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Abstract. This paper studies the problem of passive control of a multi-storey building
subjected to an earthquake disturbance. The building is represented as a homogeneous mass
chain model, i.e., a chain of identical masses in which there is an identical passive connection
between neighbouring masses and a similar connection to a movable point. The paper considers
passive interconnections of the most general type, which may require the use of inerters in
addition to springs and dampers. It is shown that the scalar transfer functions from the
disturbance to a given inter-storey drift can be represented as complex iterative maps. Using
these expressions, two graphical approaches are proposed: one gives a method to achieve a
prescribed value for the uniform boundedness of these transfer functions independent of the
length of the mass chain, and the other is for a fixed length of the mass chain. A case study is
presented to demonstrate the effectiveness of the proposed techniques using a 10-storey building
model. The disturbance suppression performance of the designed interconnection is also verified
for a 10-storey building model which has a different stiffness distribution but with the same
undamped first natural frequency as the homogeneous model.

1. Introduction
One of the main objectives for seismic design is to limit the inter-storey drifts in response
to disturbances. For this purpose, the installation of passive control devices between floors
is widely adopted [1–3]. The basic principle of control using inter-storey devices, i.e., devices
interconnecting neighbouring storeys, is to increase the energy dissipation capability of the
structure. To this end, dampers of various types are frequently employed. Other devices such
as inerters [4] may also be incorporated to enhance the performance in addition to springs and
dampers. The inerter is a mechanical two-terminal, one-port device with the property that the
applied force at the terminals is proportional to the relative acceleration between the terminals,
i.e., F = b(v̇2 − v̇1) where b is the constant of proportionality called the inertance which has
units of kilograms [4] and v1, v2 are the terminal velocities.

Applications of inerters for building vibration suppression have been extensively studied in
recent years, e.g., [5–10]. These design methods, however, may only be applicable to a specific
device configuration. Although the problem setup considered in [11, 12] is applicable to more
general configurations, the optimisation algorithms used in these articles resulted in a design
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Figure 1. Chain of N masses m connected by a passive mechanical impedance Z(s) (admittance
Y (s) = Z(s)−1), and connected to a movable point x0.

which gives a large resonance peak outside of the frequency range considered. This suggests
that more careful analysis will be required for incorporating inerters in buildings.

This paper proposes a systematic and intuitive design methodology which covers any layouts
consisting of springs, dampers and inerters. In particular, we study the scalar transfer functions
from the movable point displacement x0 to a given individual intermass displacement (an inter-
storey drift in the building application) in a chain of N identical masses with identical passive
interconnection (Fig. 1). An idealised model for analysing the seismic response of a building
which takes this form is a shear-type building model. We refer to this model as “the homogeneous
mass chain”, or simply “the mass chain”. The authors have shown in [13] that the scalar
transfer functions from the disturbance to a given intermass displacement can be represented
as complex iterative maps. Using these expressions, the present paper proposes two graphical
approaches: one gives a method to achieve a prescribed value for the uniform boundedness of
these transfer functions independent of the length of the mass chain, and the other is for a
fixed length of the mass chain. More specifically, we firstly introduce a graphical approach to
select the interconnection impedance that achieves a good disturbance rejection performance in
an arbitrary length of the mass chain. This is motivated by an increasing trend to build ever
taller buildings. Secondly we propose a design methodology for a fixed length of the mass chain
subject to a frequency-weighted disturbance. It may be expected that a better disturbance
rejection performance is achievable when we know the number of the storeys of the building to
be designed, which is often the case in practice, and characteristics of the disturbance are also
incorporated in the design process. For this aim, a graphical technique is proposed. We employ
a weighting function on the earthquake disturbance that is based on the well-known Clough-
Penzien and Kanai-Tajimi acceleration filter. A case study is presented to demonstrate the
effect of the proposed techniques using a 10-storey building model. The disturbance suppression
performance of the designed interconnection is also verified for a 10-storey building model which
has a different stiffness distribution but with the same undamped first natural frequency as the
homogeneous model.

2. Background on passive mechanical networks
A mechanical one-port network with force-velocity pair (F, v) is passive if for all square integrable

pairs F (t) and v(t) on (−∞, T ],
∫ T
−∞ F (t)v(t)dt ≥ 0 [14]. For a linear time-invariant network

the impedance Z(s) is defined by the ratio v̂(s)/F̂ (s) whereˆdenotes the Laplace transform, and
Y (s) = Z(s)−1 is called the admittance. Such a network can be shown to be passive if and only
if Z(s) or Y (s) is positive real [15, 16]. A real-rational function G(s) is positive real if G(s) is
analytic and Re(G(s)) ≥ 0 in Re(s) > 0.
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3. Problem formulation
3.1. General notation
The set of natural, real and complex numbers is denoted by N, R, C, respectively. Rm×n is
the set of m by n real matrices. R+ is the set of non-negative numbers and C+ is the closed
right-half plane. H∞ is the standard Hardy space on the right-half plane and ‖·‖∞ represents
the H∞-norm.

3.2. Chain model
For a multi-storey building model, we consider a chain of N identical masses m connected by
identical passive mechanical networks (Fig. 1). Each passive mechanical network provides an
equal and opposite force on each mass and is assumed here to have negligible mass. A movable
point x0(t) represents an earthquake displacement and the displacement of the ith mass is
denoted by xi(t), i ∈ {1, 2, . . . , N}. We assume that the initial conditions of the movable point
and the mass displacements are all zero.

The equations of motion in the Laplace transformed domain are

ms2x̂i = sY (s)(x̂i−1 − x̂i) + sY (s)(x̂i+1 − x̂i) for i = 1, . . . , N − 1,

ms2x̂N = sY (s)(x̂N−1 − x̂N )

whereˆdenotes the Laplace transform. In matrix form this can be written as

ms2x̂ = sY (s)HN x̂+ sY (s)e1x̂0

and hence
x̂ = (h(s)IN −HN )−1e1x̂0 (1)

where IN is the N ×N identity matrix,

h(s) = sZ(s)m,Z = Y −1, x̂ = [x̂1, . . . , x̂N ]T, e1 = [1, 0, . . . , 0]T ∈ RN ,

HN =



−2 1 0 · · · 0

1 −2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 −2 1

0 · · · 0 1 −1

 ∈ RN×N .

Let us consider the characteristic polynomials di of Hi ∈ Ri×i in the variable h given by

di = det(hIi −Hi) (2)

Then d1 = h+ 1. Suppose also d−1 = 1 and d0 = 1. Using the Laplace expansion of (2), we find
that di(h) = (h+ 2)di−1(h)− di−2(h) for i = 1, . . . , N. Equation (1) can be written using di as

x̂ =
adj(h(s)IN −HN )

det(h(s)IN −HN )
e1x̂0 =

1

dN

dN−1 ∗ · · ·
...

...
d0 ∗ · · ·




1
0
...
0

 x̂0 =

dN−1/dN...
d0/dN

 x̂0.
Then the intermass displacement of the ith mass defined by δi = xi−xi−1 in the Laplace domain
is given by δ̂i = ((dN−i − dN−i+1) /dN ) x̂0 =: Tx̂0→δ̂i x̂0 for i = 1, . . . , N .

We will say that the system of Fig. 1 is stable if all poles in the transfer functions Tx̂0→δ̂i
have negative real parts in the s-domain. The following theorem gives an explicit condition for
stability:

Theorem 1 ([13]). For 0 6≡ Z(s) positive real, the system of Fig. 1 is stable if sZ(s)m does not
take values in the interval (−4, 0) for any s with Re(s) = 0.
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Table 1. Vibration control device layouts.

L1 L2

Y (s) = c+
k

s
Y (s) = bs+ c+

k

s

k

c

k

c

b

Table 2. Parameters of vibration
control devices.

Layout c (kNs/m) b (kg)

Device 1 L1 4.0× 103 –
Device 2 L1 6.0× 103 –
Device 3 L2 6.0× 103 1.0× 105

3.3. Intermass displacements
The transfer functions from the disturbance to a given intermass displacement in a chain of N
masses are represented in the form of complex iterative maps.

Theorem 2 ([13]). For any i = 1, 2, . . . , intermass displacements in a chain of N masses satisfy
the recursion:

−Tx̂0→δ̂i =: F
(i)
N =

di−2F
(i)
N−1 + h

F
(i)
N−1 + di

(3)

for N = i, i + 1, . . . , where Tx̂0→δ̂i is the transfer function from the disturbance x0 to the ith

intermass displacement δi, F
(i)
i−1 = 0, h(s) = sZ(s)m and di is as defined in (2).

The above recursion describes a sequence of transfer functions in the complex variable s. It
can also be interpreted as a complex iterative map [17] for a given fixed s ∈ C, or equivalently
a fixed h ∈ C.

4. Graphical approach for an arbitrary length mass chain
For the purpose of graphical representations we now introduce the inverse of h:

g(s) = h−1(s) = Y (s)/(sm). (4)

Fig. 2 shows the region of the complex values of g (= h−1) for which maxN |F (1)
N (h)| ≤ γ with

1 ≤ N ≤ 200 for a positive constant γ. The spacing of the contours is 0.2 where ln(γ) takes
the value 0, 0.2, 0.4, . . . . The outermost boundary represents γ = 1 and G1 denotes the set

{g ∈ C : maxN |F (1)
N (g−1)| ≤ 1}. This means that maxN ‖F (1)

N (h(s))‖∞ ≤ 1 if and only if
g(s) ∈ G1 for s ∈ C+. Note that the choice of N = 200 is large enough to accurately determine
the shape of the boundary in the figure. This is further discussed in [13].

Fig. 3 is a similar figure to Fig. 2 but shows a contour map of maxi maxN |F (i)
N (h)| = γ ∈ R+

for i = 1, 2, . . . , N , i ≤ N ≤ 200 with the Nyquist diagrams of g(s) of three passive vibration
control devices. The layouts of these devices are shown in Table 1 and their structural parameters
are given in Table 2. We fix the parameters of the building model as m = 1.0 × 105 kg, k =
1.7× 105 kN/m (based on values given in [18]). The outermost boundary of the contours again

represents γ = 1 so maxi maxN ‖F (i)
N (h(s))‖∞ ≤ 1 if the Nyquist diagram g(jω) lies outside this

boundary. We see that devices 2 and 3 achieve this. It is also observed that the use of the
inerters improves the high frequency performance (corresponding to the origin in the g-plane).

The frequency domain plots of maxi |F (i)
N (jω)| (Figs. 4 and 5) confirm these observations.
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N (jω)| using Device 3

for N = 1, 20, 50, 100.

5. Graphical approach for a fixed length mass chain
In the previous section, a graphical approach has been introduced to design a passive
interconnection which achieves a good disturbance rejection performance in an arbitrary length
mass chain. In this section, we propose a design methodology for a specific length of the mass
chain. The essential technique is the same as the one used for the uniform boundedness in the
previous section, namely to make use of contour plots of the magnitude of the transfer functions.

As an example, we fix N as 10. Further, consider the interconnection between masses as
Fig. 6 where ks, cs represent the storey stiffness and the structural damping. Therefore, the
interconnection impedance Z(s) = (ks/s+cs+Ya(s))

−1 where Ya(s) = Za(s)
−1. The design task

is to make the maximum value of |F (i)
N (jω)| over i small by choosing a suitable interconnection

Za(s). Using the recursions (3), one can compute the value of maxi |F (i)
N (h)| at each complex

value h for each N . The contour plot of maxi |F (i)
N (h)| in Fig. 7 is illustrated for N = 10 in the

g-plane where g is again the inverse of h, i.e., g = Y (s)/(sm). The spacing of the contours is 0.2
where ln(γ) takes the value −3,−2.8,−2.6, . . . . The proposed design method involves essentially
finding an interconnection Ya = Z−1a that moves the locus g(jω) away from the dark region in
the contour map. Since g(s) = Y (s)/(sm) = (ks/s + cs + Ya(s))/(sm), a large gain of Ya(jω)
would be required especially in the frequency range where the disturbance x0 is significant.
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Figure 6. The layout of the
interconnection Z in Fig. 1 where its
admittance Y (s) = ks/s + cs + Ya(s)
(Ya(s) = Za(s)

−1).

−150−100 −50 0 50
−100

−50

0

50

100

Re(g)

Im
(g

)

g-plane

−2

−1

0

1

ln
( m

a
x
i

∣ ∣ ∣F(i) 1
0

(h
)∣ ∣ ∣)

Figure 7. Contour plot of maxi |F (i)
10 (h)| where

h = g−1.

5.1. Frequency content of ground displacements
Any information on the disturbance normally helps to improve a design. In this paper, we use a
weighting function W (s) based on the Clough-Penzien-Kanai-Tajimi acceleration filter [19, 20]
which is a commonly used model for the frequency content of strong ground motions:

W (s) =
W0(s)

‖W0(s)‖∞

where

W0(s) =
1

s2
WCP (s)WKT (s) =

1

s2
−s2

s2 + 2ηfωfs+ ω2
f

2ηgωgs+ ω2
g

s2 + 2ηgωgs+ ω2
g

.

We employ the values for ωg, ωf as 8π, 0.8π (rad/s) respectively and both ηg, ηf as 0.60 [21] for
the numerical examples in this paper. Hence,

W (s) =
−30.16s− 631.7

0.1654(s2 + 3.016s+ 6.317)(s2 + 30.16s+ 631.7)
. (5)

6. Case Study
This section shows the design procedure proposed in the last section using a benchmark model
for a 10-storey building.

6.1. Multi-storey homogeneous building model
Consider a 10-storey building model depicted in Fig. 1 (N = 10) with the interconnection of
Fig. 6. The structural parameters are shown in Table 3. The floor mass m and the storey
stiffness ks are fixed as 1.00 × 105 kg and 1.77 × 105 kN/m and a period T1 equal to 0.1N
seconds is assumed for the first natural frequency ω1 [22]. The structural damping is assumed to
be stiffness-proportional damping with the damping ratio being 0.02, that is, cs = 2×0.02ks/ω1.

6.2. Interconnection design
For this case study, the impedance Z as in Fig. 6 is considered with Ya being the simple
interconnection configurations listed in Table 4. Note that layout L3 is called a tuned-inerter-
damper (TID) in [6] and layout L4 is called a tuned viscous mass damper (TVMD) in [7, 8]. The
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Table 3. Structural parameters of the homogeneous building model.

Parameter Value Description

N 10 Number of storeys
m 1.00× 105 kg Floor mass
ks 1.77× 105 kN/m Storey stiffness
cs 1.12× 103 kNs/m Structural damping
T1 1.00 s Undamped first natural period
ω1 6.28 rad/s Undamped first natural frequency

Table 4. Interconnection configuration and corresponding admittance Ya(s).

L1 L2 L3 L4

bs+ c c+
bks

bs2 + k

bcs2 + bks

bs2 + cs+ k

bks+ ck

bs2 + cs+ k

c

b

c

k b c

k
b k

c

b

parameters of each element are selected making use of the contour plot of Fig. 7. For layout
L1, it is clear that larger values of c push g(jω) away from the dark region in Fig. 7. Here the
value is fixed as c = 2 × 0.2ks/ω1 = 1.12 × 104 kNs/m assuming 20 % of critical damping. As
can be seen from Fig. 8a, although the inerter improves the performance in the mid to high
frequency range (see the white markers ◦), it makes the low frequency performance worse (see

the black markers •). This is confirmed by the frequency domain plots of maxi |F (i)
10 (jω)W (jω)|

in Fig. 8b.
The admittance Ya(s) of layout L2 has infinite gain at ω =

√
k/b. Here this frequency is

set to be the same frequency as the undamped first natural frequency of the building ω1. The
damping coefficient is again fixed as 1.12 × 104 kNs/m. The Nyquist diagrams of g(jω) for
three values of inertance and k = bω2

1 are drawn again on the contour plot in Fig. 9a. The
larger inerter is beneficial in a broad frequency range around ω1 which can be also seen from

the frequency domain plots of maxi |F (i)
10 (jω)W (jω)| in Fig. 9b.

Similarly, layouts L3 and L4 can be designed using the contour plot of maxi |F (i)
10 (h)|. The

parameters given in Table 5 are an example of good design with respect to the proposed design
method. Note that the inertance b = 0 for L1 which means L1 is just a damper with no inerter
in parallel. The Nyquist diagrams of g(jω) for each layout are illustrated in Fig. 10a. The

frequency domain plots of maxi |F (i)
10 (jω)W (jω)| are also shown in Fig. 10b. Layout L1 can

suppress the disturbance amplification well for the entire frequency range. The other layouts
L2 – L4 improve the disturbance rejection performance around the first natural frequency ω1

but mild peaks appear at some other frequencies.

6.3. Time response
To verify the validity of the proposed design method, this section shows the time response of the
system against historical earthquakes. The interconnection configurations and their parameters

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012063 doi:10.1088/1742-6596/744/1/012063

7



−150−100 −50 0 50
−100

−50

0

50

100

Re(g)

Im
(g

)

g-plane

−2

−1

0

1

ln
( m

a
x
i

∣ ∣ ∣F(i) 1
0

(h
)∣ ∣ ∣)

(a)

! (rad/s)
100 101 102

m
ax

i5
1
0
jF

(i
)

1
0
(j

!
)W

(j
!
)j

10-5

10-4

10-3

10-2

10-1

100

(b)

Figure 8. Design of layout L1. The parameters are: – – c = 1.12 × 104 kNs/m, b = 0 kg, —
c = 1.12×104 kNs/m, b = 1.0×106 kg, – · – · c = 1.12×104 kNs/m, b = 5.0×106 kg. (a) Nyquist

diagrams of g(s) = (ks/s + cs + Ya(s))/(sm) and the contour plot of maxi |F (i)
10 (h)|. The black

and white markers •, ◦ indicate g(4j) and g(10j). (b) A log-log plot of maxi |F (i)
10 (jω)W (jω)|.

−150−100 −50 0 50
−100

−50

0

50

100

Re(g)

Im
(g

)

g-plane

−2

−1

0

1

ln
( m

ax
i

∣ ∣ ∣F(i) 1
0

(h
)∣ ∣ ∣)

(a)

! (rad/s)
100 101 102

m
ax

i5
1
0
jF

(i
)

1
0
(j

!
)W

(j
!
)j

10-5

10-4

10-3

10-2

10-1

100

(b)

Figure 9. Design of layout L2. The parameters are: – – c = 1.12 × 104 kNs/m, b = 1.0 × 106

kg, k = 3.93 × 104 kN/m, — c = 1.12 × 104 kNs/m, b = 3.0 × 106 kg, k = 1.18 × 105 kN/m,
– · – · c = 1.12 × 104 kNs/m, b = 5.0 × 106 kg, k = 1.97 × 105 kN/m. (a) Nyquist diagrams

of g(s) = (ks/s+ cs + Ya(s))/(sm) and the contour plot of maxi |F (i)
10 (h)|. The black and white

markers •, ◦ indicate g(4.7j) and g(10j). (b) A log-log plot of maxi |F (i)
10 (jω)W (jω)|.

Table 5. Parameters of vibration control devices.

Layout c (kNs/m) b (kg) k (kN/m)

L1 1.12× 104 0 –
L2 1.12× 104 5.0× 106 1.97× 105

L3 1.12× 104 5.0× 106 1.00× 105

L4 1.12× 104 1.5× 106 1.06× 105
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Figure 10. The design of L1 – L4 in Table 4. The parameters are given in Table 5. (a) Nyquist

diagrams of g(s) = (ks/s+cs+Ya(s))/(sm) and the contour plot of maxi |F (i)
10 (h)|. (b) A log-log

plot of maxi |F (i)
10 (jω)W (jω)| for the uncontrolled homogeneous building model and the model

controlled by the vibration control devices L1 – L4.

for Ya(s) designed in the previous section are listed in Table 4 and 5. The system with Ya(s) = 0
is again referred to as the uncontrolled model.

Figure 11 illustrates the time response of the first interstorey drift for these four configurations
against the JMA Kobe 1995 NS earthquake. All the devices L1 – L4 suppress the vibration well.
The interstorey drifts are under 4 cm while the uncontrolled model experiences an interstorey
drift as large as 8 cm. The vibration also attenuates much quicker than the uncontrolled model.
The maximum interstorey drifts of each floor during the earthquake are shown in Fig. 12 against
the JMA Kobe 1995 NS earthquake and the El Centro 1940 NS earthquake. These figures confirm
that the proposed designs reduce the interstorey drifts for all the floors.
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Figure 11. Time response of the first interstorey drift against the JMA Kobe 1995 NS
earthquake.
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Figure 12. Maximum interstorey drifts against historical earthquakes for the uncontrolled
homogeneous building model and the model controlled by the vibration control devices L1 – L4.

6.4. Heterogeneous mass chain model
For many tall buildings, the storey stiffness is smaller in the higher storeys. The aim of this
section is to demonstrate the effectiveness of the proposed design in Table 5 for such a building
when the undamped natural frequency ω1 is the same. Consider a 10-storey building where all
the masses have the same value as the homogeneous building model, i.e., mi = 1.00 × 105 kg,
and the ith storey stiffness ksi for i = 1, 2, . . . , 10 is given by ksi = {N(N + 1)− i(i− 1)}mω2

1/2
assuming that the shape of the fundamental eigenmode of the main frame is a straight line
[22, 23]. The structural damping is assumed to be proportional to the stiffness with the damping
ratio 0.02. Hence, csi = 2× 0.02ksi/ω1 for i = 1, 2, . . . , 10. All the interconnections are assumed
to be identical, and the layout L1 – L4 in Table 4 for the interconnection admittances with the

parameters given in Table 5 are considered here. The log-log plot of maxi |F (i)
10 (jω)W (jω)| in

Fig. 13 and the figure of the maximum interstorey drift of the building against the JMA Kobe
1995 earthquake in Fig. 14 confirm that the interconnections designed in the previous section
give a good disturbance rejection/suppression performance.
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Figure 13. A log-log plot of

maxi |F (i)
10 (jω)W (jω)| for the uncon-

trolled heterogenous building model and
the model controlled by the vibration
control devices L1 – L4.
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model and the model controlled by the
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7. Conclusions
A passive vibration control problem of a multi-storey building subjected to an earthquake has
been studied. A homogenous mass chain model has been considered as the building model, i.e.,
a chain of N identical masses in which neighbouring masses are connected by identical passive
mechanical impedances, and where the first mass is also connected by the same impedance
to a movable point. The transfer functions from the disturbance to inter-storey drifts have
been employed as the performance measure. Two graphical design approaches have been
proposed. The first approach makes use of a graph indicating the region of the complex plane
for a dimensionless parameter h−1 to achieve a small infinity norm of these transfer functions,
independent of the length of the mass chain. The second approach is for a fixed length of the
mass chain. A case study has been presented to demonstrate the effect of the technique using
a 10-storey building model. A method to incorporate information on the disturbance into the
design is also explained. Time responses for historical earthquakes have been given to verify the
effectiveness of the proposed method. The disturbance suppression performance of the designed
interconnection is also verified for a heterogeneous 10-storey building model which has a different
stiffness distribution but with the same undamped first natural frequency as the homogeneous
model.
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