
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Refined Reduction Techniques to Online Linear
Optimization

劉, 亚雄

https://hdl.handle.net/2324/4784639

出版情報：Kyushu University, 2021, 博士（理学）, 課程博士
バージョン：
権利関係：

Refined Reduction Techniques to Online Linear
Optimization

Yaxiong Liu

February, 2022

Abstract

Online decision making problem plays an important role in machine learning research. Online

decision making problem is represented as a repeated game between an algorithm (decision

maker, player) and an environment (adversary, nature). On each single round, the algorithm is

required to give a prediction firstly, and then receives the feedback given by the environment.

Next, the loss is incurred with respect to the feedback and the prediction. Unlike the extensively

explored statistical learning models, the feedback is not i.i.d but adversarial in online decision

making framework. The exploration to the online decision making problem has been processed

for years, especially to the online convex optimization framework (OCO) [26]. Online convex

optimization framework is a special type of online decision making problems, where the deci-

sion set for the algorithm is convex and the feedback of the environment is the convex function.

Moreover, in online convex optimization, our goal is to minimise the cumulative loss. To mea-

sure the performance of the algorithm, we involve a new concept regret, the difference between

the cumulative loss and the optimal global loss in hindsight.

In this thesis, we consider some other classes of online decision making problems, which

are not well-studied as the OCO framework. The basic method is that we reduce the objective

problems to the online linear optimization (OLO) framework, which is a special form of online

convex optimization that the feedback is a linear function.

Firstly, we consider the online load balancing problem, where the loss is not the cumulative

loss but the global loss. We reduce this problem to a corresponding OLO model, where we

transform the global loss to the cumulative loss and with respect to the appropriate decision set

and loss space. Our proposed algorithm is efficient and achieves the best known regret bound.

Second, we explore the case of easy data for the expert advice problem, an extreme case of

online linear optimization that the prediction of the algorithm is a distribution, and the online

binary matrix completion (OBMC). In the former case, we concentrate on the loss sequence

restricted on the noisy low rank structure. We reduce this problem to an OLO model, where the

i

loss sequence is arbitrary with respect to a matrix norm. Our reduction is robust to the noise

compared with the previous work [29], and requires less prior information [8]. Moreover, our

algorithm obtains a satisfying theoretical result and performs even better in the experiment. In

the latter case, we assume that the algorithm can receive the side information before predictions.

This side information can improve the prediction accuracy as shown in the work of Herbster

et al. [31]. We reduce this problem to an OLO model in matrix form, called online semi-definite

programming (OSDP), with mistake driven technique. We represent the side information in the

form of the decision set. Combining our result to the OSDP problem, we obtain an optimal

mistake bound for this OBMC problem with side information. Furthermore, we extend the

existing result to the reduced OSDP framework with the variant decision set according to the

side information. Actually, our algorithm is not special for the reduced OSDP problem but for

the more wide situations that the algorithm is designed with respect to a general form of OSDP

problems.

Conclusively, we attempt to explore some not familiar topics in online decision making

problems beyond the OCO framework in this thesis. In these topics, the models are not the

same as the standard OCO framework, from the cumulative loss to the global loss, from the

arbitrary environment to the cooperative environment. With the reductions from these models

to the OLO framework, we can analyse these problems with the existing instrument effectively

and understand the problem settings more deeply. This is not only an extension of the OLO

framework border or the further exploration of the online decision making framework, but also

offers reliable algorithms for the practice field.

ii

Acknowledgements

Firstly, I would like to show my gratitude to my supervisor professor Eiji Takimoto. He gave me

an opportunity at the beginning of 2018 to pursue Ph.D. I learned a lot from the discussion with

him not only about mathematics, and online learning but also about the correct attitude towards

the academy. For instance, how to read the papers and extract the insights of the papers.

Next, I am extremely grateful for professor Kohei Hatano. He offered me a research assistant

position in RIKEN AIP computational learning theory team for financial support of my work

and life. Simultaneously, I am benefited from discussions with him in both academic issues and

my career.

I also would like to thank Professor Jun’ichi Takeuchi, the chair of the committee, and As-

sociate Professor Shuji Kijima, a member of the committee, gave me many valuable comments.

I am also grateful to the technical staffs of our laboratory, Ms. Sanae Wakita, Ms. Chiaki

Ikechi, Ms. Akiko Ikeuchi, and a technical staff of ADS Training Unit, Ms. Yuko Hasegawa.

They always supported me in many situations not only paperwork. I also express thanks to all

of the staff in the Department of Informatics, Kyushu University.

Last, but not least, I really thank my family and friends for their support. I appreciate the

discussion with my colleague Guangsheng Ma about mathematical proofs, and the friendship

with my mate Yuchi He.

The results in this thesis were published in proceedings of ACML 2021 [39, 40], proceed-

ings of SOFSEM 2021 [38]. I appreciate all editors, committees, anonymous referees, and

publishers.

iii

Contents

Acknowledgements iii

1 Introduction 1

1.1 Our main Contributions . 5

1.2 Organization . 8

2 Preliminaries 9

2.1 Online learning models . 9

3 Improved algorithms for online load balancing 12

3.1 Introduction . 12

3.2 Preliminaries . 14

3.3 Main result . 18

3.4 Algorithmic details for L∞-norm . 24

3.5 Conclusion . 27

4 Expert advice problem with noisy low rank loss 29

4.1 Introduction . 29

4.2 Preliminaries . 31

4.3 Algorithm for no prior information about kernel 33

4.4 Experiments . 42

4.5 Concluding remarks . 44

4.6 Appendix . 45

5 An online semi-definition programming with a generalised log-determinant regu-

larizer and its applications 49

5.1 Introduction . 49

iv

CONTENTS

5.2 Preliminaries . 52

5.3 Algorithm for the generalised OSDP problem 55

5.4 Application to OBMC with side information 57

5.5 Connection to a batch setting . 65

5.6 Conclusion . 68

5.7 Acknowledgement . 68

5.8 Appendix . 68

6 Conclusion 76

v

Chapter 1

Introduction

Online decision making problem is one of the most popular learning frameworks in machine

learning community. Online decision making is a repeated game between two players, who

select their decisions from the option sets respectively on each round. There are many sub-

models from the online decision making framework, and one of the most well-known models

is online convex optimization (OCO). In OCO model, on each round t, an algorithm (player

one) needs to give a prediction wt from a convex decision set W, before receiving a convex loss

function ft ∈ F from the environment (player two) repeatedly. To measure the performance of

the proposed algorithm, we involve regret, which is usually defined as the difference between

the cumulative loss and the global optimal loss in hindsight. Especially, if the loss function is

linear, we name the model as online linear optimization (OLO), furthermore, if the decision set

is a probability simplex, we call the model expert advice.

Online linear optimization model is an important topic in the OCO framework. One of

the reasons is that each OCO model can be reduced to a corresponding OLO model with the

property of the convex function [48]. Thus, the research to OLO is extensive for decades(see

Cesa-Bianchi and Lugosi [13], Mohri et al. [42], Hazan [26]). Same as in the OCO model,

the environment in OLO model is adversarial. It implies that loss vectors are arbitrary on

each round. Therefore, the proposed algorithm is supposed to be designed for the worst case

guarantee. Meanwhile, the goal of the algorithm is respect to the cumulative loss.

Beyond the well-studied OLO framework with cumulative loss and the adversarial environ-

ment, the non-OCO (non-OLO) model is a quite new field in online decision making research.

As we will show in this thesis, we consider firstly the different loss forms, like a global loss.

Global loss is a quite different loss form from the cumulative loss. An obvious difference is

that the global loss is not additive on each round t. However, the global loss is a usual mea-

1

CHAPTER 1. INTRODUCTION

surement in job scheduling and load balancing settings [3]. Naturally, we consider the online

load balancing problem in our thesis. The definition of the online load balancing problem is

similar to the expert advice, but the goal of the algorithm is to minimise global loss. Actually,

Even-Dar et al. [19] propose an algorithm by reducing the online load balancing problem to the

OLO model, and Rakhlin et al. [46] give the same regret bound as the expert advice problem

but the algorithm is not efficient. Therefore, Online load balancing problem is located in the

frontier of the online decision making problem research recently.

Next, we consider the online decision making models with “easy data”. It implies that the

environment is not adversarial but somehow “cooperative”. Unlike the adversarial environment,

the “easy data” setting will involve some extra parameters which can represent the “easiness”

of the data. In this thesis, we introduce the environment cooperating with the algorithm in two

points. In the low rank setting, we will involve the rank of the loss sequence and in the online

binary matrix completion problem, we introduce the quasi-dimension with respect to the side

information (See details on the next page and corresponding chapters).

In the former one, Hazan et al. [29] consider the expert advice problem receiving the struc-

tural loss sequence from the environment. Briefly, for the structural loss sequence, the dimen-

sion of the loss vector is large while the number of the factors for producing the loss vector is

small. It means that the high dimensional loss vectors are from a low dimensional sub-space.

Compared with the arbitrary loss sequence, the structural loss sequence is easier since all the

loss vectors are impacted by few factors. Hence, with the easier loss sequence, Hazan et al.

[29] offer a better regret bound than the adversarial setting. In our thesis, we assume that the

structural loss sequence is noisy. It leads that the “easy data” now is not so easy since the noise.

This is a natural setting in both theory and practice. There is always some noise in transmission

even for the easy data. Thus, we need a robust algorithm to the noise for the structural loss

sequence, further with as little as possible prior information.

In the latter one, we assume that the algorithm can receive some assistant information before

prediction. This is a popular setting to OLO models recently. For instance, Dekel et al. [17]

give some assistant information to improve the prediction accuracy and obtain a tighter regret

bound. In this work, the algorithm can receive a hint vector before it predicts on each round t.

Moreover, Bhaskara et al. [10] consider the more sophisticated case that the hint vectors might

be misleading, and in the work of Bhaskara et al. [11], the regret can be tightened even if the

hint is not given on each round t. We consider in this thesis the online binary matrix completion

problem with side information to the algorithm. The algorithm can receive the side information

2

CHAPTER 1. INTRODUCTION

at the beginning of the learning process. In principle, the more information the algorithm can

obtain, the more accurate decision the algorithm can make. Herbster et al. [31] give a regret

bound for OBMC with the assistance of the side information. But the bound is not optimal.

The basic idea of our solutions to the aforementioned problems is to reduce these problems

to the OLO models. This is also a common method of the work from [29, 19]. Compared

with previous reductions, in this thesis, we give more refined reductions. On the one hand, our

reductions are more precise, which contains more information from the original problems and

are robust to the noise with less prior information. On the other hand, the reduced OLO game

is not always the standard OLO model. It implies that we can not utilise the existing algorithm

to our reduced OLO game directly. Like in the OBMC problem, the reduced OLO game is an

extension to the standard OLO game in the decision set. Hence, it requires to design a more

refined or generalised algorithm for the reduced OLO game so that the reduction can lead to a

better bound.

Then, the basic definitions of the target problems are given as follows:

In the first part, we consider the online load balancing problem. In online load balancing

problem, the algorithm gives a prediction wt from an N -dimensional simplex ∆(N) and the

loss vector (load vector) lt is in an N -dimensional cube. Instead of the cumulative loss, the

global loss is involved to measure the loss of each round t [19]. For makespan, a special case

of online load balancing problem, the global loss in respect to the L∞-norm and is defined as

follows:

max
i∈[N]

{
t∑

s=1

ws(1)ls(1), · · · ,
t∑

s=1

ws(j)ls(j), · · · ,
t∑

s=1

ws(N)ls(N)

}
.

Since the difference of the global loss and the cumulative loss, we can not solve online load

balancing problem directly utilising the algorithms for the OCO model (e.g., expert advice).

For makespan, Even-Dar et al. [19] achieve O(lnN
√
T) bound, and Rakhlin et al. [46]

gives an O(
√
T lnN) bound but the algorithm is not efficient. In our thesis, we reduce the online

load balancing with a general form of norms to two parallel OLO games. Furthermore, for

makespan, we give an efficient algorithm that obtains the best known regret bound O(
√
T lnN),

by an efficient reduction from the makespan problem to two OLO games.

In the second part, we explore the expert advice framework. Expert advice is a decision

making problem, where the decision set is constraint by L1-norm (more precisely the distribu-

tion simplex) and the loss space is bounded by L∞-norm [48]. We assume that the loss sequence

3

CHAPTER 1. INTRODUCTION

is low ranked and corrupted by a noise vector on each round. The structural loss sequence has

been researched by Hazan et al. [29], Koren and Livni [35]. In their work, the loss vector is

from a d-dimensional sub-space of the N -dimensional space. If d≪ N we call the structure as

low rank structure. For the standard expert advice problem, the loss is arbitrary when d = N.

In the cooperative environment, d ≤ N, especially in low rank setting. Then, Barman et al.

[8] consider the noisy low rank loss, while the kernel of the loss sequence is known to the al-

gorithm as the prior information. In all previous works, the kernel of the low rank loss plays

an important role in the algorithm and the regret analysis. In [29, 35], the kernel is directly

given to the algorithm or it is not difficult to be re-constructed while the loss sequence is pure

(without noise). With the help of the kernel, we can reduce the decision set and the loss space

of expert advice problem from L∞-norm and its dual norm to an OLO game where the decision

set and the loss space are restricted by the matrix norm with respect to the kernel. Compared

with the tradition algorithm for expert advice, the Hedge algorithm achieves the regret bound

O(
√
T lnN), Hazan et al. [29] achieve the regret bound Θ(

√
dT) if the kernel is known and

O(d
√
T), otherwise.

In our thesis, we release the assumption for the noisy low rank loss, that the kernel is un-

known to the algorithm. This is a natural setting in practice like recommendation systems,

where the algorithm needs to process the data which is not perfectly transmitted but with some

noise. It requires that we need to recover or approximate the low rank kernel during the pro-

cess with limited steps. On the one hand, if we recover the kernel after receiving all the losses,

naturally, we get the most precise kernel but make no prediction. On the other hand, if we do

not recover the kernel, the reduced OLO game with matrix norm in fact reflects no advantage

of the low rank property. Thus, we design an algorithm for the trade-off the exploration and

exploitation of the low rank structure and robust to the noise vectors. This algorithm obtains a

satisfying regret bound in theory and performs even better than Hedge algorithm and algorithm

of [29] in the experiment.

In the third part, we firstly extend the setting to the decision set of the online semi-definite

programming (OSDP) problem, which can be seen as an extension of the OLO model from

the N -dimensional vectors to the N × N dimensional matrices [28]. In OSDP, the loss matrix

is “sparse”, which is equivalent to the L1-norm bounded vector. The decision set is a set of

positive definite matrices which are constraint by two norms simultaneously, the L∞-norm to

the diagonal entries and the trace norm. In our thesis, we consider a generalisation of the trace

norm, the Γ-trace norm. When Γ is the identity matrix, our generalisation recovers the orig-

4

CHAPTER 1. INTRODUCTION

inal setting. Due to this generalization, we utilise the follow-the-regularized-leader algorithm

(FTRL) with a trace norm depending regularizer. Compared with the previous algorithm [44],

our new algorithm can improve the factor about the size of the matrix N in the regret bound

(see the example in the chapter 5).

Secondly, we apply our OSDP model to online binary matrix completion (OBMC)with side

information [31]. OBMC is a widely applied learning framework in recommendation system

and online shopping [36, 47, 18, 51, 23]. Herbster et al. [30] consider the OBMC problem

and gives a mistake bound as O
(

(m+n) ln(m+n)
γ2

)
, where m,n represent the numbers of users

and items respectively, and the γ is the margin complexity. Further, Herbster et al. [31] involve

the side information and a new parameter, quasi-dimension D, which can quantify the quality

of the side information with respect to the users and items respectively. In adversarial settings,

the side information is vacuous that the quasi-dimension is m+ n. However, in the cooperative

environment, this quasi-dimension can be set much smaller when the underlying matrix obtains

some latent structure [31]. Thus, the mistake bound is improved as O
(

D ln(m+n)
γ2

)
. If we set the

side information as the PD-Laplacian according to the graph of users and items, thenD ≤ O(k+

l), when the underlying binary matrix obtains the (k, l)-biclustered structure. However, this

mistake bound is not optimal. In this thesis, we give an optimal mistake bound to OBMC with

side information by reducing OBMC to the OSDP problem and transform the side information

into Γ. If the underlying matrix obtains (k, l)-biclustered structure, our mistake bound recovers

the lower bound up to a constant factor.

1.1 Our main Contributions

In this section, we briefly describe our contribution of each problem.

1.1.1 Online load balancing problem

As we mentioned in the previous section, the global loss is firstly involved by [19]. In [19]

authors propose two algorithms, the first one achieves the regret bound as O(lnN
√
T), and

the second one obtains O(
√
TN) bound by involving Blackwell approaching game [12]. But

in there reduction, the reduced Blackwell game is based on the metric L2-norm, regardless of

the norm in the global cost function. [46] gives an algorithm achieving O(
√
T lnN) but not

efficient.

5

CHAPTER 1. INTRODUCTION

In our thesis, we further explore the relationship between the online load balancing and the

Blackwell approaching game by extending the L2-norm in [19] to the combined norm. This

combined norm is in accordance with the norm in online load balancing game. It implies that

even if the global cost function in online load balancing problem is with respect to Lp-norm,

where p ≥ 1, we can reduce the online load balancing problem to a more appropriate Blackwell

approaching game. Next, due to the work of [50], we reduce our new Blackwell approaching

game to a special OCO game, further to two parallel online linear optimization (OLO) games.

Specially, if the global cost function is with respect to the L∞-norm, by the reduction from

the Blackwell game to the OLO game, we give two efficient transformations (second order

cone programming and linear programming) in the reductions. Therefore, we have an efficient

algorithm for the online load balancing game with L∞-norm which obtains the best known

regret bound O(
√
T lnN).

1.1.2 Expert advice with noisy low rank loss

Expert advice with d rank loss has been researched by [29, 35]. If the kernel is known to the

algorithm, there is a tight bound as Θ(
√
dT) and O(d

√
T) otherwise. For the L2-norm noisy d

rank loss, where ϵ is the bound for noise vectors, [8] gives a bound O(
√

(d+ ϵ)T), when the

kernel is known to the algorithm initially. In our thesis, we consider the case that the d rank loss

is corrupted by the noise vector and the kernel is unknown to the algorithm.

The basic idea is to approximate the kernel from the received loss sequence. However, if

we directly apply the algorithm in [29, 35], it leads to an O(
√
NT) bound, since the current

loss sequence is N ranked due to the noise. The algorithm [35] requires that the loss sequence

must be d ranked. The algorithm in [29] selects all the loss vectors when it belongs not to the

current spanned space, and it leads the size of kernel matrix expanded to N . The size of the

kernel represents the low rank structure and makes the reduction to the corresponding OLO

model meaningful, otherwise, the Hedge algorithm works better than their reduction.

To ensure that the recovered or the approximated kernel performs well in the algorithm, in

principle, our algorithm only selects the loss vectors satisfying the following two conditions

simultaneously. The former one is that the loss vector is supposed to be long enough and the

latter one is that the loss vector must be far enough to the current spanned space by the selected

loss vectors. Under our selection criteria, we can select at most d loss vectors during the whole

learning process and compose a pseudo-kernel on the one hand. It means that the matrix norm

6

CHAPTER 1. INTRODUCTION

of the decision vector is bounded by d. On the other hand, the distance of all the losses to this

pseudo-kernel is bounded in o(
√
N). It implies that the dual norm of the matrix norm from the

pseudo-kernel of the loss vectors is bounded by O((Nϵ)1/3). Therefore, we refine the reduction

from the expert advice to an OLO game, where the norms to the decision set and loss space

are robust to the noise, respectively. Conclusively, our algorithm can achieve a regret bound

O((d+ d4/3(Nϵ)1/3)
√
T) for noisy low rank loss. Although our regret bound seems to be not a

large improvement, this algorithm performs well in experiment. In practice, we suggest to run

our algorithm and others parallel to guarantee the best result.

1.1.3 Online semi-definite problem

Firstly, for OSDP with Γ-trace norm, we propose an algorithm FTRL with generalised log-

determinant regularizer. This regularizer is given according to the Γ matrix from the decision

set. It implies that we need to choose different regularizer depending on the concrete problem

setting. For OSDP with Γ-trace norm, our proposed algorithm achieves an O(g
√
ρβτT) bound,

where ρ is only related to the matrix Γ, and others are related to the norms for the decision

set and the loss space. Compared with the previous work [44], generally, our algorithm is

more appropriate for the sophisticate decision set, while in the previous algorithm, the log-

determinant regularizer reflects no information about the Γ-trace norm. From our example in

the Chapter 5, the previous algorithm gives an O(N
√
τT) bound and our algorithm can tighten

the bound to O(
√
τT), since our algorithm can process the constraint of the decision set more

precisely.

Next, we show that OBMC problem with side information [31] can be reduced to our OSPD

problem with Γ-trace norm by mistake driven technique. Unlike the reduction of [31], our

reduction explicitly utilise the hinge loss function and reduce OBMC to an OSDP problem.

Thus, our reduction is more straightforward and in the reduced OSDP problem, we represent

the side information with the matrix Γ. Note that if we utilise the algorithm from [44], the

mistake bound is O
(

m+n
γ2

)
, where the side information is actually vacuous. Utilising our new

achieved result for the OSDP problem with Γ-trace norm, we obtain an optimal mistake bound,

especially in realizable case, as O
(

D
γ2

)
by improving the logarithmic factor in previous bound

of [31]. Meanwhile, if the underlying matrix obtains (k, l)-biclustered, our mistake bound

is O(kl), where the lower bound is Ω(kl) [30]. Furthermore, in online similarity prediction,

a special case of OBMC with side information [22], giving the side information as the PD-

7

CHAPTER 1. INTRODUCTION

Laplacian of the graph, our mistake bound recovers the previous mistake bound up to a constant

factor and tighten a logarithmic factor as well.

1.2 Organization

The rest of this thesis is organized as follows: In Chapter 2, we give some basic learning models

of online learning, like online convex optimization and expert advice. In Chapter 3, we consider

the online load balancing problem, and we give an efficient algorithm achieving the best known

regret bound. Next, we propose an algorithm for expert advice problem with noisy low rank

loss, where the prior information about the low rank is unknown to the algorithm in Chapter

4. As last, in Chapter 5, we generalise the OSDP problem with Γ-trace norm and apply our

new achievement to OMBC problem with side information. For OMBC problem and further

its extreme case online similarity prediction, we obtain an optimal mistake bound by reducing

them to the corresponding OSDP problem.

8

Chapter 2

Preliminaries

In this section, we are going to introduce some basic concepts about online learning.

2.1 Online learning models

Online learning is a learning process to answer a sequence of questions. In this learning pro-

cess, there are two roles: the algorithm (decision maker, player, learner) and the environment

(adversary, nature). On each round t, the algorithm needs to answer the question according to

previous information selected by itself before the true answer arrives. It can be described in the

following chart: on each round t ∈ [T] = {1, · · · , T} :

• The algorithm receives the question xt ∈ X from the environment.

• The algorithm gives its answer pt ∈ P .

• The environment gives the true answer yt ∈ Y .

• The algorithm incurs the loss as l(pt, yt).

We denote question domain, answering domain, and true answer domain as X ,P ,Y respec-

tively. Note that P is not necessary same as Y . The ultimate goal of the learner is to minimise

the cumulative loss in the whole learning process. We assume that there is a target mapping

h∗ : X → Y . We define the regret with respect to this target mapping h∗ as follows:

RegretT (h
∗) =

T∑
t=1

l(pt, yt)−
T∑
t=1

l(h∗(xt), yt). (2.1)

9

CHAPTER 2. PRELIMINARIES

If we assume that h∗ ∈ H for some fixed hypothesis class H then we can further define the

regret with respect to the hypothesis classH as follows:

RegretT (H) = max
h∗∈H

RegretT (h
∗). (2.2)

The goal of the learner is to propose an algorithm such that the regret bound is sub-linear,

i.e., RegretT (H) ≤ O(Tα), where α < 1.

2.1.1 Online convex optimization

In online convex optimization (OCO), we restrict the above model in a prediction process as

follows: GivenW ,F as the prediction domain of the algorithm and the set of convex functions

respectively. On each round t ∈ [T]:

• The algorithm gives a prediction wt from a convex setW .

• The environment returns the a convex loss function ft ∈ F .

• The algorithm incurs the loss as ft(wt)

Thus, the regret is now defined as

Regret(T) =
T∑
t=1

ft(wt)− min
w∈W

T∑
t=1

ft(w). (2.3)

Moreover, if the loss function is linear function, we call the model as online linear optimiza-

tion (OLO). A typical algorithm for OCO is gradient descent [54]. We give this algorithm as

follows:

Algorithm 1 Gradient Descent
Require: learning rate η, ∀w1 ∈ W

1: For t = 1, · · · , T
2: Predict wt+1 = wt − η∇ft(wt), where∇ft(wt) is the sub-gradient of ft of point wt.
3: Receive ft(·) from the environment.

Theorem 1 ([48]). Running the gradient descent to T times, if the decision set W is bounded

by maxw∈W ∥w∥2 ≤ D and maxw∈W ∥∇ft(w)∥2 ≤ G for any t ∈ [T]. Then we have the regret

bound as

Regret(T) ≤ O(GD
√
T), (2.4)

10

CHAPTER 2. PRELIMINARIES

by setting η = D
G
√
2T
.

2.1.2 Expert advice

Prediction with expert advice or expert advice problem is a special case of OLO. The back-

ground of this model is as follows. Given N different experts initially, on each round t, the

learner is requested to choose one of the experts it before receiving the lost vector lt ∈ [0, 1]N .

So the loss of each round t is lt(it). To ensure that the loss is convex, we involve the expectation.

The learner chooses the expert according to a distribution wt ∈ ∆(N), where

∆(N) =

{
w | w(i) ≥ 0 ∧

N∑
i=1

w(i) = 1 ∀i ∈ [N]

}
.

After involving the expectations we have that

E [lt(it)] =
N∑
i=1

wt(i) · lt(i) = wt · lt. (2.5)

Thus, we can define the regret as

Regret(T) =
T∑
t=1

lt ·wt − min
i∈[N]

T∑
t=1

lt(i). (2.6)

Note that expert advice is an OLO model with a probability simplex decision set. There is a

famous algorithm for expert advice given as follows [13, 21]:

Algorithm 2 Hedge
Require: learning rate η, ∀w1 ∈ (1

N
, · · · , 1

N
)

1: For t = 1, · · · , T
2: Predict wt+1(i) =

wt(i)e−ηlt(i)∑N
j=1 wt(j)e−ηlt(j)

3: Receive lt from the environment.

Theorem 2 ([48]). Running Hedge for T times, we obtains the regret bound for expert advice

as

Regret(T) ≤ O(
√
T lnN), (2.7)

by choosing particular learning rate η =
√

lnN
T

.

11

Chapter 3

Improved algorithms for online load
balancing

3.1 Introduction

Online load balancing problem is an active research topic since last century. Instead of the

traditional measurement of algorithm performance, competitive ratio(e.g.,[4] [5] [16] [43]), we

utilize another well-known measurement as “Regret”, involved by [19].

In this paper we define online load balancing problem as follows. There are K parallel

servers and the protocol is defined as a game between the player and the environment. On each

round t = 1, . . . , T , (i) the player selects a distribution αt over K servers, which can be viewed

as an allocation of data, (ii) then the environment assigns a loaded condition lt,i for each server i

and the loss of server i is given as αt,ilt,i. The goal of the player is to minimize the makespan of

the cumulative loss vector of all servers after T rounds, i.e., maxi=1,...,K

∑T
t=1 αt,ilt,i, compared

relatively to the makespan obtained by the optimal static allocation α∗ in hindsight. More

precisely, the goal is to minimize the regret, the difference between the player’s makespan and

the static optimal makespan. The makespan cost can be viewed as L∞-norm of the vector of

cumulative loss of each server (we will give a formal definition of the problem in the next

section).

Even-Dar et al.[19] gave an algorithm based on the regret minimum framework by involv-

ing an extra concept, the Blackwell approachability [12] with respect to L2-norm, to a tar-

get set, which is defined in the following section. This algorithm achieves the regret bound

as O(
√
KT). Simultaneously another algorithm, DIFF, achieves the regret upper bound as

O((lnK)
√
T). Rahklin et al. [46] gave a theoretical result for the online load balancing prob-

12

CHAPTER 3. IMPROVED ALGORITHMS FOR ONLINE LOAD BALANCING

lem, that the upper bound to regret can achieve O(
√

(lnK)T), rather than O((lnK)
√
T). How-

ever there is no efficient algorithm given in this paper to obtain this regret.

Then, there were some explorations about the equivalence between the Blackwell approach-

ability and online linear optimization(OLO) [1], in addition and online convex optimization(OCO)

by involving a support function [50].

These work [1] [50] implied that the Blackwell approachability with respect to general nor-

m can be guaranteed by sub-linearity of regret from OCO problem reduced by Blackwell ap-

proaching game. Moreover due to this result we give an efficient algorithm to online load

balancing problem, achieving the best known regret.

More specifically speaking, we propose algorithms for online load balancing for arbitrary

norms under a natural assumption. This algorithm is composed by three reductions. (i) First

reduction is from load balancing problem to Blackwell approaching game in a general metric.

In this reduction we extend the L2-norm of load balancing problem in [19] to any general norm

with a reasonable assumption. In this reduced Blackwell approaching game the metric is in-

duced by the norm of load balancing problem. This reduction implies that the regret of load

balancing problem can be bounded by the convergence rate of a corresponding Blackwell ap-

proaching game. (ii) Second reduction directly follows the existing work. Due to [50], we give

a reduction from Blackwell approaching game to an OCO problem, by showing the existence

of such reduction. Thus we can bound the regret of online load balancing with the regret of cor-

responding OCO problem. (iii) The last reduction is from OCO problem to two OLO problems,

so that we can predict with FTRL.

Conclusively, we can predict the allocation of serves on each round in online load balancing

according to the prediction of corresponding two OLO problems. Simultaneously we give the

regret bound of online load balancing problem with this OLO regret.

Thus our technical contributions are the following:

• We propose a new reduction technique from online load balancing to a Blackwell ap-

proaching game. This reduction enables us to use more general norms, induced by online

load balancing, in Blackwell approaching game rather than L2-norm used in the previous

work [19]. Based on this reduction we can reduce online load balancing with general

norm to OLO problem, by using the reduction technique of Shimkin [50] from Blackwell

games to OCO problem, further to OLO problems. In conclusion, online load balanc-

ing problem can be reduced to two OLO problems according to our reduction route.

13

CHAPTER 3. IMPROVED ALGORITHMS FOR ONLINE LOAD BALANCING

Therefore the regret bound to online load balancing problem can be optimized by the

corresponding OLO regret bound.

• Especially, according to above reduction route, we give an efficient algorithm for on-

line load balancing w.r.t. L∞-norm, achieving the best known O(
√
T lnK) regret. The

algorithm involves linear programming and the second order cone programming and run-

s in polynomial time per trial. This is the first polynomial time algorithm achieving

O(
√
T lnK) regret.

3.2 Preliminaries

First we give some notations. We use ∥·∥ to denote a norm of a vector. Moreover, for a norm

∥·∥, ∥x∥∗ denotes the dual norm of ∥x∥ . A norm ∥·∥ over Rd is monotone if ∥x∥ ≤ ∥y∥
whenever |xi| ≤ |yi| for every 1 ≤ i ≤ d.

3.2.1 Online load balancing

Firstly we begin with a standard (offline) load balancing problem. Suppose that we have K

servers to do a simple task with a large amount of data. The task can be easily parallelized in

such a way that we can break down the data into K pieces and assign them to the servers, and

then each server processes the subtask in time proportional to the size of data assigned. An

example is to find blacklisted IP addresses in an access log data. Each server is associated with

loaded condition, expressed in terms of “the computation time per unit data”. The goal is to

find a data assignment to the servers so as to equalize the computation time for all servers. In

other words, we want to minimize the makespan, defined as the maximum of the computation

time over all servers.

Formally, the problem is described as follows: The input is a K-dimensional vector l =

(l1, l2, . . . , lK) ∈ RK
+ , where each li represents the loaded condition of the i-th server. The

output is a K-dimensional probability vector α = (α1, α2, . . . , αK) ∈ ∆(K) = {α ∈ [0, 1]K |∑K
i=1 αi = 1}, where each αi represents the fraction of data assigned to the i-th server. The goal

is to minimize the makespan ∥α⊙ l∥∞, where α⊙ l = (α1l1, α2l2, . . . , αK lK). Note that it is

clear that the optimal solution is given by αi = l−1
i /

∑K
j=1 l

−1
j , which equalizes the computation

time of every server as C∗
∞(l)

def
= minα∈∆(K) ∥α⊙ l∥∞ = 1∑K

j=1 1/lj
.

Note also that the objective is generalized to the Lp-norm for any p in the literature.

14

CHAPTER 3. IMPROVED ALGORITHMS FOR ONLINE LOAD BALANCING

In this paper, we consider a more general objective ∥α⊙ l∥ for an arbitrary norm that

satisfies certain assumptions stated below. In the general case, the optimal value is denoted by

C∗(l)
def
= minα∈∆(K) ∥α⊙ l∥ .

Assumption 1. Throughout the paper, we put the following assumptions on the norm. (i) The

norm is monotone, and (ii) the function C∗ is concave.

Note that the first assumption is natural for load balancing and the both assumptions are

satisfied by Lp-norm for p > 1.

Now we proceed to the online load balancing problem with respect to a norm ∥·∥ that sat-

isfies Assumption 1. The problem is described as a repeated game between the learner and the

environment who may behave adversarially. In each round t = 1, 2, . . . , T , the learner chooses

an assignment vector αt ∈ ∆(K), and then receives from the environment a loaded condition

vector lt ∈ [0, 1]K , which may vary from round to round. After the final round is over, the per-

formance of the learner is naturally measured by
∥∥∥∑T

t=1αt ⊙ lt

∥∥∥. We want to make the learner

perform nearly as well as the performance of the best fixed assignment in hindsight (offline

optimal solution), which is given by C∗(
∑T

t=1 lt). To be more specific, the goal is to minimize

the following regret:

Regret(T) =

∥∥∥∥∥
T∑
t=1

αt ⊙ lt

∥∥∥∥∥− C∗

(
T∑
t=1

lt

)
.

3.2.2 Repeated game with vector payoffs and approachability

We briefly review the notion of Blackwell’s approachability, which is defined for a repeated

game with vector payoffs. The game is specified by a tuple (A,B, r, S, dist), where A and B

are convex and compact sets, r : A × B → Rd is a vector-valued payoff function, S ⊆ Rd

is a convex and closed set called the target set, and dist : Rd × Rd → R+ is a metric. The

protocol proceeds in trials: In each round t = 1, 2, . . . , T , the learner chooses a vector at ∈ A,

the environment chooses a vector bt ∈ B, and then the learner obtains a vector payoff rt ∈ Rd,

given by rt = r(at, bt). The goal of the learner is to make the average payoff vector arbitrarily

close to the target set S.

Definition 1 (Approachability). For a game (A,B, r, S, dist), the target set S is approachable

with convergence rate γ(T) if there exists an algorithm for the learner such that the average

15

CHAPTER 3. IMPROVED ALGORITHMS FOR ONLINE LOAD BALANCING

payoff r̄T = (1/T)
∑T

t=1 rt satisfies

dist(r̄T , S)
def
= min

s∈S
dist(r̄T , s) ≤ γ(T)

against any environment. In particular, we simply say that S is approachable if it is approach-

able with convergence rate o(T).

Blackwell characterizes the approachability in terms of the support function as stated in the

proposition below.

Definition 2. For a set S ⊆ Rd, the support function hS : Rd → R ∪ {∞} is defined as

hS(w) = sup
s∈S
⟨s,w⟩.

It is clear from definition that hS is convex whenever S is convex.

Definition 3 (Blackwell [12]). A game (A,B, r, S, dist) satisfies Blackwell Condition, if and

only if

∀w ∈ Rd

(
min
a∈A

max
b∈B
⟨w, r(a, b)⟩ ≤ hS(w)

)
. (3.1)

Remark 1. In [12], Blackwell characterized the approachability of a target set for L2-norm

metric in terms of the Blackwell condition.

In what follows, we only consider a norm metric, i.e, dist(r, s) = ∥r − s∥ for some norm

∥·∥ over Rd. The following proposition is useful.

Proposition 1. For any w ∈ Rd, s∗ = argmaxs∈S⟨s,w⟩ is a sub-gradient of hS(w) at w.

Proof. For any w,u ∈ Rd, let s∗ = argmaxs∈S⟨s,w⟩ and su = argmaxs∈S⟨s,u⟩. Since

⟨s∗,u⟩ ≤ ⟨su,u⟩, we have

hS(w)− hS(u) = sup
s∈S
⟨s,w⟩ − sup

s∈S
⟨s,u⟩ = ⟨s∗,w⟩ − ⟨su,u⟩

≤ ⟨s∗,w − u⟩,

which implies the proposition.

16

CHAPTER 3. IMPROVED ALGORITHMS FOR ONLINE LOAD BALANCING

3.2.3 Online convex optimization

In this subsection we briefly review online convex optimization with some known results. See,

e.g., [48, 27] for more details.

An online convex optimization (OCO) problem is specified by (W,F), where W ⊆ Rd is a

compact convex set called the decision set and F ⊆ {f : W → R} is a set of convex functions

over W called the loss function set. The OCO problem (W,F) is described by the following

protocol between the learner and the adversarial environment. For each round t = 1, 2, . . . , T ,

the learner chooses a decision vector wt ∈ W and then receives from the environment a loss

function ft ∈ F . In this round, the learner incurs the loss given by ft(wt). The goal is to

make the cumulative loss of the learner nearly as small as the cumulative loss of the best fixed

decision. To be more specific, the goal is to minimize the following regret:

Regret(W,F)(T) =
T∑
t=1

ft(wt)− min
w∈W

T∑
t=1

ft(w).

Here we add the subscript (W,F) to distinguish from the regret for online load balancing.

Any OCO problem can be reduced to an online linear optimization (OLO) problem, which

is an OCO problem with linear loss functions. More precisely, an OLO problem is specified by

(W,G), where G ⊆ Rd is the set of cost vectors such that the loss function at round t is ⟨gt, ·⟩
for some cost vector gt ∈ G. For the OLO problem (W,G), the regret of the learner is thus

given by

Regret(W,G)(T) =
T∑
t=1

⟨gt,wt⟩ − min
w∈W

T∑
t=1

⟨gt,w⟩.

The reduction from OCO to OLO is simple. Run any algorithm for OLO (W,G) with gt ∈
∂ft(wt), and then it achieves Regret(W,F)(T) ≤ Regret(W,G)(T), provided that G is large e-

nough, i.e., G ⊇
∪

f∈F,w∈W ∂f(w).

A standard FTRL (follow-the-regularized-leader) strategy for the OLO problem (W,G) is

to choose wt as

wt = arg min
w∈W

(
t−1∑
s=1

⟨gs,w⟩+ ηtR(w)

)
, (3.2)

where R : W → R is a strongly convex function called the regularizer and ηt ∈ R+ is a

parameter. Using the strategy (3.2) the following regret bound is known.

Proposition 2 ([48]). Suppose that the regularizer R : W → R is σ-strongly convex w.r.t. some

17

CHAPTER 3. IMPROVED ALGORITHMS FOR ONLINE LOAD BALANCING

norm ∥·∥, i.e., for any w,u ∈ W , for any z ∈ ∂R(w), R(u) ≥ R(w)+⟨z,u−w⟩+σ
2
∥u−w∥2.

Then, for the OLO problem (W,G), the regret of the strategy (3.2) satisfies

Regret(W,G)(T) = O(DRLG

√
T/σ),

where DR =
√
maxw∈W R(w), LG = maxg∈G ∥g∥∗ and ηt = (LG/DR)

√
T/σ.

Note however that the strategy does not consider the computational feasibility at all. For

efficient reduction, we need an efficient algorithm that computes a sub-gradient g ∈ ∂f(w)

when given (a representation of) f ∈ F and w ∈ W , and an efficient algorithm for solving the

convex optimization problem (3.2).

For a particular OLO problem (W,G) with L1 ball decision set W = {w ∈ Rd | ∥w∥1 ≤
1}, an algorithm called EG± [32] finds in linear time the optimal solution of (3.2) with an

entropic regularizer and achieves the following regret.

Theorem 3 ([33]). For the OLO problem (W,G) with W = {w ∈ Rd | ∥w∥1 ≤ 1} and

G = {g ∈ Rd | ∥g∥∞ ≤M}, EG± achieves

Regret(W,G)(T) ≤M
√

2T ln(2d).

3.3 Main result

In this section, we propose a meta-algorithm for online load balancing, which is obtained by

combining a reduction to two independent OLO problems and an OLO algorithm (as an ora-

cle) for the reduced problems. Note that the reduced OLO problems depend on the choice of

norm for online load balancing, and the OLO problems are further reduced to some optimiza-

tion problems defined in terms of the norm. For efficient implementation, we assume that the

optimization problems are efficiently solved.

Now we consider the online load balancing problem on K servers with respect to a norm

∥·∥ defined over RK that satisfies Assumption 1. The reduction we show consists of three

reductions, the first reduction is to a repeated game with vector payoffs, the second one is to

an OCO problem, and the last one is to two OLO problems. In the subsequent subsections, we

give these reductions, respectively.

18

CHAPTER 3. IMPROVED ALGORITHMS FOR ONLINE LOAD BALANCING

3.3.1 Reduction to a vector payoff game

We will show that the online load balancing problem can be reduced to the following repeated

game with vector payoffs, denoted by P = (A,B, r, S, dist), where

• A = ∆(K), B = [0, 1]K ,

• r : A×B → RK × RK is the payoff function defined as r(α, l) = (α⊙ l, l),

• S = {(x,y) ∈ [0, 1]K × [0, 1]K | ∥x∥ ≤ C∗(y)}, and

• dist is the metric over RK × RK defined as dist(r, s) = ∥r − s∥+, where ∥·∥+ is the

norm over RK × RK defined as

∥(x,y)∥+ = ∥x∥+ ∥y∥ .

Here we use the convention that R2K = RK × RK . Note that the target set S is convex since

∥·∥ is convex and C∗ is concave by our assumption. Note also that it is easy to verify that ∥·∥+

is a norm whenever ∥·∥ is a norm, and its dual is

∥(x,y)∥+∗ = max{∥x∥∗ , ∥y∥∗}. (3.3)

The reduction is similar to that in [19], but they consider a fixed norm ∥·∥2 to define the

metric, no matter what norm is used for online load balancing.

Proposition 3. Assume that we have an algorithm for the repeated game P that achieves con-

vergence rate γ(T). Then, the algorithm, when directly applied to the online load balancing

problem, achieves

Regret(T) ≤ Tγ(T).

Proof. LetA denote an algorithm for the repeated game P with convergence rate γ(T). Assume

that when running A against the environment of online load balancing, we observe, in each

round t, αt ∈ ∆(K) output from A and lt ∈ [0, 1]K output from the environment.

Let (x,y) = argmin(x,y)∈S ∥r̄T − (x,y)∥+, where r̄T = (1/T)
∑T

t=1 r(αt, lt) is the aver-

age payoff. Note that by the assumption ofA, we have ∥r̄T − (x,y)∥+ ≤ γ(T). For simplicity,

let LA
T = (1/T)

∑T
t=1αt ⊙ lt and LT = (1/T)

∑T
t=1 lt.

19

CHAPTER 3. IMPROVED ALGORITHMS FOR ONLINE LOAD BALANCING

Then, we have

(1/T)Regret(T) =
∥∥LA

T

∥∥− C∗(LT)

=
[
∥x∥ − C∗(y)

]
+
[∥∥LA

T

∥∥− ∥x∥]+ [C∗(y)− C∗(LT)
]

≤
∥∥LA

T − x
∥∥+ [min

α∈∆(K)
∥α⊙ y∥ − min

α∈∆(K)
∥α⊙ LT∥

]
≤
∥∥LA

T − x
∥∥+ max

α∈∆(K)

[
∥α⊙ y∥ − ∥α⊙ LT∥

]
≤
∥∥LA

T − x
∥∥+ max

α∈∆(K)
∥α⊙ (y − LT)∥

≤
∥∥LA

T − x
∥∥+ ∥y − LT∥

=
∥∥(LA

T , LT)− (x,y)
∥∥+ = ∥r̄T − (x,y)∥+ ≤ γ(T),

where the first inequality is from the definition of S and the triangle inequality, the third in-

equality is from the triangle inequality, and the fourth inequality is from the monotonicity of

the norm.

3.3.2 Reduction to an OCO problem

Next we give the second sub-reduction from the repeated game P to an OCO problem. We just

follow a general reduction technique of Shimkin [50] as given in the next theorem.

Theorem 4 ([50]). Let (A,B, r, S, dist) be a repeated game with vector payoffs, where dist(r, s) =

∥r − s∥ for some norm ∥·∥ over Rd. Assume that we have an algorithm A that witnesses the

Blackwell condition, i.e., when given w ∈ Rd, A finds a ∈ A such that ⟨w, r(a, b)⟩ ≤ hS(w)

for any b ∈ B. Assume further that we have an algorithmB for the OCO problem (W,F), where

W = {w ∈ Rd | ∥w∥∗ ≤ 1} and F = {f : w 7→ ⟨−r(a, b),w⟩ + hS(w) | a ∈ A, b ∈ B}.
Then, we can construct an algorithm for the repeated game such that its convergence rate γ(T)

satisfies

γ(T) ≤
Regret(W,F)(T)

T
.

Moreover, the algorithm runs in polynomial time (per round) if A and B are polynomial time

algorithms.

For completeness, the reduction algorithm(Algorithm 3) is as follow.

The rest to show in this subsection is to ensure the existence of algorithmA required for the

reduction as stated in the theorem above. In other words, we show that the Blackwell condition

20

CHAPTER 3. IMPROVED ALGORITHMS FOR ONLINE LOAD BALANCING

Algorithm 3 Reduction from game (A,B, r, S, dist) with dist(a, b) = ∥a− b∥ to OCO [50]
Require: An algorithm A that, when given w, finds a ∈ A such that ⟨w, r(a, b)⟩ ≤ hS(w)

for any b ∈ B.
Require: An algorithm B for the OCO problem (W,F), where W = {w | ∥w∥∗ ≤ 1} and

F = {f : w 7→ ⟨−r(a, b),w⟩+ hS(w) | a ∈ A, b ∈ B}.
for t = 1, 2, . . . , T do

1. Obtain wt ∈ W from B.
2. Run A(wt) and obtain at ∈ A.
3. Output at ∈ A and observe bt ∈ B.
4. Construct the loss function ft : w 7→ ⟨−r(at, bt),w⟩+ hS(w) and feed it to B.

end for

holds for our game P = (∆(K), [0, 1]K , r, S, dist), where r(α, l) = (α⊙, l, l) ∈ RK × RK ,

S = {(x,y) ∈ [0, 1]K × [0, 1]K | ∥x∥ ≤ C∗(y)}, and dist(r, s) = ∥r − s∥+.

Lemma 1. The Blackwell condition holds for game P . That is, for any w ∈ RK×RK , we have

min
α∈∆(K)

max
l∈[0,1]K

⟨w, r(α, l)⟩ ≤ hS(w).

Proof of Lemma 1. Let w = (w1,w2) ∈ RK ×RK . By the definition of r, the inner product in

the Blackwell condition can be rewritten as a bilinear function

f(α, l) = ⟨w, r(α, l)⟩ =
K∑
i=1

w1,iαili +
K∑
i=1

w2,ili

over ∆(K)× [0, 1]K . Therefore, f meets the condition of Minimax Theorem of von Neumann.

and we have

min
α∈∆(K)

max
l∈[0,1]K

f(α, l) = max
l∈[0,1]K

min
α∈∆(K)

f(α, l).

Let l∗ = argmaxl∈[0,1]K minα∈∆(K) f(α, l) and α∗ = argminα∈∆(K) ∥α⊙ l∗∥. Note that by

the definition of S, we have (α∗ ⊙ l∗, l∗) ∈ S. Hence we get

min
α∈∆(K)

max
l∈[0,1]K

f(α, l) = max
l∈[0,1]K

min
α∈∆(K)

f(α, l)

= f(α∗, l∗)

= ⟨w, ((α∗ ⊙ l∗), l∗)⟩

≤ sup
s∈S
⟨w, s⟩

= hS(w),

21

CHAPTER 3. IMPROVED ALGORITHMS FOR ONLINE LOAD BALANCING

which completes the lemma.

The lemma ensures the existence of algorithm A. On the other hand, for an algorithm B we

need to consider the OCO problem (W,F), where the decision set is

W = {w ∈ RK × RK | ∥w∥+∗ ≤ 1}, (3.4)

and the loss function set is

F = {f : w 7→ ⟨−r(α, l),w⟩+ hS(w) | α ∈ ∆(K), l ∈ [0, 1]K}. (3.5)

Since W is a compact and convex set and F consists of convex functions, we could apply a num-

ber of existing OCO algorithms to obtain Regret(W,F)(T) = O(
√
T). In the next subsection,

we show that the problem can be simplified to two OLO problems.

3.3.3 Reduction to two OLO problems

Consider the OCO problem (W,F) given by (3.4) and (3.5). Following the standard reduction

technique from OCO to OLO stated in Section 3.2.3, we obtain an OLO problem (W,G) to

cope with, where G ⊆ RK × RK is any set of cost vectors that satisfies

G ⊇
∪
f∈F
w∈W

∂f(w) =
{
−r(α, l) + s

∣∣∣ α ∈ ∆(K), l ∈ [0, 1]K , s ∈
∪

w∈W ∂hS(w)
}
. (3.6)

By (3.3), the decision set W can be rewritten as W = B∗(K) × B∗(K) where B∗(K) =

{w ∈ RK | ∥w∥∗ ≤ 1} is the K-dimensional unit ball with respect to the dual norm ∥·∥∗.
By Proposition 1, any s ∈ ∂hS(w) is in the target set S, which is a subset of [0, 1]K × [0, 1]K .

Moreover, r(α, l) = (α⊙l, l) ∈ [0, 1]K×[0, 1]K for any α ∈ ∆(K) and l ∈ [0, 1]K . Therefore,

G = [−1, 1]K × [−1, 1]K satisfies (3.6).

Thus, (B∗(K)×B∗(K), [−1, 1]K × [−1, 1]K) is a suitable OLO problem reduced from the

OCO problem (W,F). Furthermore, we can break the OLO problem into two independent

OLO problems (B∗(K), [−1, 1]K) in the straightforward way: Make two copies of an OLO

algorithm C for (B∗(K), [−1, 1]K), denoted by C1 and C2, and use them for predicting the first

half and second half decision vectors, respectively. More precisely, for each trial t, (1) receive

predictions wt,1 ∈ B∗(K) and wt,2 ∈ B∗(K) from C1 and C2, respectively, (2) output their

concatenation wt = (wt,1,wt,2) ∈ W , (3) receive a cost vector gt = (gt,1, gt,2) ∈ [−1, 1]K ×

22

CHAPTER 3. IMPROVED ALGORITHMS FOR ONLINE LOAD BALANCING

[−1, 1]K from the environment, (4) feed gt,1 and gt,2 to C1 and C2, respectively, to make them

proceed.

It is clear that the procedure above ensures the following lemma.

Lemma 2. The OCO problem (W,F) defined as (3.4) and (3.5) can be reduced to the OLO

problem (B∗(K), [−1, 1]K), and

Regret(W,F)(T) ≤ 2Regret(B∗(K),[−1,1]K)(T).

3.3.4 Putting all the pieces together

Combining all reductions stated in the previous subsections, we get an all-in-one algorithm as

described in Algorithm 4.

Algorithm 4 An OLO-based online load balancing algorithm
Require: An algorithm A that, when given w, finds α = arg min

α∈∆(K)
max

l∈[0,1]K
⟨w, (α⊙ l, l)⟩.

Require: An algorithm B that, when given w, finds s ∈ ∂hS(w).
Require: Two copies of an algorithm, C1 and C2, for the OLO problem (B∗(K), [−1, 1]K).

for t = 1, 2, . . . , T do
1. Obtain wt,1 and wt,2 from C1 and C2, respectively, and let wt = (wt,1,wt,2).
2. Run A(wt) and obtain αt ∈ ∆(K).
3. Output αt and observe lt ∈ [0, 1]K .
4. Run B(wt) and obtain st = (st,1, st,2).
5. Let gt,1 = −αt ⊙ lt + st,1 and gt,2 = −lt + st,2.
6. Feed gt,1 and gt,2 to C1 and C2, respectively.

end for

It is clear that combining Proposition 3, Theorem 4 and Lemma 2, we get the following

regret bound of Algorithm 4.

Theorem 5. Algorithm 4 achieves

Regret(T) ≤ 2Regret(B∗(K),[−1,1]K)(T),

where the regret in the right hand side is the regret of algorithm C1 (and C2 as well). Moreover,

if A, B and C1 runs in polynomial time, then Algorithm 4 runs in polynomial time (per round).

By applying the FTRL as in (3.2) to the OLO problem (B∗(K), [−1, 1]K) with a strongly

convex regularizer R, Proposition 2 implies the following regret bound.

23

CHAPTER 3. IMPROVED ALGORITHMS FOR ONLINE LOAD BALANCING

Corollary 1. Assume that there exists a regularizer R : B∗(K) → R that is σ-strongly convex

w.r.t. L1-norm. Then, there exists an algorithm for the online load balancing problem that

achieves

Regret(T) = O(DR

√
T/σ),

where DR =
√
maxw∈B∗(K) R(w).

In particular, for the OLO problem (B1(K), [−1, 1]K), algorithm EG± achieves
√
2T ln 4K

regret bound as shown in Theorem 3. Thus we have O(
√
T lnK) regret bound for online load

balancing with respect to L∞-norm (i.e., w.r.t. makespan), which improves the bound of [19]

by a factor of
√
lnK. Moreover, for L∞-norm, it turns out that we have polynomial time

algorithms for A and B, which we will give in the next section. We thus obtain the following

corollary.

Corollary 2. There exists a polynomial time (per round) algorithm for the online load balancing

problem with respect to L∞-norm that achieves

Regret(T) ≤ 2
√
2T ln 4K.

3.4 Algorithmic details for L∞-norm

In this section we give details of Algorithm 4 for the makespan problem, i.e., for L∞-norm.

3.4.1 Computing αt

First, we give details of implementation of A in Algorithm 4. Specifically, on the round t, we

need to choose αt, which is the optimal solution of the problem in Lemma 1. That is,

min
α∈∆(K)

max
l∈[0,1]K

⟨w1, (α⊙ l)⟩+ ⟨w2, l⟩, (3.7)

where we set that w = (w1,w2) and w1 and w2 are K-dimensional vectors, respectively. We

see that the optimization of this objective function is defined by li = 0 if w1,i · αi + w2,i ≤ 0,

otherwise we let li = 1. Hence we can convert our problem to choose α as

min
α∈∆(K)

max
l∈[0,1]K

⟨w1, (α⊙ l)⟩+ ⟨w2, l⟩ = min
α∈∆(K)

K∑
i=1

max {0, αiw1,i + w2,i} ,

24

CHAPTER 3. IMPROVED ALGORITHMS FOR ONLINE LOAD BALANCING

which is equivalent to

min
α∈∆(K),β≥0

K∑
i=1

βi s.t. βi ≥ w1,iαi + w2,i ∀i = 1, . . . , K.

The above problem is a linear program with O(K) variables and O(K) linear constraints. Thus,

computing αt in the problem (3.7) can be solved in polynomial time.

3.4.2 Computing subgradients gt for the∞-norm

The second component of Algorithm 4 is the algorithm B, which computes subgradients st ∈
∂hS(wt). By Proposition 1, we have st = argmaxs∈S⟨s,wt⟩. Recall that S = {(x,y) ∈
[0, 1]K × [0, 1]K | ∥x∥∞ ≤ C∗

∞(y)}. In particular, the condition that ∥x∥∞ ≤ C∗
∞(y) can be

represented as

max
i

xi ≤ min
α∈∆(K)

∥α⊙ y∥∞ ⇐⇒ xi ≤
1∑K

j=1
1
yj

, ∀i.

Therefore, the computation of the subgradient st is formulated as

max
x,y∈[0,1]K

⟨w1,x⟩+ ⟨w2,y⟩ s.t. xi ≤
1∑
j

1
yj

, ∀i = 1, . . . , K. (3.8)

Now we show that there exists an equivalent second order cone programming (SOCP) for-

mulation (e.g., [41]) for this problem.

First we give the definition of the second order cone programming, and then we give a

proposition, which states that our optimization problem is equivalent to the second order cone

programming.

Definition 4. The standard form for the second order conic programming (SOCP) model is as

follows:

min
x
⟨c,x⟩ s.t. Ax = b, ∥Cix+ di∥2 ≤ e⊤

i x+ fi for i = 1, · · · ,m,

where the problem parameters are c ∈ Rn, Ci ∈ Rni×n, di ∈ Rni , e ∈ Rn, fi ∈ R, A ∈ Rp×n,

and b ∈ Rp. x ∈ Rn is the optimization variable.

Then we obtain the following proposition.

25

CHAPTER 3. IMPROVED ALGORITHMS FOR ONLINE LOAD BALANCING

Proposition 4.
∑K

i=1
x2

yi
≤ x, x ≥ 0 and yi ≥ 0 is equivalent to x2 ≤ yizi, where yi, zi ≥ 0 and∑K

i=1 zi = x.

Proof. On the direction “⇒ ”

From
∑k

i=1
x2

yi
≤ x we obtain that

∑k
i=1

x
yi
≤ 1. By setting

zi = x ·
1
yi∑
i

1
yi

,

we can have that x2 ≤ yizi, and
∑k

i=1 zi = x.

On the other direction “⇐ ” Due to x2 ≤ yizi, we have x2

yi
≤ zi. So we have that

k∑
i=1

x2

yi
≤

k∑
i=1

zi = x.

Again in our case we need find to the optimal vector s ∈ S, which satisfies that st =

argmaxs∈S⟨wt, s⟩. Then we can reduce our problem in following theorem.

Theorem 6. The optimization problem (3.8) can be solved by the second order cone program-

ming.

Proof. To prove this theorem we only need to represent the original problem (3.8) as a standard

form of the SOCP problem. Note that we only consider the case that yi ̸= 0 for all i = 1, . . . , K.

The case where yi = 0 for some i is trivial. To see this, by definition of S, we know that for all

i, xi = 0. Then, the resulting problem is a linear program, which is a special case of the SOCP.

Now we assume that yi ̸= 0 for i = 1, . . . , K. For xi ≤ 1∑
j

1
yj

, we multiply xi on both sides and

rearrange the inequality:
K∑
j=1

x2
i

yj
≤ xi.

By Proposition 4, this is equivalent with

yjzi,j ≥ x2
i , yj, zi,j ≥ 0,

K∑
j=1

zi,j = xi.

By [41], we may rewrite it as follows: For each i,

x2
i ≤ yjzi,j; yj, zi,j ≥ 0⇐⇒ ∥(2xi, yj − zi,j)∥2 ≤ yj + zi,j ∀j = 1, . . . , K. (3.9)

26

CHAPTER 3. IMPROVED ALGORITHMS FOR ONLINE LOAD BALANCING

The above equivalence is trivial. On the other hand, since xi ≤ 1∑
j

1
yj

, and yi ∈ [0, 1], naturally

we have xi ∈ [0, 1]. So we need only constrain that yi ∈ [0, 1]. We can apply the face that if yi is

positive so |yi| = yi, and if yi ≤ 1, so |yi| ≤ 1. Therefore we may give a (K2+2K)×(K2+2K)-

matrix Ci in SOCP, and the variable vector is composed as follows:

x̃ = (x1, · · · , xK , y1, · · · , yK , z1,1, · · · , z1,K , · · · , zK,1 · · · , zK,K), (3.10)

where for zi,j, i is corresponding to xi.

Now we may give the second order cone programming of our target problem as follows:

min
x̃
⟨−(w1,w2, 0, · · · , 0), x̃⟩

s.t.∥Cix̃∥2 ≤ e⊤
i x̃+ di ∀i = 1, · · · , K2 + 2K,

Ax̃ = b.

(3.11)

where Ci, ei, A and b are defined as follows:

Firstly the matrix C for hyperbolic constraints are given as: For a fixed s ∈ [K], where

[K] = {1, · · · , K} in matrix Ci, where i ∈ [(s − 1)K, sK] we let (Ci)1,s = 2, (Ci)K+i,K+i =

1, (Ci)2K+(s−1)K+i,2K+(s−1)K+i = −1, and others are 0. ei is defined as (ei)K+i = 1 and

(ei)2K+(s−1)K+i = 1, others are 0.

Next we need to constrain that yi is less than 1. For i ∈ [K2, K2 + K] we let that

(Ci)K+i,K+i = 1 and others are 0. And we let that ei is a zero vector and di = 1. It means

that ∥yi∥ ≤ 1. For i ∈ [K2 +K,K2 + 2K], we set (Ci)K+i,K+i = 1 eK+i = 1, and di = 0

At last we need to constrain that
∑K

j=1 zj = xi in equation 3.9: Let A ∈ RK×(3K+K2) for

each row vector Aj, where j ∈ [K], we have that (Aj)j = 1 and (Aj)2K+(j−1)j+m = −1, for

all m = 1, · · · , K. No w the matrix A is composed by the row vectors Aj. and b is a zero

vector.

3.5 Conclusion

In this paper we give a framework for online load balancing problem by reducing it to two OLO

problems. Moreover, for online load balancing problem with respect to L∞-norm we achieve

the best known regret bound in polynomial time. Firstly, we reduce online load balancing with

∥ · ∥ norm to a vector payoff game measured by combination norm ∥ · ∥+. Next due to [50] this

vector payoff game is reduced to an OCO problem. At last, we can reduce this OCO problem

27

CHAPTER 3. IMPROVED ALGORITHMS FOR ONLINE LOAD BALANCING

to two independent OLO problems. Especially, for makespan, we give an efficient algorithm,

which achieves the best known regret bound O(
√
T lnK), by processing linear programming

and second order cone programming in each trial. Recently Kwon [37] proposed a similar

reduction with other type of induced norm instead of our combination norm.

There are some open problems left in this topic. For instance, an efficient algorithm for

online load balancing with respect to general norm or p-norm is still an open problem. Kwon’s

reduction [37] might be helpful to this discussion. Furthermore, the lower bound of online load

balancing is still unknown.

28

Chapter 4

Expert advice problem with noisy low
rank loss

4.1 Introduction

The expert advice problem with low rank loss [29] is an extension of the standard expert prob-

lem by considering a latent structure in losses. In this problem, we model the expert advice

with d-rank loss as follows: the environment chooses a full rank N × d matrix U, called kernel.

On each round t ∈ [T], the algorithm picks a prediction wt in an N -dimensional simplex over

the set of N experts. Then the environment gives a d-rank loss vector lt ∈ [−1, 1]N , where

lt = Uvt to the algorithm. At last the algorithm suffers the loss wt · lt. We measure the per-

formance of this algorithm based difference between the cumulative loss and the best expert

strategy in hindsight, which is defined as regret in the following equation:

RegretT =
T∑
t=1

wt · lt − min
i∈[N]

T∑
t=1

lt(i). (4.1)

This low rank loss setting is popular in recommendation system, especially when experts

give losses based on a latent structure [36]. For instance, these experts share some common

information, or their prediction methods are similar and depended on only few factors. As a

consequence, the loss vectors given by experts are in fact in a relatively lower dimensional

space, which implies that d ≤ N.

Compared with the original expert advice problem, whose regret bound is Θ(
√
T lnN)

with Hedge algorithm [21, 13], the expert advice problem with d-rank loss incurs an upper

bound as O(d
√
T) [29], and O(

√
dT lnT) [35], respectively. Moreover, the optimal bound is

29

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

shown to be Θ(
√
dT) if the kernel is known to the algorithm [29]. The work of Hazan et al.

[29] combines two parts, recovering the kernel U and predicting the wt. Hence, this algorithm

not only provides a more precise upper bound, if d ≤ o(
√
lnN), but also re-constructs the

kernel while running the algorithm. Equivalently, kernel U is explored and exploited in the

learning process. Actually, in the algorithm of Hazan et al. [29], Online mirror descent (OMD)

is designed to predict wt utilising the recovered U. Without U, OMD can give only a loose bound

as O(
√
NT), even if the loss is d-ranked. In contrast, if the kernel is acquired in advance, OMD

achieves the optimal bound O(
√
dT).

After this pioneering work [29], Barman et al. [8] considered a case that, the d-rank loss

lt is corrupted by a L2-norm bounded ϵt noise, i.e., the environment gives the loss vector l̃t =

lt + ϵt = Uvt + ϵt, which is near to the d-dimensional space. In their work, Barman et al. [8]

gave a regret bound O
(√

(d+ ϵ)T
)

and a lower bound as Ω
(√

T (d+ ϵ
2d
)
)
, where ∥ϵt∥22 ≤ ϵ.

However, there is a strong assumption in their work that the algorithm needs know both U and

ϵ.

In this paper, we release the strong assumption in Barman et al. [8], and assume that the ker-

nel is unknown to the algorithm, while the low rank loss is corrupted by ϵt. This problem setting

is more realistic in two points: One is the loss vectors are not always strictly well-structured.

Although the experts share some common prediction methods, there is still some slight distur-

bance, which damages the low rank structure loss. The other is the specific structure is unknown

to the algorithm before it receives the loss vectors. It is natural that the recommendation system

needs to confront new users who are recently registered without any prior information. Thus,

the system is required to explore the characteristics of users while recommending their goods.

From the above works, we can see how the low rank structure plays the important role in

the algorithms. Either, the kernel is known to the algorithm, then the algorithm can overcome

the noised loss vectors easily; or, the loss is precisely low ranked, then the algorithm can extract

the kernel from the received losses, even if the kernel is unknown. However, if we apply the

algorithms of Hazan et al. [29], and Koren and Livni [35] in our problem setting directly, it

is equivalent to run OMD on expert advice directly, and the regret bound is O(
√
NT), since

the low rank loss no longer exists. Hence, one of the essential problems is how to deal with

the “noisy low rank loss” and recover the underlying kernel U. Although recovering a low rank

matrix is not a novel concept for machine learning [24, 20, 6, 53], to the best of the authors

knowledge, there is no such research for online expert advice problem with noise attached loss

vectors. The most tricky obstacle is that, it is impossible to re-construct the kernel U exactly

30

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

with the corrupted loss vectors. Thus, in our proposed algorithm, we attempt to approximate

this kernel from the received loss vectors.

In our algorithm, we assume that there is no prior information about the kernel. Thus, we

select at most d highly-independent loss vectors (see details in latter section) to construct a

pseudo-kernel Ũ in our learning process. Unlike the selection criteria in work [6], which re-

covers the kernel with a randomised algorithm stochastically, in our paper, each selected vector

is supposed to be not only “long” enough, but also far enough to the current sub-space, s-

panned by all previously selected vectors. Therefore, our algorithm can approximate the kernel

of the low rank loss deterministically and obtains a worst case guarantee. Instead of the un-

known U in [29], we next utilise the pseudo-kernel, which is spanned by the selected vectors,

in OMD to update the predictions. Our algorithm obtains an upper bound with respect to l̃t as

O(
√
T (d+ d4/3(Nϵ)1/3)). In practice, we can consider our algorithm and the Hedge algorithm

as two meta-experts and run another Hedge algorithm on top of them, which performs nearly as

well as our algorithm and the Hedge algorithm with additional negligeable (O(
√
T)) regret.

The following table shows the relationship between our work and previous work.

Table 4.1: Comparison with noisy and non-noisy low rank loss
known kernel unknown kernel

without noise Θ(
√
dT)

[29]
O(d
√
T) [29]

O(
√
dT lnT) [35]

ϵ-noise case
O(
√

(d+ ϵ)T)
Ω
(√

T (d+ ϵ
2d
)
)

[8]

O((1 + ϵ)
√
T (d+ d4/3(Nϵ)1/3))

(Our work)

This paper is composed as follows. In the second section, we define our expert advice with

noisy d-rank loss formally and some necessary notations. In the third section, the proposed

algorithm is given and we show the upper bound. In section 4, we compare the proposed

algorithm and previous work under synthetic environments1.

4.2 Preliminaries

We denote the set {1, · · · , T} by [T]. We denote the N -dimensional vector with all 1 ele-

ments by IN and N × N identity matrix by IN . We define a norm ∥x∥H with respect to

a positive definite matrix H, as ∥x∥H =
√
xTHx, for a vector x, and the dual norm of

1The code is available at https://github.com/2015211217/LowRankStructureC-.git

31

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

∥ · ∥H is defined as ∥x∥∗H =
√
xTH−1x. We define the angle between two vectors u and v

as θ(u,v) = arccos ⟨u,v⟩
∥u∥2∥v∥2 . If V is a subspace then θ(u,V) = minv∈V \{0} θ(u,v), and

θ(U ,V) = maxu∈U θ(u,V). At last, we denote the orthogonal projection from a vector l to

a subspace U as PU l. Moreover, the Euclidean distance from a vector l to a sub-space U is

defined as ∥l − PU l∥2 = ∥l∥2 sin θ(l,U) = ∥l∥2 sin θ(l,PU l). A linear space spanned by all

columns from a matrix V ∈ RN×k can be represented as span(V). In the following part, we

simplify span(V) as V , when it leads no ambiguity.

4.2.1 Problem Setting

Firstly we define the d-rank loss: For a sequence of lt ∈ [−1, 1]N , for t ∈ [T] we define

LT ∈ RN×T as follows:

LT = [l1, l2, · · · , lT] , (4.2)

where each loss vector lt is a column in LT . We define that the sequence {l1, · · · , lT} is d-rank

loss if and only if rank(LT) = d. Equivalently, for the sequence {l1, · · · , lt}, there exists a

kernel U ∈ RN×d such that lt = Uvt, where rank(U) = d. If d ≪ N, we can call lt as low

rank loss vector.

From d-rank loss lt, we define the noisy d-rank loss l̃t : l̃t = lt + ϵt, where ∥ϵt∥2 ≤ ϵ,∀t ∈
[T]. We call ϵt as the noise vector.

In this paper we consider the following learning problem of online expert advice with noisy

d-rank loss. On round t = 1, · · · , T, an algorithm gives a prediction wt ∈ ∆(N); Then an

environment gives a loss vector l̃t ∈ [−1− ϵ, 1+ ϵ]N , note that l̃t = lt+ ϵt. It implies that there

exists an underlying lt ∈ [−1, 1]N as d-rank loss and ϵt as ϵ-noise. However, lt, U and ϵt are

unknown to the algorithm. At last the algorithm suffers the loss as wt · l̃t. Next we define the

regret as follows:

RegretT =
T∑
t=1

wt · l̃t − min
i∈[N]

T∑
t=1

l̃t(i). (4.3)

4.2.2 Online mirror descent

Online mirror descent (OMD) is a basic algorithm utilised in both Hazan et al. [29] and Barman

et al. [8], as well as in this paper. We give OMD with the time-varying matrix norms as follows:

32

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

Algorithm 5 Online Mirror descent
Require: H0, · · · , HT−1 ≻ 0, {ηt}Tt=1, and w1 ∈ ∆(N).

for t = 1, · · · , T do
Receive lt,
Suffer cost wt · lt,
Update wt+1 = argminw∈∆(N) lt ·w + η−1

t ∥w −wt∥2Ht−1
.

end for

Theorem 7 (Orabona et al. [45]). The T -round regret of OMD is bounded as follow:

T∑
t=1

wt · lt−
T∑
t=1

lt ·w∗ ≤ 1

ηT
∥w1−w∗∥2HT

+
1

2

T∑
t=1

(ηt∥lt∥∗Ht
)2+

T∑
t=1

η−1
t (∥wt∥2Ht−1

−∥wt∥2Ht
).

4.2.3 Ellipsoid approximation of convex bodies

Given a positive semi-definite matrix M ≽ 0, we define the ellipsoid with respect to M as

follows:

E(M) = {x : xTM †x ≤ 1}, (4.4)

where M † is the Moore-Penrose pseudo-inverse matrix of M. In the following theorem we give

a result for minimum volume enclosing ellipsoid (MVEE) to a central symmetric convex body.

Theorem 8 (John’s Theorem [7]). Let K be a convex body in Rd that is symmetric around zero.

Let E be an ellipsoid with minimum volume enclosing K. Then:

1√
d
E ⊆ K ⊆ E . (4.5)

Moreover for a polytope defined as PA = {x : ∥Ax∥∞ ≤ 1,x ∈ Rd}, corresponding to a

given matrix A ∈ RN×d, we have the following theorem.

Theorem 9 (Grötschel et al. [25]). There exists a poly-time procedure MVEE(A) that receives

as input a matrix A ∈ RN×d and returns a matrix M such that

1√
2d
E(M) ⊆ PA ⊆ E(M).

4.3 Algorithm for no prior information about kernel

In this section, we consider the case that there is no prior information about the kernel in the

online expert advice with noisy d-rank loss problem. Under this assumption, we construct a

33

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

pseudo kernel, Ũ , in our learning process, when the d-rank structure is corrupted by ϵt. Note

that in this algorithm, we construct this pseudo kernel cumulatively. We denote it as Ũk ∈ RN×k

for convenience.

Concisely, our algorithm will select some loss vectors to construct the pseudo kernel and run

OMD with respect to from Ũk processed matrix Hk. The criteria to select l̃t is twofold: firstly,

the L2-norm of l̃t is supposed to be large enough; then, the Euclidean distance from l̃t to the

current pseudo kernel spanned space span(Ũk) should be far enough. Thus, for some k ∈ [d]

and corresponding parameters sk, γk, the basic idea of our algorithm is as follows:

1. ∥l̃t∥2 ≤ 2sk → Do OMD with respect to matrix Hk.

2. ∥l̃t∥2 ≥ 2sk and ∥l̃t − Pspan(Ũk)l̃t∥2 ≤ 2ϵ + γk(∥l̃t∥2 + ϵ) → Do OMD with respect to

Hk.

3. ∥l̃t∥2 ≥ 2sk and ∥l̃t − Pspan(Ũk)l̃t∥2 ≥ 2ϵ + γk(∥l̃t∥2 + ϵ) → Adding l̃t as a column to

Ũk, and reset k as k + 1, then do OMD with respect to Hk.

Remark 2. If we have that ∥l̃t∥ ≥ 2sk > 2ϵ, then we obtain the following result: Since

∥l̃t − lt∥2 ≤ ϵ, θ(l̃t, lt) ≤ 2 sin θ(l̃t, lt) ≤ ϵ
sk

According to this criteria, we can observe that we need to guarantee that K = max k ≤
d, to ensure that our algorithm effective, since the algorithm from [29] updates N -times for

low rank noisy loss vector. It implies that the previous algorithm in [29] is OMD and obtains

O(
√

(N + ϵ)T) actually.

We confirm sk, γk according to the following proposition.

Proposition 5. Define a sequence si and non-decreasing sequence γi such that γi ∈ (0, π
2
) and

γi

γi−1 − (i− 1) βϵ
si−1γi−1

· π
2β

+
siγi
siγi−1

(i− 1) ≤ i ∀i ∈ {2, · · · , k}, (4.6)

and

γi −
βϵ

siγi
i > 0 ∀i ∈ {1, · · · , k}. (4.7)

Given any space W ⊆ RN : Let U k = span{W , l1, · · · , lk} and Ũ k = span{W , l̃1, · · · , l̃k}
be two subspace such that θ(li, l̃i) ≤ ϵ/si for all i ∈ {2, · · · , k}.

If θ(l̃i, Ũ i−1) > γi, and β ≥ π
2

then we have that

θ(U k, Ũ k) < βk
ϵ

skγk
. (4.8)

34

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

Proof. For i = 1, due to Lemma 5, by setting that θ(l1, ∅) = π
2
, it is trivial that

θ(U 1, Ũ 1) ≤ πϵ

2s1γ1
≤ β

ϵ

s1γ1
. (4.9)

Here θ(l̃1, l1) ≤ ϵ
s1
, and θ(l̃1, Ũ

0) = θ(l̃1,W) ≥ γ1. If W = ∅ then we have that

θ(U 1, Ũ 1) = θ(l1, l̃1) ≤
ϵ

s1
≤ π

2
× ϵ

γ1s1
,

if γ1 ≤ π
2
.

Then if it holds for i− 1 : Let us involve U i
0 = span{U i−1, l̃i}, note that

θ(U i
0, Ũ

i) = θ(span{U i−1, l̃i}, span{Ũ i−1, l̃i}) (4.10)

Since the induction hypothesis so we have that

θ(span{W , l1, · · · , li−1}, span{W , l̃1 · · · , l̃i−1}) ≤ (i− 1)
βϵ

si−1γi−1

. (4.11)

then we have that

θ(U i, Ũ i) ≤ θ(U i,U i
0) + θ(U i

0, Ũ
i)

≤ π

2

θ(l̃i, li)

θ(l̃i,U i−1)
+ θ(U i

0, Ũ
i)

The first inequality is from Remark 3. The second inequality is due to Lemma 5.

Now due to the Lemma 7 we have that

θ(U i, Ũ i) ≤ π

2

θ(li, l̃i)

θ(l̃i, Ũ i−1)− θ(U i−1, Ũ i−1)
+ θ(U i

0, Ũ
i) (4.12)

Since the fact that θ(l̃k, Ũ k−1) > γk, and the induction hypothesis we obtain that

θ(U i, Ũ i) <
π

2

ϵ
si

γi−1 − β(i− 1) ϵ
si−1γi−1

+ (i− 1)
βϵ

si−1γi−1

=
ϵβ

siγi

(
γi

γi−1 − (i− 1) βϵ
si−1γi−1

× π

2β
+ (i− 1)

siγi
si−1γi−1

) (4.13)

35

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

Since Equation 4.6 we have that

ϵβ

siγi

(
γi

γi−1 − (i− 1) βϵ
si−1γi−1

× π

2β
+ (i− 1)

siγi
si−1γi−1

)
≤ βϵ

siγi
i (4.14)

Thus we have our conclusion.

The description of the algorithm is shown in Algorithm 6.

Algorithm 6 Mirror descent with l2 noise

Require: w1 = 1
N
IN , τ = 0, k = 0, Ũ = {}, a sequence of {sk} and a non decreasing

sequence {γk} for all γk ∈ (0, π
2
) such that γk and sk satisfies the conditions in Equation

(4.6) and (4.7). Setting mk = max{2sk, 6ϵ+ γk
√
N}.

for t = 1, · · · , T do
Observe l̃t, suffer loss wt · l̃t.
if ∥l̃t∥2 ≥ 2sk then

if ∥l̃t − PŨk l̃t∥2 ≥ 2ϵ+ γk(∥l̃t∥2 + ϵ) then
Add l̃t as a new column of Ũk, reset τ = 0 and set k ← k + 1.
Compute M = MVEE(Ũk) and Hk = IN + ŨkM(Ũk)T .

end if
end if
let τ ← τ + 1 and ηt =

√
8k/(1 +mk)2τ and set:

wt+1 = argmin
w∈∆(N)

l̃t ·w + η−1
t ∥w −wt∥2Hk .

end for

According to our proposed algorithm, we see that our updating rule divides the T rounds

into K epoches, where the final size of pseudo kernel, K ≤ d (will be show in the following

Theorem). In each epoch, OMD procees with respect to Hk, a fixed matrix. Before we give the

regret bound, we need some useful lemmata.

Lemma 3. Let ∥l̃t − lt∥2 ≤ ϵ, if θ(lt, span(Ũk)) ≤ γk then we have

∥l̃t − PŨk l̃t∥2 ≤ 2ϵ+ γk(∥l̃t∥2 + ϵ). (4.15)

Proof. Firstly we obtain that

∥l̃t − PŨk l̃t∥2 ≤ ∥l̃t − lt∥+ ∥lt −PŨklt∥+ ∥PŨklt −PŨk l̃t∥.

36

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

Since the fact that ∥l̃t − lt∥ ≤ ϵ, and ∥lt − PŨklt∥ ≤ γk∥lt∥ ≤ γk(∥l̃t∥ + ϵ), we have our

conclusion.

Lemma 3 states the criteria of distance between l̃t and current space Ũ k.

Lemma 4. Given Ũk ∈ RN×k, and span(Ũk) ⊂ RN , for any l̃t such that ∥l̃t∥2 ≤ 2sk or

∥l̃t−PŨk l̃t∥2 ≤ 2ϵ+γk(∥l̃t∥2+ϵ), there exists a unique vt ∈ Rk, and et such that l̃t = Ũkvt+et,

where θ(et, Ũ
k) = π

2
. Therefore we have that

∥et∥2 ≤ max{2sk, 2ϵ+ γk(∥l̃t∥2 + ϵ)}. (4.16)

In particular, we set that ∀t ∈ [T]

mk = max{2sk, 6ϵ+ γk
√
N} ≥ max{2sk, 2ϵ+ γk(∥l̃t∥2 + ϵ)}. (4.17)

Proof. Since the fact that ∥et∥2 ≤ ∥l̃t∥2 and the updating rule, we have that

∥et∥2 ≤ max{2sk, 2ϵ+ γk(∥l̃t∥2 + ϵ)}. (4.18)

Due to our setting that γk ≤ π
2
≤ 2, and ∥l̃t∥2 ≤

√
N + ϵ, thus we obtain Equation

(4.17).

Theorem 10. Running Algorithm 6 on T -rounds, denoting that K is the final size of pseudo

kernel, and K ≤ d, we have

RegretT ≤ O

(1 + ϵ)
√
T

K +

√√√√ K∑
k=1

km2
k

 . (4.19)

Proof. Firstly let us prove that K ≤ d. Compared with Ũk with k loss vectors of l̃t, we define

a matrix Uk with respect to lt corresponding to l̃t.

Due to our updating rule in algorithm, we have that

θ(l̃t,PŨk l̃t) ≥ γk,

since if ∥l̃t − PŨk l̃t∥2 ≥ 2ϵ+ γk(∥l̃t∥2 + ϵ), then we have that

θ(l̃t,PŨk l̃t) ≥ sin θ(l̃t,PŨk l̃t) ≥
2ϵ+ γk(∥l̃t∥2 + ϵ)

∥l̃t∥2
≥ γk.

37

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

Therefore by Proposition 5 we have that θ(span(Uk), span(Ũk)) ≤ βkϵ
γksk

. So we have that

θ(lt, span(U
k)) ≥ θ(lt, span(Ũ

k))− θ(span(Uk), span(Ũk)) ≥ γk −
βϵ

skγk
k > 0.

The first inequality is from Lemma 7. Since Lemma 3 we have that θ(lt, span(Ũk)) ≥ γk.

It implies that if ∥l̃t −PŨk l̃t∥2 ≥ 2ϵ+ γk(∥l̃2∥2 + ϵ), then we have lt /∈ span(Uk). So we have

that rank(ŨK) ≤ rank(LT) = d.

Now let us prove the second part. Due to above result we can divide the total learning rounds

T into K episodes. T =
∑K

k=1 |Tk| and Tk ∪ Tk
′ = ∅, if k ̸= k

′
. For a given k, if t ∈ Tk, we

obtain that ∥l̃t−PŨk l̃t∥2 ≤ 2ϵ+ γk(∥l̃2∥2 + ϵ) or ∥l̃t∥2 ≤ 2sk. Thus we need give upper bound

of (∥l̃t∥∗Hk)
2, and ∥w1 −w∗∥Hk .

Given a k-dimensional polytope as

P = {v ∈ Rk : ∥Ũkv∥∞ ≤ 1 + ϵ},

we are able to have

E(1

2k
M) ⊆ P ⊆ E(M), (4.20)

due to the MVEE procedure, and Theorem 9 in previous section. For each l̃t we give a unique

orthogonal decomposition of l̃t upon span(Ũk). Thus we obtain l̃t = Ũkvt + et. Since l̃t ∈
[0, 1]N , and we have that vt ∈ P, and θ(et, Ũ

k) = π
2
. Therefore we have following inequality:

(∥l̃t∥∗Hk)
2 = (∥Ũkvt + et∥∗Hk)

2 ≤ (∥Ũkvt∥∗Hk + ∥et∥∗Hk)
2 ≤ 2(∥Ũkvt∥∗Hk)

2 + 2(∥et∥∗Hk)
2.

Firstly we give upper bound of (∥Ũkvt∥∗Hk)
2.

(∥Ũkvt∥∗Hk)
2 = (Ũkvt)

T (IN + ŨkM(Ũk)T)−1(Ũkvt)

≤ (Ũkvt)
T (ŨkM(Ũk)T)+(Ũkvt) = vT

t M
−1vt ≤ 1.

The last equality is due to Lemma 6 in Appendix.

Next we try to bound (∥et∥∗Hk)
2. We obtain that

(∥et∥∗Hk)
2 = eT

t H
−1et = eT

t (IN + ŨkM(Ũk)T)−1et ≤ eT
t Inet ≤ ∥et∥22. (4.21)

Based on previous discussion we have that ∥et∥2 ≤ max{2sk, 2ϵ+γk(∥l̃t∥2+ϵ)}. Therefore

38

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

we have that

∥et∥2 ≤ max{2sk, 2ϵ+ γk(
√
N + ϵ)}. (4.22)

Due to above Lemma 4, we have that ∥e∥2 ≤ mk. In conclusion we have:

(∥l̃t∥∗Hk)
2 ≤ 2(1 +mk)

2. (4.23)

Now we show the bound of ∥w1 − w∗∥Hk . Since ∥w1 − w∗∥Hk ≤ 2maxw∈∆(N) ∥w∥Hk , it

suffices to bound that maxw∈∆(N) ∥w∥Hk . Since ∥w∥2
Hk ≤ 1 + 2k∥w∥2

H(k)
′ with H(k)

′
=

1
2k
ŨkM(Ũk)T .

Given a convex set P in Rk, so the dual set P ∗ is defined as

P ∗ = {x : sup
p∈P
|x · p| ≤ 1}.

The dual of an ellipsoid E(M) is given by (E(M))∗ = E(M−1) and since Equation (4.20) it is

standard to show that

(E(M))∗ ⊆ P ∗ ⊆ (E(1

2k
M))∗. (4.24)

It implies that P ∗ ⊆ E(2kM−1). Note that due to the definition of P ∗ we have that for all

i ∈ [N], (1 + ϵ)−1ũi · v ≤ 1, where ũi is the i-th row of Ũk. So each row of Ũk are in P ∗, thus

we have for each ũi :

(1 + ϵ)−1ũT
i

(
2kM−1

)−1
(1 + ϵ)ũi ≤ 1⇔ (1 + ϵ)−1ũT

i M(1 + ϵ)−1ũi ≤ 2k

⇔ ∥(1 + ϵ)−1ũi∥2M ≤ 2k
(4.25)

Since w ∈ ∆(N), we have that

∥w∥2
H(k)

′ =
1

2k
∥Ũw∥2M ≤

1

2k
max

i
∥ui∥2M ≤ (1 + ϵ)2.

Therefore we have that ∥w∥2
Hk ≤ 1+(1+ϵ)22k. Moreover we obtain that ∥w∥Hk ≤ 2(1+ϵ)

√
k.

39

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

Given w∗ = argminT
t=1

∑T
t=1w · l̃t, then we have that

RegretTk
=
∑
t∈Tk

wt · l̃t −
∑
t∈Tk

l̃t ·w∗

≤ 1

ηTk

∥wTk−1
−w∗∥2Hk +

1

2

∑
t∈Tk

ηt(∥l̃t∥∗Hk)
2

≤ 4

ηTk

max
w∈∆(N)

∥w∥2Hk +
1

2

∑
t∈Tk

ηt(∥l̃t∥∗Hk)
2

≤ 8k(1 + ϵ)2

ηTk

+
∑
t∈Tk

ηt(1 +mk)
2,

where we set that wTk−1
as last term in episode Tk−1, the first inequality is due to Theorem 7.

Particularly, we can choose ηt =
√
8k(1 + ϵ)2/(1 +m2

k)t, then we get the regret bound as

RegretTk
≤ O(

√
(8k(1 + ϵ)2)(1 +mk)2Tk).

Thus, we have the regret as

RegretT ≤ O

(1 + ϵ)
√
T

K +

√√√√ K∑
k=1

km2
k

 (4.26)

4.3.1 Parameter optimization

In this sub-section we are going to give an optimal setting of parameter γi, mi and si. Since

Equation (4.17), we can simplify

mi = max{2si, 6ϵ+ γi
√
N} ≤ 2si + 2γi

√
N, (4.27)

if we assume that 6ϵ ≤ γi
√
N, ∀i ∈ [K]. Then we need to solve the following optimal problem:

min si + γi
√
N

s.t.γi −
βϵ

siγi
i > 0 ∧ β ≥ π

2
≥ γi > 0 ∀i ∈ {1, · · · , K}.

(4.28)

where the latter inequality is due to Proposition 5.

40

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

It is equivalent to solve:

min si + γi
√
N

s.t.si ≥ (1 + x)
βϵi

γi
∧ β ≥ π

2
≥ γi > 0 ∀i ∈ {1, · · · , K},∀x > 0.

(4.29)

With simple calculation we have that{
si = (N(1 + x)βiϵ)1/3 ,

γi = ((1 + x)βiϵ)1/3 N−1/6,
(4.30)

for any x > 0.

Let us re-consider the constraint in Equation (4.6)

γi

γi−1 − (i− 1) βϵ
si−1γi−1

· π
2β

+
siγi
siγi−1

(i− 1) ≤ i ∀i ∈ {2, · · · , K},

with above si and γi.

We can simplify this equation as

π

2β
≤ i1/3(i− 1)1/3(i1/3 − (i− 1)1/3) · x, ∀i ∈ {2, · · · , K}. (4.31)

Without loss the generality, we can set that x = 1 and β = 10, according to Lemma 8.

Therefore if we set that sk = (20kNϵ)1/3 and γk =
√
20kϵ/sk, in Algorithm 6, we have the

following bound:

RegretT ≤ O
(
(1 + ϵ)

√
T (K +K4/3(Nϵ)1/3)

)
, (4.32)

with the constraint that 6ϵ ≤ γk
√
N ⇔ ϵ2 ≤ 20kN

216
, γk ≤ π

2
⇔ ϵ2 ≤ 64π6N

400k2
and sk ≥ ϵ ⇔ ϵ ≤

20kN for all k ∈ [K], where the last constraint is due to Remark 2.

Corollary 3. If ϵ2 ≤ min{64π6N
400k2

, 20kN, 20kN
216
}, ∀k ∈ [d], setting sk = (20kNϵ)1/3 and γk =√

20kϵ/sk, running our algorithm for T times we have the regret bound as

RegretT ≤ O
(
(1 + ϵ)

√
T (K +K4/3(Nϵ)1/3)

)
≤ O

(
(1 + ϵ)

√
T (d+ d4/3(Nϵ)1/3)

)
.

(4.33)

41

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

4.4 Experiments

We perform preliminary experiments using a synthetic environment. In our experiments, we

construct the environment as follows: Firstly, we produce a N × d matrix U, if the rank of U is

not d, then produce another one, until we obtain a d-rank matrix U as kernel.

To approach the maximal regret in our experiment, before the algorithms start, we randomly

produce T ×M seed vectors vj
t , where vj

t (i) ∈ [−1, 1], ∀i ∈ [d], t ∈ [T] and j ∈ [M]. Next we

denote ljt = (Uvj
t)/∥Uvj

t∥∞, and the noise vector ϵt = sϵ̃t/(∥ϵ̃t∥2), where ϵ̃t(i) is randomly

produced between [−1,+1]. We define l̃jt = ljt + ϵt. Then, we process Hedge, Hazan’s and our

algorithm(Algorithm 6) with the same input sequences accordingly, and by going this procedure

for M sequence respectively, we can obtain M regret results for each algorithm, then choosing

the maximum value among those M as follows:

On round t, for any algorithm A, we record maximum of the regret with respect to M loss

sequence as RegretA(t)

RegretA(t) = max
j∈[M]

{
t∑

s=1

wj
s · l̃js − min

i∈[N]

t∑
s=1

l̃js

}
, (4.34)

where we denote wj
s as output of A with j-th loss sequence on round s.

Firstly, we set T = 1000,M = 5, N = 300, d = 2. and plot RegretA(T) of each algorithm

as a function of ϵ for T = 1000 in Figure 4.1.

As can be seen in Figure 4.1, our algorithm performs more robustly than others for different

choices of noise ϵ. In particular, we set ϵ(i.e., setting s) as {0, 0.2, 0.4, 0.6, 0.8, 1}, respectively,

and other parameters remain, and detailed graphs for each ϵ is in the Appendix.

42

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon

40

50

60

70

80

90

100

Re
gr

et

Hedge
Hazan
Algorithm1

Figure 4.1: RegretA(T) as a function of ϵ for T = 1000

Secondly, in order to see the results based on the different dimensions, we construct the

experiments and set N = 50, 100, 150, ..., 500, and ϵ = 0.2, 0.4, 0.6, 0.8, since the unsatisfying

performance of Hazan’s algorithm shown in Figure 4.1, and rapidly increased running time with

respect to dimension, we discard it to make sure the experiments can be done in an acceptable

amount of time.

43

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

100 200 300 400 500
Dimension

20

30

40

50

60

70

80

Re
gr

et

Hedge
Algorithm1

(a) ϵ = 0.2

100 200 300 400 500
Dimension

25

30

35

40

45

50

Re
gr

et

Hedge
Algorithm1

(b) ϵ = 0.4

100 200 300 400 500
Dimension

10

15

20

25

30

35

40

45

50

Re
gr

et

Hedge
Algorithm1

(c) ϵ = 0.6

100 200 300 400 500
Dimension

10

20

30

40

50
Re

gr
et

Hedge
Algorithm1

(d) ϵ = 0.8

Figure 4.2: Results for different choices of N and ϵ

4.5 Concluding remarks

In this paper, we construct an algorithm for expert advice with noisy low rank loss. This al-

gorithm is designed for the problem where the algorithm obtains no prior information about

the low rank structure but only the noise bound ϵ. Theoretically, we achieve a regret bound as

O(
√
T (d + d4/3(Nϵ)1/3)), however, in the experiments, our algorithm performs better even if

ϵ ≥ Ω
(

1
N

)
, which indicates that there might be a gap between our bound and the optimal one.

44

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

4.6 Appendix

4.6.1 Appendix A. Necessary Lemmata

Lemma 5 ([6]). Let W = span{w1, · · · ,wk−1},
U = span{w1, · · · ,wk−1,u}, and Ũ = span{w1, · · · ,wk−1, ũ} be subspaces spanned by

vectors in Rm. Then

θ(U , Ũ) ≤ π

2

θ(ũ,u)

θ(ũ,W)

Lemma 6 ([29] Lemma 11). Let M ∈ Rk×k, U ∈ RN×d such that M ≻ 0 and U. Then

UT (UMUT)+U = M−1. (4.35)

Lemma 7. For any lt ∈ RN , and two sub-spaces Ũ k,U k ⊆ RN . We have that

θ(lt,U
k) ≥ θ(lt, Ũ

k)− θ(U k, Ũ k). (4.36)

Proof. Naturally we obtain that θ(lt, x̃) ≤ θ(x, x̃) + θ(lt, x), ∀x, x̃.
Given x̃∗ = argminx̃∈Ũk θ(x, x̃), then we have that

min
x̃∈Ũk

θ(lt, x̃) ≤ θ(lt, x̃
∗) ≤ θ(x, x̃∗) + θ(lt, x) (4.37)

Rearranging the terms we obtain that

min
x̃∈Ũk

θ(lt, x̃)− min
x̃∈Ũk

θ(x, x̃) ≤ θ(lt, x) ∀x. (4.38)

Since the definition we have that maxx∈Uk minx̃∈Ũk θ(x, x̃) = θ(Uk, Ũk), we have

min
x̃∈Ũk

θ(lt, x̃)− θ(Uk, Ũk) ≤ min
x̃∈Ũk

θ(lt, x̃)− min
x̃∈Ũk

θ(x, x̃) ≤ θ(lt, x) ∀x. (4.39)

At last, setting x = argminx∈Uk θ(lt, x), we have that

θ(lt, Ũ
k)− θ(Uk, Ũk) = min

x̃∈Ũk

θ(lt, x̃)− θ(Uk, Ũk) ≤ min
x∈Uk

θ(lt, x) = θ(lt, U
k). (4.40)

45

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

Remark 3. For any lt ∈ U k ⊆ RN and two spaces U k
0 , Ũ

k ⊆ RN . We have

θ(U k,U k
0) + θ(U k

0 , Ũ
k) ≥ θ(U k, Ũ k). (4.41)

Proof. According to Lemma 7 we have that

θ(lt, U
k
0) ≥ θ(lt, Ũ

k)− θ(Uk
0 , Ũ

k). (4.42)

Rearranging the equation we have that

θ(lt, U
k
0) + θ(Uk

0 , Ũ
k) ≥ θ(lt, Ũ

k). (4.43)

Letting l′t = argmaxlt∈Uk θ(lt, Ũ
k), we obtain that θ(l′t, U

k
0) + θ(Uk

0 , Ũ
k) ≥ θ(Uk, Ũk). Since

θ(Uk, Uk
0) = maxlt∈Uk θ(lt, U

k
0) ≥ θ(l′t, U

k
0), we have our conclusion that

θ(Uk, Uk
0) + θ(Uk

0 , Ũ
k) ≥ θ(Uk, Ũk). (4.44)

Lemma 8. For any k ≥ 2, we have that(
k

k − 1

)2/3
(
π ·
(
k − 1

k

)1/3

+ 10(k − 1)

)
≤ 10k. (4.45)

Proof. First we have that:(
k

k − 1

)2/3
(
π ·
(
k − 1

k

)1/3

+ 10(k − 1)

)
≤ 10k

⇔
(

k

k − 1

)1/3

π + 10k2/3(k − 1)1/3 ≤ 10k

⇔ π ≤ (10k − 10k2/3(k − 1)1/3) ·
(
k − 1

k

)1/3

⇔ π ≤ 10k2/3(k1/3 − (k − 1)1/3) · k−1/3 · (k − 1)1/3

⇔ π ≤ 10k1/3(k − 1)1/3(k1/3 − (k − 1)1/3).

We set that g(k) = k1/3(k − 1)1/3(k1/3 − (k − 1)1/3), then we have that

g
′
(k) =

−3k(k − 1)1/3 + 3k4/3 − 2k1/3 + (k − 1)1/3

3k2/3(k − 1)2/3
. (4.46)

46

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

Next we can show that

− 3k(k − 1)1/3 + 3k4/3 − 2k1/3 + (k − 1)1/3 > 0

⇔ k1/3(3x− 1) > (k − 1)1/3(3x− 1)

⇔ k(3x− 2)3 > (k − 1)(3k − 1)3

⇔ 2k − 1 > 0.

Above equation implies that ∀k ≥ 2, then we have g
′
(k) ≥ 0, and g(k) is an increasing

function. Meanwhile since π ≤ 10 · g(2), we obtain our conclusion.

4.6.2 Appendix B. Detailed experimental results for Figure 4.1

In the following pictures we show the details for the experiment for Figure 4.1.

47

CHAPTER 4. EXPERT ADVICE PROBLEM WITH NOISY LOW RANK LOSS

0 200 400 600 800 1000
epsilon = 0

0

10

20

30

40

50

60

Re
gr

et

Hedge
Hazan
Algorithm1

(a) ϵ = 0

0 200 400 600 800 1000
epsilon = 0.2

0

20

40

60

80

100

Re
gr

et

Hedge
Hazan
Algorithm1

(b) ϵ = 0.2

0 200 400 600 800 1000
epsilon = 0.4

0

10

20

30

40

50

60

Re
gr

et

Hedge
Hazan
Algorithm1

(c) ϵ = 0.4

0 200 400 600 800 1000
epsilon = 0.6

0

10

20

30

40

50

60

70
Re

gr
et

Hedge
Hazan
Algorithm1

(d) ϵ = 0.6

0 200 400 600 800 1000
epsilon = 0.8

0

10

20

30

40

50

60

70

Re
gr

et

Hedge
Hazan
Algorithm1

(e) ϵ = 0.8

0 200 400 600 800 1000
epsilon = 1

0

10

20

30

40

50

60

70

Re
gr

et

Hedge
Hazan
Algorithm1

(f) ϵ = 1

Figure 4.3: Results for different choices of ϵ when N = 300 and d = 2

48

Chapter 5

An online semi-definition programming
with a generalised log-determinant
regularizer and its applications

5.1 Introduction

Online binary matrix completion (OBMC) is a natural formulation of online matrix completion,

extensively studied in machine learning community [30, 31, 52, 9]. Intuitively, the OBMC prob-

lem is to predict a given entry of an unknown m×n binary matrix. More precisely, the problem

is formulated as a repeated game between the algorithm and the adversarial environment as

described below: On each round t, (i) the environment presents an entry (it, jt) ∈ [m] × [n],

(ii) the algorithm predicts ŷt ∈ {−1, 1}, and then (iii) the environment reveals the true value

yt ∈ {−1, 1}. The goal of the algorithm is to minimise the number of mistakes
∑T

t=1 Iŷt ̸=yt .

Recently, Herbster et al. generalise the problem by considering side information avail-

able [31]. The side information brings some information about the target matrix, or more

generally, about a comparator matrix U that is hopefully a good approximation to the target

matrix. To be more specific, assume that U = Rm×n can be factorized into U = PQ⊤ for

some matrices P ∈ Rn×d and Q ∈ Rm×d for some d ≥ 1 such that ∥Pi∥ = ∥Qj∥ = 1 for

all i and j, where Pi is the i-th row vector of P (interpreted as a linear classifier associated

with row i of U) and Qj is the j-th row vector of Q (interpreted as a feature vector associated

with column j of U). In other words, zt = ytUit,jt can be viewed as the margin of the labeled

instance (Qjt , yt) with respect to a hyperplane Pit , from which we can define the hinge loss as

[1 − zt/γ]+ for a given margin parameter γ > 0, where [x]+ is x if x > 0 and 0 otherwise.

49

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

Note that the hinge loss represents the quality of predictiveness of the comparator matrix U .

Moreover, side information is formally represented as a pair of symmetric and positive defi-

nite matrices M ∈ Rm×m and N ∈ Rn×n, and its quality is measured by the sum of trace

normsD = Tr(P⊤MP)+Tr(Q⊤NQ). Note that Herbster et al. introduce a notion of quasi-

dimension of a comparator U , defined as the minimum of D over all factorizations P and Q

such that U = γPQ⊤. But it turns out that we do not need the notion in this paper. Then, they

prove a mistake bound given by the total hinge loss of U with an additional term expressed in

terms of γ, m, n, and D. In particular, for the realizable case where the total hinge loss of U is

zero, the bound is of the form O(D ln(m+n)/γ2). They consider a simple realizable case where

U has a (k, l)-biclustered structure (see Appendix for details) and some information about the

structure is given to the algorithm as the side information. Then, they show that the mistake

bounds becomes O(kl ln(m + n)). Unfortunately, however, there still remains a logarithmic

gap from a lower bound of Ω(kl) [30].

In this paper, we obtain a mistake bound of O(D/γ2) in the realizable case, which improves

the bound of Herbster et al.’s by a logarithmic factor and thus implies an optimal O(kl) mis-

take bounds when U has a (k, l)-biclustered structure. The basic idea is to reduce the OBMC

problem with side information to a variant of an online semi-definite programming (OSDP)

problem, where the loss matrices are sparse and the decision space consists of symmetric and

positive semi-definite matrices W such that its Γ-trace norm Tr(ΓWΓ) and diagonal entries

Wi,i are both bounded, where Γ is a symmetric and positive definite matrix transformed from

the side information (M ,N) through our reduction. Note that the standard OSDP problems

studied in the literature correspond to the case where Γ = E. Then we employ a standard

follow-the-regularised-leader (FTRL) framework (see, e.g., [13, 48, 26]) for designing and an-

alyzing our algorithm for the generalized OSDP problem. Note that to obtain a good algorithm

we choose a specialized regulariser as stated later.

The FTRL approach to solving the standard OSDP problems have been widely utilised for

various problems of online matrix prediction, such as online gambling [2, 28], online collabora-

tive filtering [49, 14, 34], online similarity prediction [22], and especially a non-binary version

of online matrix completion with no side information [28, 44]. Note that for these problems

the performance of the algorithm is now measured by the regret, defined as the cumulative loss

of the algorithm minus the cumulative loss of the best fixed comparator matrix in hindsight.

Let us briefly review the last-mentioned results about non-binary online matrix completion with

no side information. In the seminal paper of Hazan et al. [28], they first propose a reduction

50

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

from the problem to a standard OSDP problem, which is similar to but quite different from our

reduction presented in this paper, and then they give an FTRL-based algorithm with an entropic

regularizer for the reduced OSDP problem, resulting in a sub-optimal regret bound though. On

the other hand, Moridomi et al. [44] observe that the loss matrices obtained in the reduction

are sparse, and by following the result of [15] they find out that the log-determinant regularizer

performs better, resulting in a better regret bound.

Now let us return to the OBMC problem with side information. It seems that Herbster et

al. [31] implicitly reduce the problem to another variant of OSDP problem where the decision

space is less restricted than ours, and employ an FTRL-based algorithm with an entropic reg-

ularizer for the reduced OSDP problem. Note that they do not give a regret analysis for their

OSDP problem in a general form but give it only for the particular OSDP problem instance ob-

tained from the reduction. We believe that the sub-optimality of their mistake bound is mainly

due to the choice of entropic regularizer. On the other hand, our reduction yields sparse loss

matrices and thus it is highly expected that the log-determinant regularizer performs better.

For our OSDP problem, we first examine a standard log-determinant regularizer R(W) =

− ln det(W + ϵE), but we have not succeeded to obtain a good regret bound. Next we try

a natural and apparently straightforward reduction to a standard OSDP problem, for which

a regret bound is known, and derive a regret bound for our OSDP problem from the known

bound. Unfortunately, as seen in the later section, this approach also fails. This is due to the

fact that the reduction does not preserve the sparsity of loss matrices and the bound of the di-

agonal entries of decision matrices. Finally we try a specialized log-determinant regularizer

R(W) = − ln det(ΓWΓ+ ϵE) and succeed to derive a better regret bound. Therefore, we not

only demonstrate the power of log-determinant regularizer, which has not been well explored as

the standard entropic or Frobenius-norm regularizer; but also suggest to use the appropriate reg-

ularizer depending on side information as well as on the decision space. Note that to derive the

bound we carefully follow the analysis of Moridomi et al. [44] with non-trivial generalizations.

Furthermore, we apply our online algorithm in the statistical (batch) learning setting by

the standard online-to-batch conversion framework (see, e.g., Mohri et al. [42]) and derive a

generalization error bound with side information. Our generalised error bound is similar to

the known margin-based bound of SVMs (e.g.,Mohri et al. [42]) with the best kernel when the

side information is vacuous. It is remarkable that we can not only obtain such a bound without

knowing the best kernel, but also implies that the error bound in batch learning setting can be

improved when the side information is given to the learner in advance.

51

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

Our main contribution is summarised as follows:

1. Firstly, we establish a generalized OSDP problem parameterized by a symmetric and

positive definite matrix Γ, and give an FTRL-based algorithm with a specialized log-

determinant regularizer with a regret bound. Note that our result recovers the previously

known bound [44] in the case where Γ is the identity matrix.

2. We apply the result above to the online OBMC problem with side information and the

online similarity prediction with side information, and improve the previously known

mistake bounds by logarithmic factors for the both problems. In particular, for the former

problem, our mistake bound is optimal.

3. We give a conversion from online learning setting to the batch setting. On the one hand,

our error bound recovers the best margin-based bound when the side information is vacu-

ous, on the other hand, our bound implies an improvement to the batch setting with extra

side information.

This paper is organized as follows. In section 2, we formally describe the problem formu-

lation of the generalised OSDP and give a naive reduction to the standard OSDP, which yields

a worse regret bound. The main algorithm with its regret bound for the generalised OSDP is

given in section 3. In section 4 we apply our algorithm to the OBMC problem with side infor-

mation and give a mistake bound. Moreover, we show that the mistake bound is optimal in the

realizable case where the comparator matrix has a biclustered structure. In section 5, we derive

the batch setting to the OBMC problem with side information. In the appendix A1, we describe

some of proofs for our main proposition. Further, we give the definition and application to

the (k, l)-biclustered structural comparator matrix in the OMBC problem, the online similarity

problem with side information, necessary Lemmata, and proofs in appendix A2, and A3.

5.2 Preliminaries

For a positive integer N , let [N] denote the set {1, 2, . . . , N}. Let SN×N , SN×N
+ and SN×N

++

denote the sets of N × N symmetric matrices, symmetric positive semi-definite matrices and

symmetric strictly positive definite matrices, respectively. We define E as the identity matrix.

For an m×n matrix X ∈ Rm×n and (i, j) ∈ [m]× [n], let Xi, Xi,j and vec(X) denote the i-th

row vector of X , the (i, j) entry of X , and the vector of mn dimension obtained by arranging

52

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

all entries Xi,j of X in some order. For matrices X,Y ∈ Rm×n, X • Y = Tr(X⊤Y) =

vec(X)⊤vec(Y) denotes the Frobenius inner product of them. For X ∈ SN×N
+ , we denote by

Tr(X) =
∑N

i=1 |λi(X)| =
∑N

i=1Xi,i the trace norm of X , where λi(X) is the i-th largest

eigenvalue of X . Furthermore, for Γ ∈ SN×N
++ , we define the Γ-trace norm of X as Tr(ΓXΓ).

For a vector x, the p-norm x is denoted by ∥x∥p.

5.2.1 Generalised OSDP problem with bounded Γ-trace norm

Our generalised OSDP problem with respect to a matrix Γ ∈ SN×N
++ is specified by a pair (K,L),

where

K = {W ∈ SN×N
+ : Tr(ΓWΓ) ≤ τ, ∀i ∈ [N], |Wi,i| ≤ β} (5.1)

is called the decision space, and

L = {L ∈ SN×N : ∥vec(L)∥1 ≤ g} (5.2)

is called the loss space, where τ > 0, β > 0 and g > 0 are parameters. The generalised OSDP

problem (K,L) is a repeated game between the algorithm and the adversary as described below:

On each round t ∈ [T],

1. The algorithm chooses a matrix Wt ∈ K,

2. The adversary gives a loss matrix Lt ∈ L, and

3. The algorithm incurs a loss given by Wt •Lt.

The goal of the algorithm is to minimise the following regret

RegretOSDP(T,K,L) =
T∑
t=1

Wt •Lt − min
W∈K

T∑
t=1

W •Lt. (5.3)

Note that the standard OSDP problem corresponds to the special case where Γ = E.

Since the decision space is convex and the loss function is linear, the problem is categorized

in online linear optimization and thus we can employ a standard FTRL algorithm, as Moridomi

et al. [44] did for the standard OSDP problem. Given a convex function R : K → R as the

regularizer, the FTRL algorithm produces a matrix Wt in each round t according to

Wt = argmin
W∈K

(
R(W) + η

t−1∑
s=1

Ls •W

)
. (5.4)

53

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

In particular, Moridomi et al. choose the log-determinant regularizer defined as

R(W) = − ln det(W + ϵE), (5.5)

where ϵ > 0 is a parameter and derive the following regret bound for the standard OSDP

problem.

Theorem 11 ([44]). For the standard OSDP problem (K,L) with Γ = E, The FTRL algorithm

with the log-determinant regularizer achieves

RegretOSDP(T,K,L) = O(g
√
τβT). (5.6)

5.2.2 A naive reduction

There is a natural reduction to a standard OSDP problem (K̃, L̃) where

K̃ = {W ∈ SN×N
+ : Tr(W) ≤ τ, ∀i ∈ [N],Wi,i ≤ β′}, L̃ = {L ∈ SN×N : ∥vec(L)∥1 ≤ g′}

for some parameters β′ > 0 and g′ > 0. The reduction consists of two transformations: One is

to transform the decision matrix W̃t ∈ K̃ produced from an algorithm for the standard OSDP

problem to the decision matrix Wt = Γ−1W̃tΓ
−1 and the other is to transform the loss matrices

Lt ∈ L chosen by the adversary to L̃t = Γ−1LtΓ
−1, which is fed to the algorithm for the

standard OSDP problem. Note that the loss is preserved under this reduction, that is, Wt •Lt =

Tr(WtLt) = Tr(Γ−1W̃tΓ
−1ΓL̃tΓ) = Tr(W̃tL̃t) = W̃t • L̃t. Moreover, the Γ-trace norm

of Wt is the trace norm of W̃t, i.e., Tr(ΓWtΓ) = Tr(W̃t). Therefore, if β′ and g′ are large

enough so that ΓWΓi,i ≤ β′ for any W ∈ K and ∥vec(Γ−1LΓ−1)∥1 ≤ g′ for any L ∈ L, we

have that RegretOSDP(T,K,L) ≤ RegretOSDP(T, K̃, L̃). Moreover, using the FTRL algorithm

with the log-determinant regularizer for the standard OSDP problem, we immediately have

RegretOSDP(T,K,L) = O(g′
√
τβ′T).

by Theorem 11.

In the following part, we give lower bounds on β′ and g′ by showing an example, which

implies that the above reduction yields a worse regret bound.

54

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

Example 1. Define Γ ∈ SN×N
++ as

Γ =

N −1 · · · −1
−1 N · · · −1

...
...

−1 −1 · · · N

 with Γ−1 =

2

N+1
1

N+1
· · · 1

N+1
1

N+1
2

N+1
· · · 1

N+1
...

...
1

N+1
1

N+1
· · · 2

N+1

and let τ = N3 + N2 − N , β = 1 and g = 1 so that E ∈ K and L ∈ L with Li,j = 1 if

(i, j) = (1, 1) and 0 otherwise.

Then, with a simple calculation we get |ΓEΓ|i,i = N2 + N − 1 for all i ∈ [N] and

∥vec(Γ−1LΓ−1)∥1 = 1, which implies that we need β′ ≥ N2 + N − 1 and g′ ≥ 1. In other

words, the regret bound obtained by the naive reduction above is not smaller than the order of

N
√
τT . On the other hand, using our algorithm described in the next section, we have a regret

bound of O(
√
τT) for this example problem, which comes from ρ = maxi,j |(Γ−1Γ−1)i,j| ≤ 1.

So our algorithm is significantly better than the naive reduction method.

5.3 Algorithm for the generalised OSDP problem

Throughout this section, we consider the generalised OSDP problem (K,L) specified by (5.1)

and (5.2). for some Γ ∈ SN×N
++ , and parameters τ > 0, β > 0 and g > 0. We use the FTRL

algorithm (5.4) with the following regularizer.

R(W) = − ln det(ΓWΓ+ ϵE), (5.7)

which we call the Γ-calibrated log-determinant regularizer, where ϵ > 0 is a parameter. The

next theorem gives a regret bound of our algorithm.

Theorem 12 (Main Theorem). Let ρ = maxi,j |(Γ−1Γ−1)i,j|. Then, the FTRL algorithm with

the Γ-calibrated log-determinant regularizer achieves

RegretOSDP(T,K,L) = O

(
g2(β + ρϵ)2Tη +

τ

ϵη

)
.

In particular, letting η =
√

τ
g2(β+ρϵ)2ϵT

and ϵ = β/ρ, we have

RegretOSDP(T,K,L) = O
(
g
√

βρτT
)
. (5.8)

55

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

Note that we can recover the same regret bound of Theorem 11 by letting Γ = E.

The proof is based on the analysis of strong convexity of our regularizer with respect to loss

space.

Definition 5. For a decision spaceK and a real number s ≥ 0, a regularizer R : K → R is said

to be s-strongly convex with respect to the loss space L if for any α ∈ [0, 1], any X,Y ∈ K
and any L ∈ L, the following holds

R(αX + (1− α)Y) ≤ αR(X) + (1− α)R(Y)− s

2
α(1− α)|L • (X − Y)|2. (5.9)

This is equivalent to the following condition: for any X,Y ∈ K and L ∈ L,

R(X) ≥ R(Y) +∇R(Y) • (X − Y) +
s

2
|L • (X − Y)|2. (5.10)

Note that the notion of strong convexity defined above is quite different from the standard

one: Usually, the strong convexity is defined with respect to some norm ∥ · ∥, but now it is

defined with respect to the loss space. Moridomi et al. [44] give a regret bound of the FTRL

with a strongly convex regularizer for any OSDP problem in a general form.

Lemma 9. [44] Let R : K → R be an s-strongly convex regularizer with respect to a decision

space L for a decision space K. Then the FTRL with the regularizer R applied to (K,L)
achieves

RegretOSDP(T,K,L) ≤
H0

η
+

η

s
T, (5.11)

where H0 = maxW ,W ′∈K(R(W)−R(W ′)).

Due to the lemma above, it suffices to analyze the strong convexity of our Γ-calibrated

log-determinant regularizer with respect to our loss space (5.2). We give the result in the next

proposition.

Proposition 6 (Main proposition). The Γ-calibrated log-determinant regularizer R(W) =

− ln det(ΓWΓ + ϵE) is s-strongly convex with respect to L for K with s = 1/(1152
√
e(β +

ρϵ)2g2), where ρ = maxi,j |(Γ−1Γ−1)i,j|.

The proof is given in Appendix A.

Proof sketch of Theorem 12: According to Lemma 9 and main proposition, we only need

to bound H0. With simple calculation we can bound H0 ≤ τ
ϵ

from the definition of R. A

56

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

detailed derivation is found in supplementary material. So the theorem follows. Note that the

regret bound obtained is apparently irrelevant to the size of matrix N .

5.4 Application to OBMC with side information

In this section, we show that the OBMC with side information can be reduced to our OSDP

problem (K,L). The reduction is twofold: Firstly reduce it to an online matrix prediction(OMP)

problem with side information and then further reduce it to the generalised OSDP problem.

We first define the problem of OBMC with side information formally with some necessary

notations.

5.4.1 The problem statement

We basically follow the problem statement by Herbster et al. [31] with some simplification.

Let m and n be natural numbers. Assume that matrices M ∈ Sm×m
++ and N ∈ Sn×n

++ are

given to the algorithm. We call the pair (M ,N) the side information.

The problem is a repeated game between the algorithm and the adversary, which is described

as follows: On each round t,

1. the adversary presents (it, jt) ∈ [m]× [n],

2. the algorithm produces ŷt ∈ {−1,+1},

3. the adversary reveals yt ∈ {−1, 1}.

The goal of the algorithm is to minimize the number of mistakes M =
∑T

t=1 Iyt ̸=ŷt . In par-

ticular, we want to give a mistake bound in terms of the side information (M ,N), so that the

bound is small when the side information is useful in some sense.

Let the sequence from the adversary be denoted by S = ((i1, j1), y1), . . . , ((iT , jT), yT) ⊆
([m]× [n]× {−1, 1})T .

The problem can be interpreted as the prediction of given entries (it, jt) of an unknown

target matrix. But we do not assume the existence of such a matrix, that is, it can happen

yt ̸= yt′ even if (it, jt) = (it′ , jt′).

57

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

To apply the FTRL framework to the problem, we consider a convex surrogate loss function,

instead of 0-1 loss. In particular, we define the hinge loss function hγ : R→ R as

hγ(x) =

0 if γ ≤ x,

1− x/γ otherwise,

for a given margin parameter γ > 0. Now we consider any matrices P ∈ Rm×d and Q ∈ Rn×d

for some d so that PQ⊤ ∈ Rm×n can be interpreted as a comparator matrix for the sequence

S . We define the hinge loss of the sequence S with respect to the pair (P ,Q) and γ as

hloss(S, (P ,Q), γ) =
T∑
t=1

hγ

(
ytPitQ

⊤
jt

∥Pit∥2∥Qjt∥2

)
. (5.12)

The hinge loss measures how well the comparator matrix PQ⊤ predicts the true label yt. In

what follows, we assume without loss of generality that each row of P and Q is normalised,

that is, ∥Pi∥2 = ∥Qj∥2 = 1 for every (i, j) ∈ [m]× [n]. Moreover, we sometimes call the pair

(P ,Q) as the comparator matrix.

Now we define the notion of the quasi-dimension of a comparator matrix which measures

the usefulness of the side information. Specifically, the quasi-dimension of a comparator matrix

(P ,Q) with respect to the side information (M ,N) is defined as

DM ,N (P ,Q) = αM Tr
(
P⊤MP

)
+ αN Tr

(
Q⊤NQ

)
,

where αM = maxi∈[m](M
−1)i,i and αN = maxj∈[n](N

−1)j,j . Note that if M and N are

the identity matrices, then the quasi-dimension is m + n for any comparator matrix, which

corresponds to the case where the side information is vacuous. On the other hand, if the rows of

P and/or the columns of Q are correlated and M and/or N capture the correlation well, then

the quasi-dimension will be smaller.

Note that the notion of quasi-dimension is defined in a different way in [31].

5.4.2 Reduction from OBMC with side information to an online matrix
prediction (OMP)

First we describe an OMP problem, to which our problem is reduced. The problem is specified

by a decision space X ⊆ [−1, 1]m×n and a margin parameter γ > 0, and again it is formulated

58

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

as a repeated game: On each round t ∈ [T],

1. the algorithm chooses a matrix Xt ∈ Rm×n,

2. the adversary gives a triple (it, jt, yt) ∈ [m]× [n]× {−1, 1}, and

3. the algorithm suffers a loss given by hγ(ytXt,(it,jt)).

The goal of the algorithm is to minimise the regret:

RegretOMP(T,X ,X∗) =
T∑
t=1

hγ(ytXt,(it,jt))− min
X∗∈X

T∑
t=1

hγ(ytX
∗
it,jt),

Note that unlike the standard setting of online prediction, we do not require Xt ∈ X .

For any matrix A ∈ Rk×l, we define

Ā = diag

(
1

∥A1∥2
, · · · , 1

∥Ak∥2

)
A.

That is, Ā is a matrix obtained from A by normalising all row vectors.

Below we show that the OBMC problem with side information (M ,N) can be reduced to

the OMP problem with the following decision space:

X = {P̄ Q̄⊤ : PQ⊤ ∈ Rm×n,DM ,N (P̄ , Q̄) ≤ D̂},

where D̂ is an arbitrary parameter. Below we give the reduction. Assume that we have an

algorithm A for the OMP problem (X , γ).
Run the algorithmA and receive the first prediction matrix X1 fromA. Then, in each round

t ∈ [T],

1. observe an index pair (it, jt) ∈ [m]× [n],

2. predict ŷt = sgn(Xt,(it,jt)),

3. observe a true label yt ∈ {−1, 1},

4. if ŷt = yt then Xt+1 = Xt, and if ŷt ̸= yt, then feed (it, jt, yt) to A to let it proceed and

receive Xt+1.

Note that we run the algorithm A in the mistake-driven manner, and hence A runs for M =∑T
t=1 Iŷt ̸=yt rounds, where M is the number of mistakes of the reduction algorithm above.

The next lemma shows the performance of the reduction.

59

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

Lemma 10. Let RegretOMP(M,X ,X∗) denote the regret of the algorithm A in the reduction

above for a competitor matrix X∗ ∈ X , where M =
∑T

t=1 I(ŷt ̸= yt). Then,

M ≤ inf
P̄ Q̄T∈X

(RegretOMP(M,X , P̄ Q̄T) + hloss(S, (P ,Q), γ))

≤ RegretOMP(M,X) + hloss(S, γ),
(5.13)

where we define

hloss(S, γ) = min
P̄ Q̄T∈X

hloss(S, (P ,Q), γ). (5.14)

Remark 4. If M and N are identity matrices, then we have DM ,N (P̄ , Q̄) = m+ n, and thus

the decision space is an unconstrained set X = {P̄ Q̄⊤ : PQ⊤ ∈ Rm×n}.

Proof. Let P and Q be arbitrary matrices such that P̄ Q̄⊤ ∈ X . Since I(sgn(x) ̸= y) ≤ hγ(yx)

for any x ∈ R and y ∈ {−1, 1}, we have

M =
T∑
t=1

I(ŷt ̸= yt) ≤
∑

{t:ŷt ̸=yt}

hγ(ytXt,(it,jt))

= RegretOMP(M,X , P̄ Q̄⊤) +
∑

{t:ŷt ̸=yt}

hγ(yt(P̄ Q̄⊤)it,jt)

≤ RegretOMP(M,X , P̄ Q̄⊤) +
T∑
t=1

hγ(yt(P̄ Q̄⊤)it,jt)

= RegretOMP(M,X , P̄ Q̄⊤) + hloss(S, (P ,Q), γ),

where the second equality follows from the definition of regret, and the third equality follows

from the fact that (P̄ Q̄⊤)i,j = PiQ
⊤
j /(∥Pi∥2∥Qj∥2). Since the choice of P and Q is arbitrary,

we get the first inequality of the lemma.

Now, let P and Q be the matrices that attain (5.14). Then, the inequality above implies that

M ≤ RegretOMP(M,X , P̄ Q̄⊤) + hloss(S, γ) ≤ sup
X∗∈X

RegretOMP(M,X ,X∗) + hloss(S, γ),

which proves the second inequality of the lemma.

60

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

5.4.3 Reduction from OMP to the generalised OSDP problem

A similar technique is used in [30] and [28]. For side information matrix M ,N we define a

matrix Γ for our generalised OSDP as follows:

Γ =

[√
αMM 0

0
√
αNN

]
. (5.15)

Next we define the decision space K. Let N = m+ n, and for any matrices P and Q such

that PQ⊤ ∈ Rm×n, we define

WP ,Q =

[
P̄

Q̄

] [
P̄⊤ Q̄⊤

]
=

[
P̄ P̄⊤ P̄ Q̄⊤

Q̄P̄⊤ Q̄Q̄⊤

]
.

Note that WP ,Q is an N × N symmetric and positive semi-definite matrix with its upper right

m × n component matrix P̄ Q̄⊤ is a decision matrix for the OMP problem. So, intuitively,

WP ,Q can be viewed as a positive semi-definite embedding of P̄ Q̄⊤ ∈ X . Next, we need to

find a decision space as a convex set K ∈ SN×N
++ which satisfies

K ⊇ {WP ,Q : P̄ Q̄⊤ ∈ X}.

Due to the following Lemma:

Lemma 11 (Lemma 8 [31]). Given side information matrices M,N ∈ SN×N
++ , we define Γ as

in Equation (5.15). Then we obtain that

Tr(ΓWP,QΓ) = αMTr
(
P̄⊤MP̄

)
+ αNTr

(
Q̄⊤NQ̄

)
, (5.16)

we can choose K as follows:

K = {W ∈ SN×N
++ : ∀i ∈ [N],Wi,i ≤ 1 ∧ Tr(ΓWΓ) ≤ D̂} ⊇ {WP ,Q : P̄ Q̄⊤ ∈ X}. (5.17)

Then, we define the loss matrix class L. For any (i, j) ∈ [m]× [n], let Z⟨i, j⟩ ∈ SN×N
+ be a

matrix such that the (i,m+ j)-th and (m+ j, i)-th components are 1 and the other components

are 0. More formally,

Z⟨i, j⟩ = 1

2

(
eie

⊤
m+j + em+je

⊤
i

)
,

where ek is the k-th basis vector of RN . Note that when we focus on its upper right m × n

61

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

component matrix, then only the (i, j)-th component is 1. Then, L is

L = {cZ⟨i, j⟩ : c ∈ {−1/γ, 1/γ}, i ∈ [m], j ∈ [n]} . (5.18)

Now we are ready to describe the reduction from the OMP problem for X to the OSDP

problem (K,L). Let A be an algorithm for the OSDP problem.

Run the algorithm A and receive the first prediction matrix W1 ∈ K from A.

In each round t,

1. let Xt be the upper right m× n component matrix of Wt.

// Xt,(i,j) = Wt •Z⟨i, j⟩

2. observe a triple (it, jt, yt) ∈ [m]× [n]× {−1, 1},

3. suffer loss ℓt(Wt) where ℓt : W 7→ hγ(yt(W •Z⟨it, jt⟩)),

4. let Lt = ∇W ℓt(Wt) =

−yt
γ
Z⟨it, jt⟩ if ytXt,(i,j) ≤ γ

0 otherwise
,

5. feed Lt to the algorithm A to let it proceed and receive Wt+1.

Since the loss function ℓt is convex, a standard linearization argument ([48]) gives

ℓt(Wt)− ℓt(W
∗) ≤Wt •Lt −W ∗ •Lt

for any W ∗ ∈ K. Moreover, since ℓt(Wt) = hγ(ytXt,(it,jt)) and ℓt(WP ,Q) = hγ(yt(P̄ Q̄⊤)it,jt),

the following lemma immediately follows.

Lemma 12. Let RegretOSDP(T,K,L,WP ,Q) =
∑T

t=1(Wt−WP ,Q)•Lt denote the regret of the

algorithmA in the reduction above for a competitor matrix WP ,Q and RegretOMP(T,X , P̄ Q̄⊤) =∑T
t=1(hγ(ytXt,(it,jt))−hγ(yt(P̄ Q̄⊤)it,jt) denote the regret of the reduction algorithm for P̄ Q̄⊤.

Then,

RegretOMP(T,X , P̄ Q̄⊤) ≤ RegretOSDP(T,K,L,WP ,Q).

Combining Lemma 10 and Lemma 12, we have the following corollary.

62

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

Corollary 4. There exists an algorithm for the OBMC problem with side information with the

following mistake bounds.

M ≤ inf
P̄ Q̄⊤∈X

(RegretOSDP(M,K,L,WP ,Q) + hloss(S, (P ,Q), γ))

≤ RegretOSDP(M,K,L) + hloss(S, γ).

5.4.4 Application to matrix completion

According to the above two reductions, we can reduce OBMC with side information M and N

to a generalised OSDP problem (K,L) with bounded Γ-trace norm defined in (5.17) and (5.18),

where Γ is respect to side information matrices M and N , defined as in (5.15), hence we can

apply FTRL algorithm with the generalised log-determinant regularizer defined in (5.7). Again,

the generalised log-determinant regularizer becomes the regular form as − ln det(W + ϵE),

when the side information is vacuous.

Remark 5. Since the definition of Γ in Equation (5.15), we have that ρ = 1.

Thus we set β = 1, g = 1/γ, ϵ = ρ = 1,τ = D̂, and Γ is given as in Equation (5.15), then

utilise Theorem 12, so we get the following result

RegretOSDP(T,K,L,W ∗) = O

(
Tη

γ2
+
D̂
η

)
. (5.19)

Before stating our improved mistake bound, we give in Algorithm 7 the algorithm for the

OBMC problem with side information M ,N which is obtained by putting together the two

reductions with the FTRL algorithm (5.4).

Theorem 13. Running Algorithm 7 with parameter η =

√
γ2D̂/T , γ ∈ (0, 1] the hinge loss of

OBMC with side information is bounded as follows:

T∑
t=1

hγ(yt · ŷt)−
T∑
t=1

hγ(yt · (P̄ Q̄⊤)it,jt) ≤ O

√D̂T

γ2

 . (5.20)

Compared with [31], our regret bound with hinge loss is improved with ln(m+ n).

Meanwhile, according to our mistake-driven technique, the horizon T is set to be the number

of mistakes M, through the reduction, which is unknown in advance. Then, by choosing η

independent of M we can derive a good mistake bound due to above theorem.

63

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

Algorithm 7 Online binary matrix completion with side information algorithm
1: Parameters: γ > 0, η > 0, side information matrices M ∈ Sm×m

++ and N ∈ Sn×n
++ . Quasi

dimension estimator 1 ≤ D̂. Γ is composed as in Equation (5.15), and decision set K is
given as (5.17).

2: Initialize ∀W ∈ K, set W1 = W .
3: for t = 1, 2, . . . , T do
4: Receive (it, jt) ∈ [m]× [n].
5: Let Zt =

1
2
(eite

T
m+jt + em+jte

T
it).

6: Predict ŷt = sgn(Wt •Zt) and receive yt ∈ {−1, 1}.
7: if ŷt ̸= yt then
8: Let Lt =

−yt
γ
Zt and Wt+1 = argminW∈K− ln det(ΓWΓ+E) + η

∑t
s=1W •Ls.

9: else
10: Let Lt = 0 and Wt+1 = Wt.
11: end if
12: end for

Theorem 14. Algorithm 7 with η = cγ2 for some c > 0 achieves

M =
T∑
t=1

Iŷt ̸=yt = O

(
D̂
γ2

)
+ 2hloss(S, γ). (5.21)

Proof. Combining Corollary 4 and the regret bound (5.19), we have

M = O

(
Mη

γ2
+
D̂
η

)
+ hloss(S, γ).

Choosing η = cγ2 for sufficiently small constant c, we get

M ≤ M

2
+O

(
D̂
γ2

)
+ hloss(S, γ),

from which (5.21) follows.

Again if the side information is vacuous, which means that M ,N are identity matrices,

from Remark 4 and Theorem 14, we can set that D̂ = m + n and obtain the mistake bound as

follows:

O

(
m+ n

γ2
+ 2hlossPQT∈Rm×n(S, (P ,Q), γ)

)
.

In contrast, there is a case where side information matters non-trivially. For OBMC with

side information M ,N we can consider the comparator matrix U as the upper-right block in

64

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

an optimal matrix in decision set (5.17) for reduced generalised OSDP problem with Γ-trace

norm. Then by choosing special M ,N the class of comparator matrix U contains meaningful

structure, especially, if U contains (k, l)-biclustered structure(the details are in Supplement

material) then we obtain that D̂ ∈ O(k + l), which is strictly smaller than O(m+ n).

Note that in the realizable case, our mistake bound becomes O
(

D̂
γ2

)
, which improves the

previous bound O
(

D̂
γ2 ln(m+ n)

)
in [31], removing the logarithmic factor ln(m+n). Further-

more, this bound matches the previously known lower bound of Herbster et.al. [30]. When U

contains (k, l)-biclustered structure (k ≥ l), γ can be set as γ = 1√
l

and our regret bound be-

comes O(kl). On the other hand, the lower bound of Herbster et.al. is Ω(kl). Thus, the mistake

bound of Theorem 14 is optimal.

5.5 Connection to a batch setting

In this section, we employ the well known online-to-batch conversion technique (see, e.g., [42])

and obtain a batch learning algorithm with generalization error bounds. The results imply that

the algorithm performs nearly as well as the SVM running over the optimal feature space.

First we describe our setting formally. We consider the problem in the standard PAC learning

framework. The algorithm is given the side information matrix M ∈ Sm×m
++ and N ∈ Sn×n

++ and

a sample sequence S :

S = ((i1, j1, y1), (i2, j2, y2), . . . , (iT , jT , yT))

where each triple (it, jt, yt) is randomly and independently generated according to some un-

known probability distribution V over [m] × [n] × {−1, 1}. Then the algorithm outputs a hy-

pothesis f : [m]× [n]→ [−1, 1]. The goal is to find, with high probability, a hypothesis f that

has small generalization error

R(f) = Pr
(i,j,y)∼V

(sgn(f(i, j)) ̸= y).

In particular, we consider a hypothesis of the form of

fW : (i, j) 7→W •Z⟨i, j⟩

where W ∈ K = {W ∈ SN×N
++ : ∀i ∈ [N],Wi,i ≤ 1 ∧ Tr(ΓWΓ) ≤ D̂}, where Γ is defined

65

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

as in Equation (5.15).

In Algorithm 8 we give the algorithm obtained by the online-to-batch conversion.

Algorithm 8 Binary matrix completion in the batch setting
1: Parameter: γ > 0
2: Input: a sample S of size T .
3: Run Algorithm 7 over S and get its predictions W1,W2, · · · ,WT .
4: Choose W from {W1,W2, · · · ,WT} uniformly at random.
5: Output fW .

To bound the generalization error, we use the following lemma, which is straightforward

from Lemma 7.1 of [42].

Lemma 13. Let L : [−1, 1]× {−1, 1} → [−B,B] be a function and W1, · · · ,WT and W be

the matrices obtained in Algorithm 8. Then, for any δ > 0, with probability at least 1 − δ, the

following holds:

E(i,j,y)∼V,W [L(fW (i, j), y)] =
1

T

T∑
t=1

E(i,j,y)∼V [L(fW (i, j), y)]

≤ 1

T

T∑
t=1

L(fWt(it, jt), yt) +B

√
2 ln 1/δ

T
.

Applying the lemma with the zero-one loss L(r, y) = 1(sgn(r) ̸= y) combined with the

mistake bound (5.21) of Theorem 14, we have the following generalization bound.

Theorem 15. For any δ > 0, with probability at least 1− δ, Algorithm 8 produces fW with the

following property:

EW [R(fW)] ≤
O
(

D̂
γ2 + hloss(S, γ)

)
T

+

√
2 ln 1/δ

T
. (5.22)

On the other hand, when applying the lemma with the hinge loss L(r, y) = hγ(ry) combined

with an O(

√
D̂T/γ2) regret bound of (5.19) with the minimizer η =

√
γ2D̂/T , then we have

EW [R(fW)] ≤ E(i,j,y)∼V,W [hγ(yfW (i, j))]

≤ O

√ D̂
γ2T

+
hloss(S, γ)

T

+ (1 + γ)

√
2 ln 1/δ

T
, (5.23)

which is slightly worse than (5.22).

66

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

Now we examine some implications of our generalization bounds. First we assume without

loss of generality that m ≥ n, because otherwise we can make everything transposed.

As explained in the aforementioned sections, we can think of each Q̄j as a feature vector of

item j. Assume all feature vectors Q̄ ∈ Rn×k are given and consider the problem of finding a

good linear classifier P̄i for each user i independently. A natural way is to use the SVM, which

solves

inf
γ>0,Pi∈Rk

(
1/γ2 + C

∑
t:it=i

hγ(ytP̄iQ̄
⊤
jt)

)
for every i ∈ [m] for some constant C > 0. Now if we fix γ to be a constant for all i, then the

optimization problems above are summarized as

inf
P∈Rm×k

m∑
i=1

(
1/γ2 + C

∑
t:it=i

hγ(ytP̄iQ̄
⊤
jt)

)
= inf

P∈Rm×k

(
m/γ2 + C

∑
t

hγ(ytP̄itQ̄
⊤
jt)

)
=

m

γ2
+ C inf

P
hloss(S, (P ,Q), γ).

So, if we further optimize feature vectors, we get

m

γ2
+ C inf

PQ⊤∈Rm×n
hloss(S, (P ,Q), γ) =

m

γ2
+ C hloss(S, γ) (5.24)

which roughly is proportional to our generalization bound (5.22), when the side information is

vacuous (i.e., M and N are identity matrices). This result implies that our generalization bound

is upper bounded by the objective function value of the SVM running over the optimal choice

of feature vectors. Meanwhile, we expect a more refined bound when the side information is

not vacuous for the batch setting.

Moreover, a well known generalization bound for linear classifiers (see, e.g., [42]) gives

Pr
(j,y)∼Vi

(sgn(P̄iQ̄
⊤
j) ̸= y) ≤ 1

Ti

∑
t:it=i

hγ(ytP̄itQ̄
⊤
jt) + 2

√
1

γ2Ti

+

√
ln(1/δ)

2Ti

for every i ∈ [m], where Vi is the conditional distribution of V given that the first component

is i, and Ti is the number of t ∈ [T] that satisfies it = i. Assume for simplicity that V(i) =

67

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

∑
j,y V(i, j, y) = 1/m and Ti = T/m for every i. Then,

R(fWP ,Q
) =

m∑
i=1

V(i) Pr
(j,y)∼Vi

(sgn(P̄iQ̄
⊤
j) ̸= y)

≤
m∑
i=1

V(i)

 1

Ti

∑
t:it=i

hγ(ytP̄itQ̄
⊤
jt)) + 2

√
1

γ2Ti

+

√
ln(1/δ)

2Ti

=

1

T
hloss(S, (P ,Q), γ) + 2

√
m

γ2T
+

√
m ln(1/δ)

2T
.

Minimizing R(fWP ,Q
) over all P and Q such that PQ⊤ ∈ Rm×n, the bound obtained is very

similar to our bound (5.23). This observation implies that our hypothesis has generalization

ability competitive with the optimal linear classifiers P̄ over the optimal feature vectors Q̄.

5.6 Conclusion

In this paper, on the one hand, we define a generalised OSDP problem with bounded Γ-trace

norm. To solve this problem, we involve FTRL with the generalised log-determinant regularizer

and achieve regret bound as O(g
√
βτρT). On the other hand, we utilise our result to OBMC

with side information particularly. We reduce OBMC with side information to our new OSDP

with bounded Γ-trace norm and obtain a tighter mistake bound than previous work by removing

logarithmic factor.

5.7 Acknowledgement

This work was supported by JSPS KAKENHI Grant Numbers JP19H04174 and JP19H04067,

respectively. We thank the reviewers for their suggestions and comments.

5.8 Appendix

5.8.1 Proof of Main Proposition and Main Theorem

Before we prove this theorem, we need to involve some Lemmata and notations.

The negative entropy function over the set of probability distribution P over RN is defined

as H(P) = Ex∼P [ln(P (x))]. The total variation distance between probability distribution P

68

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

and Q over RN is defined as 1
2

∫
x
|P (x)−Q(x)|dx. The characteristic function of a probability

distribution P over RN is defined as ϕ(u) = Ex∼P [e
iuT x] where i is the imaginary unit.

Lemma 14. Let G1 and G2 be two zero mean Gaussian distributions with covariance matrix

ΓΣΓ and ΓΘΓ. Furthermore Σ and Θ are positive definite matrices. If there exists (i, j) such

that

|Σi,j −Θi,j| ≥ δ(Σi,i +Θi,i +Σj,j +Θj,j), (5.25)

then the total variation distance between G1 and G2 is at least 1
12e1/4

δ.

Proof. Given ϕ1(u) and ϕ2(u) as characteristic function of G1 and G2 respectively. Due to

Lemma 17 in [44], we have∫
x

|G1(x)−G2(x)|dx ≥ max
u∈RN

|ϕ1(u)− ϕ2(u)|, (5.26)

so we only need to show the lower bound of maxu∈RN |ϕ1(u)− ϕ2(u)|.
Then we set that characteristic function of G1 and G2 are ϕ1(u) = e

−1
2
uTΓTΣΓu and ϕ2(u) =

e
−1
2
uTΓTΘΓu respectively. Set that α1 = (Γv)TΣ(Γv), α2 = (Γv)TΘ(Γv) and Γu = Γv√

α1+α2
.

Moreover we denote that v̄ = Γv, for any v̄ ∈ RV , there exists v ∈ RV . ū = Γu in the same

way.

We need only give the lower bound of maxu∈RN |ϕ1(u)− ϕ2(u)|.
Next we have that

max
u∈RN

|ϕ1(u)− ϕ2(u)|

= max
u∈RN

∣∣∣e−1
2
uTΓΣΓu − e

−1
2
uTΓΘΓu

∣∣∣
= max

u∈RV

∣∣∣e−1
2
(Γu)TΣ(Γu) − e

−1
2
(Γu)TΘ(Γu)

∣∣∣
≥ max

v̄∈RN

∣∣∣e −α1
2(α1+α2) − e

−α2
2(α1+α2)

∣∣∣
≥ max

v̄∈RN

∣∣∣∣ 1

2e1/4
α1 − α2

α1 + α2

∣∣∣∣ .
(5.27)

Then second inequality is due to Lemma 20, since min{ α1

α1+α2
, α2

α1+α2
} ∈ (0, 1

2
].

Due to assumption in the Lemma we obtain for some (i, j) that

δ(Σi,i +Θi,i + Σj,j +Θj,j) ≤ |Σi,j −Θi,j|

=
1

2
|(ei + ej)

T (Σ−Θ)(ei + ej)− eT
i (Σ−Θ)ei − eT

j (Σ−Θ)ej|
(5.28)

69

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

It implies that one of (ei+ej)
T (Σ−Θ)(ei+ej), e

T
i (Σ−Θ)ei and eT

j (Σ−Θ)ej has absolute

value greater that 2δ
3
(Σi,i +Θi,i +Σj,j +Θj,j).

Since Σ,Θ are strictly positive definite matrices, we have that for all v ∈ {ei + ej, ei, ej}

vT (Σ+Θ)v ≤ 2(Σ+Θ)i,i + 2(Σ+Θ)j,j. (5.29)

and therefore we have that

max
v̄∈RN

∣∣∣∣ 1

2e1/4
α1 − α2

α1 + α2

∣∣∣∣ ≥ max
v̄∈{ei+ej ,ei,ej}

∣∣∣∣ 1

2e1/4
vT (Σ−Θ)v

vT (Σ+Θ)v

∣∣∣∣ ≥ δ

6e1/4
(5.30)

Lemma 15. Let X,Y ∈ SN×N
+ be such that

|Xi,j − Yi,j| ≥ δ(Xi,i + Yi,i +Xj,j + Yj,j), (5.31)

and Γ is a symmetric strictly positive definite matrix. Then the following inequality holds that

− ln det(αΓXΓ+ (1− α)ΓY Γ)

≤ −α ln det(ΓXΓ)− (1− α) ln det(ΓY Γ)− α(1− α)

2

δ2

72e1/2
.

(5.32)

Proof. Let G1 and G2 be zero mean Gaussian distributions with covariance matrix ΓΣΓ =

ΓXΓ and ΓΘΓ = ΓY Γ. In matrix total variation distance between G1 and G2 is at least δ
12e1/4

,

since assumption of this Lemma and result in Lemma 14. We denote that δ̃ = δ
12e1/4

. Consider

the entropy of the following probability distribution of v with probability α that v ∼ G1 and

v ∼ G2 otherwise. Its covariance matrix is αΓΣΓ + (1 − α)ΓΘΓ. Due to Lemma A.2 and

Lemma A.3 [44] (see in Appendix) we obtain that

− ln det(αΓΣΓ+ (1− α)ΓΘΓ)

≤ 2H(αG1 + (1− α)G2) + ln(2πe)V

≤ 2αH(G1) + 2(1− α)H(G2) + ln(2πe)V − α(1− α)δ̃2

= −α ln det(ΓΣΓ)− (1− α) ln det(ΓΘΓ)− α(1− α)δ̃2.

Lemma 16 (Lemma 5.4 [44]). Let X,Y ∈ SN×N
++ be such that for all i ∈ [N] |Xi,i| ≤ β

′
and

70

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

|Yi,i| ≤ β
′

Then for any L ∈ L = {L ∈ SN×N
+ : ∥vec(L)∥1 ≤ g} there exists that

|Xi,j − Yi,j| ≥
|L • (X − Y)|

4β ′g
(Xi,i + Yi,i +Xj,j + Yj,j). (5.33)

Proposition 7 (Main proposition in main part). The generalised log-determinant regulariz-

er R(X) = − ln det(ΓXΓ + ϵE) is s-strongly convex with respect to L for K with s =

1/(1152
√
e(β + ρϵ)2g2). Here E is identity matrix.

Proof. Firstly we know that ΓXΓ+ ϵE = Γ(X + Γ−1ϵEΓ−1)Γ.

Applying the Lemma 16 to X + Γ−1ϵEΓ−1 and Y + Γ−1ϵEΓ−1 for X,Y ∈ K where

maxi,j |(X + Γ−1ϵEΓ−1)i,j| ≤ maxi,j |Xi,j| + ϵρ, we have that β ′
= β + ϵρ, where ρ =

maxi,j |(Γ−1Γ−1)i,j|. According to Lemma 15 and Definition 5 we have this proposition.

Now we give the proof of the Main Theorem as follows:

Proof of Theorem 12. Due to Lemma 9 (in main part) we obtain that

RegretOSDP(T,K,L,W ∗) ≤ H0

η
+

η

s
T. (5.34)

Due to the main proposition in main part we know that s = 1/(1152(β + ρϵ)2
√
eg2).

Thus we need only to show H0 ≤ τ
ϵ
. Given W0 and W1 is the minimizer and maximizer of

R respectively, then we obtain that

max
W ,W

′∈K
(R(W)−R(W

′
)) = R(W1)−R(W0)

= − ln det(ΓW1Γ+ ϵE) + ln det(ΓW0Γ+ ϵE)

=
N∑
i=1

ln
λi(ΓW0Γ) + ϵ

λi(ΓW1Γ) + ϵ

=
N∑
i=1

ln

(
λi(ΓW0Γ)

λi(ΓW1Γ) + ϵ
+

ϵ

λi(ΓW1Γ) + ϵ

)

≤
N∑
i=1

ln

(
λi(ΓW0Γ)

ϵ
+ 1

)

≤
N∑
i=1

λi(ΓW0Γ)

ϵ
=

Tr(ΓW0Γ)

ϵ
≤ τ

ϵ
.

(5.35)

71

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

Plugging s, we obtain that

RegretOSDP(T,K,L,W ∗) = O

(
g2(β + ρϵ)2Tη +

τ

ϵη

)
. (5.36)

Lemma 17 (Lemma A.1 [44]). Let P and Q be probability distributions over RN and ϕP (u)

and ϕQ(u) be their characteristic functions, respectively. Then

max
u∈RN

|ϕP (u)− ϕQ(u)| ≤
∫
x

|P (x)−Q(x)|dx, (5.37)

the right hand side is the total variation distance between any distribution Q and P.

Lemma 18 (Lemma A.2 [15]). Let P and Q be probability distributions over RN with total

variation distance δ. Then

H(αP + (1− α)Q) ≤ αH(P) + (1− α)H(Q)− α(1− α)δ2, (5.38)

where H(P) = Ex∼P [lnP (x)].

Lemma 19 (Lemma A.3 [44]). For any probability distribution P over RN with zero mean and

covariance matrix Σ, its entropy is bounded by the log-determinant of covariance matrix. That

is

−H(P) ≤ 1

2
ln(det(Σ)(2πe)N). (5.39)

Lemma 20 (Lemma A.4 [44]).

e
−x
2 − e−

1−x
2 ≥ e−1/4

2
(1− 2x), (5.40)

for 0 ≤ x ≤ 1/2.

5.8.2 Definition of biclustered structure and ideal quasi dimension

As in [31], we define the class of (k, l)-biclustered structure matrices as follows:

Definition 6. For m ≥ k and n ≥ l, the class of (k, l)-binary biclustered matrices is defined as

Bm×n
k,l = {U ∈ {−1,+1}m×n : r ∈ [k]m, c ∈ [l]n,V ∈ {1,−1}k×l,Ui,j = Vri,cj , i ∈ [m], j ∈ [n]}.

72

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

Denote Bm,d = {R ⊂ {0, 1}m×d : ∥Ri∥2 = 1, i ∈ [m], rank(R) = d}, for any matrix

U ∈ Bm,n
k,l we can decompose U = RU∗C⊤ for some U ∗ ∈ {−1,+1}k×l,R ∈ Bm,k and

C ∈ Bn,l.

Theorem 16 ([31]). If U ∈ Bm×n
k,l define Do

M ,N (U) as

Do
M ,N (U) = 2Tr(R⊤MR)αM + 2Tr(C⊤NC)αN + 2k + 2l, (5.41)

where M ,N are PD-Laplacian, as the minimum over all decompositions of U = RU∗C⊤ for

some U ∗ ∈ {−1,+1}k×l,R ∈ Bm,k and C ∈ Bn,l. Thus, for U ∈ Bm×n
k,l ,

Dγ
M ,N (U) ≤ Do

M ,N (U), (5.42)

if ∥U∥max ≤ 1
γ
.

Moreover, we define the max-norm of a matrix U ∈ Rm×n as follows:

∥U∥max = min
PQ⊤=U

{
max
1≤i≤m

∥Pi∥ max
1≤j≤n

∥Qj∥
}
. (5.43)

Furthermore we define the quasi-dimension of a matrix U with M ∈ Sm×m
++ and N ∈ Sn×n

++

at margin γ as

Dγ
M ,N (U) = min

P̄ Q̄⊤=γU
αMTr(P̄⊤MQ̄) + αNTr(Q̄⊤NQ̄). (5.44)

See section 4.1 from [31], if U is a (k, l)-biclustered structured matrix, they show an exam-

ple where Do
M ,N (U) ∈ O(k + l) with ideal side information. When exactly that there exists

a sequence that yt = (P̄ Q̄⊤)it,jt = Uit,jt where (P̄ , Q̄) = argminP ,QD
γ
M ,N (U), and U

satisfies the assumptions in [31], then we have that D̂ ∈ O(k + l) with same side information.

5.8.3 Online similarity prediction with side information

In this section, we show the application of our reduction method and generalised log-determinant

regularizer to online similarity prediction with side information.

Let G = (V,E) be an undirected and connected graph with n = |V | vertices and m = |E|
edges. Assign vertices to K classes with a vector y = {y1, · · · , yn} where yi ∈ {1, · · · , K}.
For a matrix L, we denote L+ as pseudo-inverse matrix of L. The online similarity prediction

is defined as follows: On each round t, for a given pair of vertices (it, jt) algorithm needs to

73

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

predict whether they are in the same class denoted as ŷit,jt . If they are in the same class then

yit,jt = 1, yit,jt = −1, otherwise. Our target is to give a bound of the prediction mistakes

M =
∑T

t=1 Iŷit,jt ̸=yit,jt
.

Definition 7. The set of cut-edges in (G,y) is denoted as ΦG(y) = {(i, j) ∈ E : yi ̸= yj}
we abbreviate it to ΦG and the cut-size is given as |ΦG(y)|. The set of cut-edges with respect

to class label k is denoted as ΦG
k (y) = {(i, j) ∈ E : k ∈ {yi, yj}, yi ̸= yj}. Note that∑k

s=1 |ΦG
s (y)| = 2|ΦG(y)|. Given A ∈ Rn×n such that Aij = Aji = 1 if (i, j) ∈ E(G) and

Aij = 0, otherwise. D is denoted as diagonal matrix with Dii is the degree of vertex i. We

define the Laplacian as L = D −A.

Definition 8. If G is identified with a resistive network such that each edge is a unit resistor, then

the effective resistance RG
i,j between pair (i, j) ∈ V 2 can be defined as RG

i,j = (ei− ej)L
+(ei−

ej), where ei is the i-th vector in the canonical basis of Rn.

[22] gave a mistake bound in the following proposition:

Proposition 8. Let (G,y) be a labeled graph. If we run the Matrix Winnow with G as input

graph, we have the following mistake bound

MW = O

(
|ΦG| max

(i,j)∈V 2
RG

i,j lnn

)
(5.45)

In our new reduction, we define the comparator matrix U ∈ {1,−1}n×n where if vertices

i, j are in the same class then Uij = 1, and Uij = −1, otherwise. Firstly, we denote that 1

is a K-dimensional vector that all entries are 1. Due to [22, 31], we see that U is a (K,K)-

biclustered n × n matrix where U ∗ = 2IK − 11⊤, and there exists R ∈ Bn,k such that U =

RU ∗R⊤. Define the side information matrices M = N ∈ Rn×n as PD-Laplcian L̃, where L

is the Laplacian matrix based on the graph G.

Thus we have

Γ =

√αL̃L̃ 0

0
√

αL̃L̃

 , (5.46)

where αL̃ = maxi(L̃
−1)ii.

According to [31], we further obtain that 1
γ
∈ O(1), more concisely we can set that 1

γ
= 3.

Meanwhile given sparse matrix Z in the following equation

Z⟨i, j⟩ = 1

2
(eie

⊤
n+j + en+je

⊤
i). (5.47)

74

CHAPTER 5. AN ONLINE SEMI-DEFINITION PROGRAMMING WITH A GENERALISED
LOG-DETERMINANT REGULARIZER AND ITS APPLICATIONS

Thus we give the following proposition for our reduction from a graph based online simi-

larity prediction to a generalised OSDP problem (K,L) with bounded Γ-trace norm.

Proposition 9. Given an online similarity prediction problem with graph (G,y), then we can

reduce this problem to a generalised OSDP problem (K,L) with bounded Γ-trace norm such

that

K =
{
X ∈ Sn×n

++ : |Xii| ≤ 1,Tr(ΓXΓ) ≤ D̂
}

L = {cZ⟨i, j⟩ : c ∈ {−1/γ, 1/γ}, i ∈ [n], j ∈ [n]} ,

where Γ is defined as above, and D̂ is arbitrary. In particular, we have that

M =
T∑
t=1

Iŷit,jt ̸=yit,jt
≤ RegretOSDP(M,K,L) (5.48)

According to [31], there exists P̄ , Q̄ such that U ∗ = P̄ Q̄⊤, it implies that the hinge loss

hloss(S, γ) = 0.

Remark 6. According to Theorem 3 and section 4.2 in [31] if U obtains the (K,K)-biclustered

structure, i.e., there exists U ∗, such that U ∗ = 2IK − 11⊤, and there exists R ∈ Bn,k such that

U = RU ∗R⊤, due to our Theorem 14 in main part, we have that

M ≤ O
(
Tr(R⊤LR)αL

)
, (5.49)

where L is Laplacian of the corresponding graph G.

Remark 7. According to [31], we have that

Tr(R⊤LR) ≤ 2
∑

(i,j)∈E

∥Ri −Rj∥2,

where
∑

(i,j)∈E ∥Ri −Rj∥2 counts only when there is an edge between different classes. Due

to the definition of |ΦG|, we have that
∑

(i,j)∈E ∥Ri −Rj∥2 = |ΦG|.
Simultaneously, αL = maxi∈[n]L

+
ii so we obtain that αL ≥ e⊤

i L
+ei,∀i ∈ [n]. It implies

that 4αL ≥ max(i,j)∈V 2 RG
i,j. Thus we have that our new mistake bound improves the previous

bound a logarithmic factor and recovers the previous bound up to a constant factor.

75

Chapter 6

Conclusion

In this thesis, we consider some other classes of online decision making problems beyond online

convex optimization framework. In the OCO framework, the target is to minimise the cumula-

tive loss and confront the adversarial environment. Contrarily, in this thesis, we firstly consider

another form of loss, from the cumulative loss in the OCO model to the global loss in online

load balancing problems. Next, we release the adversary of the environment, that the loss se-

quence is structural or there is some assistant information (side information) to the algorithm

during the learning process. We attempt to explore these new problems of the online decision

making field by reducing these problems to the online linear optimization (OLO) framework.

In Chapter 3, we consider the online load balancing problem. This problem can be seen as a

variant of standard expert advice by replacing the cumulative loss with global loss. The global

cost function is firstly introduced by Even-Dar et al. [19], and in our thesis, on the one hand, by

involving the combined norm and Blackwell approaching game, we give a general reduction for

the global cost function with the general norm. In other words, we can reduce the online load

balancing problem to two specified online linear optimization problems. On the other hand,

for the infinity norm, we propose an efficient algorithm by constructing two efficient reduction

process with second order cone programming and linear programming. Our proposed algorithm

is efficient and achieves the best known regret bound [46] O(
√
T lnN).

In Chapter 4, we explore the expert advice problem with noisy low rank loss. Prediction

with expert advice is a famous online learning model [13]. Recently, Hazan et al. [29] restrict

that the loss sequence obtains the d-rank structure and achieves a regret bound O(d
√
T), when

the kernel is unknown. In our thesis, we release this assumption that the loss sequence is

corrupted by the noise vector. By approximating the d-rank kernel from the receiving loss

vectors during the learning process, we design an algorithm that achieves the regret bound

76

CHAPTER 6. CONCLUSION

as O(
√
T (d + d4/3(Nϵ)1/3)), where ϵ is the L2-norm bound of noise vector. Our reduction

to the OLO model is similar to the reductions of [29], but robust to the noise. Furthermore,

in the experiment, our algorithm performs even better than the Hedge algorithm and Hazan’s

algorithm.

In Chapter 5, we extend the OLO model to the matrix version, as online semi-definite pro-

gramming. Unlike the previous setting [28, 44], in our thesis, we extend the constraint to the

decision set from the trace norm to the Γ-trace norm. The trace norm is an extreme case when

the Γ is the identity matrix. If we directly utilised the previous algorithm [44], the regret bound

is with respect to the size of the matrix N. By utilising the generalised log-determinant regular-

izer, we can achieve a regret bound irrelevant to the size of matrices, i.e., obtain a tighter regret

bound. Moreover, we can reduce the online binary matrix problem with side information [31]

to our extended OSDP problem by mistake-driven technique, and we can improve the mistake

bound from the previous work with a logarithmic factor. If the underlying binary obtains some

latent structure, our mistake bound is optimal, which can recover the lower bound up a constant

factor.

Conclusively, reducing the non-OLO problem to the OLO model is an effective method to

explore the non-standard OCO games. With the refined reductions, the complex structure in the

learning problem can be well represented in the corresponding OLO games. As we stated in

the thesis, from the global cost function/global loss to the cooperative environment feedback,

the learning model can be reduced to an appropriate OLO game, by selecting the appropriate

decision set and loss space. Meanwhile, the reduced OLO game is not always standard. It also

requires research on the OLO model itself to ensure that the reduced problem can be effectively

solved.

77

Bibliography

[1] Jacob Abernethy, Peter L Bartlett, and Elad Hazan. Blackwell approachability and no-

regret learning are equivalent. In Proceedings of the 24th Annual Conference on Learning

Theory, pages 27–46, 2011.

[2] Jacob D Abernethy. Can we learn to gamble efficiently? In COLT, pages 318–319.

Citeseer, 2010.

[3] Susanne Albers. Online scheduling. In Introduction to scheduling, pages 71–98. CRC

Press, 2009.

[4] Yossi Azar. On-line load balancing. In Amos Fiat and Gerhard J Woeginger, editors,

Online Algorithms: The State of the Art, pages 178–195. Springer Berlin Heidelberg,

Berlin, Heidelberg, 1998. ISBN 978-3-540-68311-7. doi: 10.1007/BFb0029569. URL

https://doi.org/10.1007/BFb0029569.

[5] Yossi Azar, Bala Kalyanasundaram, Serge Plotkin, Kirk R Pruhs, and Orli Waarts. Online

load balancing of temporary tasks. In Workshop on algorithms and data structures, pages

119–130. Springer, 1993.

[6] Maria-Florina F Balcan and Hongyang Zhang. Noise-tolerant life-long matrix completion

via adaptive sampling. In Advances in Neural Information Processing Systems, pages

2955–2963, 2016.

[7] Keith Ball et al. An elementary introduction to modern convex geometry. Flavors of

geometry, 31:1–58, 1997.

[8] Siddharth Barman, Aditya Gopalan, and Aadirupa Saha. Online learning for structured

loss spaces. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

78

BIBLIOGRAPHY

[9] Melanie Beckerleg and Andrew Thompson. A divide-and-conquer algorithm for binary

matrix completion. Linear Algebra and its Applications, 601:113–133, 2020.

[10] Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Online learning

with imperfect hints. In International Conference on Machine Learning, pages 822–831.

PMLR, 2020.

[11] Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Logarithmic regret

from sublinear hints. Advances in Neural Information Processing Systems, 34, 2021.

[12] David Blackwell et al. An analog of the minimax theorem for vector payoffs. Pacific

Journal of Mathematics, 6(1):1–8, 1956.

[13] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games. Cambridge

university press, 2006.

[14] Nicolo Cesa-Bianchi and Ohad Shamir. Efficient online learning via randomized rounding.

In Advances in Neural Information Processing Systems, pages 343–351, 2011.

[15] Paul Christiano. Online local learning via semidefinite programming. In Proceedings of

the forty-sixth annual ACM symposium on Theory of computing, pages 468–474. ACM,

2014.

[16] Pilu Crescenzi, Giorgio Gambosi, Gaia Nicosia, Paolo Penna, and Walter Unger. On-line

load balancing made simple: Greedy strikes back. Journal of Discrete Algorithms, 5(1):

162–175, 2007.

[17] Ofer Dekel, Nika Haghtalab, Patrick Jaillet, et al. Online learning with a hint. In Advances

in Neural Information Processing Systems, pages 5299–5308, 2017.

[18] Mamadou Diop, Sebastian Miron, Anthony Larue, and David Brie. Binary matrix factor-

ization applied to netflix dataset analysis. IFAC-PapersOnLine, 52(24):13–17, 2019.

[19] Eyal Even-Dar, Robert Kleinberg, Shie Mannor, and Yishay Mansour. Online learning for

global cost functions. In COLT, 2009.

[20] Rina Foygel and Nathan Srebro. Concentration-based guarantees for low-rank matrix

reconstruction. In Proceedings of the 24th Annual Conference on Learning Theory, pages

315–340, 2011.

79

BIBLIOGRAPHY

[21] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learn-

ing and an application to boosting. Journal of computer and system sciences, 55(1):119–

139, 1997.

[22] Claudio Gentile, Mark Herbster, and Stephen Pasteris. Online similarity prediction of

networked data from known and unknown graphs. In Conference on Learning Theory,

pages 662–695, 2013.

[23] Anupriya Gogna and Angshul Majumdar. Balancing accuracy and diversity in recom-

mendations using matrix completion framework. Knowledge-Based Systems, 125:83–95,

2017.

[24] Andrew Goldberg, Ben Recht, Junming Xu, Robert Nowak, and Jerry Zhu. Transduction

with matrix completion: Three birds with one stone. In Advances in neural information

processing systems, pages 757–765, 2010.

[25] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and

combinatorial optimization, volume 2. Springer Science & Business Media, 2012.

[26] Elad Hazan. Introduction to online convex optimization. Foundations and Trends in

Optimization, 2(3-4):157–325, 2016.

[27] Elad Hazan. Introduction to Online Convex Optimization. Foundations and Trends in Op-

timization, 2(3-4):157–325, 2016. URL http://ocobool.cs.prinston.edu/.

[28] Elad Hazan, S Kale, and S Shalev-Shwartz. Near-optimal algorithms for online matrix

prediction. SIAM Journal on Computing, 2016.

[29] Elad Hazan, Tomer Koren, Roi Livni, and Yishay Mansour. Online learning with low rank

experts. In Conference on Learning Theory, pages 1096–1114, 2016.

[30] Mark Herbster, Stephen Pasteris, and Massimiliano Pontil. Mistake bounds for binary

matrix completion. In Advances in Neural Information Processing Systems, pages 3954–

3962, 2016.

[31] Mark Herbster, Stephen Pasteris, and Lisa Tse. Online matrix completion with side infor-

mation. Advances in Neural Information Processing Systems, 33, 2020.

80

BIBLIOGRAPHY

[32] Dirk Hoeven, Tim Erven, and Wojciech Kotłowski. The many faces of exponential weights

in online learning. In Conference On Learning Theory, pages 2067–2092, 2018.

[33] Jyrki Kivinen and Manfred K Warmuth. Exponentiated gradient versus gradient descent

for linear predictors. information and computation, 132(1):1–63, 1997.

[34] Vladimir Koltchinskii, Karim Lounici, Alexandre B Tsybakov, et al. Nuclear-norm penal-

ization and optimal rates for noisy low-rank matrix completion. The Annals of Statistics,

39(5):2302–2329, 2011.

[35] Tomer Koren and Roi Livni. Affine-invariant online optimization and the low-rank experts

problem. Advances in Neural Information Processing Systems, 30:4747–4755, 2017.

[36] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for rec-

ommender systems. Computer, 42(8):30–37, 2009.

[37] Joon Kwon. Refined approachability algorithms and application to regret minimization

with global costs. Journal of Machine Learning Research, 22(200):1–38, 2021.

[38] Yaxiong Liu, Kohei Hatano, and Eiji Takimoto. Improved algorithms for online load

balancing. In International Conference on Current Trends in Theory and Practice of In-

formatics, pages 203–217. Springer, 2021.

[39] Yaxiong Liu, Xuanke Jiang, Kohei Hatano, and Eiji Takimoto. Expert advice problem

with noisy low rank loss. In Asian Conference on Machine Learning, pages 1097–1112.

PMLR, 2021.

[40] Yaxiong Liu, Ken-ichiro Moridomi, Kohei Hatano, and Eiji Takimoto. An online semi-

definite programming with a generalised log-determinant regularizer and its applications.

In Asian Conference on Machine Learning, pages 1113–1128. PMLR, 2021.

[41] Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. Applica-

tions of second-order cone programming. Linear algebra and its applications, 284(1-3):

193–228, 1998.

[42] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine

Learning. Adaptive computation and machine learning series. MIT Press, 2012. ISBN

9780262018258.

81

BIBLIOGRAPHY

[43] Marco Molinaro. Online and random-order load balancing simultaneously. In Proceedings

of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1638–

1650. Society for Industrial and Applied Mathematics, 2017.

[44] Ken-ichiro Moridomi, Kohei Hatano, and Eiji Takimoto. Online linear optimization with

the log-determinant regularizer. IEICE Transactions on Information and Systems, 101(6):

1511–1520, 2018.

[45] Francesco Orabona, Koby Crammer, and Nicolo Cesa-Bianchi. A generalized online mir-

ror descent with applications to classification and regression. Machine Learning, 99(3):

411–435, 2015.

[46] Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Beyond re-

gret. In Proceedings of the 24th Annual Conference on Learning Theory, pages 559–594,

2011.

[47] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender systems

handbook. In Recommender systems handbook, pages 1–35. Springer, 2011.

[48] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and

Trends R⃝ in Machine Learning, 4(2):107–194, 2012.

[49] Ohad Shamir and Shai Shalev-Shwartz. Collaborative filtering with the trace norm: Learn-

ing, bounding, and transducing. In Proceedings of the 24th Annual Conference on Learn-

ing Theory, pages 661–678, 2011.

[50] Nahum Shimkin. An online convex optimization approach to blackwell’s approachability.

The Journal of Machine Learning Research, 17(1):4434–4456, 2016.

[51] Jing Wang, Jie Shen, Ping Li, and Huan Xu. Online matrix completion for signed link

prediction. In Proceedings of the Tenth ACM International Conference on Web Search

and Data Mining, pages 475–484, 2017.

[52] Xiao Zhang, Lingxiao Wang, Yaodong Yu, and Quanquan Gu. A primal-dual analysis of

global optimality in nonconvex low-rank matrix recovery. In International conference on

machine learning, pages 5862–5871. PMLR, 2018.

82

BIBLIOGRAPHY

[53] Xiao Zhang, Lingxiao Wang Wang, and Quanquan Gu. A unified framework for non-

convex low-rank plus sparse matrix recovery. In International Conference on Artificial

Intelligence and Statistics, 2018.

[54] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient

ascent. In Proceedings of the 20th international conference on machine learning (icml-

03), pages 928–936, 2003.

83

