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ABSTRACT 

 

 The functional interaction of brain and muscle signals plays an important role 

in our daily lives. We have to perform various motor tasks using different movements 

to accomplish our tasks daily. The movements and motor tasks that we use and perform 

every day finally become a goal. Such goals are the output of motor task performance. 

The brain and muscles act synchronically during motor task performance to achieve the 

movement goal. The principles of cortico-muscular interaction play an essential role in 

the rehabilitation systems of stroke patients, the treatment of motor-impaired people, 

and the treatment of dyskinesia, Alzheimer’s disease, and Parkinson’s disease. In order 

to understand the basic principles of brain and muscle function for future brain-

computer interface (BCI) technology, it is important to understand the cortico-muscular 

functional interaction and its neurophysiological principles. 

 Although there were well-documented findings of functional interaction with 

maintained voluntary contraction, executed precision-pinch tasks, static isometric 

contraction tasks, wrist flexion and extension tasks, and cortico-muscular functional 

interaction comparison in real movement, the movement intention stage, motor imagery 

stage, and movement observation condition were lacking in the study. Thus, this study 

will explore brain-muscle functional interaction and its neurophysiological principles 

during these tasks as a preliminary study of brain-muscle functional connectivity. 

 In this study, four different motor performances were applied, such as real hand 

grasping movement (RM), movement intention (Inten), motor imagery (MI), and only 

looking at the virtual hand in a three-dimensional head-mounted display (3D-HMD) 

(OL). This study involved thirteen healthy right-handed participants from Kyushu 

University. We explored the cortico-muscular functional interaction with the linear 

coherence method, the nonlinear mutual information method, and the nonlinear mutual 

information delay time method. The objectives of this study are to investigate the 

functional interaction of brain-muscle signals and their coupling delay times based on 

four different motor tasks, to explore the anatomical and neurophysiological principles 

of brain and muscle function that can lead to cortico-muscular interaction, and to 

discover consistent and reliable facts about cortico-muscular interaction based on 

unresolved research issues. 
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 The results proved that brain–muscle functional interaction and delay time 

change according to motor task performance. Quick synchronization of localized 

cortical activity and motor unit firing causes good functional interaction, and this can 

lead to a short delay time between signals. In addition, the motor system inside the 

human body works hierarchically to accomplish the predefined movements or reach the 

goals that we set. Those motor systems interact with each other via diverse tracts such 

as descending motor pathways and ascending motor pathways. Thus, brain and muscle 

signals can flow with bi-directionality between efferent and afferent pathways. This 

study will provide consistent and reliable facts about cortico-muscular functional 

interaction that resulted from our experimental research for rehabilitation systems and 

a future Brain-Computer Interface (BCI) system. 

 

Keywords : cortico-muscular coherence; delay time; electroencephalogram; 

electromyogram; functional coupling; mutual information; motor system; motor 

task performance 
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CHAPTER 1 

INTRODUCTION 

 

When brain neurons and muscle fibers’ motor neurons synchronize during 

voluntary movement, functional interaction of brain and muscle signals occurs. The 

synchronization of numerous neurons inside the spinal cord and motor cortex results in 

oscillatory activity. In this chapter, the cortico-muscular functional interaction and its 

neurophysiological principles will be introduced to understand the basic principles of 

brain and muscle functional interaction during motor task performance. 

 

1.1. Introduction to Cortico-muscular Functional Interaction and Its            

Neurophysiological Principles 

The term "functional" means "of or having a special activity, purpose, or task" 

and the term "interaction" means "the reciprocal action or influence between the two 

systems or languages" in the definitions from the Oxford Dictionary. Thus, the meaning 

of functional interaction comes from the fusion of two words, "functional" and 

"interaction." It means the reciprocal action between the two systems of having a 

particular task. Cortico-muscular functional interaction usually appears when the two 

signals interact within one task or movement performance. In this study, in order to 

investigate the neurophysiological principles and anatomical nature of brain and muscle 

signals, we explored cortico-muscular functional interaction during different motor task 

performances.  

Cortico-muscular functional interactions involve transmitting action potentials 

to the muscles to generate muscle contractions and afferent nerve fibers that transmit 

somatosensory information back to the central nervous system [1]. The brain connects 

to muscles with single nerve cells in the spinal cord called "motor neurons." The firing 

of a motor neuron inside the spinal cord collapses impulses to the muscles along a single 

cell called an axon. When this impulse travels down the axon to the muscle, a chemical 

is discharged at its end. The hits of the chemical impulse from the motor neuron to the 

muscle cause muscle fibers to ratchet past each other, overlapping each other more so 

that the muscle gets shorter and fatter. The muscle fibers slide back to their original 

positions when the impulses from the nerves stop. In this way, the muscle contractions 

happen and the muscles start the interaction with the brain. The concept of brain and 

muscle signal interaction is important for brain-computer interface (BCI) technology 
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and the rehabilitation of stroke patients [2]. To clearly understand the basic principles 

of cortico-muscular interaction, the linear coherence method and the nonlinear mutual 

information method were applied in this research. 

The brain and muscle functional interaction can be regarded as a functional 

coupling in numerous publications [3], [4]. The functional coupling of brain and muscle 

signals is usually calculated using cortico-muscular coherence (CMC). CMC has been 

proposed as a biomarker for stroke [3], [4], [5], and [6]. It is a linear technique for 

measuring the correlation strength between two signals in the frequency domain [7]. 

There are many studies on the interaction of brain and muscle signals. These studies 

used positron emission tomography (PET), transcranial magnetic stimulation (TMS), 

functional magnetic resonance imaging (fMRI), an electroencephalogram (EEG), 

magnetoencephalography-electromyogram (MEG-EMG), and electrooculography-

electromyogram (ECoG-EMG) to investigate the coherence mechanisms of two signals 

[8], [9], [10], and [11]. EEG-EMG correlation analysis with and without neuro-

feedback was performed in some studies [12], [13]. EEG-EMG coherence was 

calculated with three types of hand movement tasks, namely, hand fisting, wrist flexion, 

and wrist extension, by using magnitude squared coherence (MSC) and wavelet 

coherence [14]. The researchers constructed the cortical-muscular functional network 

and classified the accuracy of movements with Fisher and the artificial neural network 

(ANN) [15]. 

One of the major concerns for brain-muscle interaction is the band frequencies 

that occur during the synchronization of brain and muscle signals. Studies point out that 

cognitive brain signals produce alpha (8–12 Hz) and beta (13–30 Hz) waves while 

muscle activities produce beta (13–30 Hz) and piper (30–60 Hz) rhythms [16], [17]. 

Coherence occurs in the beta band ranges of both low (13–21 Hz) and high (21–31 Hz) 

beta in flexor and extensor muscles regardless of contraction [18]. The study concluded 

that alpha-band coherence shows an EMG reflecting ascending or feedback interactions, 

and gamma-band coherence shows an EMG reflecting descending or feedforward 

interactions [19]. Coherence values of 4–6 Hz and 8–12 Hz are observed when 

Parkinson’s disease and essential tremor subjects are subjected to the experiment [20], 

[21], [22]. Conversely, the coherence value was found to be in the higher beta/low 

gamma range (30–45 Hz) during dynamic motor tasks [23], [24].  Moreover, the effects 

of attention and precision of exerted force can cause beta-band EEG-EMG 

synchronization [25]. There was also a controversial issue of whether EEG-EMG 



3 
 
 

 

 

coherence was detected in the motor imagery or not [26], [27], and [28]. Many 

questions about functional coupling in motor imagery tasks remain unanswered. EMG 

rectification is also one of the problems in coherence analysis. Rectification can cause 

significant distortion of the frequency content of an EMG signal [29]. Thus, the 

functional interaction of two signals depends on the specific band frequency ranges, 

force level, age correlation, and use of the rectification process for EMG signals [30], 

[31]. 

From the perspective of nonlinear correlation analysis, mutual information was 

used to measure the nonlinear dependency between two signals [32]. Previous studies 

used mutual information to investigate information transmission between EEG and 

EEG, delay time, and directionality inference between EEG and EMG, EEG-EMG [28], 

[35], [33], and [34]. However, there was a lack of research into the comparison of 

coupled information across different motor tasks with mutual information and delay 

time estimation methods. The estimation of delay time between two signals can 

facilitate an understanding of the physiology of a given system and provide information 

on conduction velocity. Many literacies have expressed that there will be a time lag for 

descending oscillation (from the brain to muscle) and ascending oscillation (from 

muscle to brain) between the sensorimotor cortex and the peripheral muscles [5], [36]. 

The functional interaction of two signals with a delay time usually represents those 

signals’ propagation time [37], [38], and [39]. More research is needed to investigate 

cortico-muscular synchronization from the standpoint of delay time with directionality 

inference [40], [41]. Most of the previous studies used the cross-correlation method and 

phase-based methods to find the delay time between two signals [28], [35], and [42]. 

However, a lack of directionality inference was the negative aspect of these methods. 

To summarize, the various conclusions regarding the occurrence of 

synchronized frequencies in different bands, the functional interaction amount in 

different motor tasks, muscle contraction types, motor imagery conditions versus EMG, 

and the characteristics of rectified and non-rectified EMG signals in the study of CMC 

remained controversial issues and became the motivation for this research. Moreover, 

the delay time for information transmission and unclear information flow directions 

between efferent and afferent pathways were the major problems in carrying out the 

current study. Nowadays, it is essential to make a study of brain and muscle interaction 

with a clear explanation of neurophysiological principles that can be fruitful in 

biomedical engineering and neuroscience fields. For the above reasons, this research 
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will explore cortico-muscular functional interaction and its neurophysiological 

principles with four different motor task performances as a preliminary study based on 

the state of the art as listed in APPENDIX A. 

 

1.2. Study Aims and Objectives 

 Based on the controversial issues and problems to be solved, the aims and 

objectives of the study are as follows. 

● To investigate the functional interaction of brain-muscle signals and their 

coupling delay time based on four different motor tasks, 

● To explore the anatomical and neurophysiological principles of brain and 

muscle function that can lead to cortico-muscular interaction, 

● To discover consistent and reliable facts about the cortico-muscular interaction 

based on unresolved research issues. 

 

1.3. Scope of the Functional Interaction of Brain and Muscle Signals 

The human brain and nervous system play an essential role in generating 

movement. They are assigned to the processing of sensory input for constructing 

detailed representations of the external environment. In reality, the motor system 

generates movements. Those movements are adaptive to accomplish the goals of the 

organisms. These goals are evaluated and set by the high-order of the brain [43]. Thus, 

the function of the motor system is to transform the goals into the appropriate muscle 

activations to achieve the desired movement. To evaluate the interaction amount of 

brain and muscle signals, we focused on the cortico-muscular interaction with linear 

coherence and nonlinear mutual information methods in four different motor task 

performances. They are hand grasping real movement (RM), movement intention 

(Inten), motor imagery (MI), and movement observation in a three-dimensional head-

mounted display (3D-HMD) environment (OL). 

This study accounted for the motor imagery (MI) and OL tasks together with 

RM and Inten motor tasks for comparison of functional coupling and delay time as a 

new experimental task-related perspective based on state-of-the-art as listed in 

Appendix A. In addition, this study considered the efferent descending and afferent 

ascending pathways’ directions by taking into consideration the delay time with the use 

of lagged power correlation in the specified coupling frequency bands. As this academic 

research was based on the previous researchers’ controversial issues, the problems that 
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remained to be solved were mainly tackled and found out for the cortico-muscular 

functional interaction. 

The research facts of this study were aimed at being applied in the future 

rehabilitation systems of stroke patients in clinical applications. This study’s evidence 

can also be used in the design of movement intention detectors with various classifiers 

prosthetic devices for amputee people, and biomedical robotics. Thus, the scope of this 

study will clearly explain the main root causes of interaction between the brain and 

muscle with clear anatomical and neurophysiological principles. The abbreviated words 

RM, Inten, MI, and OL for each task were used for the whole discussion of the thesis 

book. 

 

1.4. Implementation Program 

Matlab is the core software for the analysis of the whole dataset in this research. 

We wrote the Matlab code and analyzed the brain and muscle recording data. All 

statistical comparisons were made using IBM SPSS 20 (SPSS Inc., Chicago, IL, USA). 

To design a place that mimics a real experimental room in a three-dimensional head-

mounted display (3D-HMD), Unity (2019.2.9f1) software was used. The MakeHuman 

software and Blender software were applied to create the hand models for the task 

instructions in 3D-HMD.  

 

1.5. Outlines of the Thesis  

Overview outlines of the study are presented in six chapters. Chapter 1 describes 

the introduction to cortico-muscular functional interaction. The aims and objectives of 

the study, the scope of brain-muscle functional interaction, and the implemented 

program of research are discussed in this chapter. Chapter 2 discusses the functional 

interaction of brain and muscle signals with the linear coherence method. In chapter 3, 

the functional interaction of brain and muscle signals with a nonlinear mutual 

information analysis framework is explained. Chapter 4 explains the delay time of 

signal propagation between brain and muscle signals. Chapter 5 is the discussion 

section of the whole study. The last chapter expresses general discussions and 

conclusions with limitations and future works of study as in Chapter 6.  
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CHAPTER 2 

FUNCTIONAL INTERACTION OF BRAIN AND MUSCLE SIGNALS WITH 

LINEAR COHERENCE METHOD 

 

The functional interaction of brain and muscle signals has been regarded as 

functional coupling. The coupling of two signals can be evaluated by using the linear 

coherence method. This chapter explains the linear coherence method, its application 

to the cortico-muscular interaction, and the linear coherence results with regard to the 

anatomical and neurophysiological nature of brain and muscle signals.   

 

2.1. Abstract 

The functional interaction of brain and muscle signals was explored with a 

linear coherence method based on the theory of Pearson correlation. Based on literature 

reviews and previous research, the application of the linear coherence method and its 

neurophysiological mechanisms were specifically discussed. In addition, the 

experimental design, data collection, and results of this study were explained clearly in 

each section. According to the results, the cortico-muscular functional interaction 

amount can change based on the motor task performance.  

 

2.2. Introduction to Linear Coherence Method 

The linear coherence method is used as an indicator of the linear connection 

between two signals [3], [30], and [44]. It is the principal measure of the Pearson 

correlation coefficient between two signals in the frequency domain [45]. The range of 

coherence exists between zero and one, where one indicates a perfect linear relationship 

and zero indicates the two signals are not linearly correlated at that frequency [17]. 

Coherence was calculated from the normalization of the cross-spectrum. When the 

coherence was greater than >95% confidence limit, it was considered significant [8]. 

In this study, EEG-EMG coherence was calculated between brain and muscle 

signals during the motor task performance of RM, Inten, MI, and OL in all participants 

to predict the amount of cortico-muscular functional interaction. The coherence values 

within the frequencies of interest are used to estimate the functional interaction between 

brain signal (x) and muscle signal (y) [13], [28]. To calculate the coherence, the auto-

power-spectral density of brain signal (x) and muscle signal (y) is first calculated as 

Equation (1) and Equation (2).              
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                         𝑆𝑥𝑥(𝑓) =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 (f) 𝑋𝑖

∗(f)                                                            (1) 

                        𝑆𝑦𝑦(𝑓) =
1

𝑛
∑ 𝑌𝑖

𝑛
𝑖=1 (f) 𝑌𝑖

∗(f)                                                             (2) 

After calculating the auto-power-spectral density of each signal, the cross power 

spectral density of the brain signal (x) and muscle signal (y) was calculated as in 

Equation (3). 

                         𝑆𝑥𝑦(𝑓) =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 (f) 𝑌𝑖

∗(f)                                                     (3) 

The magnitude squared coherence value between brain signal (x) and muscle 

signal (y) at frequency, f can be calculated by the following standard formulation as 

shown in Equation (4) [44], [45], and [46]. 

                        𝐶𝑜ℎ𝑥𝑦(𝑓) =  
|𝑆𝑥𝑦(𝑓)|2

𝑆𝑥𝑥(𝑓) 𝑥 𝑆𝑦𝑦(𝑓)
                                                                (4) 

The coherence value significance level was determined based on the confidence 

limit, CL, as in Equation (5).                     

              Confident limit  =   1 – (1– α ) 
1

(𝐿−1)                                                    (5) 

where L represents the number of data segments used in the coherence 

calculation and α is a confidence interval and is typically 95%. For statistical 

comparison, the coherence areas for each frequency band range were calculated by 

using the formula as in Equation (6), where ∆f represents frequency resolution, f is the 

frequency of the calculated band, and 𝐶𝑜ℎ𝑥𝑦(𝑓) is the coherence value [14]. 

                          𝐴𝑐𝑜ℎ = ∑ ∆𝑓(𝑓 𝐶𝑜ℎ𝑥𝑦(𝑓)  – 𝐶𝐿)                                                    (6)                               

To resolve the controversial issues of coherence occurrence in-band frequencies, 

the magnitude squared coherence values were calculated in all five frequency bands, 

delta (0.5–3.5 Hz), theta (4–7.5 Hz), alpha (8–12 Hz), beta (13–30 Hz) and gamma (31–

50 Hz) ranges for all motor tasks.   

 

 2.2.1. Application  of  the  Linear  Coherence  Method   to   Cortico-muscular     

            Interaction 

The first coherence study in macaque monkeys was done by researchers in the 

early 1990s. In this study, the researchers recorded local field potential (slow waves) 

and pyramidal tract neuron (PTN) discharge from pairs of sites in the primary motor 

cortex with a precision grip task. The coherence was modulated by the movement that 

occurred in the monkeys [47]. Then, studies were initiated in humans with transcranial 
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electrical stimulation (TES) together with a brain-computer interface (BCI) [8]. BCI 

with TES is gaining attention as a rehabilitation approach in which motor recovery can 

be promoted by neuro-feedback based on the recordings of direct manipulation of brain 

electrical activity [9], [10].   After the revolution of coherence studies with various 

kinds of noninvasive methods, cortico-muscular coherence became an indicator in the 

rehabilitation systems of stroke patients [9], [48].  It is an effective method for 

evaluating how different brain areas are involved in motor recovery after suffering a 

stroke. Thus, cortico-muscular coherence has been widely applied as a potential 

biomarker for post-stroke motor deficits, reflecting the recovery of motor function by 

quantifying interactions between activities from the motor cortex and controlled 

muscles [3], [8]. As the linear coherence method calculation was based on the frequency 

domain, the frequencies of these activities may reflect both the intrinsic membrane 

properties of single neurons and the organization and interconnectivity of neural 

networks. The beta and gamma-band oscillations of CMC have been used since the 

early 1990s to investigate and show as a feature of good functional interaction [4], [16], 

[23], and [28]. Thus, beta band (18–30 Hz) synchronization is a feature of the 

sensorimotor cortex during motor execution (ME). The high value of CMC has been 

interpreted by researchers as evidence of the involvement of cortical neurons in motor 

unit synchronization [4]. 

In addition, EEG and EMG events are coherent but do not occur simultaneously. 

This coherence happens with a delay, which reflects signal propagation time between 

the brain and muscle signals, possible information processing and more detailed 

information about the temporal structure of interactions. Knowing the delay time can 

provide not only important information about communication between cortex and 

muscle but also the direction in which the oscillations propagate and/or by 

differentiating the corticospinal pathways via which the activity is transmitted [5]. Thus, 

this study focused on determining coherence in different frequency bands, comparing 

coherence based on motor task performance, and calculating delay times based on beta 

and gamma bands to infer the directionality of information flow between brain and 

muscle pathways. 

The real-world applications of CMC have been found in the invention of 

biomedical robotics, prosthetic and hand orthosis devices for people with disabilities 

and amputees, in the construction of cortical-muscular functional networks, and in 

EEG/EMG controllers with different kinds of classifiers, etc. [13], [14]. Moreover, 
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CMC can be widely applied in the study of human motion and movement for behavioral 

science, such as sports activities, root causes of fatigue, treatment of tremors, 

Parkinson’s disease, dyskinesia, and Alzheimer’s disease, and recognition of human 

motion intention for movement intention detectors with various classifiers, etc. [15], 

[20], and [21]. Our study is the updated study of functional interaction with delay time 

in beta and gamma bands that can be advantageous in judging the response time of 

brain–muscle signals in patients and in the construction of motion intention detectors 

in real applications of cortico-muscular functional interaction systems [14], [15]. 

 

2.2.2. Neurophysiological Brain and Muscle Mechanisms Using the Cortico-    

            muscular Coherence (CMC) Method 

Horak’s motion control theory, 1991, emphasized that "normal motion control 

refers to the central nervous system by using existing and past information to transform 

neural energy into kinetic energy and enable it to perform effectively functional 

activities" [49]. In this process, the interaction between two systems of motor muscle 

tissue and the central nervous system is included. When a person utilizes or performs a 

hand-grasping motor task, the command that is generated by the motor cortex will be 

transmitted along the motor conduction pathway and can dominate the peripheral 

nerves and muscles of the upper body. The sense of proprioception is simultaneously 

passed along the sensory conduction pathway to the spinal cord, the cerebellum, the 

brain stem, and partly to the cerebral hemisphere. Proprioceptive information is sent to 

the brain’s sensory regions for the regulation of motion commands [50]. 

The study of cortico-muscular functional interaction can reflect the interaction 

between the cerebral cortex and muscle tissue, which depicts the transmission of 

information flow within two systems. The information flow of that system can be 

associated with the cerebral cortex, which sends commands to the muscle tissue and the 

afferent feedback of muscle contraction. It needs to understand the neurophysiological 

root causes of brain-muscle functional interaction in terms of how the brain controls 

muscle tissue and the effects of peripheral muscle movement on brain function. The 

researchers and scientists recognized that the CMC reflects both cortical efferent 

descending passes from the brain to muscles as well as ascending cortical afferent 

passes from muscles to the brain in producing the CMC [30]. 

The high coherence values indicate that there is a strong physiological 

underpinning as an indicator of neural binding across the tasks [51]. From a 
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physiological perspective, RM, Inten, MI, and OL tasks require different patterns of 

coordination among cortical and motor neurons to produce the necessary motions and 

forces. For these reasons, the four tasks were chosen as they are distinct from the 

perspective of mechanical requirements such as force and motion. 

 

2.3. Materials and Methods 

This section will describe the participants who were involved in the experiment, 

the experimental condition, what type of software was used, and how the apparatus was 

set up in the experimental room for recording the brain and muscle signals.  

 

2.3.1. Participants 

This experiment involved a total of 13 participants who were right-handed. All 

participants were from Kyushu University and ranged in age from 21 to 28 years (23.92 

± 1.754 years, mean ± SD). Among the 13 participants, two were females, and the other 

eleven were males. None of the participants had had a physical disorder or brain damage 

in the past. The study was conducted according to the guidelines of the Declaration of 

Helsinki and approved by the Institutional Review Board of the Faculty of Information 

Science and Electrical Engineering, Kyushu University (H 26-3, June 23, 2014). The 

participants provided written informed consent before the experiment. The consent 

form is attached in APPENDIX B. 

 

2.3.2. Software and Apparatus   

We used g.USBamp from g.Tec medical engineering company to record the 

brain and muscle signals. Ten EEG channels and three surface EMG (sEMG) channels 

were used. EEG electrodes were Fp1, Fp2, Cz, FC3, C3, CP3, FC4, C4, CP4, and Pz. 

As shown in Figure 2.1, bipolar EMG electrodes were put on the brachioradialis muscle, 

flexor carpi ulnaris muscle, and flexor carpi radialis muscle, respectively. We recorded 

both EEG and EMG signals at a 1200 Hz sampling rate. All the electrodes’ impedance 

values were under 1 kΩ. To suppress the power line noise interference, the notch filter 

at 60 Hz was used. The A1 electrode was set as a reference, and AFz was set as a ground. 

In this experiment, we used the Oculus Rift head-mounted display HMD from the 

Oculus company to create a virtual reality environment. We created the virtual reality 

environment by using Unity (2019.2.9f1) software and designing a place mimicking a 

real experimental room in a three-dimensional head-mounted display (3D-HMD). We 
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created hand models with MakeHuman software and Blender software for task 

instructions. After making a file of the recorded movement, we used this file as an input 

to Unity, which played this file by using a trigger. We used two computers in this 

experiment. One computer was used for signal recording and the other one was used 

for making a virtual reality environment. 

                  

                            (a)                                                         (b) 

Figure 2.1: Electrode placements for brain-muscle signals data recording (a) EEG 

electrodes (b) EMG electrodes. 

 

2.3.3. Experiment Design 

We used a head-mounted display (HMD) to display the created hand models in 

virtual reality for motor task instructions and motor learning of hand grasping tasks.  

We asked the participants to put both hands on the table in the same position as in a 

virtual reality environment. We placed the towel under the participant’s hand in order 

not to include force. To reduce physiological artifacts, we asked the participant not to 

blink, clench their jaw, or make unnecessary movements during recording. Firstly, we 

demonstrated the motor tasks presented in the work before data acquisition to 

acclimatize participants with the setup. Then, the instructions for the tasks were shown 

on the monitor screen via a head-mounted display (HMD) in a virtual reality 

environment. Figure 2.2 shows the experimental design. 

We used four different motor tasks. An RM is a task in which a participant 

moves his or her dominant hand in a real-hand grasping movement. An inten is a kind 

of isometric contraction that involves the static contraction of a muscle without any 

visible movement at the angle of the joint. An MI is a task in which participants carry 

out a mental process by rehearsing or simulating a given motor action. OL is a task in 
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which participants just look at a virtual hand’s movement without any brain imaging. 

To ensure the absence of bias, we designed the motor task with four patterns: 

Inten→OL→RM→MI, OL→RM→MI→Inten, RM→MI→Inten→OL, and 

MI→Inten→OL→RM. The participants performed one pattern randomly selected from 

these four patterns. 

 

Figure 2.2: Experimental design for motor task performance using the 3D-HMD 

condition in the VR environment. 

 

Figure 2.3 shows the task flow of the experiment. There was a 2 minute rest 

period as a baseline. Then, there were 8 s of rest, 2 s of being ready, and 5 s of the task 

in 1 trial.  We designed a total of 40 trials with 4 sets in each motor task. During rest, a 

fixation cross appeared on the virtual palm, but it vanished during the 2 s ready stage. 

The virtual hand grasping appeared on the monitor in the HMD during the 5 s task. The 

time to break between each motor task was 5 minutes. Then RM, Inten, MI, and OL 

tasks were performed, respectively. Figure 2.4 shows the first ten trials of one subject 

in each task for both EEG and EMG data. 

 

Figure 2.3: Experimental task flow. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f)                                    
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(g) 

 

(h) 

Figure 2.4: Ten trials of one subject’s EEG and EMG data: (a) EEG data from the 

RM task; (b) EMG data from the RM task; (c) EEG data from the Inten task; (d) 

EMG data from the Inten task; (e) EEG data from the MI task; (f) EMG data from 

the MI task; (g) EEG data from the OL task; and (h) EMG data from the OL task. 

 

2.4.   Data analysis 

 According to the experimental data, there were 40 trials in four sets of each 

motor task performance, but some data that contained too many noises to analyze was 

excluded from the analysis. Among 10 channels of EEG data, we chose only the 

contralateral brain motor cortex C3 and ipsilateral cortex C4 as they were mainly 

concerned with body movement in the brain [14]. Among three EMG channels, we used 

only the flexor carpi ulnaris muscle since this muscle was directly involved in hand 

grasping movement. 

 In data preprocessing, we resampled both signals to 256 Hz to reduce 

computation speed and time. We chose the bandpass filter range of 1 to 100 Hz for both 

signals. The EEG data that contained artifacts was determined by visual inspection with 

the use of EEGLAB. We used Independent Component Analysis (ICA) as it is an 

effective tool for rejecting several types of non-brain artifacts. Data above the limit of 

±100 µV was excluded to remove eye-blinking and muscle noise. We rejected at most 

one or two ICA components that apparently affect the EEG channel data. Then, we 

extracted the EEG data. For EMG signals, the non-rectified EMG signals were filtered 

with a selected bandpass filter and then exported for further analysis [3], [10], and [29]. 
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 After preprocessing the data, we recorded only 0–5 s of EEG and non-rectified 

EMG data during participants performing the hand grasping movement. We calculated 

the auto-power spectral analysis and cross power spectral analysis of two signals over 

all trials by averaging over disjointed sections of Hanning tapered data using an FFT of 

128 points. The 128 ms window was moved across the 5 s data with non-overlapping 

to access the changes in coherence by using Equation 1 to Equation 3. Coherence was 

normalized with the use of Equation 4. The frequency range of 0.5 to 50 Hz, covering 

most of the scalp-recorded EEG power spectra and EMG power spectra, was used for 

coherence analysis. 

 For statistical analysis, first, we used the Shapiro–Wilk normality test to verify 

the normality of the data (p > 0.05). We used bootstrap estimation for each ANOVA 

test as it is an effective method for creating non-normal data to normality. We further 

applied the generalized linear model together with one-way ANOVA to achieve more 

specific information between different variables. The one-way ANOVA was performed 

based on frequency bands and designed tasks to know the main effects of brain-muscle 

functional interaction. We used the LSD and Bonferroni correction methods for all 

pairwise comparisons with (p < 0.05). All statistical comparisons were made using IBM 

SPSS 20 (SPSS Inc., Chicago, IL, USA). 

 

2.5.   Results 

This section will describe the results of cortico-muscular functional interaction 

that were calculated by the linear coherence method. Firstly, we compared the cortico-

muscular coherence for C3-EMG and C4-EMG to check whether high coherence occurs 

or not on the opposite or same side of the brain’s motor cortex versus EMG during hand 

grasping movement. Then, cortico-muscular coherence in each motor task was 

compared based on bands to clearly examine the occurrence of functional interaction 

in five different frequency bands. Based on the band frequency comparison results, the 

functional interaction of brain and muscle signals was compared again based on the 

motor tasks. This comparison was done in only the highest number of frequency bands. 

  

2.5.1. Comparison   of   Cortico-muscular  Coherence   in  Contralateral  Motor   

         Cortex versus EMG and Ipsilateral Motor Cortex versus EMG 

 Firstly, we investigated the cortico-muscular coherence to check the synchrony 

of brain and muscle signals. We checked the coherence of both contralateral and 
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ipsilateral motor cortex versus flexor carpi ulnaris muscle, EMG. A higher amount of 

coherence occurred in RM and Inten tasks rather than MI and OL tasks in C3-EMG as 

in Figure 2.5. The coherence values were high in the beta band (13–30 Hz) and gamma 

band (31–50 Hz) in those tasks, with no coherence in MI and OL tasks. On the other 

hand, there were very low coherence values in RM and Inten tasks but with no 

coherence in MI and OL tasks of C4-EMG as in Figure 2.6. The results showed that the 

higher cortico-muscular coherences occurred in C3-EMG rather than in C4-EMG. The 

findings proved that the functional interaction could be different across motor task 

conditions. The results also pointed out that there might not be coherence between two 

signals if the brain and muscle signals did not couple during motor tasks. 

 

 

Figure 2.5: Comparison of coherence in one subject’s data across all motor tasks in 

C3-EMG.  
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Figure 2.6: Comparison of coherence in one subject’s data across all motor tasks in  

C4-EMG. 

 

2.5.2. Band-based Comparison of Cortico-muscular Coherence in Each Motor     

            Task 

 As the higher amount of coherence occurred in the C3-EMG rather than the C4-

EMG as shown in the above section, we selected only the C3-EMG for further data 

analysis. To predict the pattern of cortico-muscular coherence clearly, the coherence of 

one subject’s data of C3-EMG in the RM task was shown in Figure 2.7. The highest 

coherence appeared at 38 Hz during the task. As we have already mentioned above, the 

functional interaction can happen in different specified frequency bands within 

different muscle contraction types.  Thus, we first checked the averaged values of 

coherence during coupling in the delta (0.5–3.5 Hz), theta (4–7.5 Hz), alpha (8–12 Hz), 

beta (13–30 Hz), and gamma (31–50 Hz) ranges for all motor tasks. The hypothesis 

was that the functional coupling of brain and muscle signals in five different bands was 

not significantly different in each of the RM, Inten, MI, and OL tasks. 

 We used the Shapiro–Wilk normality test to check the normality distribution in 

the statistical analysis. All motor tasks showed normality with p > 0.05 in all bands.  

Then, we performed a one-way ANOVA test with bootstrap estimation and a 

generalized linear model for the comparison of cortico-muscular coherence based on 

bands in each motor task. The results rejected the null hypothesis and showed the main 
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effect of functional interaction among all frequency band groups with one-way 

ANOVA  (F(4, 60) = 3.159, p = 0.02, η𝑝
2  = 0.174) in the RM task. The LSD post hoc 

test showed a significant difference in the coherence (mean ± SE) between the alpha 

band (0.0503 ± 0.0029, p = 0.018) and the beta band (0.0618 ± 0.0018). There was also 

a significant difference between the delta band (0.0549 ± 0.0050, p = 0.047), theta band 

(0.0534 ± 0.0043, p = 0.022) and the alpha band (0.0503 ± 0.0029, p = 0.004) compared 

to the gamma band (0.0645 ± 0.0012). The coherences in the Inten task also rejected 

the null hypothesis with the main effect of functional interaction in one-way ANOVA 

(F(4, 60) = 4.578, p = 0.003, η𝑝
2  = 0.234). The LSD post-hoc test resulted in a significant 

difference in the coherence (mean ± SE) between the delta band (0.0540 ± 0.0030, p = 

0.029), theta band (0.0543 ± 0.0018, p = 0.036), and the alpha band (0.0522 ± 0.0023, 

p = 0.007) compared to the beta band (0.61162 ± 0.0018). There was also a significant 

difference between the delta band (0.0540 ± 0.0030, p = 0.006), theta band (0.0543 ± 

0.0018, p = 0.008), and alpha band (0.0522 ± 0.0023, p = 0.001) compared to the 

gamma band (0.0631 ± 0.0019). However, there was no significant main effect of brain-

muscle functional interaction among the five different bands with one-way ANOVA 

(F(4, 60) = 0.140, p = 0.967, η𝑝
2  = 0.009) in the MI task and (F (4, 60) = 0.926, p = 

0.455, η𝑝
2 = 0.058) in the OL task, as shown in Figure 2.8. Thus, Bonferroni correction 

post hoc tests were used for multiple comparisons of MI and OL tasks. According to 

the results, we could say that the cortico-muscular functional interaction can occur in 

all types of bands but with different interaction amounts. The highest coherences 

appeared in the beta and gamma bands of RM and Inten tasks, while all five bands had 

low coherence in MI and OL tasks. 
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Figure 2.7: EEG-EMG coherence of one subject’s data in the RM task. 

 

Figure 2.8: Comparison of the averaged coherence based on the frequency band in four 

motor tasks. Error bars show the standard error of the mean. * p < 0.05 ** p < 0.01. 

 

2.5.3. Comparison  of  Cortico-muscular  Coherence  in  Beta  and  Gamma  Bands       

          Based on Motor Tasks 

As the higher coherences were detected in the beta and gamma bands, we 

selected these two bands among five bands and then compared the averaged coherence 
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again based on the tasks in all subjects. Thus, we hypothesized again that functional 

coupling coherence between cortex and muscle in beta and gamma bands was not 

statistically significantly different across four types of motor tasks. However, the results 

also rejected the null hypothesis. As shown in Figure 2.9, the higher coherence occurred 

in only RM and Inten tasks in both band ranges.  

In the beta band, we could clearly observe the averaged coherence amount of 

RM, Inten, MI, and OL tasks with a significant main effect of functional interaction 

[task × coherence] value of (F(3, 48) = 5.145, p = 0.004, η𝑝
2  = 0.243) in the ANOVA 

test. The LSD post hoc test showed a significant difference in coherence (mean ± SE) 

between the MI task (0.0550 ± 0.0015, p = 0.004) and the OL task (0.0557 ± 0.0011, p 

= 0.008) compared to the RM task (0.0618 ± 0.0017), and between the MI task (0.0550 

± 0.0015, p = 0.008) and the OL task (0.0557 ± 0.0011, p = 0.017) compared to the 

Inten task (0.0611 ± 0.0018). There was no statistically significant difference between 

the RM task and the Inten task (p = 0.762).  

In the gamma band, the results also showed high coherence in the RM and Inten 

tasks rather than MI and OL tasks, with a significant main effect of functional 

interaction [task × coherence] value of one-way ANOVA (F(3, 48) = 9.812, p = 0.001, 

η𝑝
2  = 0.380). Then, the LSD post hoc test showed a significant difference between the 

MI task (0.0535 ± 0.0117, p < 0.001) and OL task (0.0568 ± 0.0016, p = 0.002) 

compared to the RM task (0.06455 ± 0.0011) and the MI task (0.0535 ± 0.0117, p < 

0.001) and the OL task (0.0568 ± 0.0016, p = 0.011) compared to the Inten task (0.0631 

± 0.0199). As with the beta band, there was no statistically significant difference 

between the RM task and the Inten task in the gamma band (p = 0.530). 

To be able to check the individual level of the independent variables and to look 

at the confidence interval in terms of true mean values for coherence, we also performed 

the 95% CI of the within-subject standard error estimation of coherence across the tasks 

in both beta and gamma bands as shown in Figure 2.10.  Finally, to evaluate the 

magnitude and variability of coherence across tasks, we further constructed box and 

whisker plots which depicted the mean coherence obtained within two frequency bands 

of beta and gamma, as shown in Figure 2.11. The changed cortico-muscular coherence 

in all subjects was compared across each task. The results confirmed that the functional 

interaction between brain and muscle signals can be greater in the RM and Inten tasks 

than in the other MI and OL tasks if the signals are synchronized well during the motor 
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tasks’ execution. These results confirmed that the cortico-muscular functional coupling 

changed based on motor task performance. 

 

Figure 2.9: Comparison of the average coherence in the beta band and gamma-band 

based on motor tasks: The top and bottom of each box represent the 25th and 75th 

percentiles, respectively. The cross sign inside each box represents the mean value. The 

horizontal black line represents the median. The whiskers are drawn from the ends of 

the interquartile ranges to the minimum and maximum values. *p < 0.05 **p < 0.01. 

 

Figure 2.10: The 95% CI of the within-subject standard error estimation of coherence 

across the tasks in both beta and gamma bands. Circle-marked points represent the 

means, and bars around these points represent the 95% CI of the within-subject standard 

error. 



22 
 
 

 

 

  

(a)                                                                  (b) 

  

(c)                                                                  (d) 

  

(e)                                                                  (f) 

Figure 2.11: EEG-EMG coherence comparison across all subjects in the beta band and 

gamma band: (a) RM task vs. Inten task; (b) RM task vs. MI task; (c) RM task vs. OL 

task; (d) Inten task vs. MI task; (e) Inten task vs. OL task; and (f) MI task vs. OL task. 

* p < 0.05 ** p < 0.01. 

 

2.6. Discussion 

Based on the previous studies’ controversial issues on cortical-muscular 

coherence, this study hypothesized that EEG-EMG functional coupling changes based 

on different motor task performance [4], [14], [15], and [50]. The results proved that 

the functional interaction between brain and muscle signals varies depending on the 

motor tasks that subjects execute.  In this study, coupling amounts were greater in the 

RM and Inten tasks than in the other MI and OL tasks in all subjects. Cortico-muscular 

** ** 

** ** ** ** 

* * 
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functional interaction was systematically decreased and enhanced at specific 

frequencies of interest from 0.5 Hz to 50 Hz across the four motor tasks. Our results 

satisfied the remaining controversial issues concerned with band-specific problems, 

namely whether the highest coherences can appear only in the beta band and gamma 

band or not. Both beta and gamma bands can appear in RM and Inten tasks, while all 

five bands had low coherence in MI and OL tasks. 

The high coherence values indicate that there is a strong physiological 

underpinning as an indicator of neural binding across the tasks [51]. From a 

physiological perspective, RM, Inten, MI, and OL tasks require different patterns of 

coordination among cortical and motor neurons to produce the necessary motions and 

forces. Thus, this study motivated the four tasks since they are distinct from the 

perspective of mechanical requirements such as force and motion. These fundamental 

mechanical differences are also one of the phenomena associated with task-related 

changes in brain and muscle activity coordination. 

Based on the occurrence of the highest coherence in beta and gamma bands 

during clenched fist, wrist flexion, and extension tasks, the study extracted features and 

applied an SVM classifier for reclassifying a motor task among three different motor 

tasks [14]. Next, the study constructed the cortical-muscular functional network and 

classified hand movements with Fisher and artificial neural networks for exploration of 

more effective methods in human behavior perception. The researchers applied theta, 

alpha, beta, and gamma frequency bands to their constructed model [15]. The presence 

of beta and gamma-band coherence during motor task execution was confirmed in our 

study, as it had been in previous studies [14], [15]. 

There were low coherences in delta, theta, and alpha bands and high coherence 

in beta and gamma bands. The results of alpha-band coherence are typically thought to 

reflect the afferent feedback through the stretch reflex loop [51]. There was very low 

coherence in the alpha band across all tasks in the study. The coherences were more 

apparent in the efferent pathways than in afferent feedback. Higher band coherences 

are thought to represent a cortical drive to muscles. Beta band coherence is thought to 

be very sensitive to movement. It usually happens while holding static and isometric 

force [11], [16], and [23].In addition, the occurrence of coherence in the beta band could 

be related to the ERD / ERS phenomenon as an interactive effect of it [52]. The firing 

behaviors of spinal motor neurons and cortical activity are correlated as a functional 

coupling within the beta ranges [10]. The study concluded that the amount of significant 
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beta range synchronization decreases below the confidence level when attention is 

divided between motor tasks and other simultaneously performed tasks. The cortical-

muscular network works in good synchronization when the attentive resources are 

directed towards the motor tasks.  Beta range EEG-EMG synchronization was the effect 

of attention and precision of exerted force during a maintained motor contraction task 

[25]. 

The integration of visual and somatosensory information increment could shift 

cortico-muscular coherence to the gamma range [23]. The 40 Hz rhythms could have 

occurred during motor preparation and control of finger movement performance [53]. 

Neuronal gamma-band (40–70 Hz) coherence has been found along the visuomotor 

pathways and is concerned with visuomotor interactions [22], [54]. In this study, we 

applied 3D-HMD for the motor task commands and stimulation for the subjects. This 

process could lead to focused attention from the participants and produce sensory-motor 

integration of brain signals, which then resulted in the gamma range (31–50 Hz) 

coherences [25]. During very strong tonic contractions and dynamic forces, cortical 

gamma-band oscillations may reflect the efferent drive to the muscle [16], [23], and 

[55]. 

In addition, as we used the 19 ms Hanning windowing in coherence analysis, 

this would effectively create a 50 Hz high pass of the original signal. However, this 

high-pass filter effect of this derivation can remove activity with low spatial frequencies, 

including volume conducting activity. Thus, coherent values in high-frequency beta and 

gamma bands cannot be due to volume conduction, and the resulting coherence values 

are purely a consequence of the execution of different motor tasks. The functional 

coupling of the higher bands’ results was consistent with the results reported in [24], 

[56]. This coherence could occur in both bands without the use of special dynamic 

forces in our experiment. 

During the fictitious neuromuscular activities, there were coherence similarities 

between cortical activities [4], [26], and [27]. Nevertheless, there was very low 

coherence in the MI and OL tasks, except for some subjects in the OL task. In summary, 

our results showed that the coupling ranges totally changed based on the motor task 

performance as we had already discussed. During motor tasks, the expression and 

gating of coherent discrete cortical and spinal networks may be a mechanism that 

appears to provide good functional coupling between two signals. 
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CHAPTER 3 

 FUNCTIONAL INTERACTION OF BRAIN AND MUSCLE SIGNALS WITH 

NONLINEAR MUTUAL INFORMATION METHOD  

 

The coupling of two signals can also be evaluated by using a nonlinear mutual 

information method. This chapter explains the nonlinear mutual information method, 

its application to the cortico-muscular interaction, and the interpretation of the mutual 

information results with regard to the anatomical and neurophysiological nature of brain 

and muscle signals.   

 

3.1. Abstract  

The mutual information method is one of the flexible methods in the field of 

brain informatics and mathematics.  After the introduction of information theory by 

Shannon in 1949, this method has become popular in the analysis of functional 

connectivity. Thus, this study applied the mutual information method to investigate the 

brain and muscle functional interaction. The results explain the root causes of higher 

functional interaction along with neurophysiological mechanisms. The results of 

nonlinear mutual information are consistent with the results of the linear coherence 

method.  

 

3.2. Introduction to the Nonlinear Mutual Information Method 

The coherence method is a linear method, and it cannot be used for the study 

of complex and nonlinear brain dynamics. Mutual information is a flexible analysis 

framework that can be applied to identify the patterns of connectivity regardless of the 

distributions of the data, for example, linear, non-linear, and circular. Mutual 

information employs the entropy of higher-order statistics to estimate uncertainty. It is 

a statistical measure of linear and nonlinear relationships between two-time sequences 

[28], [37]. 

To calculate the mutual information, the entropy of the signals must be 

computed. Thus, we first bin the data to create a histogram with the Matlab function 

hist by using Equation 7 and Equation 8. Next, we compute the probability that a value 

in the data will fall into each bin. 

      Number of bins for EEG   = [ 
𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛 (𝑥)

2. 𝑠(𝑥).𝑛
−1
3

 ]                                         (7) 
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      Number of bins for EMG  = [ 
𝑚𝑎𝑥(𝑦)−𝑚𝑖𝑛 (𝑦)

2. 𝑠(𝑦).𝑛
−1
3

 ]                                    (8) 

Where s(x) is the standard deviation, n is the number of samples, max(x) and 

max(y) are the maximum values of each EEG and EMG signal, respectively, and min(x) 

and min(y) are the minimum values of each EEG and EMG signal. After calculating 

the bin value of each signal, we calculated the entropy in time series for each signal to 

identify the information between EEG and EMG signals as per Equation 9 and Equation 

10. Then, we multiply the probability value by the logarithm-base-2 of that probability 

value and sum all probability values for entropy [37]. 

 

       H(X)  =   − ∑ 𝑝(𝑛
𝑖=1 𝑥𝑖  )log2 𝑝(𝑥𝑖)                                                (9) 

       H(Y)  =   − ∑ 𝑝(𝑛
𝑗=1 𝑦𝑗  )log2 𝑝(𝑦𝑗)                                              (10) 

 We calculated the joint entropies of both signals by using Equation 11.  

              H(X, Y)   =  − ∑ ∑ 𝑝( 𝑥𝑖
𝑛
𝑖=1

𝑚
𝑗=1 , 𝑦𝑗)log2 𝑝( 𝑥𝑖,  𝑦𝑗)                                   (11) 

After that, we calculated the mutual information of brain and muscle signals. 

We compared the amount of mutual information across all motor tasks by using 

Equation 12.  

 

MI(X,Y)  =  𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) 

               = ∑ ∑ 𝑝(𝑥𝑖
𝑛
𝑖=1

𝑚
𝑗=1 , 𝑦𝑗) log2[𝑝(𝑥𝑖, 𝑦𝑗)/𝑝(𝑥𝑖)𝑝(𝑦𝑗)]                       (12) 

  

3.2.1. Application   of    Nonlinear    Mutual   Information   to   Cortico-muscular    

            Interaction 

Since the information theory’s introduction by Shannon in 1949, mutual 

information has been used in many diverse fields as a measure of coupling or 

information transmission between two systems [57]. Mutual information is a 

probability and information theory that is a measure of mutual dependence between two 

variables. It quantifies the amount of information in terms of units such as Shannons 

(bits), Nats, or Hartleys. Mutual information has been obtained for one random variable 

by observing the other random variable [58]. Mutual information can be categorized 

into two: one is cross-mutual information (CMI) and the other is auto-mutual 
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information (AMI). Cross-mutual information (CMI) quantifies the information 

transmitted from one-time series to another, whereas auto-mutual information (AMI) 

in a time series depicts how much the time series’ value can be predicted on average 

from previous points [32], [33], [34], and [35]. 

Mutual information and its related concepts, including entropy, joint entropy, 

and conditional entropy, form a set of mathematical techniques that have many uses in 

science, engineering, and information communication [37]. It is a robust system that 

can be used to quantify the amount of shared information between two systems. In the 

neuroscience field, it was mainly used in the case of EEG analyses, in which the two 

variables could be from two different electrodes or from the same electrodes.  Thus, it 

is a flexible analysis framework that can be applied to identify the pattern of 

connectivity or interaction regardless of the distribution of the data. 

The former applications of mutual information have been found in 

telecommunication systems, feature selection and transformations in machine learning 

systems, medical imaging for image registration, detection of phase synchronization in 

time series analysis, average mutual information in delay embedding theorem, and other 

application areas [42], [58], and [59]. Although mutual information has many 

applications, cross-mutual information (CMI) research within the brain and muscle 

signals is uncommon [28]. Thus, this study was aimed at estimating the amount of 

cortico-muscular functional interaction with mutual information. 

As discussed in the previous Chapter, cortico-muscular coherence can depict 

information flow within the motor system. This coherence, however, might be related 

to either cortical command of the muscle or afferent feedback from the contracting 

muscle [50]. To better understand its generator mechanism and functional connection, 

it is important to know the direction of information flow between brain and muscle 

signals.  In addition, ordinary coherence only describes the normalized covariance in 

the frequency domain. It cannot account for the temporal relationship between the two 

systems [60]. Thus, to reliably measure the temporal relationship between brain and 

muscle signals, phase information across multiple frequencies or power information 

across multiple frequencies is required with stability. In this study, cross-mutual 

information (CMI) was used to analyze the EEG and EMG signals for measuring the 

dynamical coupling and transmissions of information between brain and muscle areas 

during different motor task performances. As in the linear coherence method, if one 
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system is completely independent of another, the mutual information between two-time 

series generated from the brain and muscle signals can be said to be zero.     

 

3.2.2.  Nonlinear Mutual Information Method for Neurophysiological Mechanisms     

          of Brain and Muscle 

 In order to clearly understand the neurophysiological mechanisms of the brain 

and muscle, mutual information analysis, in contrast to coherence, is taken into account 

as it can apply to both the linear and nonlinear dependencies of information 

transmission among brain-muscle regions [32], [33]. In this study, mutual information 

was calculated with the information produced by the muscles and brain cortex during 

the hand grasping movement. During the active movement motor task, the activation of 

brain and muscle signals increased with the appearance of the event-related 

desynchronization (ERD) pattern. During the movement of motor tasks, the innervation 

of muscle fibers inside the skeletal muscle and the transmission of neurons inside the 

motor cortex is strengthened as a consequence of the motor neurons' firing of both 

signals [28]. The reduced information transmission between pairs of brain-muscle 

electrodes is the result of the low innervation of brain and muscle neurons. 

 

3.3.   Data analysis  

To investigate cortico-muscular functional interaction with a nonlinear mutual 

information analysis framework, we computed the mutual information of C3-EMG and 

C4-EMG signals during four different motor task types. Data from two electrodes were 

computed with a sliding 100 ms segment and a step size of 50 ms for all trials in the 

data range of 2 s to 5 s time series. Then we calculated the amount of mutual information 

between two signals in each subject for all motor task conditions. We set the mean value 

of data between 2 s and 0 s as the baseline, and then these baseline values were 

subtracted from the total interval. We compared the amount of mutual information in 

all motor tasks of RM, Inten, MI, and OL to check the cortico-muscular interaction 

between brain and muscle signals.  For statistical data analysis, the Shapiro-Wilk 

normality test was first used to confirm that the data had a non-normality distribution. 

According to the Shapiro-Wilk test data, the data do not follow normality distribution 

with (p < 0.05). Thus, the independent-sample Kruskal–Wallis test was used to compare 

more than two groups with the nonparametric method. 
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3.4.   Results 

This section explains the results of cortico-muscular functional interaction with 

nonlinear mutual information methods. Firstly, we calculated the mutual information 

of brain and muscle signals in both ipsilateral motor cortex, C4-EMG, and contralateral 

motor cortex, C3-EMG across all motor tasks to check whether there was high or low 

mutual information in ipsilateral motor cortex versus EMG muscle signals. Then, the 

average cortico-muscular mutual information was calculated across all motor tasks in 

all subjects.  

 

3.4.1. Investigation of Cortico-muscular Mutual Information in Contralateral  

            Motor Cortex versus EMG and Ipsilateral Motor Cortex versus EMG 

We investigated the amount of correlation between brain and muscle signals in 

both contralateral and ipsilateral cortices versus EMG. Figure 3.1 shows the result of 

the mutual information amount on one subject, C3-EMG. The amount of information 

in the RM task increased during the 5 s task after instructions began. The Inten task also 

showed higher amount of mutual information during the 5 s motor task nearly the same 

result as RM. However, the amount of mutual information was low during the MI and 

OL tasks.  

The amount of cortico-muscular mutual information in the ipsilateral cortex, 

C4-EMG, was shown in Figure 3.2. The information transmission was low across four 

tasks of RM, Inten, MI, and OL tasks as the results were from the ipsilateral cortex, the 

same side of the brain as the hand. In all conditions of C3-EMG and C4-EMG, there 

were small fluctuations concerned with the subjects’ motor task preparation and motor 

task learning before the onset time point for task instructions. 

The results confirmed that high functional interaction occurred in C3-EMG 

rather than in C4-EMG. In addition, the two signals correlate well when motor unit 

firing and cortical neurons have good coupling. The results proved that there was a very 

low functional coupling between brain and muscle signals if there was no actual 

movement and no intention to move. To summarize, the nonlinear mutual information 

method proved that cortico-muscular functional interaction amounts vary across the 

types of motor tasks. 
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Figure 3.1: Comparison of mutual information in time series of data from one subject 

across all motor task conditions, C3-EMG. The black vertical dotted line represents the 

point at which the participant was given the motor task instructions. 

 

 

 

Figure 3.2: Comparison of mutual information in time series of data from one subject 

across all motor task conditions, C4-EMG. The black vertical dotted line represents the 

point at which the participant was given the motor task instructions. 
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3.4.2. Comparison of Cortico-muscular Averaged Mutual Information Across All      

          Subjects 

According to the results, there was low cortico-muscular mutual information in 

the ipsilateral motor cortex versus muscle signals. Thus, we chose only C3-EMG for 

further analysis. We calculated the average mutual information across all subjects. In 

the results, the RM showed the highest amount of mutual information during the 5 s 

motor task, followed by the Inten task, with the second-highest amount of information 

between brain and muscle signals. Then, the MI and OL tasks showed a slight increase 

in mutual information in averaged data,  and this might concern the subjects’ achieving 

focused attention and sensory-motor integration after some period of stimulus, as 

shown in Figure 3.3. In addition, there were some fluctuations in movement preparation 

before the subjects performed the tasks. 

 

Figure 3.3: Comparison of mutual information in time series of data from all subjects 

across all motor task conditions. The black vertical dotted line represents the point at 

which the participants were given the motor task instructions. 
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Figure 3.4: Averaged mutual information comparison across all motor tasks. The 

asymptotic   significance (two-sided tests)  is   displayed   with  a  standard  error  bar. 

* p < 0.05 ** p < 0.01. 

 

3.5. Discussion 

This study was the initial study with nonlinear mutual information flow 

calculation across different task conditions. One of the essential state-of-the-art 

requirements in brain–muscle correlation, as shown in Appendix A, was the 

comparison of mutual information across different motor tasks.  Thus, we extended our 

study to fill the gap of functional coupling with different motor tasks. When the 

averaged mutual information was investigated in accordance with the different motor 

tasks, a greater amount of mutual information was found during the RM and Inten tasks 

than during the MI and OL tasks. The information increased starting from the baseline 

onset zero point, as shown in Figure 3.1 and Figure 3.3. Using a 100 ms sliding window 

in analysis can create an effective high-pass filter, and this can lead to achieving the 

pure task data mutual information. Increased mutual information between RM and Inten 

tasks revealed that there were good coupled signals between the brain and muscle 

signals during motor task execution. The absence of good synchronization between the 

two signals could lead to a small amount of mutual information.  The nonlinear mutual 

information results were also consistent with the linear coherence method in this study. 

In addition, we observed that the MI and OL tasks showed a slight increment 

after the task instructions point in averaged mutual information results. This transient 

increase of mutual information during motor imagery and movement observation might 
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be the influence and consequence of the subjects’ attention and the impulse responses 

to visual stimulation [22], [54]. This occurrence was the same coincidence as the 

occurrence of higher gamma-band coherence, caused by visual effects in the linear 

analysis [26]. Thus, the mutual information results could determine whether there is a 

good relationship or not in the form of functional coupling across motor tasks.  

During hand grasping tasks, motor unit firing and cortical neurons burst inside 

the cell, causing synchronization and finally appearing as an action, which we had 

already proven. In [34], the authors used schizophrenic patients and then checked 

information transmission between different cortical areas by estimating the average 

cross-mutual information (ACMI), but they only used brain signals. The authors used 

DTF based on the MVAR and AR models, but there were still limitations for linear 

dependencies [60], [61], and [62]. Thus, this study applied both EEG and EMG signals 

to further explore the relationships between brain and muscle signals by applying the 

nonlinear information gain method. In summary, this nonlinear correlation method also 

proved that the cortico-muscular functional interaction of the brain and muscle signals 

changes based on motor task performance. 
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CHAPTER 4 

INVESTIGATION DELAY TIME OF SIGNAL PROPAGATION BETWEEN 

BRAIN AND MUSCLE SIGNALS 

 

This chapter explains the nonlinear mutual information delay time method, 

neurophysiological mechanisms, and its interpretation for inferring the direction of 

information flow from the motor cortex to muscles and from the peripheral muscles to 

the motor cortex based on the polarity of delay time across tasks. 

  

4.1. Abstract 

A basic understanding of the delay time can provide information on the signal 

transmission rate. There were controversial issues concerned with the delay time 

amount within the functional interaction of the brain-muscle system. Previous research 

works relied on phase-based methods, which are ineffective for determining the 

directionality of information flow. Thus, this study explored the delay time analysis of 

nonlinear mutual information flow with lagged power correlation in specific frequency 

bands. The results showed that the time to transmit the signals between the brain and 

peripheral muscles could take nearly ± 20 ms, which is an acceptable range according 

to the neurophysiological facts and is consistent with the previous different methods of 

delay time results.  

 

4.2. Introduction to Delay Time Signal Propagation with a Nonlinear Method 

Investigating the delay time contains important information for the cortico- 

muscular functional interaction. The delay time of mutual information can be used to 

infer the directionality of information flow between two signals [37] (p. 404). Every 

coherence and mutual information of two signals appear with a slight delay, which can 

tell us about the possible information processing of motor tasks and flow directionality 

of two signals. In previous studies, delay time during functional coupling was 

investigated with the phase-based method, the Hilbert transform method, and cross-

correlation analysis [28], [42]. However, these methods are only applicable to 

narrowband coherence and the presence of a minimal phase relation between two 

signals, and they cannot infer the directionality of information flow. Thus, we 

investigated the delay time with lagged power correlation in specific frequency bands 

to infer the direction of information flow between efferent and afferent pathways. 
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We consider the two time series X(t) and Y(t) (t = 1 ... T) at T discrete points. 

The mutual information of signals at each discrete time point can be written in terms of 

a probability density function as per Equation 13 [59]. 

                   MI(X(t), Y(t)) = H(X(t)) + H(Y(t)) – H(X(t),Y(t)) 

                                             = ∑ ∑ 𝑝( 𝑥𝑖(𝑡)𝑛
𝑖=1

𝑚
𝑗=1 , 𝑦𝑗(t)) log2(

𝑝( 𝑥𝑖(𝑡) ,  𝑦𝑗 (𝑡))

𝑝(𝑥𝑖(𝑡)) 𝑝( 𝑦𝑗(𝑡))
)          (13) 

 Since the highest coherence values occurred in the range of beta (13–30 Hz) and 

gamma (31–50 Hz) in the results, we calculated the delay time of EEG and EMG signals 

in those bands by making power fluctuations time series using Morlet wavelet 

transformation. First, we constructed the time-frequency representation of beta and 

gamma bands based on the Morlet wavelet decomposition, which provides an optimal 

concentration in time and frequency [35]. In the Morlet wavelet, (t, f) in terms of time 

and frequency representation is given as in Equation 14.  

                                  ω(t, f)   = A exp (
−𝑡2

2𝜎𝑡
2) exp (2iπft)                                                         (14) 

  Where,      σ f = 1/(2 πσ t), A =(σ t √𝜋 ) 
−1

2    

 We calculated the convolution of the wavelet with the signal from the epoch at 

every time instant, t, and every frequency, f. The square norm of the convolution was 

the time-varying energy of EEG and EMG signals at a specific frequency, as in 

Equation 15 and Equation 16. 

  For EEG signal, |𝐸𝑥(𝑡, 𝑓)|  = | ω(t,f) * 𝑥𝑞(t) | 
2
                                 (15) 

  For EMG signal, |𝐸𝑦(𝑡, 𝑓)| = | ω(t,f) * 𝑦𝑞(t) | 
2
                                       (16) 

In this analysis, we calculated the power of beta and gamma bands to check 

the time delay mutual information of all motor task performances. We computed mutual 

information repeatedly for the multiple time lags by shifting one signal with respect to 

another. Then, it was graphed by calculating mutual information between two signals 

by fixing EEG signals and measuring the information according to the delayed time in 

EMG signals [37] (p. 404).  We used Equation 17 for the calculation of time delay 

mutual information between EEG and EMG signals. 

𝑇𝐷𝑀𝐼(𝑋(𝑡), 𝑌(𝑡 + 𝜏))  = 𝐻(𝑋(𝑡)) + 𝐻(𝑌(𝑡 + 𝜏)) − 𝐻(𝑋(𝑡), 𝑌(𝑡 + 𝜏))           

                           = ∑ 𝑝𝑛 (𝑥(𝑡), 𝑦(𝑡 + 𝜏)) × log2[𝑝(𝑥(𝑡), 𝑦(𝑡 + 𝜏))/𝑝(𝑥(𝑡), 𝑦(𝑡 + 𝜏))](17)         
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If the information present at the location EEG is transmitted to the location 

EMG, there will be a peak in the curve TDMI(X(t), Y (t + τ ))  at τ  > 0  and if the 

information present at the location EMG is transmitted to the location EEG with a delay 

time TDMI(X(t), Y (t + τ )) at τ < 0. A peak that occurs at T = 0 implies that a zero delay 

for the EMG and EEG may be due to the nullification of two strong counteracting forces 

driven from EEG to EMG and the opposing drive from EMG to EEG [38]. 

 

4.3. Brain and Muscle Neurophysiological Mechanisms with Delay Time 

 As it has been shown in Figure 4.1, the neurophysiological mechanisms of the 

brain and muscle are complex and compact in their interactions during motor task 

performance [36], [37]. The signals transmitted from the motor cortex to muscle are 

called "descending motor pathways," and those from the peripheral muscles to the 

brain’s motor cortex are called "ascending motor pathways." As has been already stated, 

the hierarchical organization of the motor system works bi-directionally during the 

movements to achieve the goals. However, the direction of information transmission 

and its flow along muscle fibers may be difficult to judge with normal eyes. Thus, it is 

required to check the delay time of information flow between two systems of brain and 

muscle signals to infer the directionality of information flow. In this study, the mutual 

information delay time analysis framework was used to analyze the flow of information 

in terms of directionality and to explore the facts of neurophysiological mechanisms of 

brain and muscle signals.  

 
 

Figure 4.1: The descending (red) and ascending (blue) pathways which could mediate 

the information flow of the brain’s motor cortex and peripheral muscles [36]. 
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4.4. Data Analysis 

For the analysis of delay time values in beta and gamma bands, time lag was 

calculated for each motor task across all subjects according to Equation 17. Based on 

the polarity of delay time results, in which mutual information is shown with the 

maximal value, the direction of information flow can be inferred. The positive delay 

time results indicate the information flow from the brain motor cortex to muscle with 

some extended amount of lagged time, and the negative delay time results indicate the 

information transmission travels from the peripheral muscle to the brain motor cortex. 

If the delay time result were zero, the information transmission would be nulled inside 

the two systems. For statistical comparison among four motor tasks, the Shapiro-Wilk 

test was first used to check the normality distribution. After that, a one-way ANOVA 

was performed to check the main effect of delay time across the tasks in the results. 

The LSD post hoc test was used for all multiple group comparisons. 

 

4.5. Results 

 This section emphasizes the results of calculated delay time during brain motor 

cortex and muscle functional interaction across four motor tasks of RM, Inten, MI, and 

OL in both beta and gamma bands. The averaged delay time results were statistically 

compared in both beta and gamma bands.  

 

4.5.1. Delay   Time   Calculation   Between  the  Brain’s   Motor   Cortex    and   

          Peripheral Muscle 

          We finally investigated whether a good correlation of two signals would require 

a smaller delay time in signal transmission from one to another or not. Based on the 

occurrence of high coherence within the frequency ranges of beta (13–30 Hz) and 

gamma (31–50 Hz), the delay time values were calculated to determine the signal 

propagation and interaction time from the motor cortex to the muscle periphery or the 

muscle periphery to the motor cortex. In the calculation, a positive value of delay 

indicates that the time series of EMG is in advance; a negative value of delay indicates 

that the time series of EEG is in advance [37], [39]. The results of delay time mutual 

information in one subject’s data for the beta and gamma bands of the RM task were 

shown in Figure 4.2. Based on the results, we could infer that information flow direction 

with (–) 20 ms of lagged time from peripheral muscle to motor cortex in the beta band 

and (+) 15 ms of lagged time from cortex to muscle in the gamma band. 
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 In Table 4.1, we reported the delay time values of each subject across all motor 

tasks in both beta and gamma ranges. According to the results, the average delay time 

in the RM and Inten tasks was in the range of 15–25 ms, in agreement with [5]. 

Conversely, the delay time in the no-movement tasks, such as the MI and OL conditions, 

was higher than those in the RM task and Inten task in both beta and gamma bands. The 

amount of delay time in the gamma band also occurred with a smaller amount of mutual 

information if we compared it with the beta band. It is noteworthy that the higher the 

frequency ranges we investigated, the lower the delay time, with a lower amount of 

mutual information. This might have occurred in the gamma band ranges of averaged 

results for all subjects. Some subjects showed zero delay time. A zero-delay might be 

due to the nullification of strong counteracting forces driven from the motor cortex to 

the muscle and the opposing drive from the muscle to the motor cortex. This result 

indicates that the amount of time to transmit the signals from one area to another could 

be high if they were not coherent or even if they had a low correlation. In summary, 

good functional interaction between brain and muscle would require a smaller delay 

time for signal transmission in both efferent and afferent pathways. 

 

                                    (a)                                                              (b) 

Figure 4.2: Delay time mutual information of one subject in the RM task: (a) in the beta 

band; (b) in the gamma band.  The black vertical dotted line represents the delay time 

at the maximum value of mutual information. 
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Delay Time (ms) Obtained by Maximizing 

Mutual Information 1 

Subject 
RM Inten MI OL 

β γ β γ β γ β γ 

1 −20 +15 +20 −20 −40 −15 −45 −30 

2 −20 +15 +20 −20 −30 −20 −45 −39 

3 −25 +20 +25 −20 +25 −45 −35 +35 

4 +30 +23 −25 +25 +30 −28 +35 −40 

5 +25 −30 0 −30 −35 −30 +20 −39 

6 −20 +30 −35 −15 −25 −30 −43 −25 

7 −25 −20 −35 −20 −40 +20 −43 +20 

8 −30 0 −25 −20 −30 +30 −35 −25 

9 −15 −15 +30 −25 −40 −28 −35 −20 

10 −25 −30 +15 −30 −35 −35 −25 +25 

11 −16 +23 −35 −28 −39 −43 −43 −39 

12 −20 −15 −30 +30 +35 −40 +25 −20 

13 +25 −15 −30 0 −30 −45 −30 −15 

Mean 22.76 19.31 25.00 21.76 33.38 31.46 35.31 28.61 

SD                4.83  8.35 9.78 8.16 5.45 9.78 8.37 8.86 
1 Delay time values were calculated by maximizing the mutual information for the thirteen subjects. 
Positive and negative signs were introduced to infer the directionality of information flow and these 
polarities were not taken into account in the calculation.  

 

Table 4.1: Summary of delay time in the beta band and gamma-band across all motor 

tasks. 

 

4.5.2. Delay Time Statistical Analysis Across All Subjects  

 We also performed a statistical analysis of the averaged delay time to check 

multiple comparisons across all subjects in four kinds of motor tasks. First, we checked 

the normality distribution of the data with the Shapiro–Wilk test.  The data of each task 

for all individuals together follow the normality with p > 0.05. Then, we used the 

parametric test ANOVA with the task × delay time value for statistical analysis. A 

significant main effect of delay time was found among four different motor tasks in the 

beta band delay time with one-way ANOVA (F(3, 48) = 8.479, p = 0.001). The LSD 

post hoc test showed a significant difference between the MI task (33.38 ± 1.5129 ms, 

p < 0.001) and OL task (35.31 ± 2.32 ms, p < 0.001) compared with the RM task (22.77 

± 1.31 ms), and between the MI task (33.38 ± 1.5129 ms, p = 0.011) and the OL task 

(35.31 ± 2.32 ms, p < 0.001) compared with the Inten task (25 ± 2.71 ms). There was 

no statistically significant difference between the RM task and the Inten task beta band 

delay time (p = 0.445).  
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 In the gamma band delay time, the results also showed a significant difference 

with (F (3, 48) = 4.053, p = 0.012). The LSD post-hoc test resulted in the MI task (31.46 

± 2.71 ms, p = 0.003) and OL task (28.61 ± 2.46 ms, p = 0.012) compared with the RM 

task, and the MI task (31.46 ± 2.71 ms, p = 0.044) compared with the Inten task (21.77 

± 2.262 ms), as shown in Figure 4.3. We could prove that cortico-muscular functional 

interaction delay time values in both the beta band and the gamma band are also 

significantly different and variable based on the motor task performance. 

 

Figure 4.3: Averaged delay time mutual information comparison across all motor 

tasks in the beta band and gamma band. The top and bottom of each box represent 

the 25th and 75th percentiles, respectively. The cross sign inside each box represents 

the mean value. The horizontal black line represents the median. The whiskers are 

drawn from the ends of the interquartile ranges to the minimum and maximum 

values. * p < 0.05 ** p < 0.01. 

 

4.6. Discussion 

 Delay time calculation is fundamentally important for brain-muscle interaction, 

especially in the design of prosthetic devices and movement intention detectors. The 

previous studies used only classifiers and then classified the movement types and they 

did not calculate the amount of the time lag between brain and muscle signals [15], [63]. 

Thus, we finally emphasized the calculation of the cortico-muscular functional 

interaction delay time based on the motor task performance. It is well-known that the 
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direction of information flow cannot be calculated by the functional coupling of 

coherence. Because it is symmetrical, conventional mutual information is also limited 

in that it cannot be used to determine the direction of information flow. To overcome 

this limitation, we used delayed time mutual information by defining a time series in 

one of the variables to calculate mutual information, which can lead to an asymmetric 

measure. The delay time between EEG and EMG data was 11–27 ms between the 

tremor correlated parts (cortex) of the brain EEG and the trembling hand EMG. The 

coherence delay time was calculated based on the highest coherence frequency bands 

as a function of time lag, but the authors could not infer the directionality of information 

flow [39].  

 Based on the nerve fibers’ conduction velocity of 50–65 m/s in the arms and the 

distance between the scalp and the hand of approximately 1.2 m, most delay times are 

in the range of 18–24 ms [64]. We chose the beta (13–30 Hz) and gamma (31–50 Hz) 

ranges since there has been a lack of delay time analysis based on these bands. Our 

results indicate that the average delay time values were within the range of 15–25 ms 

for RM and Inten tasks. These ranges were consistent with physiological facts, as we 

discussed above [5], [64]. Moreover, there was a longer delay time in the no-movement 

task condition of the MI and OL tasks. These results showed that the time will take 

longer or higher for the transmission of signals from one point to another if there is no 

high coupling or greater mutual information. The gamma-band delay time-averaged 

values showed a smaller amount of delay time than the beta-band delay time-averaged 

values. 

 The advantage of mutual information time lag was that we could infer the 

direction of information flow based on the polarity of the time value rather than the 

linear method of coherence. Thus, we could clearly see the signal propagation or 

transmission time from the brain to muscle (descending) or muscle to brain (ascending) 

oscillation in terms of the lag time, as in Table 4.1. Some subjects demonstrated 

information flow from the brain to the peripheral muscle, while others demonstrated 

information flow from the peripheral muscle to the brain [36], [49]. In our research, 

investigation of the delay time with the nonlinear method based on the beta and gamma 

bands represented a new approach to directionality inference. However, future studies 

still need to be undertaken in order to obtain more exact results with more subjects of 

different ages. In summary, cortico-muscular functional interaction values are also 
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significantly different and they change based on the motor tasks in both beta and gamma 

bands, according to the results. 
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CHAPTER 5 

DISCUSSION 

 

This chapter is the discussion section of the research. We mainly emphasized 

the reasons for using the four tasks to calculate the functional interaction of brain and 

muscle signals. In addition, we discuss how these four motor tasks relate to each other 

and how they can take part in judging the level of interaction between two signals from 

the brain’s motor cortex and an EMG muscle based on the occurrences of the results. 

Based on the hypothesized questions and previous remaining problems, this session 

will discuss the issues surrounding them. 

 

5.1. Abstract  

 First, we discussed the differences in neurophysiology and relationships 

between the four tasks: how they can relate to each other and how these tasks are 

essential for research work. Then, we discussed point-by-point findings regarding 

controversial issues in the functional interaction of brain and muscle signals. We 

discussed anatomical and neurophysiological principles, factors that influence CMC, 

and real-world applications of this research. Based on the study results, we concluded 

with consistent and reliable facts about brain-muscle signals’ functional interaction. 

 

5.2. Differences in  Neurophysiology  and  Relationships  Across  RM, Inten,  MI,    

       and OL Tasks 

 The four motor tasks are principally related as forms of movement activity in 

our daily lives. However, they are physiologically different in terms of internal motor 

dynamic structures. Thus, it needs to understand how these four tasks relate to each 

other, how much they differ, and how they play an essential role in neuroscience fields, 

especially in biomedical engineering. Studies need to be analyzed to explore the task-

related functional interaction and explore the rehabilitation techniques or means for 

stroke patients. As it was already depicted in section 2.2.2, the motor tasks of RM, Inten, 

MI, and OL require different motion and force, and that leads to different patterns of 

coordination among cortical and motor neurons as a functional interaction. The level of 

neural binding across the tasks can state the amount of functional interaction. Thus, this 

study compared these tasks to investigate the level of functional interaction. 
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 The real movement (RM) task is the real hand grasping movement of the 

participants. Whenever the subjects perform the motor task to achieve the expected goal 

for the movement (e.g., hand grasping movement), the motor neurons, interneurons, 

and complex neural circuits inside the spinal cord execute the command to generate the 

proper forces on individual muscles and muscle groups to enable that movement. The 

neurophysiological principles state that the excitation of alpha motor neurons 

innervates the muscle and causes the muscle contractions to generate the movement 

[43]. Thus, the RM task mainly involves the excitation of alpha motor neurons inside 

the spinal cord and muscle fibers, and that leads to functional interaction appearance. 

 In movement intention (Inten), the Inten task involves mental activities of 

planning and forethought. An intention is a mental state that represents a commitment 

to carry out an action or actions in the future [65].  In this study, the Inten task applied 

both mental activities of planning to move like the real movement and forethought of 

that movement without actually moving the hand. As a consequence of practicing 

mental activities inside the brain and mind, the motor intention task may involve a slight 

excitation of motor neurons inside the spinal cord and muscle fibers, which leads to the 

functional interaction appearance in both linear and nonlinear analysis framework 

results, as we have already discussed in sections 2.5 and 3.4. The designing Inten task 

together with the RM task depicted the physiological status of the human motor system 

from the inside. This study clearly showed the two conditions of real movement status 

and movement intention condition for the interaction level of brain and muscle signals. 

As intention can show the connections between mental states and actions carried out by 

the subject in order to achieve a goal, it includes the causes of psychological and 

neurophysiological phenomena, as has already been discussed by Astington et al. [66]. 

 Together with the RM and Inten tasks, this study applied the motor imagery 

(MI) task. As there were many controversial issues regarding the occurrence of EMG 

signals during motor imagery, we took them into consideration together with other 

motor tasks [67].  The difference between an Inten task and an Image MI task is that 

the MI task does not include a commitment to carry out in the future or forethought. 

However, like the Inten task, motor imagery can involve a purely mental process by 

which the participant rehearses or simulates a given action or motor task. In our 

experiment, the subjects were asked to imagine themselves performing the action. 

There are two types of motor imagery: kinesthetic motor imagery and visuomotor 

imagery. Visuomotor imagery (VMI) is a visual representation of the corresponding 
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movement [68]. This study used visuomotor imagery, which requires the use of a 

participant’s imagination to simulate the motor task action without any physical 

movement.  In this study, we considered the MI task as a form of mental practice [69]. 

The MI task might not involve motor neuron excitation inside the spinal cord and 

muscle fibers as in the RM and Inten tasks. As a result, this leads to very low functional 

interaction between the brain and muscle signals. The MI task leads to the rare 

occurrence of EMG signals during data recording and it satisfied the controversial 

problems in previously published works [67]. 

 The movement observation (OL) task was considered together with the other 

three tasks in the study. Mirror neurons can occur during movement observation of 

motor tasks, so movement observation can also be considered as mirroring. In our study, 

we explored the effect of movement observation with a three-dimensional 3D-HMD in 

a virtual reality environment for motor task observation, called the OL task. According 

to the results, some subjects showed higher functional interaction in the gamma band 

during the OL task, as shown in Figure 2.8 as a result of mirror neurons. Mirror neurons 

are neurons that show similar responses to action observation and action execution for 

meaningful goal-directed action [70], [71]. As a consequence of attention in 3D-HMD, 

firing motor neurons inside the spinal cord and the output of mirror neurons, the OL 

task generates some high coherences at higher frequencies. However, the 

neurophysiological facts behind the concept of movement observation are still complex. 

 Because each motor task was unique, we considered investigating the 

relationship between brain and muscle signals. To conclude, these four motor tasks 

differ from each other based on the level of neural binding across the task and generate 

different aspects of results for the interaction of brain and muscle signals. The main 

difference between each motor task can rely on the inside neurophysiological factors 

and components which depend on the performance of each participant.  

 

5.3. Functional  Interaction  of  Brain  and  Muscle  Signals  Discovered Using the    

       Linear Coherence Method’s Controversial Issues  

 There remains the controversial issues of the linear coherence method in 

previous studies. Thus, this study discusses the major findings and occurrences based 

on the results of our own experimental data. 
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5.3.1.  Noise   Level   Detection   and Its   Effect on   Brain-muscle   Functional                       

           Interaction Analysis 

 In this study, the influence of noise on EEG data led to misleading results. To 

remove the eye-blinking noise and non-brain artifacts in the EEG signals, we used 

Independent Component Analysis (ICA) in EEGLAB. We kept a maximum of eight to 

nine IC’s and excluded one or two components that apparently affect the EEG channel 

across all tasks in all subjects. In the original recorded EEG raw data, each row of the 

channel data activation matrix represents the time course summed in voltage differences 

in each channel, as shown in Figure 5.1. 

 

Figure 5.1: EEG data with eye-blink noise. 

 EEG data that contained artifacts was determined by EEGLAB’s automated 

artifact rejection with a set threshold voltage of (±)100 µV. The independent component 

filters were chosen to get maximally temporally independent signals available in each 

EEG channel data set in ICA decomposition. After ICA decomposition, results from 

each row of the data activation matrix are the time course of the activity of one 

component process spatially filtered from channel data. By removing redundancies in 

the data, ICA allows keeping most of the information for functional interaction analysis, 

as shown in Figure 5.2. 
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Figure 5.2: EEG data after using Independent Component Analysis (ICA). 

 

5.3.2. Investigating the Effects of Rectified and Non-rectified EMG Signals 

 EMG rectification is one of the ongoing debates in finding the functional 

interaction of brain and muscle signals. The rectified EMG signal was used in the 

majority of previous studies [3], [4], and [28]. On the other hand, EMG rectification is 

a nonlinear operator and should therefore not be applied in the coherence analysis that 

detects linear coupling [29], [31]. Thus, we explored the difference between 

rectification and non-rectification for the purposes of coherence and mutual information 

analysis. According to our results, EMG rectification leads to a shift of the EMG power 

spectrum to the lower frequency, which corresponds to the MU firing rate, and it 

diminishes the important power spectral components for coherence analysis. We 

discussed and proved that rectification can distort the frequency content of the signal 

and power spectral values as shown in Figure 5.3.  
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       (a)                                                               (b) 

Figure 5.3: Auto spectral EMG of a participant during one motor task (a) unrectified 

EMG signal (b) rectified EMG signal. 

 

5.3.3. Calculation of EEG-EMG Spectral Power and Related Coherence Across     

            RM, Inten, MI, and OL Tasks 

 To check experimental data results, we first discuss the spectral power and their 

auto spectral power across all tasks. The auto spectral values depict the power related 

to each frequency. The calculation of auto spectral power and cross-spectral power was 

needed in the calculation of coherence. From the experimental results, the auto spectra 

values showed the different amounts of spectral content in each RM, Inten, MI, and OL 

task. In the RM task, the spectral value of the EEG showed cortical oscillatory activity, 

which is closely coupled to the synchronized motor unit and can reflect the rhythmic 

discharges of the spinal motoneuronal pool. Figure 5.4 shows the auto spectra power of 

EEG and EMG and their related coherence coefficient in each task for one subject data 

set. 

 The distinct peaks of EEG-EMG auto spectra power were detected at about 3 

Hz, 10 Hz, and less than 10 Hz in the RM task. The peak centered around 10 Hz is 

reduced in the EEG signal while the peak in the 20–50 Hz range was enhanced in the 

non-rectified EMG signal during the task performance. In spite of the similarity of both 

EEG and EMG auto spectra, both of them showed a distinct peak centered about 40 Hz 

in terms of coherence between two signals. This high coherence shows the significant 
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correlations of brain-muscle signals in the RM task. The distinct peaks of auto spectra 

are also at about 2 Hz and 10 Hz in the EEG signal of the Inten task.  The non-rectified 

auto spectra values increased until 35 Hz during the intention. The coherence was also 

detected in the Inten task within the beta band. Our experimental results proved that the 

intention force generates the beta-band coherence. 

 Previous studies have stated that the coherence frequency values can greatly 

change based on the tasks and force levels of muscle contraction. The static force 

generates the beta-band coherence and the dynamic motor task outputs the gamma-band 

coherence [16], [23]. According to our study, it has been shown that the coherence 

frequency values in beta (13–30 Hz) and gamma bands (31–50 Hz) can be seen in RM 

and Inten tasks with statistically significant differences across four types of motor tasks, 

as shown in Figure 2.8 and Figure 2.9, respectively. 

 The auto spectra values of EEG spectral values have occurred at 10 Hz in both 

the MI and OL tasks. As it has been described in previous studies, conscious motor 

imagery and unconscious motor preparation share common mechanisms and they are 

functionally equivalent [26], [27], [67], [68], and [69]. Thus, the auto spectral values of 

MI and OL tasks showed a spectral pattern that looked like the experimental results of 

RM. During the resting stage of the motor task, the auto spectral value of EMG signals 

leads to an increase during the whole period of the task.  There was no coherence in MI 

tasks while some subjects generated the coherence values as an effect of attention in 

the OL task [26]. 

 This study proved that as the estimated auto spectral power amount changes 

based on motor task performance, this study provided more validated results for the 

coherence analysis. We concluded that during RM and Inten tasks, the auto spectra 

values of brain and muscle signals tend to decrease within the designated frequency 

bands and then lead to the higher coherence output, whereas the spectra power tends to 

increase, especially in EMG frequency bands, with very low coherence levels in both 

MI and OL tasks. All subjects showed similar frequency components in the EEG and 

EMG auto spectra for each kind of motor task, although there was considerable 

variation in the amplitudes between subjects and between tasks. 
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Figure 5.4: EEG-EMG spectral power and related coherence results across tasks: 

estimated EEG auto spectrum (left panel), estimated EMG auto spectrum (middle 

panel), EEG-EMG coherence (right panel) in (a) the RM task, (b) the Inten task, (c) the 

MI task, and (d) the OL task 

 

5.3.4. Band Frequencies in Cortico-muscular Coherence 

 According to the ongoing oscillations of brain signals, our study was designed 

to investigate the brain and muscle signals within five frequency bands to check the 

coherence of subjects across tasks. We checked the EEG-EMG coherence amount in 

delta (0.5-3.5 Hz), theta (4-7.5 Hz), alpha (8-12 Hz), beta (13-30 Hz), and gamma (31-

50 Hz) across all tasks. The results showed that brain-muscle functional interaction is 

highly variable across motor tasks, with an absence of significant coherence in MI and 

OL tasks. 

 From the experimental results, the coherence values were mainly detected in the 

beta (13–30 Hz) and gamma bands (31–50 Hz) of RM and Inten tasks, while low 

coherence values occurred in MI and OL tasks. However, as an exception, very few 

subjects diminish coherence in these band frequency ranges even when they perform 

the RM and Inten tasks. Furthermore, some subjects show coherence values in the alpha 

band (8–12 Hz), in the delta band (0.5–3.5 Hz), and in the theta band (4–7.5 Hz) 

according to the experimental results. Thus, functional interaction coherence of brain 

and muscle signals can be detected in all five frequency bands but with different 

amounts, as already discussed in section 2.5. Oscillatory activities in these five different 

frequency bands have distinct physiological roles, and each can be assigned to specific 

perceptual, sensorimotor, or cognitive operations. 

 In addition, the different parameters of physiological features in internal motor 

dynamic structure across tasks are the main causes of coherence occurrence [49]. We 

could say that the occurrence of coherence in beta and gamma bands was not because 

of the task and force differences; there will be some neurophysiological matter inside 

the brain and muscle signals. From this experimental design and results, we could say 

the most critical point is that the between-subject variabilities greatly influence the 

amount of coherence. 
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5.3.5. Muscle   Contraction   Force-related   Changes   in   Cotrico-muscular   

            Coherence 

 The experimental results demonstrated that cortico-muscular coherence in beta 

and gamma bands was muscle contraction force-related changes.  According to our 

experimental results [25], [55], and [72], the highest amount of coherence was detected 

in RM and Inten tasks across all subjects, and this meant that the amount of coherence 

depends on the level of muscle contraction force. Beta bands occurred in some subjects, 

and gamma bands were detected in some subjects during RM and Inten tasks. The 

decrease in beta band (13–30 Hz) coherence during the tasks may also be related to the 

event-related desynchronization (ERD) of EEG activity. 

 The new evidence for controversial issues from this study is that the occurrence 

of coherence frequencies in these beta and gamma bands may not require to have 

dynamic forces. We strongly confirmed these facts since the highest coherence 

appeared even during the Inten task. Only performing the real contraction and just the 

intention to do tasks can generate both beta and gamma bands, and these results 

contradicted the previous studies in which coherence in gamma bands was an effect of 

dynamic forces [23], [47]. Muscle contraction force and motor task performance-

related changes in cortico-muscular coherence were widely expressed in Chapter 2, 

section 2.5 of this study. 

 

5.3.6. Cortico-muscular   Functional   Interaction   Based   on   Motor   Task  

            Performance 

 Motor task performance with the use of 3D-HMD influences the frequency 

content of the neural drive to muscle and the gain of efferent and afferent pathways. 

The high cortico-muscular interaction was associated with the normal force output of 

muscles, especially in the RM and Inten tasks. The beta (13–30 Hz) and gamma (31–

50 Hz) ranges were related to the output of strong force muscle contractions, which is 

directly correlated with the activation of motor neurons in descending pathways. The 

alteration of visual stimulation influences nearly the entire coherency frequency of 

common input to motor neurons, as well as the gain of the proprioceptive (afferent). 

This research proved that task-related modulation of cortical muscular activity can 

generate afferent feedback and efferent feedforward functional interaction. Thus, the 

cortico-muscular functional interaction greatly changes based on the motor task 

performance with bi-directional information flow. 
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5.3.7. Event-related Coherence, Synchronization, and Desynchronization 

 The presence of alpha band (8-12 Hz), beta band (13-30 Hz), and gamma band 

(31-50 Hz) coherence in our study is related to event-related desynchronization (ERD) 

and event-related synchronization (ERS) [6], [52], and [73]. During the motor tasks of 

RM, Inten, and MI, the power reduction of these frequencies is the result of cortical 

activation and muscle innervation. During motor task preparation and execution, the 

amount of functional interaction coherence increases when ERD is prominent in the 

sensorimotor area. Furthermore, after movement execution, the ERS is prominent and 

the level of coherence tends to decrease. 

 

5.3.8. The Influence  of  Attention  and the  Virtual  Reality  Environment  on    

            Cortico-muscular Functional Interaction 

 The effect of attention during experimental performance influences the results 

of coherence [25], [56]. In some subjects, in the OL task, there were higher coherence 

frequencies during functional interaction. These are the effects of the 3D- HMD on a 

virtual environment. The 3D-HMD display for motor task instruction acts as sensory 

input and sensory information to the brain for designated motor tasks. When a 

participant receives a sight sense or perceives things through their eyes via the 3D-

HMD instructions for the RM, Inten, MI, and OL tasks, the motor neurons and receptors 

inside the brain and muscle synchronously oscillate, and these oscillations lead to the 

participant’s motor task goal and finally to a higher output of cortico-muscular 

functional interaction. 

 

5.3.9. Cortico-muscular Functional Interaction in Motor Imagery 

 We investigated the effect of motor imagery as a task condition in this 

experiment because there were many controversial issues regarding the detection of 

EMG signal in motor imagery conditions [26], [27], [67], [68], and [69]. On the 

physiological basis, the execution of movement and its imagery show the same and 

parallel results, and there was a relationship between motor execution and the imaging 

of that movement. Thus, it occurred that the power spectra value of motor imagery is 

nearly the same as the curve of real movement in the experimental results, and it had 

already been depicted in Figure 5.4. However, there was no occurrence of significant 

EMG signals during motor imagery, and very low coherence values occurred in all 

subjects’ coherence results, as shown in Figure 2.4. Thus, this study’s designed 
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experiment solved the remaining unclear problems of EMG versus motor imagery [67], 

[68], and [69]. 

 

5.4. Cortico-muscular Mutual Information Across RM, Inten, MI, and OL Tasks 

 Analysis of the mutual information of the brain and muscle signals 

demonstrated that the mutual information of the RM task and Inten task generally 

showed more synchronized information than the MI task and OL task, as shown in 

Figure 3.3. As shown in Figure 3.2, the reduced mutual information and distant 

transmission information were more apparent for the ipsilateral motor cortex, C4 versus 

EMG muscle. This made the results strong that the information flow from brain to 

muscle and muscle to brain follows the neurophysiological principles. 

 As the same results in the linear method, the two signals have the most shared 

information in the RM task. Although generally, most of the subjects tend to increase 

the shared information within the whole 5-second motor task, some subjects show 

mutual information just in the first 2 s after onset, and some subjects show no significant 

information even in the RM task. For example, subjects 09 and 12 have atypical profiles 

of shared information, while subject 01 has the correct amount of information 

synchronization between brain and muscle signals, as shown in Figure 5.5. 

 

Figure 5.5: Comparison of typical and atypical mutual information profiles in the RM 

task. 
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 In the calculation of mutual information, bin number selection is a critical matter 

to achieve the correct shared information. As the calculation of mutual information 

depends on the estimation of entropy values within two signals, we need to choose 

suitable bin numbers. In our study, we applied the Freedman-Diaconis rule to calculate 

the required probability value that falls into each bin [37]. The amount of information 

can be lost if the selected number of bins and calculated data do not fit. Otherwise, there 

will be little sensitivity to the distribution of the data.  There was a relationship between 

bins and the influence of noise from the calculated data. 

 In addition, from the experimental results of mutual information, the effect of 

movement preparation occurred with a slight fluctuation within the first 2 s before the 

task onset point in all tasks across all subjects. In this study, the experiment was 

designed with a total of 15 s for each trial, in which the first 8 s is the resting stage, the 

next 2 s is the ready stage, and the last 5 s is the only task stage. During a 2-second 

ready stage, the participants had to prepare for the instructed motor task.  The findings 

suggest that during the course of determining a task goal or making a decision for a 

task, the prepared state is updated as the desired motor task changes in light of views 

and beliefs.  The motor system can generate an appropriate movement as rapidly as 

possible when necessary. The patterns of muscle activation to achieve even simple 

goals are subject to the occurrence of cortico-muscular functional interaction. Thus, our 

findings from the mutual information proved that there was a relationship between 

decision-making, movement preparation, and movement execution. 

 According to studies [32], [34], and [37], mutual information does not work in 

parametric statistical methods. Our study has already proved non-normality distributed 

data to be widespread. Thus, we applied the non-parametric method, the Kruskal-Wallis 

test, and the independent-sample Kruskal-Wallis test to analyze the statistical output of 

the mutual information as in Figure 3.4.  To summarize, the functional interaction 

between brain and muscle signals differed significantly across motor tasks with 

nonlinear mutual information. 

 

5.5.  Cortico-muscular Mutual Information Delay Time Across RM, Inten, MI,     

        and OL Tasks 

 Functional interactions of brain and muscle signals do not occur simultaneously, 

but with a slight time lag to allow information to flow from brain to muscle and from 

muscle to brain. This lag time can be interpreted as a delay time for the information 
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flow between two systems. Coherence results showed the highest coupling frequencies 

occurred within the range of beta and gamma bands during different motor task 

performances. Based on the highest number of coupling frequencies, we calculated the 

delay time values in the beta and gamma band ranges with power fluctuations time 

series using Morlet wavelet transformation. 

 In the experimental results as in Table 4.1, the delay time values in beta bands 

were greater than gamma bands in all tasks. The RM task and Inten tasks took a smaller 

amount of delay time than MI and OL tasks in both beta and gamma bands. All subjects 

had polarities of both positive and negative signs, indicating that information in the 

brain and muscles flows in both directions. In addition, some of the subjects showed no 

delay time. This will be the effect of the lack of mutual information between two signals 

and the fitted bin number in the calculation of the mutual information. Although we can 

infer the information direction flow, the main limitation of delay time mutual 

information is that specific directional information cannot be separated from common 

inputs of brain and muscle signals. Transfer entropy, Granger Causality, and DTF may 

be the extensions of mutual information. 

 In calculating the delay time, choosing a suitable time window is important to 

achieve reliable delay time results. The results revealed that low-functional interactions, 

such as MI and OL tasks, may require a longer time delay, whereas good functional 

interactions, such as RM and Inten tasks, may require a short delay time in both beta 

and gamma rhythms across four different motor tasks. Cortico-muscular mutual 

information flows from the brain to the peripheral muscles (efferent pathways) and 

from the peripheral muscles to the brain’s motor cortex (afferent pathways) [74], [75]. 

However, in some cases, there might be a nullification of counteracting forces in the 

interaction of two systems with zero delay time. The findings of delay time calculation 

claim that information can flow with bi-directionality during functional interaction 

across tasks. The advantage of delay time mutual information is that it can infer the 

direction of information flow, whereas the phase-based mutual information method 

cannot. 

 

5.6. Anatomical   and   Neurophysiological   Principles  of  Brain-muscle  Signals     

       During Cortico-muscular Functional Interaction 

 The main causes of such a higher functional interaction are the excitation of 

motor neurons inside the spinal cord. This excitation of alpha motor neurons,  many 
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interneurons,  and complex neural circuits causes an action potential to propagate along 

with the muscle fiber and finally generate the proper forces on individual muscles and 

muscle groups to enable adaptive movements and muscle contraction [36], [37], and 

[50]. In the motor system hierarchy, alpha and gamma motor neurons are included. The 

alpha motor neurons innervate extrafusal fibers, which can cause highly contacting 

fibers that supply the muscle with its power. The gamma motor neurons innervate the 

intrafusal fibers, which contract slightly [43]. The motor tasks of RM and Inten for hand 

grasping movement involve the innervation of alpha motor neurons, while the other 

two tasks, MI and OL, mainly involve the innervation of gamma motor neurons in this 

study. Very low cortico-muscular coherence in the MI task and OL task can be detected 

in some subjects as a consequence of this gamma neurons innervation inside the spinal 

cord. The high coupling of brain and muscle signals can lead to shorter delay times for 

signal transmission, and that can lead to descending oscillations. In addition, high-

stimulated visuomotor instructions can influence the different parameters of motor 

control, including synchrony among motor units [72]. The appearance of afferent 

feedback’s magnitude and gain are also highly tasked dependent and can influence the 

drive to motor neurons at low frequencies delta (0.5–3.5 Hz), theta (4–7.5 Hz), and as 

well as high-frequency beta (13–30 Hz) and gamma (31–50 Hz) bands. 

 

5.7. Factors Affecting the Cortico-muscular Functional Interaction System 

 The factors affecting cortico-muscular functional systems include experimental 

designs, muscle contraction force, motor task types, and muscle fatigue. The band 

frequencies and age correlation are the major factors that can influence the brain-muscle 

functional system. In addition, the age difference of subjects relates to neuromuscular 

changes that can impair cortico-muscular communication. Healthy participants and 

stroke patients may affect the amount of cortico-muscular functional interaction system 

[30]. 

 

5.8. Cortico-muscular Functional Interaction in Real-world Applications 

 From the perspective of real-world situations, the results from this study are 

aimed at being able to be applied in the rehabilitation systems for training stroke 

patients. Based on the functional coupling level of the brain and muscles during the 

training period, we can decide the physiological and anatomical changes of patients [3], 

[13]. However, it needs to be examined with a more optimized experimental model. In 
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addition to stroke rehabilitation systems, this research can be applied to the study of 

human motion and movements for behavioral science purposes, such as sports activities, 

root causes of fatigue, cortical-muscular functional network studies, treatment of 

dyskinesia and Alzheimer’s disease, and recognition of human motion intention for 

movement intention detectors with various classifiers, etc. [15]. This study is an 

updated study of functional coupling with delay time in beta and gamma bands that can 

be helpful in judging the response time of brain–muscle signals in patients and in the 

construction of motion intention detectors [14], [15]. The results of the current study 

provide stronger arguments for both previous studies and current studies of cortical-

muscular coupling in the neuroscience fields. 

 

5.9.   Consistent and Reliable Facts of Brain-muscle Signals Functional Interaction   

        Based on the Study Results 

 To conclude, the findings and results reached the main objectives of the study. 

We discussed the main occurrences and findings that remained unclear in the previously 

published works. Finally, we could make a consistent deduction based on the reliable 

facts of our experimental results as follows: 

 EMG rectification could lead to distort the frequency content of the signal and 

power spectral values. 

 There was no occurrence of EMG signal during motor imagery. 

 The functional interaction of brain and muscle signals in five bands (delta, theta, 

alpha, beta, and gamma) was significantly different in each RM, Inten, MI, and 

OL task. 

 Functional interaction in the beta (13–30 Hz) and gamma (31–50 Hz) bands was 

statistically significantly different across four types of motor tasks. 

 The mutual information delay time method can be used to calculate bi-

directional information. 

 Cortico-muscular mutual information flows from the brain to the peripheral 

muscles (efferent pathways) and from the peripheral muscles to the brain’s 

motor cortex (afferent pathways). Thus, functional interaction of the brain and 

muscles can appear with bi-directionality. 
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 The four motor tasks: RM, Inten, MI, and OL were basically different and 

required different synchronization levels of neurons’ firing and excitation inside 

the brain and muscle fibers to appear as a functional interaction. 

 Finally, the amount of functional interaction differs across the task conditions 

of RM, Inten, MI, and OL with both linear and nonlinear methods. 
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CHAPTER 6 

 CONCLUSION AND FUTURE WORK 

 

 This chapter discusses the conclusion and future work of the study. The 

limitations of both linear and nonlinear correlation methods are also discussed in this 

section. 

 

6.1. Conclusion 

 This study fulfilled the requirement of a functional interaction study with 

different motor task conditions that have been lacking in much of the existing literature. 

Depending on the motor tasks executed by the participants, the cortico-muscular 

functional interaction amount and delay time varied. The results proved that the cortical 

muscle coupling levels were high only in the beta and gamma bands, and not in the 

other three bands during the tasks.  According to the results, the beta and gamma-band 

frequencies do not highly depend on force levels. The higher frequencies of CMC 

depend on all possible neurophysiological factors that lie inside the motor system.  In 

addition, this research demonstrates that a high correlation and association between two 

signals occurred when the participants performed the motor tasks of RM and Inten. The 

results of the Inten task coupling level were almost the same as those of the RM task, 

and it was a peculiar and innovative result for almost all subjects. The new 

consideration of the MI and OL motor tasks together with the RM and Inten tasks 

confirmed that the unclear controversial issues were clear since low signal correlations 

occurred in those two tasks. No cortico-muscular interaction occurred in motor imagery 

conditions with non-rectified EMG. However, as an exception, some subjects showed 

a slightly higher correlation in the OL task. Thus, the new interesting evidence to study 

in the future will be whether the attention caused by the OL task will lead to the high 

coupling of brain and muscle signals or not, and how it benefits the coupling system. 

Finally, this study explored the signal propagation delay time with directionality 

inference. Information can flow with an exact amount of delay time from efferent to 

afferent (descending oscillations) and afferent to efferent pathways (ascending 

pathways) when coupling exists. The strength of this study is that it points out that the 

mutual information delay time values can be used to infer the direction of information 

flow between two signals rather than the traditional linear method. In conclusion, this 

study demonstrated that the functional interaction between motor cortex and muscle 
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differed statistically across all delta, theta, alpha, beta, and gamma bands depending on 

the task. Our results complemented the existing studies in which functional coupling of 

brain and muscle signals and delay time changes were not performed across motor tasks. 

 

6.2. Limitations and Future Work 

 In the calculation of the linear coherence method, there are some important 

notes and limitations. The output results of coherence depend on the windowing and 

selected filter design. Thus, suitable window and filter ranges must be chosen in order 

to achieve the correct results. Next, the analyzed data needs to be free of artifacts as 

much as possible. In some cases, EMG signals may become noise for EEG. Thus, we 

need to choose the suitable ICA components during preprocessing. For the calculation 

of nonlinear correlation, the selection of the bin number is also somewhat complex to 

obtain the optimized values for entropy. If the number of bins is too large but the 

number of data points is too small, it can lead to spurious information. In such a case, 

the amount of information we calculated may be wrong or may be biased.  Mutual 

information calculation can be quite difficult if the data is non-stationary. Thus, data 

needs to be stationary for the calculation of the correlation between two signals. It is 

necessary to make sure that the data is roughly equally noisy across all conditions, 

electrode pairs, and subject groups. Using surface EMG (sEMG) signals may impact 

the calculation of signal correlation. Contamination of signals from the neighboring 

muscles can cause cross-talk in data recording. Thus, surface EMG (sEMG) has some 

limitations in comparison to using fine wire EMG electrodes [76]. 

 According to our study, as there were occurrences of both beta and gamma-

band coherence based on tasks across subjects, it may be necessary to 

investigate further experiments that can provide stronger evidence of these occurrences. 

In addition, this new experimental paradigm might lead to future investigations, such 

as a hypothesis regarding whether the gamma band in the OL task might relate to visual 

stimulation, visuomotor pathways, and attention or not. The number of subjects 

participating in this study was also small, and we needed to test with more participants 

of different ages, real stroke patients, control subjects, and control tasks to obtain an 

absence of bias. Different types of visual stimulation and feedback paradigms still need 

to be investigated in order to explore the effect of attention and visualization on 

information processing during functional coupling [25]. Additionally, finding out the 

effect of motor imagery with different experiments in kinesthetic and visual EEG-EMG 
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coupling is also required. Functional coupling research involving various types of 

movement features and classifiers is critical for real-world movement detectors, 

prosthetic devices, and controllers [14], [15] and [63]. The construction of a brain-

muscle functional network in terms of nonlinear and delay time methods is one of the 

problems to be explored in the future.  To establish the directionality of information 

flow precisely, it still needs to be investigated with transfer entropy, DTF, Granger 

causality, and other directionality inference methods. 
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[APPENDIX A] 

Table A1. Comparison Table for Different Methods of State-of-the-Art in 

Functional Coupling of EEG and EMG. 

 

No. Authors Investigated Area Method Strengths and Weakness 

1 
Yasunari, H., 

et al., 2010 

EEG-EMG coherence 

during Isometric 

contraction and its imagery. 

Power spectrum. 

EEG—Cz, FCz, C1, C2, 

CPz. 

Rectified EMG—right TA 

muscle. 

n = 13 

Coherence occurred in motor 

imagery conditions. 

Uses linear correlation analysis. 

Remains controversial issues of 

EMG during motor imagery. 

2 
James, M., et 

al., 2000 

Task-dependent modulation 

in coherence between motor 

cortex and hand muscles. 

Amplitude and phase 

correlation method. 

MEG—over the left 

sensorimotor cortex. 

EMG—1DI, AbPB, FDS, 

EDC.  

n = 13 

Tests task-dependent modulation 

of coherence. 

Coherence was much lower level 

during isometric grip of the fixed 

levers compared to grasp under 

complaint conditions. 

Remains to investigate with 

different motor tasks. 

3 
Shinji, O., et 

al., 2000 

ECoG-EMG coherence 

during isometric contraction 

in hand muscle. 

Auto spectra and frequency 

domain analysis method. 

Rectified EMG. 

ECoG—mesial and lateral 

surfaces of frontoparietal 

cortices. 

EMG—ECR muscle. 

n = 8 (patients with 

epilepsy) 

Coherence occurred only in the 

15 ± 3 Hz beta bands. 

Time lags were calculated with a 

cross-correlogram method. 

Time lags range from 10 ms to 

22 ms. 

Lack of directionality inference 

and nonlinear correlation. 

Remains to find out the 

coherence in other bands. 

4 

Wolfgang, 

O., et al., 

2006 

Gamma range Cortico-

muscular coherence during 

dynamic performance in 

visuo motor tasks. 

Cortico motor spectral 

power method. 

EEG—52 electrodes. 

Rectified EMG—flexor 

digitorum superficialis 

muscle. 

n = 8 

Beta band coherences occur 

during static force. 

Gamma band coherence occurs 

during dynamic force. 

Uses only linear correlation 

method. 

No include delay time 

estimation. 

Remains task-dependent CMC 

investigation. 

5 

Seung-Hyun, 

P., et al., 

2010 

Linear and nonlinear 

information flow with time 

delay mutual information. 

Used surrogate data sets 

and experimental data sets. 

Investigated CM interaction 

during a right wrist 

extension tasks. 

EEG—29 electrodes. 

EMG—Extensor digitorum 

communis. n = 7 

Well-distinguished linear and 

nonlinear information flow. 

Requires relatively long 

stationary time series data for the 

analysis. 

Needs to improve directionality 

inferences with stationarity. 

6 
Andreas, W., 

et al., 2012 

Time delay mutual 

information of the phase as 

a measure of functional 

connectivity. 

Phase lag index and 

weighted phase lag index 

methods. 

Making numerical 

implementation. 

Synthetic data sets by a 

mutual amplitude coupled 

network of Rossler 

oscillatior. 

Limitations and assumptions 

existed as synthetic data sets 

were applied. 

De-correlation step does not 

respect a background 

synchronicity. 

Uses a data-driven approach. 
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 [APPENDIX B]   Research Informed Consent Form 

 

Consent to Participate in a Research Study 

Kyushu Universiy ● Neuroinformatic and Neuroimaging 

Title of Study : A Study of Cortico-Muscular Functional Interaction 

and Its   Neurophysiological Principles Based on Motor Task 

Performance 

Researcher: 

Name: Nyi Nyi Tun, Fumiya Sanuki Phone: 080-9392-9429 

 

Introduction 

 The brian and muscle acts synchronically at the time of motor task performance to 

reach the movement goal. In order to understand the basic principles of brain and muscle 

function in neuroscience or future brain computer interface (BCI) technology, it is basically 

important to understand the cortico-muscular functional interaction and its neurophysiological 

principles. 

 Functional interaction between brain and muscle signal is referred to as functional 

coupling. The amount of interaction between two signals greatly depends on the motor task 

performance. In this study, we designed the experimental paradigm with four types of motor 

tasks such as real hand grasping movement (RM), movement intention (Inten), motor imagery 

(MI) and only looking at virtual hand in three dimensional head mounted display (OL).  

 

Purpose of Study   

 To investigate the functional interaction of brain-muscle signals and its coupling 

delay time based on four different motor tasks 

 To explore the anatomical and neurophysiological principles of brain and 

muscles function that can lead to cortico-muscular interaction  

Description of the Study Procedures 

 If you agree to be in this study, you will be asked to do the following things:  

1. Put the 10 EEG electrodes Fp1, Fp2, Cz, FC3, C3, CP3, FC4, C4, CP4, and Pz on 

your head 

2. Recording three bipolar EMG electrodes on radialis muscle, flexor carpi ulnaris 

muscle and flexor carpi radialis muscle  

3. Performing the four motor tasks, RM, Inten, MI and OL tasks. There was a 2 min 

rest period as a baseline. Then, there were 8 s of rest, 2 s of being ready and 5 s of 

the task in 1 trial. We had designed a total of 40 trials in each motor task. A fixation 

cross was shown on the virtual palm during rest, which disappeared during the 2 s 

ready stage. The virtual hand grasping appeared on the monitor in three 

dimensional head-mounted display (3D-HMD) during 5 s task. The grasping 
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movement was performed 2 times in 1 trial. The time to break between each motor 

task was 5 min, then RM, Inten, MI and OL tasks were performed respectively. 

 

 

Risks/Discomforts of Being in this Study 

  There are no reasonable foreseeable (or expected) risks.  

 

Confidentiality  

 The records of this study will be kept strictly confidential. Research records will be kept in 

a locked file, and all electronic information will be coded and secured using a password 

protected file. We will not include any information in any report we may publish that would 

make it possible to identify you.  

 

 

Right to Refuse or Withdraw 

 The decision to participate in this study is entirely up to you.  You may refuse to take part 

in the study at any time without affecting your relationship with the researchers of this 

study or Kyushu University. Your decision will not result in any loss or benefits to which 

you are otherwise entitled. You have the right not to answer any single question, as well as 

to withdraw completely from the interview at any point during the process; additionally, 

you have the right to request that the interviewer not use any of your interview material. 

 

Right to Ask Questions and Report Concerns 

 You have the right to ask questions about this research study and to have those questions 

answered by me before, during or after the research.  If you have any further questions about 

the study, at any time feel free to contact me, Nyi Nyi Tun at tun.nyi.721@s.kyushu-u.ac.jp 

or by telephone at 080-9392-9429.  If you like, a summary of the results of the study will be 

sent to you.  

 If you have any problems or concerns that occur as a result of your participation, you can 

report them to Kyushu University. 

 

Consent 

 Your signature below indicates that you have decided to volunteer as a research participant    

for this study, and that you have read and understood the information provided above. You 

will be given a signed and dated copy of this form to keep, along with any other printed 

materials deemed necessary by the study researchers.    

 

Subject's Name: 

Subject's Signature:                                                                                Date : 

Researcher’s Signature :                                                                        Date: 
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Questionnaire for Demographic Data of subject 

 
Participant No. : 

 

Group : 

 

Nationality: 

 

Student ID : 

 

Email:  

 

Age:  

 

Gender :     Female        Male 

 

Height (cm):                                              Weight (lb):           

 

Hand preference:      Right         Left 

 

Do you have any physical disorder?          No          Yes:  

 

(If you answered yes, please describe your disorder) 

 

I understand that my identity will not be linked my data, and that all information I provide 

will remain confidential.  

 

…………………………….. 

(Participant’s signature) 

 


