmission zero of the closed-loop transfer
operator Ger(z) and vice versa.

As a corollary, consider the case λ = e jωh being an eigen-
value of Ad . Let xd be the corresponding eigenvector, and
then Cdxd 6= 0 (otherwise, the controller is not observable).
It follows that by taking H(θ) to be e jωθ (0 ≤ θ ≤ h), the
output of the discrete-time controller becomes e jkωhe jωθ yd =
e jωtyd , where yd =Cdxd . That is, the discrete-time controller
can work as an internal model for 1/(s− jω). Taking a
combination with the complex conjugate, this can work as an
internal model for sinωt, with this suitable choice of H(θ).
When Hh/M is a zero-order hold, it cannot exactly produce
this sinusoidal hold function, but it can still approximate such
a hold function.

Remark 4.2: In fact, if e jωh is an eigenvalue of Ad = AM
d ,

e jωh/M is an eigenvalue of Ad . Then, by taking Hh/M to
be e jωθ for 0 ≤ θ ≤ h/M, it is seen that the output of the
controller produces e jωt , because at each step the output
is kept multiplied by e jωh/M . Since the difference between
the zero-order hold and the sinusoidal hold e jωθ is small
for 0 ≤ θ ≤ h/M, the controller output can produce an
approximation of e jωt . This indeed occurs in the subsequent
Fig. 5 in Example 6.1.

V. DESIGN METHOD

So far, we have only characterized the zeros and tracking
conditions, and have not shown how we can handle high-
frequency tracking beyond the Nyquist frequency.

Observe first that our system Fig. 1 cannot be used as it
is for a design block diagram for H∞ sampled-data control.
Sampling is not a bounded operator on L2, and hence system
Fig. 1 as it is cannot be used as a design model. To remedy
this, we place a strictly proper anti-alias filter F(s) in front

of the adding point of the error. In other words, the reference
signal is pre-filtered by F(s). This is advantageous in that
we can control frequency weighting in the input reference
signals. We here emphasize that unlike the usual case of F(s)
where we put more emphasis on the low-frequency range,
we attempt to place more emphasis on the frequency that
we wish to track. This is a rather non-standard idea different
from usual sampled-data control, and the objective here is to
show that this does indeed work for the tracking purpose of
this paper.

Another attempt we devise here is that we allow some
delays in tracking. That is, instead of taking the error e(t) =
r(t)−y(t), we try to minimize the delayed error ẽ(t) := r(t−
L)−y(t) for some positive L as stated in Problem 1. This is
under analogy from the case of delayed signal construction
in [16] where we can achieve better performance by allowing
certain delays in signal reconstruction. While its advantage
in performance is yet to be investigated in the future, this
will give us at least more freedom in controller design.

Incorporating these changes into Fig. 1, we obtain the
following generalized plant Fig. 2 for design. Here L is a
design parameter; we usually take L to be an integer multiple
of h, with some small number such as 4 – 10.

-u

-r [
e−LsF −P
−F P

]
-e

-ẽ

Fig. 2. Generalized plant

VI. EXAMPLE, DESIGN, AND SIMULATION

To show the effectiveness of the present framework, partic-
ularly its tracking capability beyond the Nyquist frequency,
consider the following simple example:

Example 6.1: Consider the plant

P(s) :=
1

s2 +2s+1
(19)

with (normalized) sampling period h = 1 in Fig. 1. The
Nyquist frequency is then π [rad/sec] which is just equal
to 0.5 [Hz]. Suppose that we are given the tracking signal
r = sinωt, where ω = 3π/2 [rad/sec], which is equal to
0.75 [Hz]. This is clearly above the Nyquist frequency,
and a normal signal-processing intuition or a digital control
thinking may tell us that it is impossible to track.

The basic idea is that we place more weight on this
high frequency signal rather than the low frequency range
below the Nyquist frequency. In fact, we take the weighting
function

F(s) :=
s

s2 +0.1s+(3π/2)2 . (20)

which has a clear peak at 3π/2 [rad/sec] and also deempha-
sizes low-frequency.



The response against the sinusoid r(t) = sin(3π/2)t is
shown in Fig. 3, and its (delayed) error is shown in Fig. 4
with M = 8 and L = 4h. These figures clearly show that
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Fig. 3. System output tracking sin(3π/2)t
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Fig. 4. Delayed error against sin(3π/2)t

the output tracks the reference input sin(3π/2)t, which has
the natural frequency greater than the Nyquist frequency
π , and the output matches the given frequency 3π/2. Note
also that the output shows the delay of 4 steps which is
specified by the design specification. Now Fig. 5 shows the
output of the discrete-time controller. This output shows
that the discrete-time output indeed gives a discrete-time
approximation of the sinusoid sin(3π/2)t (cf. Remark 4.2).
This means that the discrete-time controller includes an
approximate internal model that produces an approximation
of the reference input. As we increase the upsampling factor
M, it is expected that the designed controller produces more
accurate sinusoids. Indeed, Fig. 6 show the eigenvalues of
the upsampled controller, i.e., that of Ad = AM

d , and there are
poles at ± j, that corresponding to exp(3π j/2)t—necessary
to produce sin(3π/2)t.

One may ask the question that this is probably due to the
fact that the tracking reference frequency is not “too high.”
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Fig. 5. Discrete-time controller output
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Fig. 6. Poles of the lifted controller

The following example denies this conjecture.
Example 6.2: Take the same plant P(s) := 1/(s2+2s+1),

but with the objective of tracking the sinusoid sin(5π/2)t,
i.e., sinusoid at 1.25 [Hz]. We take a new weight

F(s) :=
s

s2 +0.1s+(5π/2)2 ,

which now has a peak at 5π/2 [rad/sec].
The following Fig. 7, with M = 16 and L = 4h clearly shows
that the present method works as well for this even higher
frequency.

VII. DISCUSSION

We have seen that it is possible to track to a signal
that contains higher frequency components than the Nyquist
frequency. This is made possible even without a continuous-
time internal model of the reference signal. The crux of the
idea lies in the following:
• introduce a weighting function that emphasizes the

desired high-frequency components,
• upsample the controller to allow for a tracking capability

for high-frequency intersample signals, and
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Fig. 7. System output tracking sin(5π/2)t

• design the discrete-time controller.

While the sampler receives a discrete-time error signal that
contains only low-frequency information according to the
conventional sampling theorem, it can be utilized as the
information carrying the tracking high-frequency reference
signal. This is made possible by adjusting the weighting
function that emphasizes the high-frequency component and
simultaneously deemphasizes the low frequency part. This
is exactly opposite to the standard thinking in which one
emphasizes low frequency, but it does indeed work as we
have seen in Example 6.1. In other words, the controller (and
the weighting function) “fakes” the sampler, and can indeed
extract the information that the received signal represents the
high-frequency tracking signal, and not the low-frequency
counterpart. To see this mechanism, let us show yet another
example how the choice of a weight function can control
such information.

Example 7.1: Take the same plant

P(s) :=
1

s2 +2s+1

as before, but with the weighting function

F(s) :=
(3π/4)2

s2 +(3π/2)s+(3π/4)2

that decays by 40 [dB/dec] with turnover frequency 3π/4
[rad/sec], which is equal to 0.375 [Hz]. Designing an H∞

controller as before with this weighting, we get the response
against the sinusoid sin(3π/2)t as shown in Fig. 8. As can
be seen from this figure, the system tracks sin(π/2)t, not
sin(3π/2)t. This is clearly due to the fact that we have
designed the controller tuned to track low-frequency inputs,
and not sin(3π/2)t, hence the controller “mistakes” the
sampled values as those derived from sin(π/2)t, which is
the aliased signal from sin(3π/2)t.

Finally, we also note that while we confined our discus-
sions to tracking problems, it is obvious that disturbance
rejection can be treated in exactly the same way.
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Fig. 8. System output not tracking sin(3π/2)t but sin(π/2)t
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