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Abstract

In recent years, with the spread of the Internet, the development of sensor technology, and the

widespread use of mobile devices, an enormous amount of diverse data has been generated

daily. It is easy to predict that this data will continue to increase dramatically in the future, but

most of it is accumulated or discarded without being utilized. Therefore, there is an urgent need

for technology to process and utilize vast amounts of data instantaneously. Since most data

can be regarded as strings, it is necessary to develop efficient data processing technology that

takes advantage of the properties of strings. For this purpose, knowledge of the combinatorial

structures of strings is indispensable. For example, repetitive structures are closely related to

string compression, and strings with many repetitive structures are known to be small in practice

under several compressors. For another example, finding palindromic structures has important

applications to analyze biological data. Besides, most of the Internet data, sensor data, and

social data are updated and edited at any time, so it is necessary to develop dynamic string

processing techniques. There are several types of dynamic data, fully dynamic data (namely,

the data where arbitrary positions can be updated many times), semi-dynamic data where editing

position is limited, and the data with a limited number of edits.

In this thesis, we focus on the analysis of combinatorial structures and the development

of algorithms in dynamic strings. We tackle the following two problems regarding repeti-

tive/palindromic structures among the combinatorial structures: (A) The problem of analyzing

the changes of repetitiveness measures and the size of string compressors in a dynamic string.

(B) The problem of analyzing the changes and developing efficient finding algorithms for palin-

dromic structures in a dynamic string.

First, we analyze changes in the size of string compressors and repetitiveness measures in

dynamic strings. The sensitivity of a string compression algorithm C asks how much the output

size C(T ) for an input string T can increase when a single character edit operation is per-

formed on T . This notion enables one to measure the robustness of compression algorithms in

terms of errors and/or dynamic changes occurring in the input string. In this thesis, we analyze
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the worst-case multiplicative sensitivity of string compression algorithms, which is defined by

maxT∈Σn{C(T ′)/C(T ) : ed(T, T ′) = 1}, where ed(T, T ′) denotes the edit distance between

T and T ′. In particular, for the most common versions of the Lempel-Ziv 77 compressors, we

prove that the worst-case multiplicative sensitivity is only a small constant (2 or 3, depend-

ing on the version of the Lempel-Ziv 77 and the edit operation type), i.e., the size z of the

Lempel-Ziv 77 factorizations can be larger by only a small constant factor. We strengthen our

upper bound results by presenting matching lower bounds on the worst-case sensitivity for all

these major versions of the Lempel-Ziv 77 factorizations. We then generalize this result to

the smallest bidirectional scheme b. These results contrast with the previously known related

results such that the size z78 of the Lempel-Ziv 78 factorization can increase by a factor of

Ω(n3/4) [Lagarde and Perifel, 2018], and the number r of runs in the Burrows-Wheeler trans-

form can increase by a factor of Ω(log n) [Giuliani et al., 2021] when a character is prepended to

an input string of length n. Further, we extend the notion of the worst-case sensitivity to string

repetitiveness measures such as the smallest string attractor size γ and the substring complexity

δ, and present some non-trivial lower bound for γ and matching upper and lower bounds of the

worst-case multiplicative sensitivity for δ. We also exhibit the worst-case additive sensitivity

maxT∈Σn{C(T ′) − C(T ) : ed(T, T ′) = 1}, which allows one to observe more details in the

changes of the output sizes.

Second, we deal with the problems of computing the longest palindromic substring (LPS)

after the string is edited. It is known that the length of the LPSs of a given string T of length n

can be computed in O(n) time [Manacher, 1975]. We present an algorithm that uses O(n)

time and space for preprocessing, and answers the length of the LPSs in O(log(min{σ, log n}))
time after a single character substitution, insertion, or deletion, where σ denotes the number of

distinct characters appearing in T . We also propose an algorithm that uses O(n) time and space

for preprocessing, and answers the length of the LPSs in O(�+ log(min{σ, log n})) time, after

an existing substring in T is replaced by a string of arbitrary length �.

Third, we deal with the problem of updating the set of minimal unique palindromic sub-

strings (MUPSs) of a string after a single-character substitution. MUPSs are utilized for an-

swering the shortest unique palindromic substring problem, which is motivated by molecular

biology [Inoue et al., 2018]. Given a string T of length n, all MUPSs of T can be computed in

O(n) time. We first analyze the number d of changes of MUPSs when a character is substituted,

and show that d is in O(log n). Further, we present an algorithm that uses O(n) time and space

for preprocessing, and updates the set of MUPSs in O(log σ+(log log n)2 + d) time where σ is

the alphabet size. We also propose a variant of the algorithm, which runs in optimal O(1 + d)
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time when the alphabet size is constant.

Fourth, we deal with the problem of computing maximal/distinct palindromes in a trie T . A

trie is a natural generalization of a string which can be seen as a single path tree. It is known that

all maximal palindromes of a given string T of length n can be computed in O(n) time [Man-

acher 1975]. Also, all distinct palindromes in T can be computed in O(n) time [Groult et al.,

2010]. We propose algorithms to compute all maximal palindromes and all distinct palindromes

in T in O(N log h) time and O(N) space, where N is the number of edges in T and h is the

height of T . We also show online algorithms to compute all maximal/distinct palindromes in a

trie in O(N logN) time and O(N) space.
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Chapter 1

Introduction

1.1 Background and Motivations

In recent years, with the spread of the Internet, the development of sensor technology, and the

widespread use of mobile devices, an enormous amount of diverse data has been generated

daily. It is easy to predict that this data will continue to increase dramatically in the future, but

most of it is accumulated or discarded without being utilized. Therefore, there is an urgent need

for technology to process and utilize vast amounts of data instantaneously. Since most data

can be regarded as strings, it is necessary to develop efficient data processing technology that

takes advantage of the properties of strings. For this purpose, knowledge of the combinatorial

structures of strings is indispensable. For example, repetitive structures are closely related to

string compression, and strings with many repetitive structures are known to be small in practice

under several compressors. For another example, finding palindromic structures has important

applications to analyze biological data. Besides, most of the Internet data, sensor data, and

social data are updated and edited at any time, so it is necessary to develop dynamic string

processing techniques. There are several types of dynamic data, fully dynamic data (namely,

the data where arbitrary positions can be updated many times), semi-dynamic data where editing

position is limited, and the data with a limited number of edits.

In this thesis, we focus on the analysis of combinatorial structures and the development

of algorithms in dynamic strings. We tackle the following two problems regarding repeti-

tive/palindromic structures among the combinatorial structures: (A) The problem of analyzing

the changes of repetitiveness measures and the size of string compressors in a dynamic string.

(B) The problem of analyzing the changes and developing efficient finding algorithms for palin-

dromic structures in a dynamic string.
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CHAPTER 1. INTRODUCTION

1.2 Our Contribution

1.2.1 Repetitive Structures

Sensitivity of String Compressors and Repetitive Measures

In the first part of this thesis we introduce a new notion to quantify efficiency of (lossless)

compression algorithms, which we call the sensitivity of compressors. Let C be a compression

algorithm and let C(T ) denote the size of the output of C applied to an input text (string) T .

Roughly speaking, the sensitivity of C measures how much the compressed size C(T ) can

change when a single-character-wise edit operation is performed at an arbitrary position in T .

Namely, the worst-case multiplicative sensitivity of C is defined by

max
T∈Σn

{C(T ′)/C(T ) : ed(T, T ′) = 1},

where ed(T, T ′) denotes the edit distance between T and T ′. This new and natural notion

enables one to measure the robustness of compression algorithms in terms of errors and/or

dynamic changes occurring in the input string. Such errors and dynamic changes are commonly

seen in real-world texts such as DNA sequences and versioned documents.

The so-called highly repetitive sequences, which are strings containing a lot of repeated

fragments, are abundant today: Semi-automatically generated strings via M2M communica-

tions, and collections of individual genomes of the same/close species are typical examples. By

intuition, such highly repetitive sequences should be highly compressible, however, statistical

compressors are known to fail to capture repetitiveness in a string [79]. Therefore, other types

of compressors, such as dictionary-based, grammar-based, and/or lex-based compressors are

often used to compress highly repetitive sequences [61, 81, 84, 114].

Let us recall two examples of well-known compressors: The run-length Burrows-Wheeler

Transform (RLBWT) is one kind of compressor that is based on the lexicographically sorted

rotations of the input string. The number r of equal-character runs in the Burrows-Wheeler

Transform (BWT) of a string is known to be very small in practice: Indeed, BWT is used in

the bzip2 compression format, and several compressed data structures which support efficient

queries have been proposed [11, 43, 101, 102]. The Lempel-Ziv 78 compression (LZ78) [124]

is one of the most fundamental dictionary based compressors that is a core of in the gif and tiff

compression formats. While LZ78 only allows Ω(
√
n) compression for any string of length n,

its simple structure has allowed to design efficient compressed pattern matching algorithms and

compressed self-indices (c.f. [35, 46, 47, 70, 96] and references therein).
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CHAPTER 1. INTRODUCTION

The recent work by Giuliani et al. [54], however, shows that the number r of runs in the BWT

of a string of length n can grow by a multiplicative factor of Ω(log n) when a single character

is prepended to the input string. The other work by Lagarde and Perifel [83] shows that the

size of the dictionary of LZ78, which is equal to the number of factors in the respective LZ78

factorization, can grow by a multiplicative factor of Ω(n1/4), again when a single character

is prepended to the input string. Letting the LZ78 dictionary size be z78, this multiplicative

increase can also be described as Ω(z
3/2
78 ). Lagarde and Perifel call this phenomenon “one-bit

catastrophe”. In our context, the sensitivity of r and that of z78 are both high, since a mere single

character insertion at the beginning of the string can drastically change the output size of these

compressors.

In this thesis, we show that such a catastrophe never happens with the other major dictionary

compressors, the Lempel-Ziv 77 compression family. The LZ77 compression [123], which is

the greedy parsing of the input string T where each factor of length more than one refers to a

previous occurrence to its left, is the most important dictionary-based compressor both in theory

and in practice. The LZ77 compression without self-references (resp. with self-references) can

achieve O(log n) compression (resp. O(1) compression) in the best case as opposed to the

Ω(
√
n) compression by the LZ78 counterpart, and the LZ77 compression is a core of common

lossless compression formats including gzip, zip, and png. In addition, its famous version called

LZSS (Lempel-Ziv-Storer-Szymanski) [115], has numerous applications in string processing,

including finding repetitions [12, 31, 59, 76], approximation of the smallest grammar-based

compression [28, 110], and compressed self-indexing [13, 14, 18, 97], just to mentioned a few.

We show that the multiplicative sensitivity of LZ77 with/without self-references is at most

2, namely, the number of factors in the respective LZ77 factorization can increase by at most a

factor of 2 for all types of edit operations (substitution, insertion, deletion of a character). Then,

we prove that the multiplicative sensitivity of LZSS with/without self-references is at most 3

for substitutions and deletions, and that it is at most 2 for insertions. We also present matching

lower bounds for the multiplicative sensitivity of LZ77/LZSS with/without self-references for

all types of edit operations as well. These results show that, unlike RLBWT and LZ78, LZ77

and LZSS well capture the repetitiveness of the input string, since a mere single character edit

operation should not much influence the repetitiveness of a sufficiently long string. We also

consider the smallest bidirectional scheme [115] that is a generalization of the LZ family where

each factor can refer to its other occurrence to its left or right. It is shown that for all types of

edit operations, the multiplicative sensitivity of the size b of the smallest bidirectional scheme

is at most 2, and that there exists a string for which the multiplicative sensitivity of b is 1.5.

3



CHAPTER 1. INTRODUCTION

Further, we extend the notion of the worst-case multiplicative sensitivity to string repet-

itiveness measures such as the size γ of the smallest string attractor [69] and the substring

complexity δ [74], both receiving recent attention [29, 68, 82, 88, 106]. We prove that the value

of δ can increase by at most a factor of 2 for substitutions and insertions, and by at most a factor

of 1.5 for deletions. We show these upper bounds are also tight by presenting matching lower

bounds for the sensitivity of δ. We also present non-trivial lower bounds for the sensitivity of γ.

As is mentioned above, the work by Lagarde and Perifel [83] considered only the case of

prepending a character to the string for the multiplicative sensitivity of LZ78. We present the

same lower bounds hold for the multiplicative sensitivity of LZ78 in the case of substitutions

and deletions, and insertions inside the string, by using a completely different instance from the

one used in [83]. Moreover, we consider the multiplicative sensitivity of other compressors and

repetitiveness measures including Bisection [99], GCIS [103, 104], CDAWGs [22], α-balanced

grammars [28], AVL-grammars [110], and Recompression [66] in our paper [2]. (We omit the

details in this thesis.)

All the results reported in the article and in the related work are summarized in Table 1.1.

In addition to the afore-mentioned multiplicative sensitivity, we also present the worst-case

additive sensitivity which is defined as

max
T∈Σn

{C(T ′)− C(T ) : ed(T, T ′) = 1}

for all the string compressors/repetitiveness measures C dealt in this thesis. We remark that the

additive sensitivity allows one to observe and evaluate more details in the changes of the output

sizes, as summarized in Table 1.2. For instance, we obtain strictly tight upper and lower bounds

for the additive sensitivity of LZ77 with and without self-references.

1.2.2 Palindromic Structures

Palindromes are strings that read the same forward and backward. Finding palindromic struc-

tures in strings has important applications in analysis of DNA, RNA, and protein sequences,

and thus a variety of efficient algorithms for finding palindromic structures occurring in a given

string have been proposed (e.g., see [9, 48, 56, 75, 78, 90, 105] and references therein).

Consider a set C = {1, 1.5, 2, . . . , n} of 2n−1 half-integer and integer positions in a string T

of length n. The maximal palindrome for a position c ∈ C in T is a non-extensible palindrome

whose center lies on c. It is easy to store all maximal palindromes with O(n) total space; e.g.,

simply store their lengths in an array of length 2n − 1 together with the input string T . If

4



CHAPTER 1. INTRODUCTION

Table 1.1: Multiplicative sensitivity of the string compressors and string repetitiveness measures

studied in this thesis and in the literature, where n is the input string length and Σ is the alphabet.

In the table “sr” stands for “with self-references”.

compressor/repetitiveness measure edit type upper bound lower bound

Substring Complexity δ
ins./subst. 2 2

deletion 1.5 1.5

Smallest String Attractor γ all - 2

RLBWT r
insertion

O(log n log r)
Ω(log n) [54]

del./subst. -

Bidirectional Scheme b all 2 1.5

LZ77 z77
all 2 2

LZ77sr z77sr

LZSS zSS del./subst. 3 3

LZSSsr zSSsr insertion 2 2

LZ78 z78
insertion - Ω(n1/4) [83]

del./subst. - Ω(n1/4)

LZ-End zEnd all - 2

α-balanced grammar gα

all O(log n) -AVL grammar gavl

Recompression grcmp

Bisection gbsc
substitution 2 2

ins./del. |Σ|+ 1 2

GCIS gis all 4 4

CDAWG e all - 2

5



CHAPTER 1. INTRODUCTION

Table 1.2: Additive sensitivity of the string compressors and string repetitiveness measures

studied in this thesis, where n is the input string length and Σ is the alphabet. Some upper/lower

bounds are described in terms of both the measure and n. In the table “sr” stands for “with self-

references”.

compressor/
edit type upper bound lower bound

repetitiveness measure

Substring Complexity δ all 1 1

Smallest String Attractor γ all - γ − 3 Ω(
√
n)

RLBWT r
insertion

O(r log n log r) -
Ω(log n) [54]

del./subst. -

Bidirectional Scheme b all b+ 2 b/2− 3 Ω(
√
n)

LZ77 z77
subst./ins. z77 − 1 z77 − 1

Ω(
√
n)

deletion z77 − 2 z77 − 2

LZ77sr z77
subst./ins.

z77sr
z77sr

Ω(
√
n)

deletion z77sr − 2

LZSS zSS
del./subst. 2zSS − 2 2zSS −Θ(

√
zSS)

Ω(
√
n)

insertion zSS zSS −Θ(
√
zSS)

LZSSsr zSSsr
del./subst. 2zSSsr 2zSSsr −Θ(

√
zSSsr)

Ω(
√
n)

insertion zSSsr + 1 zSSsr −Θ(
√
zSSsr)

LZ78 z78
insertion - Ω((z78)

3/2) [83] Ω(n/ log n) [83]

del./subst. - Ω((z78)
3/2) Ω(n3/4)

LZ-End zEnd all - zEnd −Θ(
√
zEnd) Ω(

√
n)

α-balanced grammar gα

all O(zSS log n) -AVL grammar gavl

Recompression grcmp

Bisection gbsc
substitution gbsc �log2 n� gbsc − 4 2 log2 n− 4

ins./del. |Σ|gbsc gbsc − 3 2 log2 n− 3

GCIS gis all 3gis 3gis − 29 (3/4)n+ 1

CDAWG e all - e n

6



CHAPTER 1. INTRODUCTION

P = T [i..j] is a maximal palindrome with center c = i+j
2

, then clearly any substrings P ′ =

T [i + d..j − d] with 0 ≤ d ≤ j−i
2

are also palindromes. Hence, by computing and storing all

maximal palindromes in T , we can obtain a compact representation of all palindromes in T .

Manacher [86] gave an elegant O(n)-time algorithm to compute all maximal palindromes

in T . This algorithm utilizes symmetry of palindromes and character equality comparisons

only, and therefore works in O(n) time for any alphabet. For the case where the input string

is drawn from a constant size alphabet or an integer alphabet of size polynomial in n, there is

an alternative suffix tree [120] based algorithm which takes O(n) time [58]. In this method,

the suffix tree of T#TR$ is constructed, where TR is the reversed string of T , and # and $

are special characters not occurring in T . By enhancing the suffix tree with a lowest common

ancestor (LCA) data structure [34], outward longest common extension (LCE) queries from a

given c ∈ C can be answered in O(1) time after an O(n)-time preprocessing. Therefore, we can

compute all maximal palindromes in O(n) time by using outward LCE queries for each center

position.

Another central question regarding palindromic substrings is distinct palindromes. Droubay

et al. [33] showed that any string of length n can contain at most n+1 distinct palindromes (in-

cluding the empty string). Strings of length n that contain exactly n+1 distinct palindromes are

called rich strings in the literature [25, 55]. Groult et al. [56] proposed an O(n)-time algorithm

for computing all distinct palindromes in a string of length n over a constant-size alphabet or

an integer alphabet of size polynomial in n.

Longest Palindromic Substring After Edit

In the second part of this thesis, we consider the fundamental problem of finding the longest

palindromic substring (LPS) in a given string T . Observe that the longest palindromic substring

is also a maximal palindrome in the string. Hence, in order to compute the LPS of a given string

T , it suffices to compute all maximal palindromes in T . Therefore the LPS in a string can be

computed in O(n) time. Finding the longest palindromic substring in the streaming model has

also been considered [17, 53]. Getting back to the problem of computing all maximal palin-

dromes, there is a simple O(n)-space data structure representing all of the computed maximal

palindromes. However, this data structure is apparently not flexible for string edits, since even

a single character substitution, insertion, or deletion can significantly break palindromic struc-

tures of the string. Indeed, Ω(n2) palindromic substrings and Ω(n) maximal palindromes can

be affected by a single edit operation (E.g., consider to replace the middle character of string an

with another character b). Hence, an intriguing question is whether there exists a space-efficient

7



CHAPTER 1. INTRODUCTION

data structure for the input string T which can quickly answer the following query: What is

the length of the longest palindromic substring(s), if single character substitution, insertion, or

deletion is performed? We call this a 1-ELPS query.

In this thesis, we present an algorithm which uses O(n) time and space for preprocessing,

and O(log(min{σ, log n})) time for 1-ELPS queries, where σ is the number of distinct charac-

ters appearing in T . Thus, our query algorithm runs in optimal O(1) time for any constant-size

alphabet, and runs in O(log log n) time for larger alphabets of size σ = Ω(log n). In addition,

this algorithm can readily be extended to a randomized version with hashing, which answers

queries in O(1) time each and uses O(n) expected time and O(n) space for preprocessing. We

also consider a more general variant of 1-ELPS queries which allows for a block-wise edit oper-

ation, where an existing substring in the input string T can be replaced with a string of arbitrary

length �, called an �-ELPS queries. We present an algorithm which uses O(n) time and space

for preprocessing and O(� + log(min{σ, log n})) time for �-ELPS queries. We emphasize that

this query time is independent of the length of the original block (substring) to be edited.

Minimal Unique Palindromic Substring After Edit

In the third part of this thesis, we treat a notion of palindromic structures called minimal unique

palindromic substring (MUPS) that is introduced in [65]. A palindromic substring T [i..j] of

a string T is called a MUPS of T if T [i..j] occurs exactly once in T and T [i + 1..j − 1]

occurs at least twice in T . MUPSs are utilized for solving the shortest unique palindromic

substring (SUPS) problem proposed by Inoue et al. [65], which is motivated by an application

in molecular biology. They showed that there are no more than n MUPSs in any length-n string,

and proposed an O(n)-time algorithm to compute all MUPSs of a given string of length n over

an integer alphabet of size nO(1). After that, Watanabe et al. [119] considered the problem of

computing MUPSs in an run-length encoded (RLE) string. They showed that there are no more

than m MUPSs in a string whose RLE size is m. Also, they proposed an O(m log σR)-time and

O(m)-space algorithm to compute all MUPSs of a string given in RLE, where σR is the number

of distinct single-character runs in the RLE string. Recently, Mieno et al. [91] considered the

problems of computing palindromic structures in the sliding window model. They showed that

the set of MUPSs in a sliding window can be maintained in a total of O(n log σW ) time and

O(D) space while a window of size D shifts over a string of length n from the left-end to

the right-end, where σW is the maximum number of distinct characters in the windows. This

result can be rephrased as follows: The set of MUPSs in a string of length D can be updated

in amortized O(log σW ) time using O(D) space after deleting the first character or inserting a

8
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character to the right-end.

To the best of our knowledge, there is no efficient algorithm for updating the set of MUPSs

after editing a character at any position so far. Now, we consider the problem of updating the

set of MUPSs in a string after substituting a character at any position. Formally, we tackle

the following problem: Given a string T of length n over an integer alphabet of size nO(1) to

preprocess, and then given a query of single-character substitution. Afterwards, we return the

set of MUPSs of the edited string. In this thesis, we first show that the number d of changes of

MUPSs after a single-character substitution is O(log n). In addition, we present an algorithm

that uses O(n) time and space for preprocessing, and updates the set of MUPSs in O(log σ +

(log log n)2 + d) ⊂ O(log n) time. We also propose a variant of the algorithm, which runs in

optimal O(1 + d) time when the alphabet size is constant.

Palindromes in a Trie

In the fourth part of this thesis, we tackle the problems of computing palindromes in a given

trie. A trie is a rooted tree where each edge is labeled by a single character and the out-going

edges of each node are labeled by mutually distinct characters. A trie is a natural extension to

a string, and is a compact representation of a set of strings. There are a number of works for

efficient algorithms on tries, such as indexing a (reversed) trie [23, 36, 63, 64, 77, 93, 95, 113]

for exact pattern matching, parameterized pattern matching on a trie [8, 39], order preserving

pattern matching on a trie [94], finding all maximal repetitions (a.k.a. runs) in a trie [116],

computing all minimal absent words in a trie [37], reporting all covers in a trie [108].

Now we consider the problems of computing all maximal palindromes and all distinct palin-

dromes in a given trie T . Naı̈ve methods for solving the problems would be to apply Manacher’s

algorithm [86] or Groult et al.’s algorithm [56] for each string in T , but this requires Ω(N2) time

in the worst case since there exists a trie with N edges that can represent Θ(N) strings of length

Θ(N) each. We also remark that a direct application of Manacher’s algorithm to a trie does not

seem to solve our problem efficiently, since the amortization argument in the case of a single

string does not hold in our case of a trie. The aforementioned suffix tree approach [58] cannot

be applied to our trie case either; while the number of suffixes in the reversed leaf-to-root di-

rection of the trie T is N , the number of suffixes in the forward root-to-leaf direction can be

Θ(N2) in the worst case. Thus one cannot afford to construct the suffix tree that contains all

suffixes of the forward paths of T .

In this thesis, we show that the number of maximal palindromes in a trie T with N edges

and L leaves is exactly 2N − L and that the number of distinct palindromes in T is at most

9
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N +1. These generalize the known bounds for a single string. Then, we present two algorithms

to compute all maximal palindromes both of which run in O(N log h) time and O(N) space in

the worst case, where h is the height of the trie T . We then present how to compute all distinct

palindromes in a given trie T in O(N log h) time with O(N) space. We also show online

algorithms computing all maximal/distinct palindromes in a trie in O(N logN) time and O(N)

space. The key tools we use are periodicities of suffix palindromes and string data structures

that are built on the (reversed) trie. To the best of our knowledge, these are the first algorithms

for finding maximal/distinct palindromes from a given trie in sub-quadratic time.

1.3 Related Work

Related Work of Sensitivity

A string repetitiveness measure C is called monotone if, for any string T of length n, C(T ′) ≤
C(T ) holds with any of its prefixes T ′ = T [1..i] and suffixes T ′ = [j..n] [74]. Kociumaka

et al [74] pointed out that δ is monotone, and posed a question whether γ or the size b of the

smallest bidirectional macro scheme [115] are monotone. This monotonicity for C can be seen

as a special and extended case of our sensitivity for deletions, namely, if we restrict T ′ to be the

string obtained by deleting either the first or the last character from T , then it is equivalent to

asking whether maxT∈Σ{C(T ′)/C(T ) : T ′ ∈ {T [1..n − 1], T ′ = T ′[2..n]}} ≤ 1. Mantaci et

al. [88] proved that γ is not monotone, by showing a family of strings T such that γ(T ) = 2

and γ(T ′) = 3 with T ′ = T [1..n− 1], which immediately leads to a lower bound 3/2 = 1.5 for

the multiplicative sensitivity of γ. Our matching upper and lower bounds for the multiplicative

sensitivity of γ, which are both 2, improve this existing bound due to Mantaci et al.. Mitsuya

et al. [92] considered the monotonicity of LZ77 without self-references z77 presented a family

of strings T for which z77(T
′)/z77(T ) ≈ 4/3 with T ′ = [2..n]. Again, our matching upper and

lower bounds for the multiplicative sensitivity of z77, which are both 2, improve this 4/3 bound.

The notion of the sensitivity of (general) algorithms was first introduced by Varma and

Yoshida [118]. They studied the average sensitivity of well-known graph algorithms, and pre-

sented interesting lower and upper bounds on the expected number of changes in the output of

an algorithm A, when a randomly chosen edge is deleted from the input graph G. The worst-

case sensitivity of a graph algorithm for edge-deletions and vertex-deletions was considered by

Yoshida and Zhou [122].

10
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1.3.1 Related Work of After-Edit Problem

Amir et al. [5] proposed an algorithm to find the longest common factor (LCF) of two strings,

after a single character edit operation is performed in one of the strings. Their data structure

occupies O(n log3 n) space and uses O(log3 n) query time, where n is the length of the in-

put strings. Their data structure can be constructed in O(n log4 n) expected time. After that,

Abedin et al. [1] showed that the above problem can be reduced to the heaviest induced ances-

tors problem over two trees and solved in O(log n log log n) (resp. O(log2 n log log n)) query

time using an O(n log n) (resp. O(n)) space data structure. Urabe et al. [117] considered the

problem of computing the longest Lyndon word in a string after an edit operation. They showed

algorithms for O(log n)-time queries for a single character edit operation and O(� log σ+log n)-

time queries for a block-wise edit operation, both using O(n) time and space for preprocessing.

We note that in these results including ours, edit operations are given as queries and thus the

input string(s) remain static even after each query. This is due to the fact that changing the data

structure dynamically can be too costly in many cases.

It is noteworthy, however, that recently Amir et al. [7] solved dynamic versions for the LCF

problem and some of its variants. In particular, when n is the maximum length of the string

that can be edited, they showed a data structure of O(n log n) space that can be dynamically

maintained and can answer 1-ELPS queries in O(
√
n log2.5 n) time, after O(n log2 n) time pre-

processing. Furthermore, Amir et al. [3] presented an algorithm for computing the longest

palindrome in a dynamic string in O(polylog n) time per single character substitution. In com-

parison to these recent results on dynamic strings, although our algorithm does not allow for

changing the string, our algorithm answers 1-ELPS queries in O(log log n) time or even faster

for small alphabet size σ, which is exponentially faster than O(polylog n).

In addition, Amir et al. [4] presented fully dynamic algorithm for maintaining a represen-

tation of the squares and Charalampopoulos et al. [26] showed polylogarithmic time algorithm

for the LCF problem of two dynamic strings.

1.3.2 Related Work of Palindromes in a Trie

There are a few combinatorial results for palindromes in an unrooted edge-labeled tree. Brlek et

al. [24] showed an Ω(M3/2) lower bound on the maximum number of distinct palindromes in an

unrooted tree with M edges. Later Gawrychowski et al. [50] showed a matching upper bound

O(M3/2) on the maximum number of distinct palindromes in an unrooted tree with M edges.

Moreover, they proposed O(M1.5 logM)-time algorithm for reporting all distinct palindromes

11
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in an unrooted tree in [51]. Note that these works consider an unrooted tree, and, to the best

of our knowledge, palindromes of a trie (rooted edge-labeled tree) have previously not been

studied. Concerning repetitive structures in tries, Sugahara et al. [116] proved that any trie

with N edges can contain less than N maximal repetitions (or runs), and showed that all runs

in a given trie can be found in O(N log logN) time with O(N) space. In addition, Fici and

Gawrychowski [37] showed that the size of the set of minimal absent words in a rooted (resp.

unrooted) tree with N edges (resp. M edges) can be bounded in O(Nσ) (resp. O(M2σ)) where

σ is the alphabet size. Also they showed that these bounds are tight. Then, they presented

algorithms to compute all minimal absent words in a rooted (resp. unrooted) tree in output-

sensitive O(N + occ) time (resp. O(M2 + occ) time). Recently, Radoszewski et al. [108]

showed how to compute all covers of a rooted (resp. unrooted) tree in O(N logN/ log logN)

time (resp. O(M2) time and space or O(M2 logM) time and O(M) space).

1.4 Organization

This thesis is organized as follows. In Chapter 2, we introduce some notation and definitions. In

addition, we explain some algorithmic tools. In Chapter 3, we present the worst-case sensitivity

of several string compressors and repetitiveness measures. In Chapter 4, we show algorithms

for computing the longest palindromic substring of a string after a single character/block-wise

edit operation. In Chapter 5, we show upper bounds on the changes of the set of MUPSs after

a single-character substitution. Furthermore, we present an algorithm for updating the set of

MUPSs after a single-character substitution. In Chapter 6, we show tight bounds on the number

of maximal palindromes and distinct palindromes in a trie. In addition, we present algorithms

to compute all maximal/distinct palindromes in a trie. Finally, we conclude.
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Chapter 2

Preliminaries

2.1 Notation

Let Σ be an alphabet of size σ. An element of Σ is called a character. An element of Σ∗ is

called a string. For any non-negative integer n, let Σn denote the set of strings of length n over

Σ. The length of a string T is denoted by |T |. The empty string ε is the string of length 0. For

a string T = xyz, then x, y, and z are called a prefix, substring, and suffix of T , respectively.

They are called a proper prefix, proper substring, proper suffix of T if x 	= T , y 	= T , and

z 	= T , respectively. For each 1 ≤ i ≤ |T |, T [i] denotes the i-th character of T . For each

1 ≤ i ≤ j ≤ |T |, T [i..j] denotes the substring of T starting at position i and ending at position

j. For convenience, let T [i..j] = ε for any i > j.

For strings X and Y , let lcp(X, Y ) denotes the length of the longest common prefix (in

short, lcp) of X and Y , i.e., lcp(X, Y ) = max{� | X[1..�] = Y [1..�]}. A rightward longest

common extension (rightward LCE) query on a string T is to compute lcp(T [i..|T |], T [j..|T |])
for given two positions 1 ≤ i 	= j ≤ |T |. Similarly, a leftward LCE query is to compute

lcp(T [1..i]R, T [1..j]R). We denote by RightLCET (i, j) and LeftLCET (i, j) rightward and left-

ward LCE queries for positions 1 ≤ i 	= j ≤ |T |, respectively. An outward LCE query is,

given two positions 1 ≤ i < j ≤ |T |, to compute lcp((T [1..i])R, T [j..|T |]). We denote by

OutLCET (i, j) an outward LCE query for positions i < j in the string T .

An integer p ≥ 1 is said to be a period of a string T iff T [i] = T [i+p] for all 1 ≤ i ≤ |T |−p.

If a string B is both a proper prefix and a proper suffix of another string T , then B is called a

border of T . A factorization of a non-empty string T is a sequence f1, . . . , fx of non-empty

substrings of T such that T = f1 · · · fx. Each fi is called a factor. The size of the factorization

is the number x of factors in the factorization. The run length (RL) factorization of a string T is
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a sequence f1, . . . , fm of maximal runs of the same characters such that T = f1 · · · fm (namely,

each RL factor fj is a repetition of the same character aj with aj 	= aj+1). For each position

1 ≤ i ≤ n in T , let RLFBeg(i) and RLFEnd(i) denote the beginning and ending positions of

the RL factor that contains the position i, respectively. One can easily compute in O(n) time

the RL factorization of string T of length n together with RLFBeg(i) and RLFEnd(i) for all

positions 1 ≤ i ≤ n.

For non-empty strings T and w, begT (w) denotes the set of beginning positions of oc-

currences of w in T . Also, for a text position i in T , inbegT,i(w) denotes the set of begin-

ning positions of occurrences of w in T where each occurrence covers position i. Namely,

begT (w) = {b | T [b..e] = w} and inbegT,i(w) = {b | T [b..e] = w and i ∈ [b, e]}. Fur-

ther, let xbegT,i(w) = begT (w) \ inbegT,i(w). For convenience, |begT (ε)| = |inbegT,i(ε)| =
|xbegT,i(ε)| = |T | + 1 for any T and i. We say that w is unique in T if |begT (w)| = 1, and that

w is repeating in T if |begT (w)| ≥ 2. Note that the empty string is repeating in any other string.

Since every unique substring u = T [i..j] of T occurs exactly once in T , we will sometimes

identify u with its corresponding interval [i, j].

Our model of computation is a standard word RAM model with machine word size Θ(log n).

2.2 Worst-Case Sensitivity of Compressors and Repetitive-

ness Measures

For a string compression algorithm C and an input string T , let C(T ) denote the size of the

compressed representation of T obtained by applying C to T . For convenience, we use the

same notation when C is a string repetitiveness measure, namely, C(T ) is the value of the

measure C for T .

Let us consider the following edit operations on strings: character substitution (sub), char-

acter insertion (ins), and character deletion (del). For two strings T and S, let ed(T, S) denote

the edit distance between T and S, namely, ed(T, S) is the minimum number of edit operations

that transform T into S.

Our interest in this thesis is: “How much can the compression size or the repetitiveness

measure size change when a single-character-wise edit operation is performed on a string?” To

answer this question, for a given string length n, we consider an arbitrarily fixed string T of

length n and all strings T ′ that can be obtained by applying a single edit operation to T , that

is, ed(T, T ′) = 1. We define the worst-case multiplicative sensitivity of C w.r.t. a substitution,
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insertion, and deletion as follows:

MSsub(C, n) = max
T∈Σn

{C(T ′)/C(T ) : T ′ ∈ Σn, ed(T, T ′) = 1},
MSins(C, n) = max

T∈Σn
{C(T ′)/C(T ) : T ′ ∈ Σn+1, ed(T, T ′) = 1},

MSdel(C, n) = max
T∈Σn

{C(T ′)/C(T ) : T ′ ∈ Σn−1, ed(T, T ′) = 1}.

We also consider the worst-case additive sensitivity of C w.r.t. a substitution, insertion, and

deletion, as follows:

ASsub(C, n) = max
T∈Σn

{C(T ′)− C(T ) : T ′ ∈ Σn, ed(T, T ′) = 1},
ASins(C, n) = max

T∈Σn
{C(T ′)− C(T ) : T ′ ∈ Σn+1, ed(T, T ′) = 1},

ASdel(C, n) = max
T∈Σn

{C(T ′)− C(T ) : T ′ ∈ Σn−1, ed(T, T ′) = 1}.

We remark that, in general, C(T ′) can be larger than C(T ) even when T ′ is obtained by

a character deletion from T (i.e. |T ′| = n − 1). Such strings T are already known for the

Lempel-Ziv 77 factorization size z when T ′ = T [2..n] [92], or for the smallest string attractor

size γ when T ′ = T [1..n− 1] [88].

The above remark implies that in general the multiplicative/additive sensitivity for insertions

and deletions may not be symmetric and therefore they need to be discussed separately for

some C. Note, on the other hand, that the maximum difference between C(T ′) and C(T )

when |T ′| = n − 1 (deletion) and C(T ′) − C(T ) < 0 is equivalent to ASins(C, n − 1), and

symmetrically the maximum difference of C(T ′) and C(T ) when |T ′| = n + 1 (insertion) and

C(T ′)−C(T ) < 0 is equivalent to ASdel(C, n+1), with the roles of T and T ′ exchanged. Similar

arguments hold for the multiplicative sensitivity with insertions/deletions. Consequently, it

suffices to consider MSins(C, n), MSdel(C, n), ASins(C, n), ASdel(C, n) for insertions/deletions.

2.3 Palindromes

Let TR denote the reversed string of T , i.e., TR = T [|T |] · · ·T [1]. A string T is called a

palindrome if T = TR. We remark that the empty string ε is also considered to be a palindrome.

A palindrome w is called an even-palindrome (resp. odd-palindrome) if its length is even (resp.

odd). For a palindrome w, its length-�|w|/2� prefix (resp. length-�|w|/2� suffix) is called

the left arm (resp. right arm) of w, and is denoted by larmw (resp. rarmw). Also, we call

Larmw = larmw · sw (resp. Rarmw = sw · rarmw) the extended left arm (resp. extended right

arm) of w where sw is the character at the center of w if w is an odd-palindrome, and sw is empty

15



CHAPTER 2. PRELIMINARIES

otherwise. Note that when w is an even-palindrome, Rarmw = rarmw and Larmw = larmw. For

a non-empty palindromic substring w = T [i..j] of a string T , the center of w is i+j
2

and is

denoted by center(w). A non-empty palindromic substring T [i..j] is said to be a maximal

palindrome of T if T [i − 1] 	= T [j + 1], i = 1, or j = |T |. It is clear that for each center

c = 1, 1.5, . . . , n − 0.5, n, we can identify the maximal palindrome T [i..j] whose center is c.

Thus, there are exactly 2n − 1 maximal palindromes in a string of length n (including empty

ones which occur at center i+j
2

when T [i] 	= T [j]). In particular, maximal palindromes T [1..i]

and T [i..|T |] for 1 ≤ i ≤ n are respectively called a prefix palindrome and a suffix palindrome

of T .

Manacher [86] showed an elegant online algorithm which computes all maximal palin-

dromes of a given string T of length n in O(n) time. An alternative offline approach is to

use outward LCE queries for 2n − 1 pairs of positions in T . Using the suffix tree [120] for

string T$TR# enhanced with a lowest common ancestor data structure [15, 60, 111], where $

and # are special characters which do not appear in T , each outward LCE query can be an-

swered in O(1) time. For any integer alphabet of size polynomial in n, preprocessing for this

approach takes O(n) time and space [34, 58]. Let M be an array of length 2n − 1 storing the

lengths of maximal palindromes in increasing order of centers. For convenience, we allow the

index for M to be an integer or a half-integer from 1 to n, so that M[i] stores the length of the

maximal palindrome of T centered at i.

A palindromic substring P of a string T is called a longest palindromic substring (LPS) if

there are no palindromic substrings of T which are longer than P . Since any LPS of T is always

a maximal palindrome of T , we can find all LPSs and their lengths in O(n) time.

For a non-empty palindromic substring w = T [i..j] of a string T and a non-negative integer

�, v = T [i − �..j + �] is said to be an expansion of w if 1 ≤ i − � ≤ j + � ≤ n and v is a

palindrome. Also, T [i+ �..j − �] is said to be a contraction of w.

A non-empty string w is called a 1-mismatch palindrome if there is exactly one mismatched

position between w[1..�|w|/2�] and w[�|w|/2�+1..|w|]R. Informally, a 1-mismatch palindrome

is a pseudo palindrome with a mismatch position between their arms. As in the case of palin-

dromes, a 1-mismatch palindromic substring T [i..j] of a string T is said to be maximal if i = 1,

j = n or T [i− 1] 	= T [j + 1].

A palindromic substring T [i..j] of a string T is called a minimal unique palindromic sub-

string (MUPS) of T if T [i..j] is unique in T and T [i + 1..j − 1] is repeating in T . We denote

by MUPS(T ) the set of intervals corresponding to MUPSs of a string T . A MUPS cannot be

a substring of another palindrome with a different center. Also, it is known that the number of
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MUPSs of T is at most n, and set MUPS(T ) can be computed in O(n) time for a given string

T over an integer alphabet [65].

Properties of Palindromes

The following properties of palindromes are useful in our algorithms.

Lemma 2.1. Any border B of a palindrome P is also a palindrome.

Proof. Since P is a palindrome, for any 1 ≤ m ≤ |P |, P [1..m] = (P [|P | −m+ 1..|P |])R.

Since B is a border of P , we have that B = P [1..|B|] = (P [|P | − |B|+ 1..|P |])R = BR.

Let T be a string of length n. For each 1 ≤ i ≤ n, let MaxPalEndT (i) denote the set

of maximal palindromes of T that end at position i. Let Si = s1, . . . , sg be the sequence

of lengths of maximal palindromes in MaxPalEndT (i) sorted in increasing order, where g =

|MaxPalEndT (i)|. Also, let s0 = ε. Let dj be the progression difference for sj , i.e., dj =

sj − sj−1 for 1 ≤ j ≤ g. We use the following lemma which is based on periodic properties of

maximal palindromes ending at the same position.

Lemma 2.2.

(i) For any 1 ≤ j < g, dj+1 ≥ dj .

(ii) For any 1 < j < g, if dj+1 	= dj , then dj+1 ≥ dj + dj−1.

(iii) Si can be represented by O(log i) arithmetic progressions, where each arithmetic pro-

gression is a tuple 〈s, d, t〉 representing the sequence s, s + d, . . . , s + (t − 1)d with

common difference d.

(iv) If t ≥ 2, then the common difference d is a period of every maximal palindrome which

ends at position i in T and whose length belongs to the arithmetic progression 〈s, d, t〉.

Each arithmetic progression 〈s, d, t〉 is called a group of maximal palindromes. See also

Figure 2.1 for a concrete example.

Similar arguments hold for the set MaxPalBegT (i) of maximal palindromes of T that begin

at position i. To prove Lemma 2.2, we use arguments from the literature [9, 45, 90]. Let us for

now consider any string W of length m. In what follows we will focus on suffix palindromes in

SufPals(W ) and discuss their useful properties. We remark that symmetric arguments hold for

prefix palindromes in PrePals(W ) as well. Let S′ = s′1, . . . , s
′
g′ be the sequence of lengths of
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G1

G2

G3

Figure 2.1: Examples of arithmetic progressions representing the maximal palindromes of a

string. The first group G1 is represented by 〈1, 1, 3〉, the second group G2 by 〈7, 4, 4〉, and the

third group G3 by 〈39, 20, 2〉.

suffix palindromes of S′ sorted in increasing order, where g′ = |SufPals(W )|. Also, let s′0 = ε.

Let d′j be the progression difference for s′j , i.e., d′j = s′j − s′j−1 for 1 ≤ j ≤ g′. Then, the

following results are known:

Lemma 2.3 ([9, 45, 90]).

(A) For any 1 ≤ j < g′, d′j+1 ≥ d′j .

(B) For any 1 < j < g′, if d′j+1 	= d′j , then d′j+1 ≥ d′j + d′j−1.

(C) S′ can be represented by O(logm) arithmetic progressions, where each arithmetic pro-

gression is a tuple 〈s′, d′, t′〉 representing the sequence s′, s′ + d′, . . . , s′ + (t′ − 1)d′ of

lengths of t′ suffix palindromes with common difference d′.

(D) If t′ ≥ 2, then the common difference d′ is a period of every suffix palindrome of W whose

length belongs to the arithmetic progression 〈s′, d′, t′〉.

The set of suffix palindromes of W whose lengths belong to the same arithmetic progression

〈s′, d′, t′〉 is also called a group of suffix palindromes. Clearly, every suffix palindrome in the

same group has period d′, and this periodicity will play a central role in our algorithms.

We are ready to prove Lemma 2.2.

Proof. It is clear that MaxPalEndT (i) ⊆ SufPals(T [1..i]), namely,

MaxPalEndT (i) = {s′ ∈ SufPals(T [1..i]) | T [i− s′] 	= T [i+ 1], i− s′ = 1, or i = n}.

The case where i = n is trivial, and hence in what follows suppose that i < n. Let c =

T [i + 1], and for a group 〈s′, d′, t′〉 of suffix palindromes let a = T [i − s′] and b = T [i −
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s′ − (t′ − 1)d′], namely, a (resp. b) is the character that immediately precedes the shortest

(resp. longest) palindrome in the group (notice that a = b when t′ = 1). Then, it follows

from Lemma 2.3 (D) that s′, s′ + d′, . . . , s′ + (t′ − 2)d′ ∈ MaxPalEndT (i) iff a 	= c. Also,

s′ + (t′ − 1)d′ ∈ MaxPalEndT (i) iff b 	= c. Therefore, for each group of suffix palindromes of

T [1..i], there are only four possible cases: (1) all members of the group are in MaxPalEndT (i),

(2) all members but the longest one are in MaxPalEndT (i), (3) only the longest member is in

MaxPalEndT (i), or (4) none of the members is in MaxPalEndT (i).

Now, it immediately follows from Lemma 2.3 that (i) dj+1 ≥ dj for 1 ≤ j < g and (ii)

dj+1 ≥ dj + dj−1 holds for 1 < j < g. Properties (iii) and (iv) also follow from the above

arguments and Lemma 2.3.

For all 1 ≤ i ≤ n we can compute MaxPalEndT (i) and MaxPalBegT (i) in total O(n)

time: After computing all maximal palindromes of T in O(n) time, we can bucket sort all the

maximal palindromes with their ending positions and with their beginning positions in O(n)

time each.

Also, by using lemmas in [9, 45, 90], the following corollary can be proven immediately:

Corollary 2.1. For a position i, divide the set of palindromic suffixes of T [1..i] into O(logm)

arithmetic progressions. Also, for each group Gk = 〈s′k, d′k, t′k〉, the following properties hold:

1. The difference between centers of any two palindromes in Gk is an integer power of 0.5d′k,

where d′k is their common difference.

2. For all maximal palindromes e1, . . . , et′ in T that are expansions of palindromes in Gk,

excluding at most one, their smallest period is also d′k.

3. Among e1, . . . , et′ , any palindrome is contained by the longest one or the second longest

one.

We remark that symmetric arguments hold for palindromic prefixes as well.

The following lemma states that the total sum of occurrences of strings which are extended

arms of MUPSs is O(n):

Lemma 2.4. The total sum of occurrences of the extended right arms of all MUPSs in a string

T is at most 2n. Similarly, the total sum of occurrences of the extended left arms of all MUPSs

in T is at most 2n.
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Proof. It suffices to prove the former statement for the extended right arms since the latter

can be proved symmetrically. Let w1 and w2 be distinct odd-length MUPSs of T with |w1| ≤
|w2|. For the sake of contradiction, we assume that T [j..j + |Rarmw1 | − 1] = Rarmw1 and

T [j..j + |Rarmw2 | − 1] = Rarmw2 for some position j in T . Namely, Rarmw1 is a prefix of

Rarmw2 . Then, larmw1 is a suffix of larmw2 by palindromic symmetry. This means that w1 is a

substring of w2. This contradicts that w2 is a MUPS of T . Thus, all occurrences of the extended

right arms of all odd-length MUPSs are different, i.e., the total number of the occurrences is

at most n. Similarly, the total number of all occurrences of the right arms of all even-length

MUPSs is also at most n.

2.4 Algorithmic Tools

This section lists some data structures used in our algorithms.

Suffix Trees

The suffix tree of T is the compacted trie for all suffixes of T [120]. We denote by STree(T )

the suffix tree of T . If a given string T is over an integer alphabet of size nO(1), STree(T ) can

be constructed in O(n) time [34]. Not all substrings of T correspond to nodes in STree(T ).

However, the loci of such substrings can be made explicit in linear time:

Lemma 2.5 (Corollary 8.1 in [73]). Given m substrings of T , represented by intervals in T , we

can compute the locus of each substring in STree(T ) in O(n+m) total time. Moreover, the loci

of all the substrings in STree(T ) can be made explicit in O(n+m) extra time.

Also, this lemma implies the following corollary:

Corollary 2.2. Given m substrings of T , represented by intervals in T , we can sort them in

O(n+m) time.

LCE Queries

An LCE query on a string T is, given two indices i, j of T , to compute RightLCET (i, j). Using

STree(T$) enhanced with a lowest common ancestor data structure, we can answer any LCE

query on T in constant time where $ is a special character with $ 	∈ Σ. In the same way,

we can compute the lcp value between any two suffixes of T or TR in constant time by using

STree(T$TR#) where # is another special character with # 	∈ Σ.
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NCA Queries

A nearest colored ancestor query (NCA query) on a tree T with colored nodes is, given a query

node v and a color C, to compute the nearest ancestor u of v such that the color of u is C.

Noticing that the notion of NCA is a generalization of well-known nearest marked ancestor.

For NCA queries, we will use the following known results:

Lemma 2.6 ([52]). Given a tree T with colored nodes, a data structure of size O(N) can be

constructed in deterministic O(N log logN) time or expected O(N) time to answer any NCA

query in O(log logN) time, where N is the number of nodes of T .

Lemma 2.7 ([21, 27]). If the number of colors is O(logN), a data structure of size O(N) can

be constructed in O(N) time to answer any NCA query in O(1) time.

Eertrees

The eertree (a.k.a. palindromic tree) of T is a pair of rooted edge-labeled trees Todd and Teven

representing all distinct palindromes in T [109]. The roots of Todd and Teven represent ε. Each

non-root node of Todd (resp. Teven) represents an odd-palindrome (resp. even-palindrome) which

occurs in T . Let pal(v) be the palindrome represented by a node v. For the root rodd of Todd,

there is an edge (rodd, u) labeled by a ∈ Σ if there is a node u with pal(u) = a. For any node

v in the eertree except for rodd, there is an edge (v, w) labeled by a ∈ Σ if there is a node w

with pal(w) = a · pal(v) · a. We denote by EERTREE(T ) the eertree of T . We will sometimes

identify a node u in EERTREE(T ) with its corresponding palindrome pal(u). Also, the path

from a node u to a node v in EERTREE(T ) is denoted by pal(u)� pal(v). If a given string T

is over an integer alphabet of size nO(1), EERTREE(T ) can be constructed in O(n) time [109].

Path-Tree LCE Queries

A path-tree LCE query is a generalized LCE query on a rooted edge-labeled tree T [19]: Given

three nodes u, v, and w in T where u is an ancestor of v, to compute the lcp between the

path-string from u to v and any path-string from w to a descendant leaf. The following result is

known:

Theorem 2.1 (Theorem 2 of [19]). For a tree T with N nodes, a data structure of size O(N)

can be constructed in O(N) time to answer any path–tree LCE query in O((log logN)2) time.

We will use later path-tree LCE queries on the eertree of the input string.
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Stabbing Queries

Let I be a set of n intervals, each of which is a subinterval of the universe U = [1, O(n)]. An

interval stabbing query on I is, given a query point q ∈ U , to report all intervals I ∈ I such

that I is stabbed by q, i.e., q ∈ I . We can answer such a query in O(1+k) time after O(n)-time

preprocessing, where k is the number of intervals to report [112].

2.5 Tries

A trie T = (V,E) is a rooted tree where each edge in E is labeled by a single character from Σ

and the out-going edges of a node are labeled by pairwise distinct characters. For any non-root

node u in T , let parent(u) denote the parent of u. For any node v in T , let children(v) denote

the set of children of v. For any node u and its arbitrary descendant v, we denote by str(u, v)

the substring of T that begins at u and ends at v.

A trie can be seen as a representation of a set of strings which are root-to-leaf path labels.

Note that for a trie with N edges, the total length of such strings can be quadratic in N . An

example can be given by the set of strings X = {xc1, xc2, · · · xcN} where x ∈ ΣN−1 is an

arbitrary string and c1, . . . , cN ∈ Σ are pairwise distinct characters. Here, the size of the trie

is Θ(N), while the total length of strings is Θ(N2). Also notice that the total number of dis-

tinct suffixes of strings in X is also Θ(N2). However if we consider the strings in the reverse

direction, i.e., consider edges of the trie to be directed toward the root, the number of distinct

suffixes is linear in the size N of the trie. We call it a reversed trie.

Consider a trie with N edges such that the root has a single out-edge labeled with a special

character $ that does not appear elsewhere in the trie and is lexicographically the smallest. We

consider the reversed trie of this trie. The suffix array of this reversed trie can be constructed in

O(N) time [36, 113]. Also, the longest common prefix array (LCP array) for this suffix array

can also be constructed in O(N) time [72].
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Sensitivity of String Compressors and
Repetitiveness Measures

In this chapter, we analyze changes of the size of string compressors and repetitiveness measures

in dynamic strings. We present the worst-case sensitivity of string compressors and repetitive-

ness measures: Section 3.1 deals with the substring complexity δ; Section 3.2 deals with the

smallest string attractor γ, Section 3.3 deals with the RLBWT r, Section 3.4 deals with the

smallest bidirectional scheme b, Section 3.5 deals with the LZ77 with/without self-references

z77 and z77sr; Section 3.6 deals with the LZSS with/without self-references zSS and zSSsr; Sec-

tion 3.7 deals with the LZ78 z78.

The results in this chapter primarily appeared in [2].

3.1 Substring Complexity

In this section, we consider the worst-case sensitivity of the string repetitiveness measure δ,

which is the substring complexity of strings [74]. For any string T of length n, the substring

complexity δ(T ) is defined as δ(T ) = max1≤k≤n (Substr(T, k)/k), where Substr(T, k) is the

number of distinct substrings of length k in T . It is known that δ(T ) ≤ γ(T ) holds for any

T [74].

In what follows, we present tight upper and lower bounds for the multiplicative sensitivity of

δ for all cases of substitutions, insertions, and deletions. We also present the additive sensitivity

of δ.
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3.1.1 Lower Bounds for Sensitivity of δ

Theorem 3.1. The following lower bounds on the sensitivity of δ hold:

substitutions: MSsub(δ, n) ≥ 2. ASsub(δ, n) ≥ 1.

insertions: MSins(δ, n) ≥ 2. ASins(δ, n) ≥ 1.

deletions: lim infn→∞ MSdel(δ, n) ≥ 1.5. lim infn→∞ ASdel(δ, n) ≥ 1.

Proof. substitutions: Consider strings T = an and T ′ = an−1b. Then δ(T ) = 1 and δ(T ′) = 2

hold. Thus we get MSsub(δ, n) ≥ 2 and ASsub(δ, n) ≥ 1.

insertions: Consider strings T = an and T ′ = anb. Then δ(T ) = 1 and δ(T ′) = 2 hold.

Thus we get MSins(δ, n) ≥ 2 and ASins(δ, n) ≥ 1.

deletions: Consider string

T = (abb)ma(bba)m+1
a3m(bba)m

with a positive integer m. Let n = 12m+4 = |T |. For the sake of exposition, let w1 = (abb)m ,

w2 = (bba)m+1, w3 = a3m, and w4 = (bba)m such that T = w1aw2w3w4. To analyze δ(T ),

we consider Substr(T, k) for four different groups of k, as follows:

• For 1 ≤ k ≤ 2: Since T is a binary string, max1≤k≤2 (Substr(T, k)/k) = 2.

• For 3 ≤ k ≤ 3m: The prefix w1aw2 = (abb)ma(bba)m+1 and the suffix w4 = (bba)m

contain three distinct substrings (abb)k/3, (bba)k/3, and (bab)k/3 for each length k, and

the substring w3 = a3m contains a unique substring ak for each length k. The remaining

distinct substrings must contain the range [6m + 4, 6m + 5] or [9m + 4, 9m + 5], which

are the left and right boundaries of w3, respectively. There are k − 1 distinct substrings

containing [6m+ 4, 6m+ 5] of form:

(bba)l1ak−3l1 for 1 ≤ l1 ≤ �(k − 1)/3�;
a(bba)l2−1

ak−3l2+2 for 1 ≤ l2 ≤ �(k + 1)/3�;
ba(bba)l3−1

ak−3l3+1 for 1 ≤ l3 ≤ �k/3�.
Also, there are k − 1 distinct substrings containing [9m+ 4, 9m+ 5] of form

ak−l4(bba)l4/3 for 1 ≤ l4 ≤ k − 1.

Notice however that the two substrings a(bba)l2−1
ak−3l2+2 = ak with l2 = 1 and

ak−l4(bba)l4/3 = (abb)k/3 with l4 = k − 1 have already been counted in the other po-

sitions in T , and thus these duplicates should be removed. Summing up all these, we

obtain Substr(T, k) = 3 + 1 + 2(k − 1) − 2 = 2k for every 3 ≤ k ≤ 3m, implying

max3≤k≤3m (Substr(T, k)/k) = 2.
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• For 3m < k ≤ n: The prefix w1aw2 contains at most three distinct substrings for every

k and the substrings w3 and w4 contain no substrings of length k > 3m. The remaining

distinct substrings must again contain the positions in [6m+4, 6m+5] or [9m+4, 9m+5].

These substrings can also be described in a similar way to the previous case for 3 ≤ k ≤
3m, except for how we should remove duplicates. We have the two following sub-cases:

– For k = 3m+ 1: Since ak = a3m+1 has no occurrences in T but (abb)k/3 has other

occurrences and it has already been counted, the number of such distinct substrings

is at most 2(k − 1)− 1.

– For k > 3m + 1: There exists at least one substring which contains both [6m +

4, 6m+ 5] and [9m+ 4, 9m+ 5]. Therefore, the number of such distinct substrings

is at most 2(k − 1)− 1.

Hence, Substr(T, k) ≤ 3 + 2(k − 1) − 1 = 2k for every 3m < k ≤ n, implying

max3m<k≤n (Substr(T, k)/k) ≤ 2.

Consequently, we have that δ(T ) = 2.

Consider the string

T ′ = (abb)m(bba)m+1a3m(bba)m = w1w2w3w4

that can be obtained from T by removing T [3m + 1] = a between w1 and w2. We consider

the number of distinct substrings of length 3m + 1 in T ′: Because of the lengths of wj with

j ∈ {1, 2, 3, 4}, each substring of length 3m + 1 is completely contained in w2 or it contains

some boundaries of wj .

• The prefix w1(w2[1..|w2|−3]) = (abb)m(bba)m contains 3m distinct substrings of length

3m+ 1.

• The substring w2 contains 3 distinct substrings of length 3m+ 1.

• The substring w2[4..|w2|]w3 = (bba)ma3m contains 3m distinct substrings of length 3m+

1.

• The suffix w3w4 = a3m(bba)m contains 3m−1 distinct substrings of length 3m+1 (note

that a(bba)m is a duplicate and is not counted here).

Hence,

δ(T ′) ≥ Substr(T, 3m+ 1)/(3m+ 1) =
9m+ 2

3m+ 1
= 3− 1

3m+ 1
.
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Thus we obtain lim infn→∞ MSdel(δ, n) ≥ lim infm→∞((3− 1/(3m+ 1))/2) ≥ 1.5 and

lim infn→∞ ASdel(δ, n) ≥ lim infm→∞((3− 1/(3m+ 1))− 2) = 1.

3.1.2 Upper Bounds for Sensitivity of δ

Theorem 3.2. The following upper bounds on the sensitivity of δ hold:

substitutions: MSsub(δ, n) ≤ 2. ASsub(δ, n) ≤ 1.

insertions: MSins(δ, n) ≤ 2. ASins(δ, n) ≤ 1.

deletions: lim supn→∞ MSdel(δ, n) ≤ 1.5. lim supn→∞ ASdel(δ, n) ≤ 1.

Proof. First we consider the additive sensitivity for δ. For each k, the number of substrings of

length k that contains the edited position i is clearly at most k. Therefore, after a substitution or

insertion, at most k new distinct substrings of length k can appear in the string T ′ after the modi-

fication. Also, after a deletion, at most k−1 new distinct substrings of length k can appear in T ′.

Hence, in the case of substitutions and insertions, δ(T ′) ≤ max1≤k≤n((Substr(T, k) + k)/k) ≤
max1≤k≤n(Substr(T, k))/k)+max1≤k≤n(k/k) = δ(T )+1 holds. Also, in the case of deletions,

δ(T ′) ≤ max1≤k≤n((Substr(T, k)+ k− 1)/k) ≤ δ(T )+max1≤k≤n((k− 1)/k) holds. Thus we

obtain ASsub(δ, n) ≤ 1, ASins(δ, n) ≤ 1, and lim supn→∞ ASdel(δ, n) ≤ lim supk→∞(k−1)/k =

1.

Next we consider the multiplicative sensitivity for δ. Note that δ(T ′) ≥ 1 for any non-

empty string T ′, since Substr(T ′, 1) ≥ 1. Combining this with the afore-mentioned additive

sensitivity, we obtain MSsub(δ, n) ≤ 2 and MSins(δ, n) ≤ 2. For the case of deletions, observe

that δ(T ) = 1 only if T is a unary string. However δ(T ′) cannot increase after a deletion since

T ′ is also a unary string. Thus we can restrict ourselves to the case where T contains at least

two distinct characters. Then, we have lim supn→∞ MSdel(δ, n) ≤ 1.5, which is achieved when

δ(T ) = 2 and δ(T ′) = 2 + k−1
k

with k → ∞.

3.2 String Attractors

In this section, we consider the worst-case sensitivity of the string repetitiveness measure γ,

which is the size of the smallest string attractor [69]. A string attractor Γ(T ) for a string T is a

set of positions in T such that any substring T has an occurrence containing a position in Γ(T ).

We denote the size of the smallest string attractor of T by γ(T ). It is known that γ(T ) is upper

bounded by any of z77(T ), r(T ), e(T ) for any string T [69].
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In what follows, we present lower bounds for the multiplicative sensitivity of γ for all cases

of substitutions, insertions, and deletions. We also present the additive sensitivity of γ.

3.2.1 Lower Bounds for Sensitivity of γ

Theorem 3.3. The following lower bounds on the sensitivity of γ hold:

substitutions: lim infn→∞ MSsub(γ, n) ≥ 2. ASsub(γ, n) ≥ γ − 2 and ASsub(γ, n) = Ω(
√
n).

insertions: lim infn→∞ MSins(γ, n) ≥ 2. ASins(γ, n) ≥ γ − 2 and ASins(γ, n) = Ω(
√
n).

deletions: lim infn→∞ MSdel(γ, n) ≥ 2. ASdel(γ, n) ≥ γ − 3 and ASdel(γ, n) = Ω(
√
n).

Proof. Consider string T = akxak+1#1a
k−1xa#2a

k−2xa2#3 · · ·#kxa
k , where #j for every

1 ≤ j ≤ k is a distinct character. The position where #j for each 1 ≤ j ≤ k occurs has to be

an element of any string attractor for T . Also, each of the intervals [1, k+1] and [k+2, 2k+2]

has to contain at least one element of any string attractor for T , since each of the substrings

T [1..k+1] = akx and T [k+2..2k+2] = ak+1 occurs only once in T . Therefore, γ(T ) ≥ k+2

holds. Consider the set S = {k + 1, k + 2, 2k + 3, 3k + 5, . . . , k + 1 + k(k + 2)} of k + 2

positions in T which contains all the positions required above. Since each substring ak−jxaj of

length k+1 immediately preceded by #j (1 ≤ j ≤ k) occurs in the prefix akxak+1 and contains

the position k + 1, S is indeed a string attractor for T , we get γ(T ) = k + 2. In the following,

we use this string T for the analysis of lower bounds for the sensitivity of γ.

substitutions: Let T ′ be the string obtained by substituting the leftmost occurrence of x at

position k+1 in T with character b, yielding the new prefix akbak+1 right before #1. The size of

the smallest string attractor for T ′ is as follows: Each occurrence position of #j for 1 ≤ j ≤ k

still has to be an element of any string attractor for T ′. Also, each of the intervals [k + 1] and

[k+2, 2k+2] has to contain at least one element of any string attractor for T ′. In addition, each

of the intervals [2k + 4, 3k + 4], [3k + 6, 4k + 6], . . . , [k + 2 + k(k + 2), 2k + 2 + k(k + 2)]

which are the occurrences of substrings ak−1xa, ak−2xa2, . . . , xak has to contain one string

attractor, since we have lost the prefix akxak+1. Therefore, γ(T ′) ≥ 2k + 2 holds and the set

{k + 1, k + 2, 2k + 3, 3k + 5, . . . , k + 1 + k(k + 2), 2k + 4, 3k + 6, . . . , k + 2 + k(k + 2)}
of 2k + 2 positions in T ′ is a string attractor for T ′, implying γ(T ′) = 2k + 2. Thus we get

lim infn→∞ MSsub(γ, n) ≥ lim infk→∞(2k + 2)/(k + 2) = 2 and ASsub(γ, n) ≥ γ − 2. Since

n = k2 + 4k + 2 and γ(T ) = k + 2, ASsub(γ, n) = Ω(
√
n) holds.

insertions: Let T ′ be the string obtained by inserting b between T [k+1] = x and T [k+2] =

a, yielding the new prefix akxbak+1 right before #1. The size of the smallest string attractor for

T ′ is as follows, using a similar argument to the case of substitutions: Each occurrence position
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of #j for 1 ≤ j ≤ k still has to be an element of any string attractor for T ′. Also, each of the

intervals [k+2] and [k+3, 2k+3] have to contain at least one element of any string attractor for

T ′. In addition, each of the intervals [2k+5, 3k+5], [3k+7, 4k+7], . . . , [k+3+k(k+2), 2k+

3 + k(k + 2)] which are the occurrences of substrings (ak−1xa), (ak−2xa2), . . . , (xak) have to

contain one string attractor. Therefore, γ(T ′) ≥ 2k + 2 holds and the set {k + 2, k + 3, 2k +

4, 3k+6, . . . , k+2+ k(k+2), 2k+5, 3k+7, . . . , k+3+ k(k+2)} achieves γ(T ′) = 2k+2.

Thus we get lim infn→∞ MSins(γ, n) ≥ lim infk→∞(2k + 2)/(k + 2) = 2, ASins(γ, n) ≥ γ − 3,

and ASins(γ, n) = Ω(
√
n).

deletions: Let T ′ be the string obtained by deleting T [k + 1] = x from T , yielding the

new prefix a2k+1 right before #1. The size of the smallest string attractor for T ′ is as follows,

using a similar argument to the cases of insertions and substitutions: Each occurrence position

of #j for 1 ≤ j ≤ k still has to be an element of any string attractor for T ′. Also, the interval

[1, 2k + 1] has to contain one element of any string attractor for T ′. In addition, each of the

intervals [2k + 3, 3k + 3], [3k + 5, 4k + 5], . . . , [k + 1 + k(k + 2), 2k + 1 + k(k + 2)] has to

contain one string attractor for T ′. Therefore, γ(T ′) ≥ 2k+1 holds and the set {1, 2k+2, 3k+

4, . . . , k + k(k + 2), 2k + 3, 3k + 5, . . . , k + 1 + k(k + 2)} achieves γ(T ′) = 2k + 1. Thus

we get lim infn→∞ MSdel(γ, n) ≥ lim infk→∞(2k + 1)(k + 2) = 2, ASdel(γ, n) ≥ γ − 3, and

ASdel(γ, n) = Ω(
√
n).

3.3 Run-Length Burrows-Wheeler Transform (RLBWT)

The Burrows-Wheeler transform (BWT) of a string T , denoted BWT(T ), is the string obtained

by concatenating the last characters of the lexicographically sorted suffixes of T . The run-length

BWT (RLBWT) of T is the run-length encoding of BWT(T ) and r(T ) denotes its size, i.e., the

number of maximal character runs in BWT(T ).

For example, for string T = abbaabababab, r(T ) = 4 since BWT(T ) = babbbbbaaaaa

consists in four maximal character runs b1a1b5a5.

Theorem 3.4 (Theorem 1 of [54]). There exists a family of strings S such that r(S) = 2 and

r(S ′) = Θ(log n), where n = |S| and S ′ is a string obtained by prepending a character to S.

The string S is the reversed Fibonacci word.

Theorem 3.4 immediately leads to the following lower bound for the sensitivity of r:

Corollary 3.1. The following lower bound on the sensitivity of RLBWT with |Σ| = 2 hold:

insertions: MSins(r, n) = Ω(log n). ASins(r, n) = Ω(log n).
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To obtain a non-trivial upper bound for the sensitivity of r, we can use the following known

result:

Theorem 3.5 (Theorem III.7 of [67]). For any string T of length n,

r(T ) = O

(
δ(T )max

(
1, log

n

δ(T ) log δ(T )

)
log δ(T )

)
.

Theorem 3.6. The following upper bounds on the sensitivity of r hold:

substitutions: MSsub(r, n) = O(log n log r). ASsub(r, n) = O(r log n log r).

insertions: MSins(r, n) = O(log n log r). ASins(r, n) = O(r log n log r).

deletions: MSdel(r, n) = O(log n log r). ASdel(r, n) = O(r log n log r).

Proof. For any string T , it is known that δ(T ) ≤ r(T ) [74]. We also use a simplified and

relaxed bound r(T ) = O(δ(T ) log n log δ(T )) from Theorem 3.5, which always holds and is

sufficient for our purpose.

Let T ′ be any string with ed(T, T ′) = 1. It follows from Theorem 3.2 that δ(T ′) ≤
2δ(T ). Therefore, we obtain r(T ′) = O(δ(T ′) log n log δ(T ′)) = O(δ(T ) log n log δ(T )) =

O(r(T ) log n log r(T )). This leads to the claimed upper bounds for the sensitivity for r.

We remark that the lower bounds MSins(r, n) = Ω(log n) and ASins(r, n) = Ω(log n) from

Theorem 3.4 and Corollary 3.1 are asymptotically tight when r = O(1), since MSins(r, n) =

O(log n log r) = O(log n) and ASins(r, n) = Ω(log n) in this case.

3.4 Bidirectional Scheme

In this section, we consider the worst-case sensitivity of the size of bidirectional scheme [115].

A factorization T = f1 · · · fb for a string T of length n is a bidirectional scheme of T if each

phrase fj = T [pj..pj + �j − 1] is either a single character or corresponding to another substring

T [qj..qj + �j − 1] where �j = |fj| such that pj 	= qj . We denote fj either a single character or

the pair (qj, �j). If |fj| = 1, then fj is called a ground phrase. A bidirectional scheme B for T

defines a function FB : [1..n] ∪ {0} → [1..n] ∪ {0}, where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

FB(pj) = 0, if fj is a ground phrase,

FB(pj + k) = qj + k, if fj = (qj, �j) and 0 ≤ k < �j,

FB(0) = 0.
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Let F 0
B(pj) = pj and Fm

B (pj) = FB(F
m−1
B (pj)) for any m ≥ 1. A bidirectional scheme B is

called valid if FB has no cycles; namely, there exists an m ≥ 1 such that Fm
B (x) = 0 for every

x ∈ [1..n]. The string T can be reconstructed from the bidirectional scheme if and only if it is

valid. The size of a valid bidirectional scheme B is the number of phrases in B. We denote the

size of the smallest valid bidirectional schemes of T by b(T ).

For example, for string T = abaabababbbba, one of the smallest valid bidirectional schemes

B is:

B = (4, 3)(6, 4)ab(9, 3)a,

and its corresponding factorization is:

B = aba|abab|a|b|bbb|a|.

Here we have b(T ) = 6.

In what follows, we present upper and lower bounds for the multiplicative/additive sensitiv-

ity of b.

3.4.1 Lower bounds for the sensitivity of b

Theorem 3.7. The following lower bounds on the sensitivity of b hold:

substitutions: lim infn→∞ MSsub(b, n) ≥ 1.5, ASsub(b, n) ≥ b/2−1, and ASsub(b, n) = Ω(
√
n).

insertions: lim infn→∞ MSins(b, n) ≥ 1.5, ASins(b, n) ≥ b/2− 1, and ASins(b, n) = Ω(
√
n).

deletions: lim infn→∞ MSdel(b, n) ≥ 1.5, ASdel(b, n) ≥ b/2− 3, and ASdel(b, n) = Ω(
√
n).

Proof. Consider string

T = akxak+1#1a
kxa#2a

k−1xa2#3 · · ·#kaxa
k ,

where #j for every 1 ≤ j ≤ k is a distinct character. One of the valid bidirectional schemes B

for T is

B = (k + 2, k)xa(k + 2, k)#1(1, k + 2)#2(2, k + 2)#3 · · ·#k(k, k + 2).

The corresponding factorization of the above bidirectional scheme is as follows:

B = ak |x|a|ak |#1|akxa|#2|ak−1xa2|#3| · · · |#k |axak |.

The size of B is 2k + 4 and thus b(T ) ≤ 2k + 4.
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As for substitutions, let T ′ be the string obtained by substituting the leftmost occurrence of

x at position k + 1 in T with a character y such that y 	= x, that is,

T ′ = akyak+1#1a
kxa#2a

k−1xa2#3 · · ·#kaxa
k .

Then, one of the valid bidirectional schemes B′ of T ′ is:

B′ = (k + 2, k)ya(k + 2, k)#1(1, k)xa#2(2k + 5, k)(1, 2)#3 · · ·#k(3k + 4, 2)(1, k).

Also, the corresponding factorization for B is as follows:

B′ = ak |y|a|ak |#1|ak |x|a|#2|ak−1x|a2|#3| · · · |#k |ax|ak |.

The size of B′ is 3k + 5. We show that B′ is one of the smallest valid bidirectional schemes

of T ′, namely, b(T ′) = 3k + 5. Since y and #j for every 1 ≤ j ≤ k are unique characters in

T ′, they have to be ground phrases. Also, since each substring ak−j+1xaj of length k + 2 for

all 1 ≤ j ≤ k and ak+1 are unique in T ′, each corresponding interval has to have at least one

boundary of phrases. In addition, at least one occurrence of x has to be a ground phrase. Then,

b(T ′) = 3k + 5 holds. Since |T | = n = k2 + 5k + 2, we have k = Θ(
√
n). Hence, we get

lim infn→∞ MSsub(b, n) ≥ 1.5 and ASsub(b, n) ≥ k + 1 = b/2− 1 = Ω(
√
n).

Moreover, by considering the case where the character T [k+1] is deleted and the case where

the character y is inserted between positions k + 1 and k + 2, we obtain Theorem 3.7.

3.4.2 Upper bounds for the sensitivity of b

Theorem 3.8. The following upper bounds on the sensitivity of b hold:

substitutions: lim supn→∞ MSsub(b, n) ≤ 2. ASsub(b, n) ≤ b+ 2.

insertions: MSins(b, n) ≤ 2. ASins(b, n) ≤ b.

deletions: lim supn→∞ MSdel(b, n) ≤ 2. ASdel(b, n) ≤ b+ 1.

Proof. In the following, we consider the case that T [i] = a is substituted by a character # that

does not occur in T . The other cases of insertions, deletions, and substitutions with another

character b ( 	= a) occurring in T , can be proven similarly. We show how to construct a valid

bidirectional scheme of T ′ of the size b′ ≥ b(T ′) by dividing each phrase of B into some

phrases, where B is one of the smallest valid bidirectional schemes of T . We categorize each

phrase fj = T [pj..pj + �j − 1] of B into one of the three following cases:

(1) i ∈ [pj..pj + �j − 1];

31



CHAPTER 3. SENSITIVITY OF STRING COMPRESSORS AND REPETITIVENESS MEASURES

(2) i /∈ [pj..pj + �j − 1] and i /∈ [qj..qj + �j − 1];

(3) i /∈ [pj..pj + �j − 1] and i ∈ [qj..qj + �j − 1].

Case (1): Let T [pj..pj + �j − 1] = w1aw2 and T ′[pj..pj + �j − 1] = w1#w2, where a ∈ Σ

and w1, w2 ∈ Σ∗. If i /∈ [qj..qj + �j − 1], then the phrase fj is divided into three phrases

w1 = (qj, |w1|),#, w2 = (qj + |w1|+ 1, |w2|) in T ′. See also the top of Figure 3.1. Otherwise,

i.e., if i ∈ [qj..qj + �j − 1], intervals [pj..pj + �j − 1] and [qj..qj + �j − 1] are overlapping.

We consider the case pj < qj . (Another case can be treated similarly.) Then [qj..qj + |w1|]
contains the edited position i. Let T [pj..pj + �j − 1] = w′

1aw
′
2aw2, where w′

1, w
′
2 ∈ Σ∗ and

qj + |w′
1| = i. We divide the phrase fj into at most five phrases w′

1 = (qj, |w′
1|), a, w′

2 =

(qj + |w′
1|+ 1, |w′

2|),#, w2 = (qj + |w1|+ 1, |w2|). See also the middle of Figure 3.1.

Case (2): No changes are made to the phrase fj in this case, since fj can continue to refer to

the same reference.

Case (3): Among all phrases in Case (3), let fk be the phrase whose ending position of the

reference is the rightmost. Let T [pk..pk+ �k−1] = u1au2, where u1, u2 ∈ Σ∗ and qk+ |u1| = i.

Then we divide the phrase fk into at most three phrases u1 = (qk, |u1|), a, u2 = (qk + |u1| +
1, |u2|) in T ′. For the other phrases of Case(3), we divide fj = v1av2, where v1, v2 ∈ Σ∗ and

qj + |v1| = i, into at most two phrases v1 = (qj, |v1|) and av2 = (qk + |u1|, |v2| + 1). From

the above operations, the character that referred to position i in T becomes a ground phrase or

refers to position qk + |u1|, which is a ground phrase, in T ′. The other substrings refer to the

original reference positions or to a subinterval of [qk + |u1|..qk + |fk| − 1]. The reference of

the subinterval corresponds to the original reference of the substring. See also the bottom of

Figure 3.1.

Then, the bidirectional scheme obtained from the above operations is ensured to be valid.

The size of the bidirectional scheme b′ is maximized if exactly one phrase of Case (1) is divided

into five phrases, and the remaining b(T )− 1 phrases belong to Case (3). Since at most one of

the b(T ) − 1 phrases of Case (3) can be divided into three phrases, and all the others can be

divided into two phrases, b′ is at most 5 + 3 + 2(b(T ) − 2) = 2b(T ) + 4. Furthermore, if T

is a unary string, then b(T ) = 2 and the valid bidirectional scheme of size 4(= 2b(T )) can be

constructed easily. Otherwise, there are at least two ground phrases in T , and these phrases can

not be divided into some phrases in T ′. Then we get b′ ≤ 2b(T ) + 2 and Theorem 3.8.
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Subcase of Case (1): i ∈ [pj..pj + �j − 1] and i /∈ [qj..qj + �j − 1].

Subcase of Case (1): i ∈ [pj..pj + �j − 1] and i ∈ [qj..qj + �j − 1].

Case (3): i /∈ [pj..pj + �j − 1] and i ∈ [qj..qj + �j − 1].

Figure 3.1: Illustration for changes of references in Case (1) and Case (3).
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3.5 Lempel-Ziv 77 Factorizations with/without

Self-References

In this section, we consider the worst-case sensitivity of the Lempel-Ziv 77 factorizations

(LZ77) [123] with/without self-references.

For convenience, let f0 = ε. A factorization f1 · · · fz for a string T of length n is the non

self-referencing LZ77 factorization LZ77(T ) of T if for each 1 ≤ i < z the factor fi is the

shortest prefix of fi · · · fz that does not occur in f0f1 · · · fi−1 (or alternatively fk[1..|fk| − 1] is

the longest prefix of fi · · · fz that occurs in f0f1 · · · fi−1). Since fk[1..|fk| − 1] is never overlap

with its previous occurrence, it is called non self-referencing. The last factor fz is the suffix of

T of length n− |f1 · · · fz−1| and it may have multiple occurrences in f1 · · · fz.

A factorization f1 · · · fz for a string T of length n is the self-referencing LZ77 factorization

LZ77sr(T ) of T if for each 1 ≤ i < z the factor fi is the shortest prefix of fi · · · fz that

occurs exactly once in f1 · · · fi as a suffix (or alternatively fk[1..|fk| − 1] is the longest prefix

of fi · · · fz which has a previous occurrence beginning at a position in range [1..|f1 · · · fk−1|]).
Since fk[1..|fk| − 1] may overlap with its previous occurrence, it is called self-referencing. The

last factor fz is the suffix of T of length n− |f1 · · · fz−1| and it may have multiple occurrences

in f1 · · · fz.

If we use a common convention that the string T terminates with a unique character $,

then the last factor fz satisfies the same properties as f1, . . . , fz−1, in both cases of (non) self-

referencing LZ77 factorizations.

To avoid confusions, we use different notations to denote the sizes of these factorizations.

For a string T let z77(T ) and z77sr(T ) denote the number z of factors in LZ77(T ) and LZ77sr(T ),

respectively.

For example, for string T = abaabababababab$,

LZ77(T ) = a|b|aa|bab|ababa|bab$|,
LZ77sr(T ) = a|b|aa|bab|abababab$|,

where | denotes the right-end of each factor in the factorizations. Here we have z77(T ) = 6 and

z77sr(T ) = 5.

In what follows, we present tight upper and lower bounds for the multiplicative sensitivity of

z77 and z77sr for all cases of substitutions, insertions, and deletions. We also present the additive

sensitivity of z77 and z77sr.
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3.5.1 Lower Bounds for Sensitivity of z77

Theorem 3.9. The following lower bounds on the sensitivity of non self-referencing LZ77 fac-

torization hold:

substitutions: lim infn→∞ MSsub(z77, n) ≥ 2. ASsub(z77, n) ≥ z77 − 1.

insertions: lim infn→∞ MSins(z77, n) ≥ 2. ASins(z77, n) ≥ z77 − 1.

deletions: lim infn→∞ MSdel(z77, n) ≥ 2. ASdel(z77, n) ≥ z77 − 2.

Proof. Let p ≥ 2 and Σ = {0, 1, 2}. We use the following string T for our analysis in all cases

of substitutions, insertions, and deletions.

Let Q1 = 0 and Qk = Q1 · · ·Qk−11 with 2 ≤ k ≤ p. Let

T = Q1Q2 · · ·Qp

= 0 · 01 · 0011 · 00100111 · 0010011001001111 · · ·Qp

with |T | = n = Θ(2p). Since Qk[1..|Qk| − 1] = T [1..|Qk| − 1], Qk[|Qk|] = 1, and T [|Qk|] = 0

for 2 ≤ k ≤ p, each Qk forms a single factor in the non self-referencing LZ77 factorization of

T . Namely,

LZ77(T ) = Q1|Q2| · · · |Qp|
= 0|01|0011|00100111|0010011001001111| · · · |Qp|

with z77(T ) = p = Θ(log n).

substitutions: Consider the string

T ′ = 2 · T [2..n]
= 2 ·Q2 · · ·Qp

= 2 · 01 · 0011 · 00100111 · 0010011001001111 · · ·Qp

which can be obtained from T by substituting the first 0 with 2. Let us analyze the structure

of the non self-referencing LZ77 factorization LZ77(T ′) of T ′. We prove by induction that

Qk is divided into exactly two factors for every 2 ≤ k ≤ p in LZ77(T ′). Q2 is factorized as

0|1| in LZ77(T ′). Suppose that Qk−1 is divided into exactly two factors in LZ77(T ′), which

means that the next factor is a prefix of Qk · · ·Qp. Since T ′[1] = 2, each Qk[1..|Qk| − 1]

cannot occur as a prefix of T ′. The longest prefix of Qk = Q1 · · ·Qk−11 that occurs in

T ′[1..|Q1 · · ·Qk−1|] is Qk−1[1..|Qk−1| − 1] = Q1 · · ·Qk−2. Thus, Q1 · · ·Qk−20 is the short-

est prefix of T ′[|Q1 · · ·Qk−1|+ 1..n] = Qk · · ·Qp that does not occur in T ′[1..|Q1 · · ·Qk−1|] =
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Q1 · · ·Qk−1. The remaining suffix of Qk is Qk−1[2..|Qk−1|]1 = Q2 · · ·Qk−211. Since Qk has

01k−1 as a suffix and this is the leftmost occurrence of 1k−1 in T ′, the next factor is this re-

maining suffix Q2 · · ·Qk−211 of Qk. Thus, the non self-referencing LZ77 factorization of T ′

is

LZ77(T ′) = 2|0|1|00|11|0010|0111|00100110|01001111| · · ·|Q1 · · ·Qp−20|Q2 · · ·Qp−211|

with z77(T
′) = 2p−1, which leads to lim infn→∞ MSsub(z77, n) ≥ lim infp→∞((2p−1)/p) = 2,

ASsub(z77, n) ≥ (2p− 1)− p = p− 1 = z77 − 1 = Ω(log n).

insertions: Let T ′ be the string obtained by inserting 2 immediately after the first character

T [1] = 0, namely,

T ′ = Q1 · 2 ·Q2 · · ·Qp

= 0 · 2 · 01 · 0011 · 00100111 · 0010011001001111 · · ·Qp.

Then, by similar arguments to the case of substitutions, we have

LZ77(T ′) = 0|2|01|00|11|0010|0111|00100110|01001111| · · ·|Q1 · · ·Qp−20|Q2 · · ·Qp−211|

with z77(T
′) = 2p−1, which leads to lim infn→∞ MSins(z77, n) ≥ lim infp→∞((2p−1)/p) = 2,

ASins(z77, n) ≥ (2p− 1)− p = p− 1 = z77 − 1 = Ω(log n).

deletions: Let T ′ be the string obtained by deleting the first character T [1] = 0, namely

T ′ = Q2 · · ·Qp

= 01 · 0011 · 00100111 · 0010011001001111 · · ·Qp.

Then, by similar arguments to the case of substitutions, we have

LZ77(T ′) = 0|1|00|11|0010|0111|00100110|01001111| · · ·|Q1 · · ·Qp−20|Q2 · · ·Qp−211|

with z77(T
′) = 2p−2, which leads to lim infn→∞ MSdel(z77, n) ≥ lim infp→∞((2p−2)/p) = 2,

ASdel(z77, n) ≥ (2p− 2)− p = p− 2 = z77 − 2 = Ω(log n).

The strings T and T ′ used in Theorem 3.9 gives us optimal additive lower bounds in terms

z77, are highly compressible (z77(T ) = O(log n)) and only use two or three distinct characters.

By using more characters, we can obtain larger lower bounds for the additive sensitivity for the

size of the non self-referencing LZ77 factorizations LZ77 in terms of the string length n, as

follows:
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Theorem 3.10. The following lower bounds on the sensitivity of non self-referencing LZ77

factorization LZ77 hold:

substitutions: ASsub(z77, n) = Ω(
√
n).

insertions: ASins(z77, n) = Ω(
√
n).

deletions: ASdel(z77, n) = Ω(
√
n).

Proof. Let p = 2h where h ≥ 1.

substitutions: Consider the following string T of length n = Θ(p2):

T = a2p−2b · apb#1 · ap+1b#2 · ap+2b#3 · · · a2p−2b#p−1,

where #j for every 1 ≤ j ≤ p − 1 is a distinct character. The non self-referencing LZ77

factorization of T is

LZ77(T ) = a|a2|a4| · · · |a2h−1 |ap−1b|apb#1|ap+1b#2|ap+2b#3| · · · |a2p−2b#p−1|

with z77(T ) = h+ p. Then, we consider the string

T ′ = ap−1cap−2b · apb#1 · ap+1b#2 · ap+2b#3 · · · a2p−2b#p−1,

which can be obtained from T by substituting the p-th a with c. Let us analyze the structure

of the non self-referencing LZ77 factorization of T ′. It is clear that h factors in the interval

[1..p − 1] are unchanged. Since c is a fresh character, it becomes a factor of length 1. Also,

ap−2b becomes a factor. The following each factor ap+k−2b#k−1 with 2 ≤ k ≤ p is divided

into two factors ap+k−2 and b#k−1, since there are no previous occurrences of ap+k−2 and #k−1.

Thus, the non self-referencing LZ77 factorization of T ′ is

LZ77(T ′) = a|a2|a4| · · · |a2h−1 |c|ap−2b|ap|b#1|ap+1|b#2|ap+2|b#3| · · · |a2p−2|b#p−1|

with z77(T
′) = h + 2p, which leads to lim infn→∞ MSsub(z77, n) ≥ lim infp→∞(h + 2p)/(h +

p) = 2, ASsub(z77, n) ≥ (h+ 2p)− (h+ p) = p = Ω(
√
n).

insertions: As for the same string T , we consider the string

T ′ = ap−1cap−1b · apb#1 · ap+1b#2 · ap+2b#3 · · · a2p−2b#p−1,

which can be obtained from T by inserting c between position p− 1 and position p in T . Then,

by similar arguments to the case of substitutions, the non self-referencing LZ77 factorization of

T ′ is

LZ77(T ′) = a|a2|a4| · · · |a2h−1 |c|ap−1b|ap|b#1|ap+1|b#2|ap+2|b#3| · · · |a2p−2|b#p−1|
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with z77(T
′) = h+2p, which leads to lim infn→∞ MSins(z77, n) ≥ lim infp→∞(h+2p)/(h+p) =

2, ASins(z77, n) ≥ p = Ω(
√
n).

deletions: Consider the following string T of length n = Θ(p2):

T = ap−1cb · acb#1 · a2cb#2 · a3cb#3 · · · ap−1cb#p−1.

The non self-referencing LZ77 factorization of T is

LZ77(T ) = a|a2|a4| · · · |a2h−1 |c|b|acb#1|a2cb#2|a3cb#3| · · · |ap−1cb#p−1|

with z77(T ) = h+ p+ 1. Then, we consider the string

T ′ = ap−1b · acb#1 · a2cb#2 · a3cb#3 · · · ap−1cb#p−1,

which can be obtained from T by deleting the first c in T . Let us analyze the structure of the

non self-referencing LZ77 factorization of T ′. It is clear that h factors in the interval [1..p− 1]

are unchanged. The next factor is b of length 1. The following each factor akcb#k with

1 ≤ k ≤ p− 1 is divided into two factors akc and b#k, since there are no previous occurrences

of akc and b#k. Thus, the non self-referencing LZ77 factorization of T ′ is

LZ77(T ′) = a|a2|a4| · · · |a2h−1 |b|ac|b#1|a2c|b#2|a3c|b#3| · · · |ap−1c|b#p−1|

with z77(T
′) = h + 1 + 2(p − 1) = h + 2p − 1, which leads to lim infn→∞ MSdel(z77, n) ≥

lim infp→∞(h+2p− 1)/(h+ p+1) = 2, ASdel(z77, n) ≥ (h+2p− 1)− (h+ p+1) = p− 2 =

Ω(
√
n).

3.5.2 Upper Bounds for Sensitivity of z77

Theorem 3.11. The following upper bounds on the sensitivity of non self-referencing LZ77

factorization LZ77 hold:

substitutions: lim supn→∞ MSsub(z77, n) ≤ 2. ASsub(z77, n) ≤ z77 − 1.

insertions: lim supn→∞ MSins(z77, n) ≤ 2. ASins(z77, n) ≤ z77 − 1.

deletions: lim supn→∞ MSdel(z77, n) ≤ 2. ASdel(z77, n) ≤ z77 − 2.

Proof. In the following, we consider the case that T [i] = a is substituted by a character # that

does not occur in T . The other cases of insertions, deletions, and substitutions with another

character b ( 	= a) occurring in T , can be proven similarly, which will be discussed at the end of

the proof.
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We denote the factorizations as LZ77(T ) = f1 · · · fz and LZ77(T ′) = f ′
1 · · · f ′

z′ . We denote

the interval of factor fj (resp. f ′
j) by [pj, qj] (resp. [p′j, q

′
j]).

Now we prove the following claim:

Claim 3.1. Each interval [pj, qj] has at most two starting positions p′k and p′k+1 of factors in

LZ77(T ′) for some 1 ≤ k < z′.

Proof. There are the three following cases:

(1) When the interval [pj, qj] satisfies qj < i: fj = f ′
j holds for any such j. Therefore, in the

interval [pj, qj] there exists exactly one starting position p′j = pj of a factor in LZ77(T ′).

(2) When the interval [pj, qj] satisfies pj ≤ i ≤ qj: Let T [pj..qj] = w1aw2c and T ′[pj..qj] =

w1#w2c, where a, c,# ∈ Σ and w1, w2 ∈ Σ∗. By definition, w1aw2 has at least one

previous occurrence in f1 · · · fj−1. After the substitution, w1# becomes a factor f ′
j of

LZ77(T ′) since # is a fresh character, and w2c becomes a prefix of the next factor f ′
j+1 in

LZ77(T ′). This means that p′j = pj and q′j+1 ≥ qj . Therefore, the interval [pj, qj] has at

most two starting positions p′j and p′j+1 of factors in LZ77(T ′).

(3) When the interval [pj, qj] satisfies i < pj: There are the two following sub-cases:

(3-A) When T [pj..qj − 1] has a previous occurrence which does not contain the edited

position i in T : In this case, any suffix of T [pj..qj − 1] has a previous occurrence in

T ′. Therefore, [p′k, q
′
k] with pj ≤ p′k satisfies q′k ≥ qj . Hence, the interval [pj..qj] has

at most one starting position p′k of a factor in LZ77(T ′).

(3-B) When all previous occurrences of T [pj..qj − 1] in T contain the edited position i:

Let u1au2d = T [pj, qj] with a, d ∈ Σ and u1, u2 ∈ Σ∗. u1 and u2 have previous

occurrences in T ′[1..pj − 1]. Let p′k be the starting position of the leftmost factor of

LZ77(T ′) which begins in range [pj, qj]. If p′k is in u2, then q′k ≥ qk and thus there

is only one starting position of a factor of LZ77(T ′) in the interval [pj..qj]. Suppose

p′k is in u1. If a has no previous occurrences (which happens when T [i] was the only

previous occurrence of a), then T ′[pk + |u1|] is the first occurrence of a and thus

q′k = pk + |u1|. Otherwise, q′k ≥ pk + |u1|. In either case, since u2 has a previous

occurrence, q′k+1 ≥ qk+1. Thus, there can exist at most two starting positions of

factors of LZ77(T ′) in the interval [pj..qj].

This completes the proof for the claim.
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By the above claim, z77(T
′) ≤ 2z77(T ) holds for any string T and any substitution operation.

Since f1 consists of a single character for any string and the interval [1, 1] cannot have two

starting positions of factors in LZ77(T ′), z77(T
′) ≤ 2z77(T )−1 holds. This completes the proof

for the case of substitution with #.

The above proof can be generalized to all the other cases, by replacing # in T ′ as follows:

• # ← b for substitutions with character b occurring in T , where we have T ′[pj, qj] =

w1bw2c for Case (2);

• # ← T [i]# for insertions with #, where we have T ′[pj, qj] = w1T [i]#w2c for Case (2);

• # ← T [i]b for insertions with character b occurring in T , where we have T ′[pj, qj] =

w1T [i]bw2c for Case (2);

• # ← ε for deletions, where we have T ′[pj, qj] = w1w2c for Case (2).

The analysis for Case (2) and Case (3) is analogous for all these cases. Also, in the case of

deletions, since |f2| ≤ 2 and the interval can have two starting positions of factors in LZ77(T ′)

only when f1 = T [1] is deleted, z77(T
′) ≤ 2z77(T )− 2 holds.

3.5.3 Lower Bounds for Sensitivity of z77sr

Theorem 3.12. The following lower bounds on the sensitivity of self-referencing LZ77 factor-

ization LZ77sr with |Σ| = 3 hold:

substitutions: MSsub(z77sr, n) ≥ 2. ASsub(z77sr, n) ≥ z77sr.

insertions: MSins(z77sr, n) ≥ 2. ASins(z77sr, n) ≥ z77sr.

deletions: lim infn→∞ MSdel(z77sr, n) ≥ 2. ASdel(z77sr, n) ≥ z77sr − 2.

Proof. substitutions: Let p ≥ 2 and Σ = {0, 1, 2}. We use the following string T for our

analysis.

Let R1 = 00 and Rk = R1 · · ·Rk−11 with 2 ≤ k ≤ p. Consider the following string T of

length n = Θ(2p):

T = R1 · · ·Rp

= 00 · 001 · 000011 · 000010000111 · · ·Rp
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with |T | = n = Θ(2p). It immediately follows from the definition of T that the self-referencing

LZ77 factorization of T is

LZ77sr(T ) = 0|0001|R3|R4| · · · |Rp|
= 0|0001|000011|000010000111| · · · |Rp|

with z77sr(T ) = p = Θ(log n). Note that the second factor 0001 is self-referencing.

As for substitution, we consider the string

T ′ = T [1] · 2 · T [3..n]
= 02 · 001 · 000011 · 000010000111 · · ·Rp

which can be obtained from T by substituting the second 0 with 2. Let us analyze the struc-

ture of the self-referencing LZ77 factorization of T ′. The second factor 0001 in LZ77sr(T )

becomes 2001 in the edited string T ′, and this is divided into exactly three factors as 2|00|1| in

LZ77sr(T ′) because 2 is a fresh character, 00 is the shortest prefix of T [3..n] = 001R3 · · ·Rp

that does not occur in T [1..2] = 02, and 1 is a fresh character. Our claim is that each Rk

with 3 ≤ k ≤ p is halved into two factors Rk[1..|Rk|/2] = R1 · · ·Rk−20 and Rk[|Rk|/2 +

1..|Rk|] = 0R2 · · ·Rk−211 of equal length in LZ77sr(T ′). Suppose that Rk−1 is factorized as

Rk−1[1..|Rk−1|/2] | Rk−1[|Rk−1|/2 + 1..|Rk−1|] | in LZ77sr(T ′), which means that the next

factor is a prefix of Rk · · ·Rp. Since Rk[1..2] = 00 and T ′[1..2] = 02, Rk[1..|Rk| − 1]

does not have a previous occurrence as a prefix of T ′. Since Rk = R1 · · ·Rk−2Rk−11 and

R1 · · ·Rk−2 = Rk−1[1..|Rk−1| − 1], the longest prefix of T ′[|R1 · · ·Rk−1| + 1..n] = Rk · · ·Rp

that has a previous occurrence beginning in range [1..|R1 · · ·Rk−1|] is R1 · · ·Rk−2, which im-

plies R1 · · ·Rk−2Rk−1[1] = R1 · · ·Rk−20 is the next factor in LZ77sr(T ′). The remaining

part of Rk is Rk−1[2..|Rk−1|]1 = R1[2]R2 · · ·Rk−211 = 0R2 · · ·Rk−211. Since its prefix

0R2 · · ·Rk−21 has a previous occurrence and 0R2 · · ·Rk−211 has a suffix 01k−1 which is the

leftmost occurrence of 1k−1 in T ′, this remaining part 0R2 · · ·Rk−211 becomes the next factor

in LZ77sr(T ′). Thus, the self-referencing LZ77 factorization of T ′ is

LZ77sr(T ′) = 0|2|00|1|000|011|000010|000111| · · ·|R1 · · ·Rp−20|0R2 · · ·Rp−211|

with z77sr(T
′) = 2p, which leads to MSsub(z77sr, n) ≥ 2p/p = 2 and ASsub(z77sr, n) ≥ 2p− p =

p = z77sr = Ω(log n).

insertions: We use the same string T in the case of substitutions. Let T ′ be the string

obtained by inserting 2 immediately after T [1] = 0, namely,

T ′ = 0 · 2 · 0 ·R2 · · ·Rp

= 0 · 2 · 0 · 001 · 000011 · 000010000111 · · ·Rp.
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Then, by similar arguments to the case of substitutions, we have

LZ77sr(T ′) = 0|2|00|01|0000|11|000010|000111| · · ·|R1 · · ·Rp−20|0R2 · · ·Rp−211|

with z77sr(T
′) = 2p, which leads to MSins(z77sr, n) ≥ 2p/p = 2 and ASins(z77sr, n) ≥ 2p− p =

p = z77sr = Ω(log n).

deletions: As for deletions, we use the same strings T and T ′ from Theorem 3.9. This string

and the deletion also achieve the same lower bound for the self-referencing LZ77 factorization

in the case of deletions. Then, we obtain z77sr(T ) = p, z77sr(T
′) = 2p − 2, which leads to

lim infn→∞ MSdel(z77sr, n) ≥ 2 and ASdel(z77sr, n) ≥ z77sr − 2 = Ω(log n).

The strings T and T ′ used in Theorem 3.12 gives us optimal additive lower bounds in terms

z77sr, are highly compressible (z77sr(T ) = O(log n)) and only use two or three distinct charac-

ters. By using more characters, we can obtain larger lower bounds for the additive sensitivity for

the size of the self-referencing LZ77 factorizations in terms of the string length n, as follows:

Theorem 3.13. The following lower bounds on the sensitivity of self-referencing LZ77 factor-

ization LZ77sr hold:

substitutions: ASsub(z77sr, n) = Ω(
√
n).

insertions: ASins(z77sr, n) = Ω(
√
n).

deletions: ASdel(z77sr, n) = Ω(
√
n).

Proof. substitutions: Consider the following string T of length n = Θ(p2):

T = ap−1a · apb · ap+1b#1 · ap+2b#2 · · · a2p−1b#p−1

which consists of p+ 1 components. The self-referencing LZ77 factorization of T is

LZ77sr(T ) = a|a2p−1b|ap+1b#1|ap+2b#2| · · · |a2p−1b#p−1|

with z77sr(T ) = p+ 1. Notice that the second factor a2p−11 is self-referencing.

Consider the string T ′

T ′ = ap−1c · apb · ap+1b#1 · ap+2b#2 · · · a2p−1b#p−1

that can be obtained from T by substituting the p-th a with c. The self-referencing LZ77

factorization of T ′ is

LZ77sr(T ′) = a|ap−2c|ap|b|ap+1|b#1|ap+2|b#2| · · · |a2p−1|b#p−1|
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with z77sr(T
′) = 2p+2, which leads to MSsub(z77sr, n) ≥ (2p+2)/(p+1) = 2, ASsub(z77sr, n) ≥

(2p+ 2)− (p+ 1) = p+ 1 = z77sr, and ASsub(z77sr, n) = Ω(
√
n).

insertions: Consider the following string T of length n = Θ(p2):

T = ap−1 · apb · ap+1b#1 · ap+2b#2 · · · a2p−1b#p−1.

The self-referencing LZ77 factorization of T is

LZ77sr(T ) = a|a2p−2b|ap+1b#1|ap+2b#2| · · · |a2p−1b#p−1|

with z77sr(T ) = p+ 1. Notice that the second factor a2p−11 is self-referencing.

Consider the string T ′

T ′ = ap−1c · apb · ap+1b#1 · ap+2b#2 · · · a2p−1b#p−1

that can be obtained from T by inserting c between position p − 1 and position p. The self-

referencing LZ77 factorization of T ′ is

LZ77sr(T ′) = a|ap−2c|ap|b|ap+1|b#1|ap+2|b#2| · · · |a2p−1|b#p−1|

with z77sr(T
′) = 2p+2, which leads to MSins(z77sr, n) ≥ 2, ASins(z77sr, n) ≥ p+1 = z77sr, and

ASins(z77sr, n) = Ω(
√
n).

deletions: Consider the following string T of length n = Θ(p2):

T = apbc · abc#1 · a2bc#2 · · · apbc#p .

The self-referencing LZ77 factorization of T is

LZ77sr(T ) = a|ap−1b|c|abc#1|a2bc#2| · · · |apbc#p|

with z77sr(T ) = p+ 3. Notice that the second factor ap−21 is self-referencing.

Consider the string T ′

T ′ = apb · abc#1 · a2bc#2 · · · apbc#p

that can be obtained from T by deleting the first c of position p+2. Let us analyze the structure

of the self-referencing LZ77 factorization of T ′. The first two factors are unchanged. The

third factor c of LZ77sr(T ) is removed, and each of the remaining factors of form akbc#k in

LZ77sr(T ) is divided into two factors as akbc|#k |. Thus the self-referencing LZ77 factorization

of T ′ is

LZ77sr(T ′) = a|ap−1b|abc|#1|a2bc|#2| · · · |apbc|#p|

with z77sr(T
′) = 2p+2, which leads to lim infn→∞ MSdel(z77sr, n) ≥ lim infp→∞(2p+2)/(p+

3) = 2, ASdel(z77sr, n) ≥ 2p+ 2− (p+ 3) = p− 1 = Ω(
√
n).
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It is also possible to binarize the strings T and T ′ in the above proof for the cases of substi-

tutions and insertions, while retaining the same lower bounds:

Corollary 3.2. For the self-referencing LZ77 factorization, there are binary strings of length n

that satisfy MSsub(z77sr, n) ≥ 2, MSins(z77sr, n) ≥ 2, respectively.

Proof. Let p ≥ 2.

substitutions: Consider the following string T of length n = Θ(p2):

T = 0p−1 · 0 · 02p1 · 02p+1101 · 02p+21021 · · · 03p10p1.

The self-referencing LZ77 factorization of T is:

LZ77sr(T ) = 0|03p−11|02p+1101|02p+21021| · · · |03p10p1|

with p+ 2 factors. Then, we consider the string

T ′ = 0p−1 · 1 · 02p1 · 02p+1101 · 02p+21021 · · · 03p10p1

is obtained by substituting p-th 0 with 1. The self-referencing LZ77 factorization of T ′ is:

LZ77sr(T ′) = 0|0p−21|0p|0p1|02p+1|101|02p+2|1021| · · · |03p|10p1|

with 2p+ 4 factors. Then we obtain MSsub(z77sr, n) ≥ (2p+ 4)/(p+ 2) = 2.

insertions: Consider the following string T of length n = Θ(p2):

T = 0p−1 · 02p1 · 02p+1101 · 02p+21021 · · · 03p10p1.

The self-referencing LZ77 factorization of T is:

LZ77sr(T ) = 0|03p−21|02p+1101|02p+21021| · · · |03p10p1|

with p+ 2 factors. Consider the string

T ′ = 0p−1 · 1 · 02p1 · 02p+1101 · 02p+21021 · · · 03p10p1

is obtained by inserting 1 between p − 1 and p. The self-referencing LZ77 factorization of T ′

is:

LZ77sr(T ′) = 0|0p−21|0p|0p1|02p+1|101|02p+2|1021| · · · |03p|10p1|

with 2p+ 4 factors. Then we get MSins(z77sr, n) ≥ (2p+ 4)/(p+ 2) = 2.
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3.5.4 Upper Bounds for Sensitivity of z77sr

Theorem 3.14. The following upper bounds on the sensitivity of self-referencing LZ77 factor-

ization LZ77sr hold:

substitutions: MSsub(z77sr, n) ≤ 2. ASsub(z77sr, n) ≤ z77sr.

insertions: MSins(z77sr, n) ≤ 2. ASins(z77sr, n) ≤ z77sr.

deletions: MSdel(z77sr, n) ≤ 2. ASdel(z77sr, n) ≤ z77sr.

Proof. We use the same notations as in Theorem 3.11 of Section 3.5.2. We consider the case

where T [i] is substituted by a fresh character #, as in the proof for Theorem 3.11. We prove the

following claim:

Claim 3.2. Each interval [pj, qj] has at most two starting positions p′k and p′k+1 of factors in

LZ77sr(T ′) for 1 ≤ k < z′, excluding the interval [pI , qI ] that contains the edited position i.

The interval [pI , qI ] has at most three starting positions of factors in LZ77sr(T ′).

Proof. Cases (1) and (3) which correspond to the positions before and after i can be shown

by the same discussions in the case of non self-referencing LZ factorizations (Theorem 3.11 in

Section 3.5.2). Now we consider case (2):

(2) The interval [pj, qj] satisfies pj ≤ i ≤ qj (namely, fj = fI): If fI is not self-referencing,

then by the same argument to the proof for Theorem 3.11 in Section 3.5.2, the interval has

at most two starting positions of factors in LZ77sr(T ′). Now we consider the case that fI

is self-referencing. For the string w1aw2c = T [pI ..qI ], only the substrings of w2 can have

a self-referencing previous occurrence that contains the edited position i in T . Therefore,

w1 has a previous occurrence in T ′ not containing i, which means that q′k = i where

T ′[i] = # is a fresh character. For the w2c part, we can apply the same discussion of Case

(3) in Theorem 3.11 of Section 3.5.2. Therefore, the w1# part of T ′[pj, qj] = w1#w2c

can have at most one starting position, and the w2c part can have at most two starting

positions of a factor in LZ77sr(T ′).

This completes the proof for the claim.

By the above claim, z77sr(T
′) ≤ 2z77sr(T ) + 1 holds for any string T and any substitution.

Since again |f1| = 1, we get z77sr(T
′) ≤ 2z77sr(T ).

Using the same character(s) as in the proof for Theorem 3.11, we can generalize this proof

to the other types of edit operations.
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3.6 Lempel-Ziv-Storer-Szymanski Factorizations

with/without Self-References

In this section, we consider the worst-case sensitivity of the Lempel-Ziv-Storer-Szymanski fac-

torizations (LZSS) [115] with/without self-references, a.k.a. C-factorizations [31].

Given a factorization T = f1 · · · fz for a string T of length n:

• it is the non self-referencing LZSS factorization LZSS(T ) of T if for each 1 ≤ i ≤ z the

factor fi is either the first occurrence of a character in T , or the longest prefix of fi · · · fz
occurs in f1 · · · fi−1.

• it is the self-referencing LZSS factorization LZSSsr(T ) of T if for each 1 ≤ i ≤ z the

factor fi is either the first occurrence of a character in T , or the longest prefix of fi · · · fz
occurs at least twice in f1 · · · fi.

To avoid confusions, we use different notations to denote the sizes of these factorizations.

For a string T let zSS(T ) and zSSsr(T ) denote the number z of factors in the non self-referencing

LZSS factorization and in the self-referencing LZSS factorization of T , respectively.

For example, for string T = abaabababababab, we have

LZSS(T ) = a|b|a|aba|ba|baba|bab|,
LZSSsr(T ) = a|b|a|aba|babababab|,

where | denotes the right-end of each factor in the factorizations. Here we have zSS(T ) = 7 and

zSSsr(T ) = 5.

3.6.1 Lower Bounds for Sensitivity of zSS

Theorem 3.15. The following lower bounds on the sensitivity of non self-referencing LZSS

factorization LZSS hold:

substitutions: lim infn→∞ MSsub(zSS, n) ≥ 3. ASsub(zSS, n) ≥ 2zSS −Θ(
√
zSS) and

ASsub(zSS, n) = Ω(
√
n).

insertions: lim infn→∞ MSins(zSS, n) ≥ 2. ASins(zSS, n) ≥ zSS −Θ(
√
zSS) and

ASins(zSS, n) = Ω(
√
n).

deletions: lim infn→∞ MSdel(zSS, n) ≥ 3. ASdel(zSS, n) ≥ 2zSS −Θ(
√
zSS) and

ASdel(zSS, n) = Ω(
√
n).
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Proof. Let Σ = {0, 1, a1, . . . , ap , b1, . . . , bp}. Let

Q1 = (a1 · · · ap)(a1 · · · ap−1) · · · (a1a2)(a1),
Q2 = (b1)(b1b2) · · · (b1 · · · bp−1)(b1 · · · bp),

and m = |Q1| = |Q2| = p(p+ 1)/2. Consider the following string:

T = (Q1a11Q2)(εa11b1)(a1a11b1b1) · · · (Q1[m− k + 2..m]a11Q2[1..k]) · · · (Q1[2..m]a11Q2)

with 1 ≤ k ≤ m.

Let us analyze the structure of the non self-referencing LZSS factorization of T . Q1 consists

of p characters a1, . . . , ap , and the prefix a1 · · · ap of Q1 forms p factors of length 1. The

remaining part of Q1 is divided into p − 1 factors as (a1 · · · ak) with p − 1 ≥ k ≥ 1 because

(a1 · · · ak)a1 does not occur before. Next, both T [m + 1] = a1 and T [m + 2] = 1 become

a factor of length 1. As for the prefix of Q2, b1 is a fresh character and becomes a factor of

length 1. For each (b1 · · · bk) with 2 ≤ k ≤ p, b1 · · · bk−1 occurs previously, and b1 · · · bk
does not occur before. Therefore, each interval of (b1 · · · bk) has two factors as b1 · · · bk−1|bk |.
Then, there are 4p factors in the interval [1..|Q1a11Q2|]. The substring T [|Q1a11Q2|..|T |] is

the sequence of m parts (Q1[m− k + 2..m]a11Q2[1..k]) with 1 ≤ k ≤ m. Each part becomes

a factor because (Q1[m − k + 2..m]a11Q2[1..k]) occurs at T [m − k + 2..m + k + 2], and

(Q1[m−k+2..m]a11Q2[1..k])Q1[m−k+1] does not occur before. Therefore, the factorization

of T is:

LZSS(T ) = Q1|a1|1|Q2|(εa11b1)|(a1a11b1b1)| · · ·
|(Q1[m− k + 2..m]a11Q2[1..k])| · · · |(Q1[2..m]a11Q2)|,

where

LZSS(Q1) = a1| · · · |ap|(a1 · · · ap−1)| · · · |(a1a2)|(a1)|

and

LZSS(Q2) = b1|b1|b2| · · · |b1 · · · bp−2|bp−1|b1 · · · bp−1|bp|.

Then zSS(T ) = 4p+ (1/2)p(p+ 1) holds.

substitutions: Let

T ′ = (Q1a10Q2)(εa11b1)(a1a11b1b1) · · · (Q1[m− k+2..m]a11Q2[1..k]) · · · (Q1[2..m]a11Q2)

be the string obtained from T by substituting the first 1 with 0. It is clear that the factorization of

the interval [1..|Q1a10Q2|] is unchanged, and there are 4p factors in. Next, m factors (Q1[m−
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k+2..m]a11Q2[1..k]) with 1 ≤ k ≤ m lose the position they refer to. Then, each factor Q1[m−
k + 2..m]a11Q2[1..k] is divided into three factors as Q1[m− k + 2..m]a1|1Q2[1..k − 1]|Q2[k]|
because of their previous occurrences. Therefore, the factorization of T ′ is:

LZSS(T ′) =Q1|a1|0|Q2|a1|1|b1|a1a1|1b1|b1| · · · |Q1[m− k + 2..m]a1|1Q2[1..k − 1]|Q2[k]| · · ·
|Q1[2..m]a1|1Q2[1..m− 1]|Q2[m]|,

where

LZSS(Q1) = a1| · · · |ap|(a1 · · · ap−1)| · · · |(a1a2)|(a1)|

and

LZSS(Q2) = b1|b1|b2| · · · |b1 · · · bp−2|bp−1|b1 · · · bp−1|bp|.

Then, zSS(T
′) = 4p+ (3/2)p(p+ 1) holds. Also,

|T | = p(p− 1) + 2 +

(1/2)p(p+1)∑
k=1

(2k + 1)

= p(p− 1) + 2 + 2

p(p+1)
2∑

k=1

k +
p(p+ 1)

2

= p(p− 1) + 2 +
p2(p+ 1)2

4
+ p(p+ 1) = Θ(p4)

holds. Hence, we obtain

lim inf
n→∞

MSsub(zSS, n) ≥ lim inf
p→∞

⎛
⎝
(
4p+ 3(p(p+1))

2

)
(
4p+ p(p+1)

2

)
⎞
⎠ = 3,

ASsub(zSS, n) ≥
(
4p+

3(p(p+ 1))

2

)
−

(
4p+

p(p+ 1)

2

)
= p(p+ 1)

= 2zSS −Θ(
√
zSS) ∈ Ω(

√
n).

insertions: Let

T ′ = (Q1a101Q2)(εa11b1)(a1a11b1b1) · · · (Q1[m−k+2..m]a11Q2[1..k]) · · · (Q1[2..m]a11Q2)

be the string obtained from T by inserting 0 before the first 1. The non self-referencing LZSS

factorization of T ′ is:

LZSS(T ′) = Q1|a1|0|1|Q2|a1|1b1|a1a1|1b1b1| · · ·
|Q1[m− k + 2..m]a1|1Q2[1..k]| · · · |Q1[2..m]a1|1Q2|,
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where

LZSS(Q1) = a1| · · · |ap|(a1 · · · ap−1)| · · · |(a1a2)|(a1)|

and

LZSS(Q2) = b1|b1|b2| · · · |b1 · · · bp−2|bp−1|b1 · · · bp−1|bp|.

Then, zSS(T
′) = 4p + p(p + 1) holds. Hence, we obtain lim infn→∞ MSins(zSS, n) ≥ 2,

ASins(zSS, n) ≥ zSS −Θ(
√
zSS), and ASins(zSS, n) = Ω(

√
n).

deletions: As for deletions, by considering T ′ obtained from T by deleting the first 1, we

get a similar decomposition to the case of substitutions. Thus, lim infn→∞ MSdel(zSS, n) ≥ 3,

ASdel(zSS, n) ≥ 2zSS −Θ(
√
zSS), and ASdel(zSS, n) = Ω(

√
n) also hold.

3.6.2 Upper Bounds for Sensitivity of zSS

Theorem 3.16. The following upper bounds on the sensitivity of non self-referencing LZSS

factorization LZSS hold:

substitutions: lim supn→∞ MSsub(zSS, n) ≤ 3. ASsub(zSS, n) ≤ 2zSS − 2.

insertions: MSins(zSS, n) ≤ 2. ASins(zSS, n) ≤ zSS.

deletions: lim supn→∞ MSdel(zSS, n) ≤ 3. ASdel(zSS, n) ≤ 2zSS − 3.

Proof. Let LZSS(T ) = f1 · · · fz and LZSS(T ′) = f ′
1 · · · f ′

z′ . We denote the interval of the jth

factor fj (resp. f ′
j) by [pj, qj] (resp. [p′j, q

′
j]), namely T [pj..qj] = fj and T ′[p′j..q

′
j] = f ′

j . Also,

let fI be the factor of LZSS(T ) whose interval [pI , qI ] contains the edited position i, namely

pI ≤ i ≤ qI .

substitutions: In the following, we consider the case that the ith character T [i] = a is

substituted by a fresh character # which does not occur in T . The other cases can be proven

similarly. Now we show the following claim:

Claim 3.3. After the substitution, each interval [pj, qj] has at most three starting positions p′k,

p′k+1, and p′k+2 of factors in LZSS(T ′) for 1 ≤ k ≤ z′ − 2.

Proof. There are the three following cases:

(i) When the interval [pj, qj] satisfies qj < i: By the same argument to Case (1) for LZ77,

the interval [pj, qj] contains exactly one starting position p′j = pj .

(ii) When the interval [pj, qj] satisfies pj ≤ i ≤ qj (namely, fj = fI): For the string

wj1awj2 = T [pj..qj], it is guaranteed that w1aw2 has at least one occurrence in f1 · · · fj−1.

After the substitution which gives T ′[pj..qj] = w1#w2, w1 and # become factors as
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f ′
j and f ′

j+1, and w2 becomes the prefix of factor f ′
j+2. This means that p′j = pj and

q′j+2 ≥ qj . Therefore, the interval [pj, qj] contains at most three starting positions p′j , p
′
j+1

and p′j+2 of factors in LZSS(T ′).

(iii) When the interval [pj, qj] satisfies i < pj: We consider the two following sub-cases:

(iii-A) When T [pj..qj] has at least one occurrence which does not contain the edited posi-

tion i in T : Any suffix of T [pj..qj] still has a previous occurrence in T ′. Therefore,

[p′k, q
′
k] with pj ≤ p′k satisfies q′k ≥ qj , meaning the interval [pj, qj] contains at most

one starting position p′k of a factor in LZSS(T ′).

(iii-B) All occurrences of T [pj..qj] in T contain the edited position i: Let u1au2 = T [pj, qj]

with a ∈ Σ and u1, u2 ∈ Σ∗. u1 and u2 have previous occurrences in T ′[1..pj − 1].

Let p′k be the starting position of the leftmost factor of LZ77(T ′) which begins in

range [pj, qj]. If p′k is in u2, then q′k ≥ qk and thus there is only one starting position

of a factor of LZ77(T ′) in the interval [pj..qj]. Suppose p′k is in u1. If a has no

previous occurrences (which happens when T [i] was the only previous occurrence

of a), then T ′[pk+ |u1|] is the first occurrence of a in T ′ and thus q′k = pk+ |u1|− 1,

p′k+1 = q′k+1 and q′k+1 = p′k+1+1. Otherwise, q′k ≥ pk+ |u1|−1, p′k+1 ≥ q′k+1 and

q′k+1 ≥ p′k+1 + 1. In either case, since u2 has a previous occurrence, q′k+2 ≥ qk+1.

Thus, there can exist at most three starting positions of factors of LZ77(T ′) in the

interval [pj..qj].

This completes the proof for the claim.

It follows from the above claim that zSS(T
′) ≤ 3zSS(T ) for any string T and substitutions

with #. Since |f1| = 1, zSS(T
′) ≤ 3zSS(T )−2 holds. Thus we get lim supn→∞ MSsub(zSS, n) ≤

3 and ASsub(zSS, n) ≤ 2zSS − 2.

insertions: In the following, we consider the case that # is inserted to between positions

i− 1 and i. The other cases can be proven similarly. Now we show the following claim:

Claim 3.4. After the insertion, each interval [pj, qj] contains at most two starting positions p′k
and p′k+1 of factors in LZSS(T ′) for 1 ≤ k ≤ z′ − 1, excluding the interval [pI , qI ]. Also, the

interval [pI , qI ] contains at most three starting positions of factors in LZSS(T ′).

Proof. For Cases (i), (ii), and (iii-A), we can use the same discussions as in the case of substi-

tutions. Now we consider Case (iii-B):
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(iii-B) When all occurrences of T [pj..qj] in T contain the edited position i: Let u1au2 = T [pj, qj]

with a ∈ Σ and w1, w2 ∈ Σ∗. It is guaranteed that wj1a, and wj2 still have previous

occurrences in T ′. Therefore, each range of wj1a and wj2 can contain at most one starting

position of a factor in LZSS(T ′).

It follows from the above claim that zSS(T
′) ≤ 2zSS(T )+1 holds any string T and insertions

with #. By using the same discussion as for f1, we obtain zSS(T
′) ≤ 2zSS(T ) holds. Then we

have MSins(zSS, n) ≤ 2 and ASins(zSS, n) ≤ zSS.

deletions: In the following, we consider the case that T [i] = a is deleted. Now we show the

following claim:

Claim 3.5. After the deletion, each interval [pj, qj] contains at most three starting positions p′k,

p′k+1, and p′k+2 of factors in LZSS(T ′) for 1 ≤ k ≤ z′ − 2, excluding the interval [pI , qI ]. The

interval [pI , qI ] contains at most two starting positions of factors in LZSS(T ′).

Proof. For Cases (i) and (iii), we can use the same discussions as in the case of substitutions.

Now we consider case (ii):

(ii) When the interval [pj, qj] satisfies pj ≤ i ≤ qj (namely, fj = fI): Let w1aw2 = T [pj..qj]

with a ∈ Σ and w1, w2 ∈ Σ∗. It is guaranteed that w1aw2 has at least one previous

occurrence in f1 · · · fj−1. Therefore, after the deletion of a, each range of w1 and w2 can

contain at most one starting position of a factor in LZSS(T ′).

It follows from the above claim that zSS(T
′) ≤ 3zSS(T ) − 1 holds for any string T and

deletions. By using the same discussion as for f1, zSS(T
′) ≤ 3zSS(T ) − 3 holds. Then we get

lim supn→∞ MSdel(zSS, n) ≤ 3 and ASdel(zSS, n) ≤ 2zSS − 3.

3.6.3 Lower bound for Sensitivity of zSSsr

Theorem 3.17. The following lower bounds on the sensitivity of self-referencing LZSS factor-

ization LZSSsr hold:

substitutions: lim infn→∞ MSsub(zSSsr, n) ≥ 3. ASsub(zSSsr, n) ≥ 2zSSsr −Θ(
√
zSSsr) and

ASsub(zSSsr, n) = Ω(
√
n).

insertions: lim infn→∞ MSins(zSSsr, n) ≥ 2. ASins(zSSsr, n) ≥ zSSsr −Θ(
√
zSSsr) and
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ASins(zSSsr, n) = Ω(
√
n).

deletions: lim infn→∞ MSdel(zSSsr, n) ≥ 3. ASdel(zSSsr, n) ≥ 2zSSsr −Θ(
√
zSSsr) and

ASdel(zSSsr, n) = Ω(
√
n).

Proof. We use the same strings T and T ′ as in the proof for Theorem 3.15 which shows the

lower bounds of the sensitivity of the non self-referencing LZSS. For the string T and each edit

operation, the self-referencing LZSS factorization is the same as the non self-referencing LZSS

factorization. Hence, we obtain Theorem 3.17.

3.6.4 Upper Bounds for Sensitivity of zSSsr

Theorem 3.18. The following upper bounds on the sensitivity of self-referencing LZSS factor-

ization LZSSsr hold:

substitutions: MSsub(zSSsr, n) ≤ 3. ASsub(zSSsr, n) ≤ 2zSSsr.

insertions: lim supn→∞ MSins(zSSsr, n) ≤ 2. ASins(zSSsr, n) ≤ zSSsr + 1.

deletions: MSdel(zSSsr, n) ≤ 3. ASdel(zSSsr, n) ≤ 2zSSsr − 1.

Proof. We use the same notations as in Theorem 3.16 of Section 3.6.2. As with the case of self-

referencing LZ77 z77sr, only the interval [pI , qI ] that contains the edited position i is effected in

this case of self-referencing LZSS zSSsr. For the string w1aw2 = T [pI ..qI ], only w2 can have a

self-referencing previous occurrence that contains the edited position i. For each edit operation,

by applying the discussion of Case (iii) in Theorem 3.16 to the range of w2 in [pI ..qI ], we obtain

Theorem 3.18.

3.7 Lempel-Ziv 78 Factorizations

In this section, we consider the worst-case sensitivity of the Lempel-Ziv 78 factorizations

(LZ78) [124].

For convenience, let f0 = ε. A factorization T = f1 · · · fz78 for a string T of length n is the

LZ78 factorization LZ78(T ) of T if for each 1 ≤ i < z78 the factor fi is the longest prefix of

fi · · · fz78 such that fi[1..|fi| − 1] = fj for some 0 ≤ j < i. The last factor fz78 is the suffix of

T of length n − |f1 · · · fz78−1| and it may be equal to some previous factor fj (1 ≤ j < z78).

Again, if we use a common convention that the string T terminates with a unique character $,

then the last factor fz78 can be defined analogously to the previous factors. Let z78(T ) denote

the number of factors in the LZ78 factorization of string T .
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For example, for string T = abaabababababab$,

LZ78(T ) = a|b|aa|ba|bab|ab|aba|b$|,

where | denotes the right-end of each factor in the factorization. Here we have z78(T ) = 8.

As for the sensitivity of LZ78, Lagarde and Perifel [83] showed that MSins(z78, n) = Ω(n1/4),

ASins(z78, n) = Ω(z
3/2
78 ), and ASins(z78, n) = Ω(n/ log n) for insertions. 1 In this section, we

present lower bounds for the multiplicative/additive sensitivity of LZ78 for the remaining cases,

i.e., for substitutions and deletions, by using a completely different string from [83].

3.7.1 Lower Bounds for Sensitivity of z78

Theorem 3.19. The following lower bounds on the sensitivity of z78 hold:

substitutions: MSsub(z78, n) = Ω(n1/4). ASsub(z78, n) = Ω(z
3/2
78 ) and ASsub(z78, n) = Ω(n3/4).

deletions: MSdel(z78, n) = Ω(n1/4). ASdel(z78, n) = Ω(z
3/2
78 ) and ASdel(z78, n) = Ω(n3/4).

Proof. Consider the string

T = (σk+1) · · · (σ2k) · (σ1) · (σ1σ2) · · · (σ1 · · · σk) · (σ1 · · · σy1 · σk+1) · · · (σ1 · · · σyk · σ2k),

where σi for every 1 ≤ i ≤ 2k is a distinct character and yj for every 1 ≤ j ≤ k satisfies the

following property: yj is the maximum integer at most k such that 2+j+�j−1 ≡ yj (mod �j)

where �j is an integer satisfying (1/2)�j(�j − 1) + 1 ≤ j ≤ (1/2)�j(�j + 1). We remark that

the parentheses ( and ) in T are shown only for the better visualization and exposition, and

therefore they are not the characters in T .

Let n be the length of T . Since k + (1/2)k(k + 1) < n < k + (1/2)k(k + 1) + k(k + 1),

n ∈ Θ(k2) holds. In the LZ78 factorization of T , for each substring (w), its suffix w[1..|w| − 1]

has a previous occurrence as (w[1..|w| − 1]), and (w) is the leftmost occurrence of w in the

string T . Therefore, the LZ78 factorization of T is

LZ78(T ) = σk+1| · · · |σ2k |σ1|σ1σ2| · · · |σ1 · · · σk |σ1 · · · σy1 · σk+1| · · · |σ1 · · · σyk · σ2k |

with z78(T ) = 3k.

For our analysis of the sensitivity of z78 for substitutions, consider the string

T ′ = (σk+1) · · · (σ2k) · (σ1) · (σ1σ2) · · · (σ1 · · · σk ) · (#σ2 · · · σy1 · σk+1) · · · (σ1 · · · σyk · σ2k),
1In the restricted case of appending a character to the top of a string or deleting the first character of a string,

they showed upper bounds that the ratio is O(n1/4) and the increase is O(z
3/2
78 ).
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which can be obtained from T by substituting the first character σ1 of the string in the 2k + 1th

paring parentheses with a fresh character #, which does not occur in T . Let us analyze the

structure of the LZ78 factorization of T ′. Clearly, the first 2k factors are unchanged after the

substitution. Next, we consider (#σ2 · · · σy1 ·σk+1). First, the prefix #σ2 · · · σy1 is decomposed

into y1 factors of length 1. The next factor is σk+1σ1 since σk+1 has an occurrence as a previous

factor and σk+1σ1 has no occurrences as a previous factor. Now we show in each interval of the

2k + jth paring parentheses for 2 ≤ j ≤ k (i.e., the interval of σ1 · · · σyjσk+j ) there appear the

right-ends | of factors in LZ78(T ′) as follows:

σ1|σ2 · · · σj+1|σj+2 · · · σj+�j+1| · · · |σyj−�j+1 · · · σyj |σk+j . (3.1)

Namely, the interval is decomposed into 3 + ((yj − j − �j − 1)/�j) + 1 = 3 + (yj − j − 1)/�j

pieces d1, . . . , d3+(yj−j−1)/�j , where |d1| = |d3+(yj−j−1)/�j | = 1, |d2| = j, and each of the oth-

ers is of length �j . At first, we show the partition the partition (3.1) is valid for j = 2. As

mentioned above, there is a factor σk+1σ1 constructed with the immediately preceded character

and the first character of the interval of σ1 · · · σy2σk+2. And then, σ2 · · · σy2 is decomposed into

σ2σ3|σ4σ5| · · · |σy2−1σy2 | since y2 is the maximum odd value less than or equal to k and each

σ2i for 1 ≤ i ≤ (y2 − 1)/2 is the longest prefix as some previous factor. Since �2 = 2 holds,

the partitions of the interval are σ1|σ2σ3|σ4σ5| · · · |σy2−1σy2 |σk+2, and this satisfies the partition

(3.1). Next, we assume the partition (3.1) is valid for j ≤ h − 1 for some integer h, and we

consider whether the partition (3.1) is valid or not for j = h. From the assumption and the

same discussion as the above, there is a factor σk+h−1σ1 constructed with the immediately pre-

ceded character and the first character of the interval of σ1 · · · σyhσk+h . Since the set of previous

factors starting with the character σ2 is {(σ2), (σ2σ3), . . . , (σ2 · · · σh)}, the next factor becomes

σ2 · · · σh+1. In addition, it is guaranteed that the set of previous factors starting with the char-

acter σi for every h + 2 ≤ i ≤ yh − �h + 1 is equal to {(σi), (σiσi+1), . . . , (σi · · · σi+�j − 2}.

Since yh can be described as h + �h + 1 + t�h for some integer t, the decomposition of the in-

terval becomes σ1|σ2 · · · σh+1|σh+2 · · · σh+�h+1| · · · |σyh−�h+1 · · · σyh |σk+h , and this satisfies the

partition (3.1). From the above, the partition (3.1) is valid for 2 ≤ j ≤ k by induction.

Thus, the LZ78 factorization of T ′ is

LZ78(T ′) = σk+1| · · · |σ2k |σ1|σ1σ2| · · · |σ1 · · · σk |#|σ2| · · · |σy1 |σk+1σ1|σ2σ3| · · · |σy2−1σy2 |
σk+2σ1| · · · |σ2 · · · σj+1|σj+2 · · · σj+�j+1| · · · |σyj−�j+1 · · · σyj |σk+jσ1| · · · | · · ·σyk |σ2k |.

See also Figure 3.2 for a concrete example.

The size of LZ78(T ′) is z78(T
′) = 2k + y1 +

∑k
j=2(2 + (yj − j − 1)/�j) + 1 = 5k −

1 +
∑k

j=2((yj − j − 1)/�j).
∑k

j=2((yj − j − 1)/�j) is the total number of factors of length
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�j for 1 ≤ j ≤ k. Now we consider the number of factors of length in L ∈ {�1, . . . , �k}.

For all j such that (1/2)L(L − 1) + 1 ≤ j ≤ (1/2)L(L + 1), the total number of factors

of length in L is
∑jLmax

j=jLmin
((yj − j − 1)/L), where jLmin = (1/2)L(L − 1) + 1 and jLmax =

(1/2)L(L + 1). From the definition of yj ,
∑

j yj = k + (k − 1) + · · · + (k − L + 1) holds.

Therefore,
∑jLmax

j=jLmin
((yj − j − 1)/L) = (k+ (k− 1) + · · ·+ (k−L+ 1)− jLmin − (jLmin + 1)−

· · · − jLmax − L)/L = (L(k − jLmax) − L)/L = k − (1/2)L(L + 1) − 1. Let �k = m. Then

the total number of factors of length �j for 1 ≤ j ≤ k is
∑m

L=2(k − (1/2)L(L + 1) − 1) =

(m−1)k−(1/12)m(m+1)(2m+1)−(1/4)m(m+1)−m+2. Consider the case of m =
√
k,

then z78(T
′) ∈ Ω(k

√
k). Thus we obtain MSsub(z78, n) = Ω(n1/4), ASsub(z78, n) = Ω(z

3/2
78 ),

and ASsub(z78, n) = Ω(n3/4).

As for deletions, by considering T ′ obtained from T by deleting the first character of the 2k+

1th factor in LZ78(T ), we obtain a similar decomposition as the above. Thus, MSdel(z78, n) =

Ω(n1/4), ASdel(z78, n) = Ω(z
3/2
78 ), and ASdel(z78, n) = Ω(n3/4) also hold.

σ51| |σ100|σ1|σ1σ2| |σ1 σ50|
#|σ2|σ3| |σ50|σ51σ1|
σ2σ3|σ4σ5| |σ49σ50|σ52σ1|
σ2σ3σ4|σ5σ6| |σ48σ49|σ53σ1|
σ2σ3σ4σ5|σ6σ7σ8| |σ48σ49σ50|σ54σ1|
σ2σ3σ4σ5σ6|σ7σ8σ9| |σ46σ47σ48|σ55σ1|
σ2σ3σ4σ5σ6σ7|σ8σ9σ10| |σ47σ48σ49|σ56σ1|
…

Figure 3.2: Illustration for LZ78(T ′) for the string T ′ of Theorem 3.19 with k = 50.

We remark that our string also achieve MSins(z78, n) = Ω(n1/4), ASins(z78, n) = Ω(z
3/2
78 ),

and ASins(z78, n) = Ω(n3/4) for insertions, if we consider the string T ′ obtained from T by

inserting # between the first and second characters of the 2k + 1th factor of LZ78(T ).
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Chapter 4

Longest Palindromic Substring After Edit

Finding palindromic structures has important applications to analyze biological data such as

DNA, RNA, and proteins [57]. In this chapter, we tackle the problems of computing the longest

palindromic substring (LPS) after the string is edited. Such a setting can be utilized in several

situations in the real-world, e.g., a substring of a text having errors, simulations on a text, and the

analysis of some similar strings. In Section 4.1, we show how to compute the longest substring

palindrome of a string after a single character edit operation. In Section 4.2, we show algorithm

for computing the longest substring palindrome of a string after block-wise edit operation.

The results in this chapter primarily appeared in [42].

4.1 Algorithm for 1-ELPS

In this section, we will show the following result:

Theorem 4.1. There is an algorithm for the 1-ELPS problem which uses O(n) time and space

for preprocessing, and answers each query in O(log(min{σ, log n})) time for single character

substitution and insertion, and in O(1) time for single character deletion.

4.1.1 Algorithm for Substitutions

In what follows, we will present our algorithm to compute the length of the LPSs after a single

character substitution. Our algorithm can also return an occurrence of an LPS.

Let i be any position in the string T of length n and let c = T [i]. Also, let T ′ = T [1..i −
1]c′T [i+1..n], i.e., T ′ is the string obtained by substituting character c′ for the original character

c = T [i] at position i. In this subsection, we assume c 	= c′ without loss of generality. To
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compute the length of the LPSs of T ′, it suffices to consider maximal palindromes of T ′. Those

maximal palindromes of T ′ will be computed from the maximal palindromes of T .

The following observation shows that some maximal palindromes of T remain unchanged

after a character substitution at position i.

Observation 4.1 (Unchanged maximal palindromes after a single character substitution). For

any position 1 ≤ j < i − 1, MaxPalEndT ′(j) = MaxPalEndT (j). For any position i + 1 <

j ≤ n, MaxPalBegT ′(j) = MaxPalBegT (j).

By Observation 4.1, for each position i (1 ≤ i ≤ n) of T , we precompute the largest element

of
⋃

1≤j<i−1 MaxPalEndT (j) and that of
⋃

i+1<j≤n MaxPalBegT (j), and store the larger one

in the ith position of an array U of length n. U [i] is a candidate for the solution after the

substitution at position i. For each position i,
⋃

1≤j<i−1 MaxPalEndT (j) contains the lengths

of all maximal palindromes which end to the left of i, and
⋃

i+1<j≤n MaxPalBegT (j) contains

the lengths of all maximal palindromes which begin to the right of i. Thus, by simply scanning

MaxPalEndT (j) for increasing j = 1, . . . , n and MaxPalBegT (j) for decreasing j = n, . . . , 1,

we can compute U [i] for every position 1 ≤ i ≤ n. Since there are only 2n − 1 maximal

palindromes in string T , it takes O(n) time to compute the whole array U .

Next, we consider maximal palindromes of the original string T whose lengths are extended

in the edited string T ′. As above, let i be the position where a new character c′ is substituted for

the original character c = T [i]. In what follows, let σ denote the number of distinct characters

appearing in T .

Observation 4.2 (Extended maximal palindromes after a single character substitution). For any

s ∈ MaxPalEndT (i − 1), the corresponding maximal palindrome T [i − s..i − 1] centered at
2i−s−1

2
gets extended in T ′ iff T [i − s − 1] = c′. Similarly, for any p ∈ MaxPalBegT (i + 1),

the corresponding maximal palindrome T [i+1..i+ p] centered at 2i+p+1
2

gets extended in T ′ iff

T [i+ p+ 1] = c′.

Lemma 4.1. Let T be a string of length n over an integer alphabet of size polynomial in

n. It is possible to preprocess T in O(n) time and space so that later we can compute in

O(log(min{σ, log n})) time the length of the longest maximal palindromes in T ′ that are ex-

tended after a substitution of a character.

Proof. In what follows, we consider maximal palindromes corresponding to MaxPalEndT (i−
1) by Observation 4.2. Those corresponding to MaxPalBegT (i + 1) can be treated simi-

larly. Let 〈s, d, t〉 be an arithmetic progression representing a group of maximal palindromes in
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MaxPalEndT (i − 1). Let us assume that the group contains more than 1 member (i.e., t ≥ 2)

and that i− s ≥ 2, since the case where t = 1 or i− s = 1 is easier to deal with. Let Pj denote

the jth shortest member of the group, i.e., P1 = T [i−s..i−1] and Pt = T [i−s−(t−1)d..i−1].

Then, it follows from Lemma 2.2 (iv) that if a is the character immediately preceding the oc-

currence of P1 (i.e., a = T [i − s − 1]), then a also immediately precedes the occurrences of

P2, . . . , Pt−1. Hence, by Observation 4.2, Pj (2 ≤ j < t) gets extended in the edited text T ′ iff

c′ = a. Similarly, Pt gets extended iff c′ = b, where b is the character immediately preceding the

occurrence of Pt. For each 1 ≤ j ≤ t the final length of the extended maximal palindrome can

be computed in O(1) time by a single outward LCE query OutLCE(i− s− (j− 1)d− 2, i+1).

Let P ′
j denote the extended maximal palindrome for each 1 ≤ j ≤ t. Since there are only 2n−1

maximal palindromes in string T and all of them can be computed in O(n) total time.

The above arguments suggest that for each group of maximal palindromes, there are at most

two distinct characters that can extend those palindromes after a single character substitution.

For each position i in T , let Σi denote the set of characters which can extend maximal palin-

dromes w.r.t. MaxPalEndT (i − 1) after a character substitution at position i. It now follows

from Lemma 2.2 and from the above arguments that |Σi| = O(min{σ, log i}). Also, when any

character in Σ\Σi is given for character substitution at position i, then no maximal palindromes

w.r.t. MaxPalEndT (i− 1) are extended.

For each maximal palindrome P of T , let (i′, c, l) be a tuple such that i′ is the ending position

of P , and l is the length of the extended maximal palindrome P ′ after the immediately following

character T [i′+1] is substituted for the character c = T [i′−|P |−1] which immediately precedes

the occurrence of P in T . We then radix-sort the tuples (i′, c, l) for all maximal palindromes

in T as 3-digit numbers. This can be done in O(n) time since T is over an integer alphabet of

size polynomial in n. Then, for each position i′, we compute the maximum value lc for each

character c. Since we have sorted the tuples (i′, c, l), this can also be done in total O(n) time

for all positions and characters.

Let ĉ be a special character which represents any character in Σ \ Σi (if Σ \ Σi 	= ∅). Since

no maximal palindromes w.r.t. MaxPalEndT (i− 1) are extended by ĉ, we associate ĉ with the

length lĉ of the longest maximal palindrome w.r.t. MaxPalEndT (i − 1). For each position i

and each character c ∈ Σi, if lc is less than lĉ, then we rewrite lc = lĉ. We assume that ĉ is

lexicographically larger than any characters in Σi. For each position i we store pairs (c, lc) in

an array Ei of size |Σi|+1 = O(min{σ, log i}) in lexicographical order of c. See Figure 4.1 for

a concrete example.

Then, given a character c′ to substitute for the character at position i (1 ≤ i ≤ n), we can
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bbaabaabaacaabaabaaaaacaabab
i

b

b

c

b

Figure 4.1: Example for Lemma 4.1, with string bbaabaabaacaabaabaaaaacaabab where the

character a at position i = 20 is to be substituted. There are four maximal palindromes ending

at position 19, whose lengths are represented by two groups 〈2, 3, 3〉 and 〈17, 9, 1〉. For the

first group, c precedes the longest maximal palindrome and b precedes all the other maximal

palindromes. The second group contains only one maximal palindrome and b precedes it. The

largest extended lengths are 21 for b, and 14 for c. Thus we have Ei = [(b, 21), (c, 17), (ĉ, 17)],

where 17 is the length of the longest maximal palindrome ending at position 19 in the original

string.

binary search Ei for (c′, lc′) in O(log(min{σ, log n})) time. If c′ is not found in the array, then

we take the pair (ĉ, lĉ) from the last entry of Ei. We remark that
∑n

i=1 |Ei| = O(n) since there

are 2n − 1 maximal palindromes in T and for each of them at most two distinct characters

contribute to
∑n

i=1 |Ei|.

By using hashing instead of binary search, the query can be solved in O(1) time after O(n)

expected time and O(n) space for preprocessing.

Finally, we consider maximal palindromes of the original string T whose lengths are short-

ened in the edited string T ′ after substituting a character c′ for the original character at position

i.

Observation 4.3 (Shortened maximal palindromes after a single character substitution). A max-

imal palindrome T [b..e] of T gets shortened in T ′ iff b ≤ i ≤ e and i 	= b+e
2

.

Lemma 4.2. It is possible to preprocess a string T of length n in O(n) time and space so that

later we can compute in O(1) time the length of the longest maximal palindromes of T ′ that are

shortened after a substitution of a character.

Proof. Now we consider shortened maximal palindromes whose center b+e+1
2

is less than i.

Shortened maximal palindromes whose center b+e+1
2

is more than i can be treated similarly. Let
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S be an array of length n such that S[i] stores the length of the longest maximal palindrome

after shortening by the character substitution at position i. To compute S , we preprocess T by

scanning it from left to right. Suppose that we have computed S[i]. By Observation 4.3, we

have that S[i] = 2(i− b+e+1
2

) where T [b..e] is the longest maximal palindrome of T satisfying

the conditions of Observation 4.3. In other words, T [b..e] is the maximal palindrome of T of

which the center b+e
2

is the smallest possible under the conditions.

For any position i < i′′ ≤ e, we have that S[i′′] = S[i] + 2(i′′ − i). For the next position

e + 1, we can compute S[e + 1] in amortized O(1) time by simply scanning the array M from

position b+e+1
2

to the right until finding the first (i.e., leftmost) entry of M which stores the

length of a maximal palindrome whose ending position is at least e+1. Hence, we can compute

S in O(n) total time and space.

Remark that maximal palindromes of T which do not satisfy the conditions of Observa-

tions 4.2 and 4.3 are also unchanged in T ′. The following lemma summarizes this subsection:

Lemma 4.3. Let T be a string of length n over an integer alphabet of size polynomial in n. It

is possible to preprocess T of length n in O(n) time and space so that later we can compute in

O(log(min{σ, log n})) time the length of the LPSs of the edited string T ′ after a substitution of

a character.

4.1.2 Algorithm for Deletions

Suppose the character at position i is deleted from the string T , and let T ′
i denote the resulting

string, namely T ′
i = T [1..i − 1]T [i + 1..n]. Now the RL factorization of T comes into play:

Observe that for any 1 ≤ i ≤ n, T ′
i = T ′

RLFBeg(i) = T ′
RLFEnd(i). Thus, it suffices for us to

consider only the boundaries of the RL factors for T .

It is easy to see that an analogue of Observation 4.1 for unchanged maximal palindromes

holds, as follows.

Observation 4.4 (Unchanged maximal palindromes after a single character deletion). For any

position 1 ≤ j < RLFEnd(i) − 1, MaxPalEndT ′
i
(j) = MaxPalEndT (j). For any position

RLFBeg(i) + 1 < j ≤ n, MaxPalBegT ′
i
(j) = MaxPalBegT (j).

See Figure 4.2 for a concrete example of Observation 4.4.

By the above observation, we can compute the lengths of the longest unchanged maximal

palindromes for the boundaries of all RL factors in O(n) time, in a similar way to the case of

substitution.
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abcaaaabaaaaaacbb

i RLFEnd(i)

abcaaaabaaaaacbb

Figure 4.2: Example for Observation 4.4. The maximal palindrome aaaabaaaa does not change

if the character a at position i is deleted. The result is the same if the character a at position

RLFEnd(i) is deleted.

Clearly the new character at position RLFEnd(i) in the string T ′
i after a deletion is always

T [RLFEnd(i) + 1], and a similar argument holds for RLFBeg(i). Thus, we have the follow-

ing observation for extended maximal palindromes after a deletion, which is an analogue of

Observation 4.2.

Observation 4.5 (Extended maximal palindromes after a single character deletion). For any

s ∈ MaxPalEndT (RLFEnd(i)− 1), the corresponding maximal palindrome T [RLFEnd(i)−
s..RLFEnd(i)− 1] centered at 2RLFEnd(i)−s−1

2
gets extended in T ′

i iff T [RLFEnd(i)− s− 1] =

T [RLFEnd(i) + 1]. Similarly, for any p ∈ MaxPalBegT (RLFBeg(i) + 1), the correspond-

ing maximal palindrome T [RLFBeg(i) + 1..RLFBeg(i) + p] centered at 2RLFBeg(i)+p+1
2

gets

extended in T ′
i iff T [RLFBeg(i) + p+ 1] = T [RLFBeg(i)− 1].

See Figure 4.3 for a concrete example for Observation 4.5.

abcaaaabaaaaacbb

i RLFEnd(i)

abcaaaabaaaacbb

Figure 4.3: Example for Observation 4.5. The maximal palindrome aaaabaaaa gets extended

to bcaaaabaaaacb if the character a at position i is deleted. The result is the same if the

character a at position RLFEnd(i) is deleted.

Since the new characters that come from the left and the right of each deleted position are

always unique, for each RLFEnd(i) and RLFBeg(i), the longest maximal palindrome that

gets extended after a deletion is also unique. Overall, we can precompute their lengths for all

positions 1 ≤ i ≤ n in O(n) total time by using O(n) outward LCE queries in the original

string T .

Next, we consider those maximal palindromes which get shortened after a single character

deletion. We have the following observation which is analogue to Observation 4.3.
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Observation 4.6 (Shortened maximal palindromes after a deletion). A maximal palindrome

T [b..e] of T gets shortened in T ′
i iff b ≤ RLFBeg(i) and RLFEnd(i) ≤ e.

See Figure 4.4 for a concrete example for Observation 4.6.

accaaaaabaaaaaccb

i RLFEnd(i)

accaaaaabaaaaccb

Figure 4.4: Example for Observation 4.6. The maximal palindrome ccaaaaabaaaaacc gets

shortened to aaaabaaaa if the character a at position i is deleted. The result is the same if the

character a at position RLFEnd(i) is deleted.

By Observation 4.6, we can precompute the length of the longest maximal palindrome after

deleting the characters at the beginning and ending positions of each RL factors in O(n) total

time, using an analogous way to Lemma 4.2.

Summing up all the above discussions, we obtain the following lemma:

Lemma 4.4. It is possible to preprocess a string T of length n in O(n) time and space so that

later we can compute in O(1) time the length of the LPSs of the edited string T ′
i after a deletion

of a character.

4.1.3 Algorithm for Insertion

Consider the insertion of a new character c′ between the ith and (i + 1)th positions in T , and

let T ′ = T [1..i]c′T [i + 1..n]. If c′ 	= T [i] and c′ 	= T [i + 1], we can find the length of the

LPSs in T ′ in a similar way to substitution as follows: for the maximal palindromes in T ′

whose center is less than or equal to i, we regard as c′ is substituted for T [i+ 1]. Then, we can

compute shortened or unchanged maximal palindromes by using exactly the same algorithm

for substitution. Extended maximal palindromes also can be computed in a similar way to

substitution by taking care of the positions of outward LCE queries. The maximal palindromes

in T ′ whose center is more than or equal to i + 2 can be computed similarly by regarding as c′

is substituted for T [i]. The remaining maximal palindromes in T ′ with the center i+ 0.5, i+ 1,

or i+ 1.5 can be computed easily. The length of the maximal palindrome in T ′ with the center

i + 1 is equal to it of the maximal palindrome of T with the center i + 0.5 plus one. Also, the

maximal palindromes in T ′ with the center i + 0.5 or i + 1.5 are ε. Otherwise (if c′ = T [i] or

c′ = T [i + 1]), we can find the length of the LPSs in T ′ in a similar way to deletion since c′ is

merged to an adjacent RL factor. Thus, we have the following.
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Lemma 4.5. Let T be a string of length n over an integer alphabet of size polynomial in n.

It is possible to preprocess in O(n) time and space string T so that later we can compute in

O(log(min{σ, log n})) time the length of the LPSs of the edited string T ′ after a insertion of a

character.

4.1.4 Hashing

By using hashing instead of binary searches on arrays, the following corollary is immediately

obtained from Theorem 4.1.

Corollary 4.1. There is an algorithm for the 1-ELPS problem which uses O(n) expected time

and O(n) space for preprocessing, and answers each query in O(1) time for single character

substitution, insertion, and deletion.

4.2 Algorithm for �-ELPS

In this section, we consider the �-ELPS problem where an existing block of length �′ in the

string T is replaced with a new block of length �. This generalizes substitution when �′ > 0 and

� > 0, insertion when �′ = 0 and � > 0, and deletion when �′ > 0 and � = 0.

This section presents the following result:

Theorem 4.2. There is an O(n)-time and space preprocessing for the �-ELPS problem such

that each query can be answered in O(� + log log n) time, where � denotes the length of the

block after an edit.

Note that the time complexity for our algorithm is independent of the length of the original

block to edit. Also, the length � of a new block is arbitrary.

Consider the substitution of a string X of length � for the substring T [ib..ie] beginning at

position ib and ending at position ie, where ie − ib + 1 = �′ and X 	= T [ib..ie]. Let T ′′ =

T [1..ib − 1]XT [ie + 1..n] be the string after the edit. In order to compute (the lengths of)

maximal palindromes that are affected by the block-wise edit operation, we need to know the

first (leftmost) mismatching position between T and T ′′, and that between TR and T ′′R. Let h

and l be the smallest integers such that T [h] 	= T ′′[h] and TR[l] 	= T ′′R[l], respectively. If such

h does not exist, then let h = min{|T |, |T ′′|} + 1. Similarly, if such l does not exist, then let

l = min{|T |, |T ′′|}+ 1. Let j1 = lcp(T [ib..n], XT [ie..n]), j2 = lcp((T [1..ie])
R, (T [1..ib]X)R),

pb = ib + j1, and pe = ie − j2. There are two cases: (1) If j1 = j2 = 0, then the first and last
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characters of T [ib..ie] differ from those of X . In this case, we have ib = h and ie = n − l + 1.

We use these positions ib and ie to compute maximal palindromes after the block-wise edit. (2)

Otherwise, we have pb = ib+j1 = h and pe = ie−j2 = n− l+1. We use these positions pb and

pe to compute maximal palindromes after the block-wise edit. See Figure 4.5 for illustration.

(2-1) is a sub-case of Case (2) with pb(= ib + j1) < pe(= ie − j2). In the example of this

figure, the substring T [ib..ie] = abbccbabcb is substituted by X = abbcb. (2-2) is a sub-case

of Case (2) with pe(= ie − j2) < pb(= ib + j1). In the example of this figure, the substring

T [ib..ie] = abbcc is substituted by X = abbbcc. (2-3) is the example T [ib..ie] = abbccbabcb

is substituted with X = abbccb and this is the sub-case of Case (2) with j1 > �. Note that pb

and pe are only used to compute (the lengths of) maximal palindromes and the fact that T [ib..ie]

is substituted with X is never changed in any case.

In the following, we describe our algorithm for Case (1). Case (2) can be treated similarly,

by replacing ib and ie with pb and pe, respectively. Our algorithm can handle the case where

pe < pb. Remark that pb and pe can be computed in O(�) time by naı̈ve character comparisons

and a single LCE query each.

4.2.1 Unchanged Maximal Palindromes

We have the following observation for those of maximal palindromes in T whose lengths do

not change, which is a generalization of Observation 4.1.

Observation 4.7 (Unchanged maximal palindromes after a block-wise edit). For any position

1 ≤ j < ib − 1, MaxPalEndT ′′(j) = MaxPalEndT (j). For any position ie + 1 < j ≤ n,

MaxPalBegT ′′(j) = MaxPalBegT (j).

Hence, we can use the same O(n)-time preprocessing and O(1) queries as the 1-ELPS

problem: When we consider substitution for an existing block T [ib..ie], we take the length of

the longest maximal palindrome ending before ib−1 and that of the longest maximal palindrome

beginning after ie + 1 as candidates for a solution to the �-ELPS query. Hence, we obtain the

following lemma.

Lemma 4.6. We can preprocess a string T of length n in O(n) time and space so that later we

can compute in O(1) time the length of the LPS of T ′′ that are unchanged after a block edit.

4.2.2 Extended Maximal Palindromes

Next, we consider the maximal palindromes of T that get extended after a block edit.
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b b b c d

(1)

a b b c c b a b c b

a b b c b

(2-1)

a b b c c b a b c b

a a b c b

a b b b c c

(2-2)

a b b c c a b b c c a a b c b c

(2-3)

a a b c b

a b b c c b a a c

a b b c c b a b c b

Figure 4.5: Illustration for the mismatching position between T and T ′′, and that between TR

and T ′′R. In particular, (2-1) is the sub-case of Case (2) with pb(= ib +4) < pe(= ie − 3), (2-2)

is the sub-case of Case (2) with pe(= ie − 4) < pb(= ib + 3), and (2-3) is the sub-case of Case

(2) with j1(= 7) > �(= 6).

Observation 4.8 (Extended maximal palindromes after a block-wise edit). For any s ∈
MaxPalEndT (ib−1), the corresponding maximal palindrome T [ib−s..ib−1] centered at 2ib−s−1

2

gets extended in T ′′ iff OutLCET ′′(ib−s−1, ib) ≥ 1. Similarly, for any p ∈ MaxPalBegT (ie+1),

the corresponding maximal palindrome T [ie+1..ie+p] centered at 2ie+p+1
2

gets extended in T ′′

iff OutLCET ′′(ie, ie + p+ 1) ≥ 1.

Computation of Extensions

It follows from Observation 4.8 that it suffices to compute outward LCE queries efficiently in

the edited string T ′′ for all maximal palindromes corresponding to MaxPalEndT (ib − 1) or

MaxPalBegT (ie + 1). The following lemma shows how to efficiently compute the extensions

of any given maximal palindromes that end at position ib−1. Those that begin at position ie+1

can be treated similarly.
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s α

T [1..ib-1] T [ie+1..n]X

s τ ’

T [1..ib-1] T [ie+1..n]X

s τ ’

s+(t-1)d
β

T [1..ib-1] T [ie+1..n]X

s τ ’

Figure 4.6: Illustration for Lemma 4.7, where solid arrows represent the matches obtained by

naı̈ve character comparisons, and broken arrows represent those obtained by LCE queries. This

figure only shows the case where s′ < s, but the other case where s′ > s can be treated similarly.

Lemma 4.7. Let T be a string of length n over an integer alphabet of size polynomially bounded

in n. We can preprocess T in O(n) time and space so that later, given a list of any f maximal

palindromes from MaxPalEndT (ib − 1), we can compute in O(� + f) time the extensions of

those f maximal palindromes in the edited string T ′′, where � is the length of a new block.

Proof. Let us remark that the maximal palindromes in the list can be given to our algorithm in

any order. Firstly, we compute the extensions of given maximal palindromes from the list until

finding the first maximal palindrome whose extension τ is at least one, and let s′ be the length

of this maximal palindrome. Namely, s′+2τ is the length of the extended maximal palindrome

for s′, and the preceding maximal palindromes (if any) were not extended. Let s be the length

of the next maximal palindrome from the list after s′, and now we are to compute the extension

λ for s. See also Figure 4.6. There are two cases: (1) If 0 < τ < �, then we first compute
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δ = LeftLCET (ib − s − 1, ib − s′ − 1). We have two sub-cases: (1-a) If δ < τ , then λ = δ.

(1-b) Otherwise (δ ≥ τ ), then we know that λ is at least as large as τ . We then compute the

remainder of λ by naı̈ve character comparisons. If the character comparison reaches the end of

X , then the remainder of λ can be computed by OutLCET (ib − s − � − 1, ie + 1). Then we

update τ with λ. (2) If τ ≥ �, then we can compute λ by LeftLCET (ib − s − 1, ib − s′ − 1),

and if this value is at least �, then by OutLCET (ib − s − � − 1, ie + 1). The extensions of the

following palindromes can also be computed similarly.

The following maximal palindromes from the list after s can be processed similarly. After

processing all the f maximal palindromes in the given list, the total number of matching char-

acter comparisons is at most � since each position of X is involved in at most one matching

character comparison. Also, the total number of mismatching character comparisons is O(f)

since for each given maximal palindrome there is at most one mismatching character compar-

ison. The total number of LCE queries on the original text T is O(f), each of which can be

answered in O(1) time. Thus, it takes O(� + f) time to compute the length of the f maximal

palindromes of T ′′ that are extended after the block edit.

However, there can be Ω(n) maximal palindromes beginning or ending at each position of a

string of length n. In what follows, we show how to reduce the number of maximal palindromes

that need to be considered, by using periodic structure of maximal palindromes.

Longest Extended Palindromes from Each Group

Let 〈s, d, t〉 be an arithmetic progression representing a group of maximal palindromes ending

at position ib − 1. For each 1 ≤ j ≤ t, we will use the convention that s(j) = s + (j − 1)d,

namely s(j) denotes the jth shortest element for 〈s, d, t〉. For simplicity, let Y = T [1..ib − 1]

and Z = XT [ie + 1..n]. Let Ext(s(j)) denote the length of the maximal palindrome that is

obtained by extending s(j) in Y Z.

Lemma 4.8. For any 〈s, d, t〉 ⊆ MaxPalEndT (ib − 1), there exist palindromes u, v and a non-

negative integer p, such that (uv)t+p−1u (resp. (uv)pu) is the longest (resp. shortest) maximal

palindrome represented by 〈s, d, t〉 with |uv| = d. Let α = lcp((Y [1..|Y | − s(1)])R, Z) and

β = lcp((Y [1..|Y | − s(t)])R, Z). Then Ext(s(j)) = s(j) + 2min{α, β + (t − j)d}. Further,

if there exists s(h) ∈ 〈s, d, t〉 such that s(h) + α = s(t) + β, then Ext(s(h)) = s(h) +

2lcp((Y [1..|Y | − s(h)])R, Z) ≥ Ext(s(j)) for any j 	= h.

Then let γ = lcp((Y [1..|Y | − s(h)])R, Z). Lemma 4.8 can be proven immediately from
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Figure 4.7: Example for Lemma 4.8, where Y = accbaaabaaabaaabaaabaaabaaabaa and

Z = abaaabaaabccc. Here u = a and v = aba. The first five maximal palindromes (uv)pu =

(aaba)pa with 2 ≤ p ≤ 5 belong to the same arithmetic progression (i.e. the same group) with

common difference |uv| = d = 4. For this group of maximal palindromes, α = 10, β = 2,

and γ = 12. Notice that the sixth maximal palindrome uvu = aabaa belongs to another group

since the length difference between it and the seventh one aa is 3.

Lemma 12 of [90]. However, for the sake of completeness we here provide a proof. We use the

following known result:

Lemma 4.9 ([90]). For any string Y and {s(j) | s(j) ∈ 〈s, d, t〉} ⊆ SufPals(Y ), there exist

palindromes u, v and a non-negative integer p, such that (uv)t+p−1u is a suffix of Y , |uv| = d

and |(uv)pu| = s.

Now we are ready to prove Lemma 4.8 (see also Figure 4.7).

Proof. Let us consider Ext(s(j)), such that s(j) ∈ 〈s, d, t〉. By Lemma 4.9, Y [|Y | − s(1) −
(t− 1)d+ 1..|Y |] = (uv)t+p−1u, where |uv| = d and |(uv)pu| = s.

Let x be the largest integer such that (Y [|Y | − x + 1..|Y |])R has a period |uv|. Namely,

(Y [|Y | − x + 1..|Y |])R is the longest prefix of Y R that has a period |uv|. Then x is given as

x = lcp(Y R, (Y [1..|Y | − d])R) + d. Let y be largest integer such that (uv)y/d is a prefix of Z.

Then y is given as y = min{lcp(Y R, Z), x}.

Let el = |Y | − x + 1 and er = |Y | + y. Then, clearly string T ′′[el..er] has a period d. We
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divide 〈s, d, t〉 into three disjoint subsets as

〈s, d, t〉 = 〈s, d, t1〉 ∪ 〈s+ t1d, d, t2〉 ∪ 〈s+ (t1 + t2)d, d, t3〉,

such that

|Y | − el − s(j) + 1 > er − |Y | for any s(j) ∈ 〈s, d, t1〉,
|Y | − el − s(j) + 1 = er − |Y | for any s(j) ∈ 〈s+ t1d, d, t2〉,
|Y | − el − s(j) + 1 < er − |Y | for any s(j) ∈ 〈s+ (t1 + t2)d, d, t3〉,
t1 + t2 + t3 = t, and t2 ∈ {0, 1}.

Then, for any s(j) in the first sub-group 〈s, d, t1〉, Ext(s(j)) = s(j)+ 2(er − |Y |) = s(j)+

2y. Also, for any s(j) in the third sub-group 〈s+(t1+t2)d, d, t3〉, Ext(s(j)) = s(j)+2(|Y |−el−
s(j)+1) = s(j)+2(x−s(j)). Now let us consider s(j) ∈ 〈a2, d, t2〉, in which case s(j) = s(h)

(see the statement of Lemma 4.8). Note that 0 ≤ t2 ≤ 1, and here we consider the interesting

case where t2 = 1. Since the palindrome s(h) can be extended beyond the periodicity with

respect to uv, we have Ext(s(h)) = s(h) + 2γ, where γ = lcp((Y [1..|Y | − s(h)])R, Z).

Additionally, we have that y = lcp(Y R, Z) = lcp((Y [1..|Y | − s(1)])R, Z) = α where the

second equality comes from the periodicity with respect to uv, and that x− s(j) =

lcp((Y [1..|Y | − s(t)])R, Z) + (t − j)d = β + (t − j)d. Therefore, for any s(j) ∈ 〈s, d, t〉,
Ext(s(j)) can be represented as follows:

Ext(s(j)) =

⎧⎪⎪⎨
⎪⎪⎩

s(j) + 2α (α < β + (t− j)d)

s(j) + 2(β + (t− j)d) (α > β + (t− j)d)

s(j) + 2γ (α = β + (t− j)d)

This completes the proof.

It follows from Lemma 4.8 that it suffices to consider only three maximal palindromes from

each group (i.e. each arithmetic progression). Then using Lemma 4.7, one can compute the

longest maximal palindrome that gets extended in O(�+ log n) time.

Relationship of Groups

To further speed up computation, we take deeper insights into combinatorial properties of max-

imal palindromes in MaxPalEndT (ib − 1). Let G0, . . . , Gm be the list of all groups for the

maximal palindromes from MaxPalEndT (ib − 1), which are sorted in increasing order of

their common difference. Namely, the jth shortest member of MaxPalEndT (ib − 1) belongs

to Gr = 〈sr, dr, tr〉 with 1 ≤ r ≤ m, iff the difference between the jth shortest maximal
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palindrome and the (j − 1)th one is equal to dr. Then dr with 1 ≤ r ≤ m is correspond-

ing to the period of any maximal palindrome in Gr. Regardless of whether ε belongs to

MaxPalEndT (ib − 1) or not, we define that G0 is a singleton, d0 = 0, and ε is the element

of G0. When m = O(log log n), O(� + log log n)-time queries immediately follow from Lem-

mas 4.7 and 4.8. In what follows we consider the more difficult case where m = ω(log log n).

Recall also that m = O(log n) always holds.

For each Gr = 〈sr, dr, tr〉 with 1 ≤ r ≤ m, let αr, βr, γr, ur, and vr be the corresponding

variables used in Lemma 4.8. If there is only a single element in Gr, let βr be the length of

extension of the palindrome and αr = βr−1. For convenience, let α0 = −1. For each Gr, let Sr

(resp. Lr) denote the shortest (resp. longest) maximal palindrome in Gr, namely, |Sr| = sr(1)

and |Lr| = sr(tr). Each group Gr is said to be of type-1 (resp. type-2) if αr < dr (resp.

αr ≥ dr).

Let k (1 ≤ k ≤ m) be the unique integer such that Gk is the type-2 group where dk is

the largest common difference among all the type-2 groups. Additionally, let G′
k = Gk ∪

{ukvkuk, uk}. Note that uk belongs to one of G1, . . . , Gk−1, and ukvkuk belongs to either

Gk or one of G1, . . . , Gk−1, if ukvkuk and uk exist. In the special case where αk = βk +

tdk, the extensions of uk and ukvkuk can be longer than the extension of the shortest maximal

palindrome in Gk (see Figure 4.8 for a concrete example). Thus, it is convenient for us to treat

G′
k = Gk ∪ {ukvkuk, uk} as if it is a single group. We also remark that this set G′

k is defined

only for this specific type-2 group Gk.

Lemma 4.10. There is a longest palindromic substring in the edited string T ′′ that is obtained

by extending the maximal palindromes in Gm, Gm−1, or G′
k.

Proof. The lemma holds if the two following claims are true:

Claim (1): The extensions of the maximal palindromes in G1, . . . , Gk−1, except for ukvkuk and

uk, cannot be longer than the extension of the shortest maximal palindrome in Gk.

Claim (2) Suppose both Gm and Gm−1 are of type-1. Then, the extensions of the maximal

palindromes from Gk+1, . . . , Gm−2, which are also of type-1, cannot be longer than the

extensions of the maximal palindromes from Gm or Gm−1.

Proof for Claim (1). Here we consider the case where the maximal palindrome ukvkuk does

not belong to Gk, which implies that the shortest maximal palindrome Sk in Gk is (ukvk)
2uk

(The other case where ukvkuk belongs to Gk can be treated similarly). Now, ukvkuk belongs to

one of G1, . . . , Gk−1. Consider the prefix P = T [1..ib − |ukvkuk| − 1] of T that immediately
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Figure 4.8: Example for G′
k = Gk ∪ {ukvkuk, uk}, where the extensions of ukvkuk and uk are

longer than the extensions of any maximal palindromes in Gk.

precedes ukvkuk. The extension of ukvkuk is obtained by lcp(PR, Z). Consider the prefix

P ′ = T [1..ib − |(ukvk)
2uk| − 1] of T that immediately precedes (ukvk)

2uk. It is clear that P is

a concatenation of P ′ and ukvk. Similarly, the prefix T [1..ib − |uk| − 1] of T that immediately

precedes uk is a concatenation of P and ukvk. It suffices for us to consider only the three

maximal palindromes from G′
k. For any other maximal palindrome Q from G0, . . . , Gk−1,

assume on the contrary that Q gets extended by at least dk to the left and to the right. If

|ukvk| = dk < |Q| < |ukvkuk|, then there is an internal occurrence of ukvk inside the prefix

(ukvk)
2 of (ukvk)

2uk. Otherwise (|uk| < |Q| < |ukvk| = dk or |Q| < |uk|), there is an internal

occurrence of ukvk inside ukvkuk. Here we only consider the first case but other cases can be

treated similarly. See also Figure 4.9. This internal occurrence of ukvk is immediately followed

by ukvkw, where w is a proper prefix of uk with 1 ≤ |w| < |uk|. Namely, (ukvk)
2w is a proper

suffix of (ukvk)
2uk. On the other hand, (ukvk)

2w is also a proper prefix of (ukvk)
2uk. Since

(ukvk)
2uk is a palindrome, it now follows from Lemma 2.1 that (ukvk)

2w is also a palindrome.

Since 1 ≤ |w| < |uk|, we have |(ukvk)
2w| > |ukvkuk| (note that this inequality holds also

when vk is the empty string). Then, (ukvk)
2w is also immediately preceded by ukvk because

of periodicity and is extended by at least dk to the left and to the right because Gk is of type-2.

Since T ′′[ib] = T [ib − |(ukvk)
2w| − 1] and T ′′[ib] 	= T [ib], (ukvk)

2w is a maximal palindrome.

However this contradicts that (ukvk)
2uk belongs to Gk with common difference dk = |ukvk|.

Thus Q cannot be extended by dk nor more to the left and to the right. Since Gk is of type-2,

71



CHAPTER 4. LONGEST PALINDROMIC SUBSTRING AFTER EDIT

Figure 4.9: Illustration for the proof for Claim (1) of Lemma 4.10.

αk ≥ dk. Since |Q| < |(ukvk)
2uk|, the extension of Q cannot be longer than the extension for

(ukvk)
2uk. This completes the proof for Claim (1).

Proof for Claim (2). Consider each group Gr = 〈sr, dr, tr〉 with k + 1 ≤ r ≤ m − 2. By

Lemma 4.8, sr(tr) + 2βr and sr(tr − 1) + 2αr are the candidates for the longest extensions of

the maximal palindromes from Gr. Recall that both Gm−1 and Gm are of type-1, and that if Gr

is of type-1 then Gr+1 is also of type-1. Now the following sub-claim holds:

Lemma 4.11. βr = αr+1 for any k + 1 ≤ r ≤ m− 2.

Proof. If Gr+1 is a singleton, then by definition βr = αr+1 holds. Now suppose |Gr+1| ≥ 2.

Since the shortest maximal palindrome Sr+1 from Gr+1 is either (ur+1vr+1)
2ur+1 or

ur+1vr+1ur+1, the longest maximal palindrome Lr from Gr is either ur+1vr+1ur+1 or ur+1. The

prefix T [1..ib−|Lr|−1] of T that immediately precedes Lr contains ur+1vr+1 as a suffix, which

alternatively means (ur+1vr+1)
R

is a prefix of (T [1..ib − |Lr| − 1])R. Moreover, it is clear that

the prefix T [1..ib − |Sr+1| − 1] of T that immediately precedes Sr+1 contains ur+1vr+1 as a

suffix since |Gr+1| ≥ 2. In addition, αr+1 < dr+1 = |ur+1vr+1| since Gr+1 is of type-1. From

the above arguments, we get βr = αr+1.

Since βr = αr+1 and αr+1 < dr+1, we have sr(tr) + 2βr < sr(tr) + 2dr+1. In addition,

sr(tr − 1) + 2αr < sr(tr − 1) + 2dr = sr(tr) + dr. It now follows from dr < dr+1 that
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sr(tr) + dr < sr(tr) + 2dr+1. Since the lengths of the maximal palindromes and their common

differences are arranged in increasing order in the groups Gk+1, . . . .Gm−2, we have that the

longest extension from Gk+1, . . . .Gm−2 is shorter than sm−2(tm−2)+2dm−1. Since dm−1 < dm,

we have

sm−2(tm−2) + 2dm−1 < sm−2(tm−2) + dm−1 + dm ≤ sm−1(tm−1) + dm ≤ sm = sm(1).

This means that the longest extended maximal palindrome from the type-1 groups Gk+1, . . .,

Gm−2 cannot be longer than the original length of the maximal palindrome from Gm before the

extension. This completes the proof for Claim (2).

It follows from Lemmas 4.7, 4.8 and 4.10 that given Gk, we can compute in O(�) time the

length of the LPS of T ′′ after the block edit. What remains is how to quickly find Gk, that has

the largest common difference among all the type-2 groups. Note that a simple linear search

from Gm or G1 takes O(log n) time, which is prohibited when � = o(log n). In what follows,

we show how to find Gk in O(�+ log log n) time.

How to Find Gk

Recall that T [1..ib−|Lr−1|−1] which immediately precedes Sr contains urvr as a suffix. Thus,

(urvr)
R

is a prefix of (T [1..ib − |Lr−1| − 1])R. We have the following observation.

Observation 4.9. Let Wr = (T [1..ib − |Lr−1| − 1])R for 1 ≤ r ≤ m. Let W be the string

such that lcp(Wr, Z) is the largest for all 1 ≤ r ≤ m (i.e. for groups G1, . . . , Gm), namely,

W = arg max
1≤r≤m

lcp(Wr, Z). Then Gk = Gx such that

(a) (uxvx)
R is a prefix of W ,

(b) dx ≤ lcp(W,Z), and

(c) dx is the largest among all groups that satisfy Conditions (a) and (b).

Due to Observation 4.9, the first task is to find W .

Lemma 4.12. W can be found in O(� + logmin{σ, log n}) time after O(n)-time and space

preprocessing.

Proof. We preprocess T as follows. Let Ai be the sparse suffix array of size m = O(log i) such

that Ai[j] stores the jth lexicographically smallest string in {W1, . . . ,Wm}. We build Ai with
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the LCP array Li. Since there are only 2n − 1 maximal palindromes in T , Ai for all positions

1 ≤ i ≤ n can easily be constructed in a total of O(n) time from the full suffix array of T . The

LCP array Li for all 1 ≤ i ≤ n can also be computed in O(n) total time from the LCP array of

T enhanced with a range minimum query (RMQ) data structure [15].

To find W , we binary search Aib−1 for Z[1..�] = X in a similar way to pattern matching

on the suffix array with the LCP array [87]. This gives us the range of Aib−1 such that the

corresponding strings have the longest common prefix with X . Since |Aib−1| = O(log n),

this range can be found in O(� + log log n) time. If the longest prefix found above is shorter

than �, then this prefix is W . Otherwise, we perform another binary search on this range for

Z[� + 1..|Z|] = T [ie + 1..n], and this gives us W . Here each comparison can be done in O(1)

time by an outward LCE query on T . Hence, the longest match for Z[� + 1..|Z|] in this range

can also be found in O(log log n) time. Overall, W can be found in O(�+ log log n) time.

Also, W can be found similarly in O(�+ log σ) time after O(n)-time and space preprocess-

ing by using the sparse suffix tray [30] instead of the sparse suffix array. Then we can obtain

Lemma 4.12.

Lemma 4.13. We can preprocess T in O(n) time and space so that later, given W for a position

in T , we can find Gk for that position in O(1) time.

Proof. Let Di be an array of size |Ai| such that Di[j] stores the value of dr = |urvr|, where

Wr is the lexicographically jth smallest string in {W1, . . . ,Wm}. Let Ri be an array of size

|Ai| where Ri[j] stores a sorted list of common differences dr = |urvr| of groups Gr, such that

Gr stores maximal palindromes ending at position i and (urvr)
R

is a prefix of the string Ai[j].

Clearly, for any j, Di[j] ⊆ Ri.

Suppose that we have found W by Lemma 4.12, and let j′ be the entry of Aib−1 where

the binary search for W terminated. We then find the largest dx that satisfies Condition (b) of

Observation 4.9, by binary search on the sorted list of common differences stored at Rib−1[j
′].

We remark however that the total number of elements in Ri is O(log2 i) since each entry

Ri[j] can contain O(log i) elements. Thus, computing and storing Ri explicitly for all text

positions 1 ≤ i ≤ n can take superlinear time and space.

Instead of explicitly storing Ri, we use a bit-vector representation of Ri, defined as follows:

Let BitRi[j] be a bit sequence of length m such that the r-th bit from the rightmost position

is 1 if and only if dr ∈ Ri[j]. Also, let MSBd[1..m] be the array such that MSBd[r] stores the

position of the leftmost 1 (namely, the most significant bit) in a bit-vector representation of dr.

Let F [1..�log n�+1] be a sequence where F [j] stores the number of dr for all 1 ≤ r ≤ m such
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that MSBd[r] = j. Since d0 = 0, d1 = 1, and dr ≥ dr−1 + dr−2 ≥ 2dr−2 for r ≥ 2 holds [90],

F [1..�log n�+1] is a ternary sequence. See also Figure 4.2.2 that illustrates a concrete example.

In the word RAM model with word size Θ(log n), the size of BitRi[j] and MSBd[1..m]

is O(m), and these sequences can be constructed in O(m) time by using the LCP array Li,

bit-wise operations, and constructing the answer table for the most significant bit of every value

from 1 to n. The ternary sequence F of length O(log n) can also be computed in O(m) time.

Therefore, the total size and construction time for all positions in T is O(n).

We can find the largest dx that satisfies Condition (b) of Observation 4.9 as follows: First,

we compute the most significant bit b′′ of the binary representation of lcp(WR, Z). Next, we

compute dr′ that is the predecessor of lcp(WR, Z) in the sorted list of common differences by

using the following properties. The most significant bit b′ of bit-vector representation of dr′ is

b′′ or the largest value such that b′ < b′′ and F [b′] ≥ 1. Since the number of dr′′ , which the most

significant bit of dr′′ is b′′, is at most two, the number of candidates of dr′ is at most three. The

indexes r1, r2, r3 of these candidates can be found by using rank/select operations on F . dr′ can

be obtained by comparing dr1 , dr2 , dr3 to lcp(WR, Z). Then, we construct a bit-vector a[1..m]

such that a[m − dr′ + 1..m] = 1dr′ and other positions store 0. By using the “AND” operation

between BitRi[j] and a[1..m] and computing the most significant bit of the answer sequence,

we can obtain dx. The above operations can be done in constant time in the word RAM model;

we can obtain Lemma 4.13.

By Lemmas 4.7, 4.8, 4.10, 4.12, and 4.13, we can compute in O(�+logmin{σ, log n}) time

the length of the LPS of T ′′ that are extended after the block edit.

4.2.3 Shortened Maximal Palindromes

Next, we consider the maximal palindromes that get shortened after a block edit.

Observation 4.10 (Shortened maximal palindromes after a block-wise edit). A maximal palin-

drome T [b..e] of T gets shortened in T ′′ iff b ≤ ib ≤ e or b ≤ ie ≤ e.

The difference between Observation 4.3 and this one is only in that here we need to consider

two positions ib and ie. Hence, we obtain the next lemma using a similar method to Lemma 4.2:

Lemma 4.14. We can preprocess a string T of length n in O(n) time and space so that later

we can compute in O(1) time the length of the longest maximal palindromes of T ′′ that are

shortened after a block edit.
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4.2.4 Maximal Palindromes whose Centers Exist in the New Block

Finally, we consider those maximal palindromes whose centers exist in the new block X of

length �. By symmetric arguments to Observation 4.8, we only need to consider the prefix

palindromes and suffix palindromes of X . Using a similar technique to Lemma 4.7, we obtain:

Lemma 4.15. We can compute the length of the longest maximal palindromes whose centers

are inside X in O(�) time and space.

Proof. First, we compute all maximal palindromes in X in O(�) time. Let p1, . . . , pu be a

sequence of the lengths of the prefix palindromes of X sorted in increasing order. For each

1 ≤ j ≤ u, let αj = lcp(X[pj + 1..�], (T [1..ib − 1])R), namely, pj + 2αj is the length of the

extended maximal palindrome for each pj . Suppose we have computed αj−1, and we are to

compute αj . See also Figure 4.11. If pj−1 + αj−1 ≤ pj , then we compute pj by naı̈ve character

comparisons. Otherwise, then let α′
j = pj−1 + αj−1 − pj . Then, we can compute lcp(X[pj +

1..pj+α′
j], (T [1..ib − 1])R) by a leftward LCE query in the original string T . If this value is less

than α′
j , then it equals to αj . Otherwise, then we compute lcp(X[pj+α′

j+1..�], (T [1..ib − 1])R)

by naı̈ve character comparisons. The total number of matching character comparisons is at most

� since each position in X can be involved in at most one matching character comparison. The

total number of mismatching character comparisons is also �, since there are at most � prefix

palindromes of X and for each of them there is at most one mismatching character comparison.

Hence, it takes O(�) time to compute the length of the longest maximal palindromes whose

centers are inside X .
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j WAi[1], . . . ,WAi[m] Di Li Ri BitRi

1 aaabaaabaaaaaabaaaba · · · 1 - 1,11,533 1000101

2 aaabaaabaaaaaabaaaba · · · 533 1599 1,11,533 1000101

3 aaabaaabaaaaaabaaaba · · · 11 33 1,11 0000101

4 aaabaaabaaabaaaaaaba · · · 48 11 1,11,48 0010101

5 baaabaaaaaabaaabaaaa · · · 4 0 4 0000010

6 baaaaaabaaabaaaaaaba · · · 37 4 4,37 0001010

7 caaabaaabaaaaaabaaab · · · 178 0 178 0100000

r bit-vector representation of dr MSBdr

1 1 1

2 100 3

3 1011 4

4 100101 6

5 110000 6

6 10110010 8

7 1000010101 10

b F
1 1

2 0

3 1

4 1

5 0

6 2
...

...

�log n�+ 1 0

Figure 4.10: A concrete example for T [1..ib] = dddw3
7w

2
6w

2
5w4w

3
3w

2
2w
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1e with ib = 2136, where

w1 = a, w2 = w3
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. We remark that w3
7w

2
6w

2
5w4w

3
3w

2
2w

3
1,

w2
7w

2
6w

2
5w4w

3
3w

2
2w

3
1, . . . , w1 are maximal palindromes of T [1..ib − 1]. The remaining parts of

the strings WAi[1], . . . ,WAi[m] are omitted due to lack of space. Now we describe the case that

j′ = 4 and lcp(WR, Z) = 40. The most significant bit of 40(10) = 101000(2) is 6. Then by

using rank/select operation on F , we obtain three candidates d3, d4, and d5 of the predecessor

of 40 in the sorted list of common differences. Since d4 = 37 < 40 < d5 = 48, d4 is the

predecessor of 40 in the sorted list of common differences. By using the “AND” operation

between BitRi[j
′] = 0010101 and 0001111, we obtain a bit sequence 0000101. Since the most

significant bit of 0000101 is the third bit, Gk = G3 holds.
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T [1..ib-1] T [ie+1..n]X

p1

p2

p3
α3

α1

α2

α 3’

Figure 4.11: Illustration for Lemma 4.15, where solid arrows represent the matches obtained

by naı̈ve character comparisons, and broken arrows represent those obtained by LCE queries.

Here are three prefix palindromes of X of length p1, p2, and p3. We compute α1 naı̈vely. Here,

since p1 + α1 < p2, we compute p2 naı̈vely. Since p2 + α2 > p3, we compute LeftLCET (ib −
1, ib − α2 + α′

3 − 1). Here, since its value reached α′
3, we perform naı̈ve character comparison

for X[p3+α′
3+1..�] and (T [1..ib − α′

3 − 1])R. Here, since there was no mismatch, we perform

OutLCET (ib − �+ p3 − 1, ie + 1) and finally obtain α3. Other cases can be treated similarly.
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Chapter 5

Minimal Unique Palindromic Substring
After Edit

In this chapter, as analogous to the previous chapter, we tackle the problems of computing the

minimal unique palindromic substring (MUPS) of a string after a single-character substitution.

In molecular biology, it is known that unique palindromic structures affect the immunostimula-

tory activities of oligonucleotides [80, 121]. In Section 5.1, we analyze the changes of the set

of MUPSs after a single-character substitution. We then present an algorithm for updating the

set of MUPSs after a single-character substitution in Section 5.2.

The results in this chapter primarily appeared in [40].

5.1 Changes of MUPSs after Single Character Substitution

In the following, we fix the original string T of length n, the text position i in T to be substituted,

and the string T ′ after the substitution. Namely, T [i] 	= T ′[i] and T [j] = T ′[j] for each j with

1 ≤ j ≤ n and j 	= i. This section analyzes the changes of the set of MUPSs when T [i] is

substituted by T ′[i]. For palindromes covering editing position i, Lemma 5.1 holds.

Lemma 5.1. For a palindrome w, if inbegT,i(w) 	= ∅, then inbegT ′,i(w) = ∅.

Proof. For the sake of contradiction, we assume that there is a palindrome w with inbegT,i(w) 	=
∅ and inbegT ′,i(w) 	= ∅. Let c (resp. c′) be the center of an occurrence of w in T (resp. in T ′)

covering position i. It is clear that c 	= c′ since T [i] is substituted by another character T ′[i].

Also, it suffices to consider when c < c′ from the symmetry of T and T ′. Let d (resp. d′) be the

distance between c and i (resp. c′ and i), i.e., d = |i− c| and d′ = |i− c′|.
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(1) (2)

Figure 5.1: Illustration for the two cases of Lemma 5.1. Note that this illustration is for the sake

of contradiction.

There are the following two cases: either (1) i 	∈ [c, c′] or (2) i ∈ [c, c′]. See also Fig. 5.1

for illustration. (1) Now we consider the case when c′ < i. Another case (i < c) can be treated

similarly. On the one hand, since c and c′ are the centers of w, T ′[c′ + d] = T [c + d] = T [i].

Further, T ′[c′ − d] = T [c′ + d] by palindromic symmetry, and hence, T ′[c′ − d] = T [i]. On

the other hand, again, since c and c′ are the centers of w, T [c − d′] = T ′[c′ − d′]. Further,

T ′[c′ − d′] = T ′[c′ + d′] = T ′[i] by palindromic symmetry, and hence, T [c− d′] = T ′[i]. Also,

T ′[c − d′] = T [c − d′] = T ′[i] since c − d′ 	= i. Since c′ − d = c − d′ holds in this case,

T [i] = T ′[c′ − d] = T ′[c− d′] = T ′[i], a contradiction.

(2) Similar to the first case, it can be seen that T ′[c′ − d] = T [c − d] = T [i]. If d = d′,

then T [i] = T ′[c′ − d] = T ′[c′ − d′] = T ′[i], a contradiction. Hence d 	= d′ holds, and thus,

T ′[c + d′] = T [c + d′]. Also, T [c + d′] = T ′[c′ + d′] = T ′[c′ − d′] = T ′[i] holds. Finally, since

c′ − d = c+ d′ holds in this case, T [i] = T ′[c′ − d] = T ′[c+ d′] = T ′[i], a contradiction.

For a position i, let Wi be the set of palindromes w such that |inbegT,i(w)| ≥ 1, |xbegT,i(w)|
= 1, and w is minimal, i.e., |inbegT,i(v)| = 0 or |xbegT,i(v)| ≥ 2 where v = w[2..|w| − 1]. This

set Wi is useful for analyzing the number of changes of MUPSs in the proof of Theorem 5.1.

Lemma 5.2. For any position i in T , |Wi| ∈ O(log n).

Proof. First, by minimality of palindromes in Wi, centers of palindromes in Wi are different

from each other. Let WL
i ⊂ Wi (resp. WR

i ⊂ Wi) be the set of palindromes in Wi whose center

is at most i (resp. at least i).

Let us consider the size of WL
i . Every palindrome in WL

i is an expansion of some palin-

dromic suffix of T [1..i]. From Corollary 2.1, the set of palindromic suffixes of T [1..i] can be
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caabaaaabaaaabaaaabaaaabaaaabaaaabaaaabaaaaba

Figure 5.2: Example for Lemma 5.2, where w1 and w2 have the same smallest period 5 and the

difference between centers of them is a power of 5. Here x = aabaa, x′
1 = aaba, and x′

2 = aab.

divided into mi ∈ O(log i) groups w.r.t. their smallest period. Let G1, G2, . . . , Gmi
be such

groups for palindromic suffixes of T [1..i], and let pk be the smallest period corresponding to

Gk. Also, for each k with 1 ≤ k ≤ mi, let Ek be the union set of all expansions of every palin-

drome in Gk. Let Hk = WL
i ∩Ek. Since |WL

i | = |⋃mi

k=1 Hk| =
∑mi

k=1 |Hk| and mi ∈ O(log n),

it suffices to show that |Hk| is at most a constant.

For the sake of contradiction, we assume |Hk| ≥ 4. From (2) of Corollary 2.1, at least three

palindromes in Hk has the same smallest period pk. Also, by (1) of Corollary 2.1, the difference

between centers of any two palindromes in Hk is a power of 0.5pk. Therefore, at least two

distinct palindromes in Hk have a difference of power of pk in their center positions. Let w1, w2

be such palindromes, and assume that |w1| ≤ |w2| w.l.o.g.. Then, the string between the centers

of w1 and w2 can be represented by xj for positive integer j and string x of length pk. Since the

smallest period of w1 is pk, its extended right arm Rarmw1 can be written by Rarmw1 = xj1x′
1

where j1 is a non-negative integer and x′
1 is a proper prefix of x. Similarly, the extended right

arm Rarmw2 of w2 can be written by Rarmw2 = xj2x′
2 where j2 is a non-negative integer and

x′
2 is a proper prefix of x. See also Fig. 5.2 for illustration. If |w1| = |w2|, then this leads

j1 = j2 and x′
1 = x′

2, i.e., w1 = w2, a contradiction. If |w1| < |w2|, then j1 < j2 or j1 = j2

and |x′
1| < |x′

2|. In both cases, Rarmw1 is a proper prefix of Rarmw2 , i.e, w1 is a contraction

of w2. This contradicts the minimality of w2. Thus |Hk| ≤ 3 holds, and hence, we obtain

|WL
i | =

∑mi

k=1 |Hk| ≤ 3mi ∈ O(log n).

Similarly, the size of WR
i is also O(log n). Therefore, |Wi| ∈ O(log n).

Lemma 5.3. For each position i in T , the number of MUPSs covering i is O(log n).

Proof. By symmetry, it suffices to show that the number of MUPSs covering i and centered

before i is O(log n). Each of such MUPSs is an expansion of some palindromic suffix of T [1..i].

Thus, similar to the proof of Lemma 5.2, we consider dividing the set of palindromic suffixes

of T [1..i] into mi ∈ O(log i) groups, G1, G2, . . . , Gmi
w.r.t. their smallest periods. In the
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following, we consider MUPSs that are expansions of palindromes in an arbitrary group Gk. We

show that the number of such MUPSs is at most two by contradiction. We assume the contrary,

i.e., there are three MUPSs that are expansions of palindromes in Gk. By (3) of Corollary 2.1,

at least one of the three MUPSs is a substring of an expansion of a palindrome in Gk with a

different center. This contradicts that a MUPS cannot be a substring of another palindrome with

a different center. Thus, the number of MUPSs that are expansions of palindromes in Gk is at

most two, and we finish the proof.

By using Lemmas 5.1, 5.2, and 5.3, we show the following theorem:

Theorem 5.1. |MUPS(T )�MUPS(T ′)| ∈ O(log n) always holds.

Proof. In the following, we consider the number of MUPSs to be removed.

First, at most one interval can be a MUPS of T centered at i. Also, any other interval in

MUPS(T ) covering position i cannot be an element of MUPS(T ′) since its corresponding string

in T ′ is no longer a palindrome. By Lemma 5.3, the number of such MUPSs is O(log n).

Next, let us consider MUPSs not covering position i. When a MUPS w of T not covering i

is no longer a MUPS of T ′, then either (A) w is repeating in T ′ or (B) w is unique in T ′ but is

not minimal.

Let w1 be a MUPS of the case (A). Since w1 does not cover i, is unique in T , and is repeating

in T ′, |inbegT ′,i(w1)| ≥ 1 and |xbegT ′,i(w1)| = 1. Let v1 be the minimal contraction of w1 such

that |inbegT ′,i(v1)| ≥ 1 and |xbegT ′,i(v1)| = 1. Contrary, w1 is the only MUPS of the case

(A) which is an expansion of v1 since |xbegT ′,i(v1)| = 1. Namely, there is a one-to-one relation

between w1 and v1. By Lemma 5.2, the number of palindromes that satisfy the above conditions

of v1 is O(log n). Thus, the number of MUPSs of the case (A) is also O(log n).

Let w2 be a MUPS of the case (B). In T ′, w2 covers some MUPS as a proper substring

since it is not a MUPS and is unique in T ′. Let v2 be the MUPS of T ′, which is a proper

substring of w2. While v2 is unique in T ′, it is repeating in T since w2 is a MUPS of T .

Namely, |inbegT,i(v2)| ≥ 1 and |xbegT,i(v2)| = 1 hold. Also, v2 is actually minimal: Let

u2 = v2[2..|v2| − 1]. If we assume that |inbegT,i(u2)| ≥ 1 and |xbegT,i(u2)| = 1, then u2

becomes unique in T ′, and this contradicts that v2 is a MUPS of T ′. Furthermore, similar to the

above discussions, there is a one-to-one relation between w2 and v2. Again by Lemma 5.2, the

number of palindromes that satisfy the above conditions of v2 is O(log n). Thus, the number of

MUPSs of the case (B) is also O(log n).

Therefore, |MUPS(T ) \ MUPS(T ′)| ∈ O(log n) holds. Also, |MUPS(T ′) \ MUPS(T )| ∈
O(log n) holds by symmetry.
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To summarize, |MUPS(T )�MUPS(T ′)| = |MUPS(T )\MUPS(T ′)∪MUPS(T ′)\MUPS(T )|
= |MUPS(T ) \MUPS(T ′)|+ |MUPS(T ′) \MUPS(T )| ∈ O(log n).

5.2 Algorithms for Updating Set of MUPSs

In this section, we propose an algorithm for updating the set of MUPSs when a single-character

in the original string is substituted by another character. We denote by sub(i, s) the substitution

query, that is, to substitute T [i] by another character s. First, we define a sub-problem that will

be used in our algorithm:

Problem 5.1. Given a substitution query sub(i, s) on T , compute the longest odd-palindromic

substring v of T ′ such that center(v) = i and v occurs in T if it exists. Also, if such v exists,

determine whether v is unique in T or not. Furthermore, if v is unique in T , compute the

contraction of v that is a MUPS of T .

We show the following lemma:

Lemma 5.4. After O(n)-time preprocessing, we can answer Problem 5.1 in O((log log n)2 +

δ(n, σ)) time where δ(n, σ) denote the time to retrieve any child of the root of the odd-tree of

EERTREE(T ).

Proof. In the preprocessing, we construct EERTREE(T ) and apply the preprocessing for the

path-tree LCE queries to the odd-tree Todd of EERTREE(T ). Also, we mark the nodes in

EERTREE(T ) that correspond to MUPSs of T and apply the preprocessing for the nearest

marked ancestor (NMA) queries. The preprocessing time is O(n).

Given a query sub(i, s), we query the path-tree LCE between path T [i] � larmwT [i]rarmw

and tree rooted at s on Todd where w is the maximal palindrome in T ′ centered at i. Let �w be

the depth of the LCE nodes. Then the contraction v of w with |Rarmv| = �w occurs in T . Also,

v is the longest since any other contraction u of w longer than v does not occur in T . Further,

we can determine whether v is unique in T or not by checking the existence of a mark on path

s� v. It can be done by querying NMA, and the MUPS of T contained in v can be computed

simultaneously, if v is unique in T .

We can compute the value �w in δ(n, σ) time for searching for the node s in Todd, plus

O((log log n)2) time for the path-tree LCE query.

When σ ∈ O(n), we can easily achieve δ(n, σ) ∈ O(1) with linear space, by using an array

of size σ. Otherwise, we achieve δ(n, σ) ∈ O(log σ) for a general ordered alphabet by using a

binary search tree.
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Figure 5.3: Illustration for three types of MUPSs to be removed. The broken arrows represent

MUPSs. w1, w2, and w3 are MUPSs of Type R1, Type R2, and Type R3 in T , respectively.

Also, v is the MUPS of T ′ that is a contraction of w3. It is not unique in T , but is unique in T ′.

In the rest of this chapter, we propose an algorithm to compute the changes in MUPSs

after a single-character substitution. We compute MUPSs to be removed and added separately.

We show how to compute all MUPSs to be removed in Section 5.2.1. Also, we show how

to compute all MUPSs to be added in Section 5.2.2. In Section 5.2.3, we introduce another

solution for Problem 5.1. Our strategy is basically to pre-compute changes in MUPSs for some

queries as much as possible within linear time. The other changes will be detected on the fly by

using some data structures.

5.2.1 Computing MUPSs to be Removed

We categorize MUPSs to be removed into three types as follows:

R1) A MUPS of T that covers i.

R2) A MUPS of T that does not cover i and is repeating in T ′.

R3) A MUPS of T that does not cover i and is unique but not minimal in T ′.

See Fig. 5.3 for illustration. In the following, we describe how to compute all MUPSs for each

type separately.
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a a b a a c a a b a c a a b b a a a b c b c

Figure 5.4: Example for observations about Type R2, where T = aabaacaabacaabbaaabcbc

and w = aabaa. Larmw = aab occurs at position 7, 12, and 17 excluding the occurrence of

w. Since the Hamming distance between T [10..11] and w[4..5] equals 1, w occurs at position

7 when T [11] is substituted by a. Also, w occurs at position 12 when T [15] is substituted by

a. Conversely, w cannot occur at 17 after any single-character substitution since the Hamming

distance between T [20..21] and w[4..5] equals 2.

Type R1

All MUPSs covering editing position i are always removed. Thus, we can detect them in O(1+

αrem) time after a simple linear time preprocessing (e.g., using stabbing queries), where αrem is

the number of MUPSs of Type R1.

Type R2

Before describing our algorithm, we give a few observations about MUPSs of Type R2. Let w

be a MUPS of Type R2. Since w is unique in T and is repeating in T ′, |inbegT ′,i(w)| ≥ 1. When

w occurs in T ′ centered at editing position i, we retrieve such w by applying Problem 5.1. If it

is not the case, we can utilize the following observations: Consider the starting position j of an

occurrence of w in T ′ such that T ′[j..j + |w| − 1] = w and i ∈ [j, j + |w| − 1]. If position i is

covered in the right arm of T ′[j..j + |w| − 1], then Larmw occurs at position j in both T and T ′.

Further, the Hamming distance between T [j+ |Larmw|..j+ |w| − 1] and w[|Larmw|+1..|w|] =
rarmw equals 1. Namely, for each occurrence at position k of string Larmw in T , w can occur at k

in T ′ only if the Hamming distance between T [k+ |Larmw|..k+ |w|−1] and w[|Larmw|+1..|w|]
equals 1. In other words, if the Hamming distance is greater than 1, w cannot occur at k in T ′.

See also Fig. 5.4. The strategy of the algorithm for MUPSs of Type R2 is following: A MUPS of

Type R2 having occurrence centered at editing position i in T ′ is found by applying Problem 5.1.

For the remaining MUPSs of Type R2, we precompute them by using the above observations.

Preprocessing In the preprocessing phase, we first apply the O(n)-time preprocessing of

Lemma 5.4 for Problem 5.1. Next, we initialize the set AR2 = ∅. The set AR2 will be-

come an index of MUPSs of Type R2 when the preprocessing is finished. For each MUPS
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w = T [b..e] of T , we process the followings: For the beginning position j 	= b of each occur-

rence of Larmw in T , we first compute the lcp value between T [j + |Larmw|..|T |]$ and rarmw

with allowing one mismatch. Note that T [j + |Larmw|..|T |]$ must have at least one mismatch

with rarmw, since T [j..j + |Larmw| − 1] = Larmw, j 	= b, and T [b..e] is unique in T . If there

are two mismatch positions between them, do nothing for this occurrence since w cannot occur

at j after any substitution. We can check this by querying LCE at most twice. Otherwise, let

q = j + |Larmw| − 1 + d be the mismatched position in T . When the q-th character of T is

substituted by the character rarmw[d], w = T [b..e] occurs at j 	= b, i.e., it is a MUPS of Type

R2. So we add MUPS w = T [b..e] into AR2 with the pair of index and character (q, rarmw[d])

as the key. In addition, symmetrically, we update AR2 for each occurrence of Rarmw in T . After

finishing the above processes for every MUPS of T , we sort the elements of AR2 by radix sort

on the keys. If there are multiple identical elements with the same key, we unify them into a

single element. Also, if there are multiple elements with the same key, we store them in a linear

list. By Lemma 2.4, the total number of occurrences of arms of MUPSs is O(n), and hence, the

total preprocessing time is O(n).

Query Given a query sub(i, s), we query Problem 5.1 with the same pair (i, s) as the input.

Then, we complete checking whether there exists a MUPS of Type R2 centered at i. Next,

consider the existence of the remaining MUPSs of Type R2. First, an element in AR2 corre-

sponding to the key (i, s) can be detected in O(log σi) time by using random access on indices

and binary search on characters, where σi is the number of characters si such that the key (i, si)

exists in AR2. After that, we can enumerate all the other elements with the key by scanning the

corresponding linear list. Thus, the total query time is O(δ(n, σ)+ (log log n)2+ log σi+βrem)

where βrem is the number of MUPSs of Type R2. Finally, we show σi ∈ O(min{σ, log n}). Let

us consider palindromes in T ′ whose right arm covers position i. Those whose left arms cover i

can be treated similarly. Any palindrome in T ′ whose right arm covers i is an expansion of some

maximal palindrome in T ending at i − 1. It is known that the number of possible characters

immediately preceding such maximal palindromes is O(log n) [42]. Therefore, σi ∈ O(log n)

holds, and thus, the query time is O(δ(n, σ) + (log log n)2 + βrem).

Type R3

Let w = T [b..e] be a MUPS of T and let v = T [b+1..e−1]. Further let T [bl1..el1] and T [br1..er1]

be the leftmost and the rightmost occurrence of v in T except for T [b + 1..e − 1]. We define

interval ρw = {k | k 	∈ [b + 1, e − 1] and k ∈ [br1, el1]}. Note that ρw can be empty. See also
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Figure 5.5: Illustration for ρw of Type R3. The top arrow (resp. the middle arrow) represents

the leftmost (resp. rightmost) occurrence of v except for T [b+1..e−1]. Also, the bottom arrow

represents T [b+ 1..e− 1]. In this case, ρw = [br1, b].

Fig. 5.5 for illustration. If the editing position i is in ρw, then the only occurrence of v in T ′ is

T ′[b + 1..e − 1], i.e., v is unique in T ′. Thus, w is a removed MUPS of Type R3. Contrary, if

i 	∈ [b, e] and i 	∈ ρw, there are at least two occurrences of v in T ′, i.e., w cannot be a MUPS of

Type R3.

Preprocessing First, we compute the set of intervals R = {ρw | w is a MUPS of T}. R can

be computed by traversing over the suffix tree of T enhanced with additional explicit nodes,

each of which represents a substring T [b + 1..e − 1] for each MUPS T [b..e] of T . Also, we

apply the preprocessing for stabbing queries to R. The total time for preprocessing is O(n).

Query Given a query sub(i, s), compute all intervals in R stabbed by position i by answering

a stabbing query. They correspond to MUPSs of Type R3. The query time is O(1+γrem), where

γrem is the number of MUPSs of Type R3.

To summarize, we can compute all MUPSs to be removed after a single-character substitution

in O(δ(n, σ) + (log log n)2 + αrem + βrem + γrem) time.

5.2.2 Computing MUPSs to be Added

Next, we propose an algorithm to detect MUPSs to be added after a substitution. As in Sec-

tion 5.2.1, we categorize MUPSs to be added into three types:

A1) A MUPS of T ′ that covers i.
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Figure 5.6: Illustration for four types of MUPSs to be added. The broken arrows represent

MUPSs. w1-1, w1-2, w2, and w3 are MUPSs of Type A1-1, Type A1-2, Type A2, and Type A3

in T ′, respectively. Also, v is the MUPS of T that is a contraction of w3. It is unique in T , but

is not unique in T ′.

A2) A MUPS of T ′ that does not cover i and is repeating in T .

A3) A MUPS of T ′ that does not cover i and is unique but not minimal in T .

Furthermore, we categorize MUPSs of Type A1 into two sub-types:

A1-1) A MUPS of T ′ that covers position i in its arm.

A1-2) A MUPS of T ′ centered at editing position i.

See Fig. 5.6 for illustration.

Type A1-1

A MUPS of Type A1-1 is a contraction of some maximal palindrome in T ′ covering editing

position i in its arm. Further, such a maximal palindrome in T ′ corresponds to some 1-mismatch

maximal palindrome in T , which covers i as a mismatch position. Thus, we preprocess for arms

of each 1-mismatch maximal palindrome in T . For MUPSs of Type A1, we utilize the following

observation:

Observation 5.1. For any palindrome v covering position i in T ′, v is unique in T ′ if and only

if |inbegT ′,i(v)| = 1 and |xbegT ′,i(v)| = 0.
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Preprocessing In the preprocessing phase, we first consider sorting extended arms of 1-

mismatch maximal palindromes in T . Let EA be the multiset of strings that consists of the

extended right arms and the reverse of the extended left arms of all 1-mismatch maximal palin-

dromes in T . Note that each string in EA can be represented in constant space since it is a

substring of T or TR. Let MA′ be a lexicographically sorted array of all elements in EA. Here,

the order between the same strings can be arbitrary. Also, for each string in EA, we consider a

quadruple of the form (par , pos , chr , rnk) where par ∈ {odd, even} represents the parity of the

length of the corresponded 1-mismatch maximal palindrome, pos is the mismatched position

on the opposite arm, chr is the mismatched character on the extended arm, and rnk is the rank

of the extended arm in MA′. Let MA be a radix sorted array of these quadruples. It can be seen

that for each triple (p, i, s) of parity p, mismatched position i, and mismatched character s, all

elements corresponding to the triple are stored continuously in MA. We denote by MAp,i,s the

subarray of MA consists of such elements. In other words, MAp,i,s is a sorted array of extended

arms of maximal palindromes of parity p covering position i in T ′ when the i-th character of T

is substituted by s.

Now let us focus on odd-palindromes. Even-palindromes can be treated similarly. We con-

struct the suffix tree of T and make the loci of strings in EA explicit. We also make the loci of the

extended right arm of every odd-palindrome in T explicit. Simultaneously, we mark the nodes

corresponding to the extended right arms and apply the preprocessing for the nearest marked

ancestor (NMA) queries to the marked tree. We denote the tree by ST odd . Next, we initialize

the set AA1,1 = ∅. The set AA1,1 will become an index of MUPSs of Type A1-1 when the pre-

processing is finished. For each non-empty MAodd,i,s and for each string w in MAodd,i,s, we do

the followings: Let xw be the odd-palindrome whose extended right arm is w when T [i] is sub-

stituted by s. Let u and v are the preceding and the succeeding string of w in MAodd,i,s (if such

palindromes do not exist, they are empty). Further let �w = max{lcp(u, w), lcp(w, v)}. When

T [i] is substituted by s, any contraction y of xw such that y covers position i and the arm-length

of y is at least �w has only one occurrence which covers position i in T ′, i.e.,|inbegT ′,i(y)| = 1.

Next, we query the NMA for the node corresponding to w on ST odd . Let �′w be the length of the

extended right arm obtained by the NMA query. When T [i] is substituted by s, any contraction

y′ of xw such that the arm-length of y′ is at least �′w, has no occurrences which do not cover

position i in T ′, i.e., |xbegT ′,i(y
′)| = 0. Thus, by Observation 5.1, the contraction y� of xw

of arm-length max{�w, �′w} is a MUPS of Type A1-1 for the query sub(i, s), if such y� exists.

In such a case, we store the information about y� (i.e., its center and radius) into AA1,1 using

(odd, i, s) as the key. After finishing the above preprocessing for all strings in MA, we sort all
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elements in AA1,1 by their keys.

Since each element in EA is a substring of T$TR#, they can be sorted in O(n + |EA|) =
O(n) time by Corollary 2.2. Namely, MA′ can be computed in linear time, and thus MA too. By

Lemma 2.5, tree ST odd can be constructed in O(n) time. Also, we can answer each NMA query

and LCP query in constant time after O(n) time preprocessing. Hence, the total preprocessing

time is O(n).

Query Given a query sub(i, s), we compute all MUPSs of Type A1-1 by searching for el-

ements in AA1,1 with keys (odd, i, s) and (even, i, s). An element with each of the keys can

be found in O(logmin{σ, log n}) time. Thus, all MUPSs of Type A1-1 can be computed in

O(logmin{σ, log n}+ α′
add) time where α′

add is the number of MUPSs of Type A1-1.

Type A1-2

The MUPS of Type A1-2 is a contraction of the maximal palindrome in T ′ centered at i. By

definition, there is at most one MUPS of Type A1-2.

Preprocessing In the preprocessing phase, we again construct MA and related data structures

as in Type A1-1. Further, we apply the O(n)-time preprocessing of Lemma 5.4 for Problem 5.1.

The total preprocessing time is O(n).

Query Given substitution query sub(i, s), we compute the MUPS centered at i in T ′ as fol-

lows (if it exists): It is clear that T ′[i..i] = s is the MUPS of Type A1-2 if s is a unique character

in T ′. In what follows, we consider the other case. Let w be the maximal palindrome centered

at i in T ′. First, we compute the maximum lcp value �w between Rarmw and extended arms

in MAodd,i,s. Then, any contraction y of w, such that the arm-length of y is at least �w, has

no occurrences which cover position i in T ′, i.e., |inbegT ′,i(y)| = 1. We can compute �w in

O(logmin{σ, log n}) time, combining LCE queries and binary search. Note that rarmw occurs

at i+1 in both T and T ′ while Rarmw might be absent from T . Next we compute the arm-length

�′w of the shortest palindrome v such that center(v) = i and |xbegT ′,i(v)| = 0, i.e., v is absent

from T . Since the contraction ṽ of w of arm-length �′w − 1 is the longest palindrome such that

center(ṽ) = i and ṽ occurs in T , we can reduce the problem of computing �′w to Problem 5.1.

Thus, we can compute �′w in O(δ(n, σ) + (log log n)2) time by Lemma 5.4. Similar to the case

of Type A1-1, by Observation 5.1, the contraction y� of xw of arm-length max{�w, �′w} is a
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Figure 5.7: Illustration for ρw of Type A2. The top two arrows represent the leftmost and the

second leftmost occurrence of w. Also, the bottom two arrows represent the second rightmost

and the rightmost occurrence of w. In this case, ρw = [br1, el2].

MUPS of Type A1-2, if such y� exists. Therefore, the MUPS of Type A1-2 can be computed in

O(δ(n, σ) + (log log n)2) time.

Type A2

A MUPS of Type A2 occurs at least twice in T , and there is only one occurrence not covering

editing position i. For a palindrome w repeating in T , let T [bl1..el1] and T [bl2..el2] be the left-

most and the second leftmost occurrence of w in T . Further, let T [br1..er1] and T [br2..er2] be

the rightmost and the second rightmost occurrence of w in T . We define interval ρw as the inter-

section of all occurrences of w except for the leftmost one, i.e., ρw = {k | k 	∈ [bl1, el1] and k ∈
[br1, el2]} (see also Fig. 5.7). Similarly, we define interval ρ̃w as the intersection of all occur-

rences of w except for the rightmost one. Note that ρw and ρ̃w can be empty. Then, w is unique

after the i-th character is edited if and only if i ∈ ρw ∪ ρ̃w. Thus, any MUPS of Type A2 is a

palindrome corresponding to some interval in ρw∪ ρ̃w stabbed by i. To avoid accessing intervals

that do not correspond to the MUPSs to be added, we decompose each ρw. It is easy to see that

for any contraction v of w, ρv ⊂ ρw holds. Also, if T [i], with i ∈ ρv, is edited, then both w

and v become unique in T ′, i.e., w cannot be a MUPS of T ′. For each unique palindrome w

in T , we decompose ρw into at most three intervals ρw = ρ1wρw′ρ2w where w′ = w[2..|w| − 1].

Similarly, we decompose ρ̃w into ρ̃w = ρ̃1wρ̃w′ ρ̃2w. Then, w is a MUPS of Type A2 if and only if

i ∈ ρ1w ∪ ρ2w ∪ ρ̃1w ∪ ρ̃2w.

Preprocessing In the preprocessing phase, we first construct the eertree of T and the suffix

tree of T enhanced with additional explicit nodes for all distinct palindromes in T . Next, we
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compute at most four (leftmost, second leftmost, rightmost, second rightmost) occurrences of

each palindrome in T by traversing the enhanced suffix tree. At the same time, we compute

ρw and ρ̃w for each palindrome in w. Next, we sequentially access distinct palindromes by

traversing EERTREE(T ) in a pre-order manner. Then, for each palindrome w, we decompose

ρw and ρ̃w based on the rules as mentioned above. Finally, we apply the preprocessing for

stabbing queries to the O(n) intervals obtained. The total preprocessing time is O(n).

Query Given a query sub(i, s), we compute all intervals stabbed by position i. The palin-

dromes corresponding to the intervals are MUPSs of Type A2. Hence, the query time is

O(1 + βadd), where βadd is the number of MUPSs of Type A2.

Type A3

A MUPS of Type A3 is unique but not minimal in T . Such a unique palindrome u in T contains

a MUPS w 	= u of T as a contraction. Since u is a MUPS of T ′, w is repeating in T ′, i.e., w is

a removed MUPS of Type R2. Contrary, consider a MUPS w of Type R2, which is repeating

in T ′. Then, the shortest unique expansion of w in T ′ is an added MUPS of Type A3, if it

exists. The preprocessing for Type A3 is almost the same as for Type R2. We store a bit more

information for Type A3 in addition to the information in AR2.

Preprocessing In the preprocessing phase, we first apply the O(n)-time preprocessing of

Lemma 5.4 for Problem 5.1. Next, we initialize the set AA3 = ∅. This set AA3 will become an

index of MUPSs of Type A3 when the preprocessing is finished. For each MUPS w = T [b..e]

of T , we process the followings: For the beginning position j 	= b of each occurrence of Larmw

in T , we compute the lcp value �j between T [j+ |Larmw|..|T |]$ and T [�c�..|T |]$ with allowing

one mismatch where c is the center of w in T . If �j is smaller than rarmw, then we do nothing

for this occurrence since w cannot occur at j after any single-character substitution. Otherwise,

let q = j+ |Larmw| − 1+ d be the first mismatched position in T . When the q-th character of T

is substituted by the character rarmw[d], w = T [b..e] occurs at j 	= b, i.e., it is a MUPS of Type

R2. Unlike for Type R2, we add the pair of MUPS and (1-mismatched) lcp value (T [b..e], �j)

into AA3 with the pair of index and character (q, rarmw[d]) as the key. In addition, symmetri-

cally, we update AA3 for each occurrence of Rarmw in T . After finishing the above processes

for every MUPS of T , we then sort the elements of AA3 by radix sort on the keys. If there are

multiple identical elements with the same key, we unify them into a single element. Also, if

there are multiple elements with the same key, we store them in a linear list. By Lemma 2.4,

92



CHAPTER 5. MINIMAL UNIQUE PALINDROMIC SUBSTRING AFTER EDIT

the total number of occurrences of arms of MUPSs is O(n), and hence, the total preprocessing

time is O(n).

Query Given a query sub(i, s), we query Problem 5.1 with the same pair (i, s) as the in-

put. Then, we complete checking whether there exists a MUPS of Type A3 centered at i. For

the remaining MUPSs of Type 3, we retrieve the MUPSs of Type A3 using the index AA3 as

in the query algorithm for Type R2. This can be done in O(logmin{σ, log n} + γadd) time

where γadd is the number of MUPSs of Type A3. Therefore, the total query time of Type A3 is

O(δ(n, σ) + (log log n)2 + γadd).

To summarize, we can compute all MUPSs to be added after a single-character substitution

in O(δ(n, σ) + (log log n)2 + α′
add + βadd + γadd) time. Then, combining the results of Sec-

tion 5.2.1 with the above results, we obtain the following theorem:

Theorem 5.2. After O(n)-time preprocessing, we can compute the set of MUPSs after a single-

character substitution in O(δ(n, σ) + (log log n)2 + d) ⊂ O(log n) time where d is the number

of changes of MUPSs.

5.2.3 Alternative Algorithm for Problem 5.1

The query time of Theorem 5.2 is dominated by the time to answer Problem 5.1. Here, we

introduce another solution for Problem 5.1 utilizing nearest colored ancestor queries instead of

path-tree LCE queries.

Preprocessing for Problem 5.1 We first construct the suffix tree of T$. Also, for each odd-

palindrome in T , we make the locus of the right arm explicit and label the node with the pair of

the center character and the binary flag that indicates if the palindrome is a MUPS. We regard

the pair as the color of the node. Furthermore, we apply a preprocessing for NCA queries to the

colored tree1. The preprocessing time is O(n+cnca(n, σ)), where cnca(n, σ) is the preprocessing

time for NCA queries.

Query for Problem 5.1 Given a substitution query sub(i, s), we start at the node correspond-

ing to rarmw where w is the maximal palindrome in T centered at i. We then compute the

1There can be a node with multiple colors in the tree. However, we can easily avoid such a situation by copying

a node with k colors to k nodes. Also, in the case of Problem 5.1, the cumulative total number of colored nodes is

O(n).
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Time

σ Construction Query Space Ref.

nO(1) O(n) O(log σ + (log log n)2 + d) O(n) Theorem 5.2, 2.1

nO(1) O(n log log n) O(log log n+ d) O(n) Theorem 5.3, Lemma 2.6

nO(1) expected O(n) O(log log n+ d) O(n) Theorem 5.3, Lemma 2.6

O(n) O(n) O((log log n)2 + d) O(n) Theorem 5.2, 2.1

O(log n) O(n) O(log log n+ d) O(n) Theorem 5.3, Lemma 2.7

O(1) O(n) O(1 + d) O(n) Theorem 5.3, Lemma 2.7

Table 5.1: Concrete complexities of our algorithms for the problem of computing MUPSs after

a single-character substitution. All the above results require only linear space. Each query time

is O(log n) since log σ ∈ O(log n) and d ∈ O(log n).

nearest ancestor V colored with (s, 0) by using NCA query. If such node V exists, palindrome

P = str(V )R · s · str(V ) is the answer of the former part of Problem 5.1 where str(V ) denotes

the string corresponding to V in the enhanced suffix tree of T$. Also, we query NCA (s, 1)

from V . We can determine if P is unique, and if it is unique, we can find the MUPS contained

in P . The query time is O(qnca(n, σ)) where qnca(n, σ) is the query time for NCA.

Let snca(n, σ) denote the space for the NCA data structure. We obtain the following theorem:

Theorem 5.3. After O(n + cnca(n, σ))-time and O(n + snca(n, σ))-space preprocessing, we

can compute the set of MUPSs after a single-character substitution in O(logmin{σ, log n} +

qnca(n, σ) + d) time.

The results for NCA queries in Lemmas 2.6 and 2.7 can be plugged into the functions cnca,

qnca, and snca. In addition, even when a general case, we can handle δ(n, σ) as a constant by

utilizing a perfect hashing [38] after O(n log log n)-time or O(n)-expected time preprocessing.

Table 5.1 lists different representations of the time/space complexities of Theorems 5.2 and 5.3.

We emphasize that our algorithm runs in optimal O(1 + d) time when σ is constant.

Corollary 5.1. If σ ∈ O(1), after O(n)-time and O(n)-preprocessing, we can compute the set

of MUPSs after a single-character substitution in O(1 + d) time.
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Chapter 6

Palindromes in a Trie

A trie can be seen as a representation of a set of strings which are root-to-leaf path labels.

Therefore, the online algorithm of a trie can be regarded as the online algorithm for some

strings. In this chapter, we tackle the problems of computing maximal palindromes and distinct

palindromes in a trie in an online manner. In Section 6.1, we show tight bounds on the number

of maximal palindromes and on the number of distinct palindromes in a trie. In Section 6.2, we

present two algorithms to compute all maximal palindromes in a trie. In Section 6.3, we present

how to compute all distinct palindromes in a trie.

The results in this chapter primarily appeared in [41].

6.1 Maximal/Distinct Palindromes in a Trie

In this section, we show tight bounds on the number of maximal palindromes and on the number

of distinct palindromes in a trie.

Consider a trie T with N edges. A substring palindrome P = str(u, v) in T can be repre-

sented by the pair (|P |, v) of its length and the ending point v. Since the reversed path from v

to u is unique and since P is a palindrome, one can retrieved P from T in O(|P |) time from

this pair (|P |, v).
A substring palindrome str(u, v) is called a maximal palindrome in T if

(1) str(parent(u), v′) is not a palindrome with any child v′ of v,

(2) u is the root, or

(3) v is a leaf.
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Lemma 6.1. There are exactly 2N − L maximal palindromes in any trie T with N edges and

L leaves.

Proof. Let r be the root of T and u any internal node of T . Because the reversed path from u

to r is unique, and because the out-going edges of u are labeled by pairwise distinct characters,

there is a unique longest palindrome of even length (or length zero) that is centered at u. Since

there are N + 1 nodes in T , there are exactly (N + 1)−L− 1 = N −L maximal palindromes

of even length in T .

Let e = (u, v) be any edge in T . From the same argument as above, there is a unique longest

palindrome of odd length that is centered at e. Thus there are exactly N maximal palindromes

of odd length in T .

For any trie T , let PT ⊂ Σ∗ be the set of all strings such that each P ∈ PT is a substring

palindrome in T . We call the elements of P as distinct palindromes in T .

Lemma 6.2. There are at most N + 1 distinct palindromes in any trie T with N edges.

Proof. We follow the proof from [33] which shows that the number of distinct palindromes in

a string of length n is at most n+ 1.

We consider a top-down traversal on T . The proof works with any top-down traversal but

for consistency with our algorithm to follow, let us consider a breadth first traversal. Let r be the

root of T and let T0 be the trie consisting only of the root r. For each 1 ≤ i ≤ n, let ei = (ui, vi)

denote the ith visited edge in the traversal, and let Ti denote the subgraph of Ti consisting of

the already visited edges when we have just arrived at ei. Since we have just added ei to Ti−1, it

suffices to consider only suffix palindromes of str(r, vi) since any other palindromes in str(r, vi)

already appeared in Ti−1. Moreover, only the longest suffix palindrome Si of str(r, vi) can be a

new palindrome in Ti which does not exist in Ti−1, since any shorter suffix palindrome S ′ is a

suffix of Si and hence is a prefix of Si, which appears in Ti−1. Thus there can be at most N + 1

distinct palindromes in T (including the empty string).

See Figure 6.1 for examples of maximal palindromes and distinct palindromes in a trie.

In the next sections, we will present our algorithms to compute maximal/distinct palin-

dromes from a given trie.

6.2 Computing Maximal Palindromes in a Trie

In this section, we present two algorithms that compute all maximal palindromes in a given trie.
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Figure 6.1: The maximal palindrome centered at (i) is aba and the maximal palin-

drome centered at (ii) is babaabab. The set of distinct palindromes in this trie is

{ε, a, b, c, aa, bb, aaa, aba, aca, bab, bbb, abba, baab, aabaa, ababa, abbba, baaab, abaaba,
baabaab, babaabab}.

6.2.1 O(N log h)-Time O(h)-Space Algorithm

In this subsection, we present an algorithm that compute all maximal palindromes in a given

trie T in O(N log h) time and O(h) working space, where N is the number of edges in T and

h ≤ N is the height of T .

The basic strategy of our algorithm is as follows. We perform a depth-first traversal on T .

Let r be the root of T . We use Lemma 2.2 in our algorithm. When visiting a node u during

the depth-first traversal on trie T , we maintain the arithmetic progressions for the maximal

palindromes in the path string str(r, u). In each node x in the path from r to u, the arithmetic

progressions representing the maximal palindromes ending at x are sorted in the increasing

order of the lengths of the corresponding maximal palindromes. Since str(r, u) is a single

string, and since |str(r, u)| is bounded by the height h of T , we can store all these arithmetic

progressions in O(h) total space during the traversal. Suppose that u has two or more children,

and let v, v′ be two distinct children of u. Notice that some of the maximal palindromes ending

at u could be extended by the edge label from u to v. Furthermore, since the edge label between

u and v differs from the edge label between u and v′, those palindromes that are not extended

with v could still be extended with v′. This in turn means that when we backtrack to u after

visiting v, then we can use the maximal palindromes in the path string str(r, v) that ends at the

parent u of v, for finding the palindromes ending at another child v′. In the sequel, we will

describe how to efficiently maintain these maximal palindromes during the traversal.
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Suppose that now we are to process non-leaf node u in the traversal. For each 1 ≤ i ≤
|children(u)|, let vi be the ith visited child of u in the tree traversal, and let ai be the label of the

edge (u, vi). The task here is to check if the suffix palindromes ending at u extends with ai. We

will process the groups of suffix palindromes ending at u in increasing order of their lengths. Let

〈s, d, t〉 be the arithmetic progression representing a given group of suffix palindromes ending

at u, where s is the length of the shortest suffix palindrome in the group, d is a common period

of the suffix palindromes and t is the number of suffix palindromes in this group. The cases

where t = 1 and t = 2 are trivial, so we consider the case where t ≥ 3. Let P be any suffix

palindrome in the group that is not the longest one (i.e, s ≤ |P | ≤ s + (t − 2)d). Due to

the periodicity (Claim (iv) of Lemma 2.2), every P is immediately preceded by a unique string

P [1..d] of length d. Let b = P [d] and c be the character that immediately precedes the longest

suffix palindrome in the group. There are four cases to consider:

1. ai = b and ai = c (namely ai = b = c): In this case, all the suffix palindromes in the

group extend with ai and become suffix palindromes of str(r, vi). We update s ← s + 2.

The values of d and t stay unchanged.

2. ai = b and ai 	= c. In this case, all the suffix palindromes but the longest one in the group

extend with ai and become suffix palindromes of str(r, vi). We update s ← s + 2 and

t ← t− 1. The value of d stays unchanged.

3. ai 	= b and ai = c. In this case, only the longest suffix palindromes in the group extends

with ai and becomes a suffix palindrome of str(r, vi). We first update s ← s+(t−1)d+2

and then t ← 1. The new value of d is easily calculated from the length of the longest

suffix palindrome in the previous group (recall the definition of d just above Lemma 2.2).

4. ai 	= b and ai 	= c. In this case, none of the members in the group extends with ai. Then,

we do nothing.

In each of the above cases, we store all these extended palindromes in vi as the set of maximal

palindromes ending at vi in str(r, vi), and exclude all these extended palindromes from the set

of maximal palindromes ending at u.

See Figure 2.1 for concrete examples of the above cases. Let ai be the next character that is

appended to the string in Figure 2.1. Case 1 occurs to group G3 when ai = c. Case 2 occurs to

group G1 when ai = a, and to group G2 when ai = b. Case 3 occurs to group G1 when ai = b,

and to group G2 when ai = c. Case 4 occurs to all the groups when ai = d.
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Suppose that we have finished traversing the subtree rooted at u, namely, we have performed

the above procedures for all characters ai with 1 ≤ i ≤ |children(k)|. Then, we output, as the

maximal palindromes ending at u, all suffix palindromes of u that did not extend with any ai.

Also, each time we reach a leaf in the traversal, we simply output all suffix palindromes ending

at the leaf as the maximal palindromes ending at the leaf.

In each of the above four cases, we can check if the palindromes in a given group extends

with ai by at most two character comparisons. Since there are O(log h) arithmetic progressions

representing the suffix palindromes ending at node u, for each child vi of u, it takes O(log h)

time to compute the suffix palindromes ending at vi. The total cost to output the maximal

palindromes is less than 2N (Lemma 6.1).

There is one more issue remaining. When only one or two members from a group extend

with ai, then we may need to merge these suffix palindromes into a single arithmetic progres-

sion with the suffix palindromes from the previous group. However, this can easily be done

in a total of O(log h) time per node vi, since the suffix palindromes ending at u was given as

O(log h) arithmetic progressions (groups). See Figure 2.1 for a concrete example of this merg-

ing process. When ai = c, c is a suffix palindrome and forms a single arithmetic progression

〈1, 0, 1〉. All the palindromes in G1 are not extended. The longest suffix palindrome in group G2

is extended to caaabaaabaaabaaabaac forming an arithmetic progression 〈21, 20, 1〉, where

20 = |caaabaaabaaabaaabaac| − |c|, but all the other suffix palindromes in group G2 are not

extended. Finally all the suffix palindromes in group G3 are extended and are represented by

an arithmetic progression 〈41, 20, 2〉. Since the three suffix palindromes of lengths 21, 41, and

61 share the common difference 20, the two arithmetic progressions are merged into a single

arithmetic progression 〈21, 20, 3〉.
We have shown the following:

Theorem 6.1. We can compute all maximal palindromes in a given trie T in O(N log h) time

and O(h) working space, where N and h respectively denote the number of edges in T and the

height of T .

Remark 6.1. For a balanced trie with h = Θ(logσ N), our algorithm runs in O(N log logσ N)

time with O(logσ N) working space. In the worst case where h = Θ(N), our algorithm still

runs in O(N logN) time with O(N) space.
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6.2.2 Alternative Algorithm Based on Manacher’s Algorithm

In this subsection, we present an alternative algorithm for computing all maximal palindromes

in a given trie T that is based on Manacher’s algorithm [86] that is originally designed for

computing maximal palindromes in a single string.

For ease of explanation, we consider the path-contracted trie T ′ that can be obtained by

contracting every unary path of the original trie T into a single edge that is labeled by a non-

empty string. Let r denote the root of T ′. Throughout this subsection, for any node u in T ′,

parent(u) and children(u) respectively denote the parent of u and the set of children of u in the

path-contracted trie T ′.

The basic strategy of our alternative algorithm is as follows. We perform a depth first traver-

sal on T ′, where only the root, branching internal nodes, and leaves are explicitly visited. Let u

be any branching node visited in the traversal. As was done in the algorithm of subsection 6.2.1,

for each branching node v in the path from the root r to u, we maintain the arithmetic progres-

sions representing the suffix palindromes ending at v, which will be used when the traversal

traces back to these branching nodes.

Now we are processing node u to extend the suffix palindromes. For this sake, we use the

idea of Manacher’s algorithm [86]. Let Σu be the set of the first characters of the out-edges of u

in T ′. For each a ∈ Σu, ea = (u, va) denote the out-edge of u in T ′ whose label begins with a.

For each a ∈ Σu (in any order), we search for the groups of the suffix palindromes of str(r, u)

that are immediately preceded by a, since these will be the only groups that will extend with

the edge ea. Let Pa be the set of suffix palindromes extended with a (which are represented by

O(log h) arithmetic progressions). For each 1 ≤ i ≤ |Pa|, let Pi denote the ith longest suffix

palindrome in Pa. While we move forward on the edge ea, we keep two invariants � and f such

that P� denotes the longest suffix palindrome whose extension ends with the currently processed

character on ea, and Pf denotes the suffix palindrome whose extension is to be determined by

symmetry of P�. We process the suffix palindromes in Pa in decreasing order of their lengths,

by picking up their lengths from the arithmetic progressions. Namely, we initially set � ← 1

and f ← 2 and increase the values of � and f accordingly while reading the characters on the

edge ea. In any following step � ≤ f will hold.

When � = 1, as a initial step, we extend the left arm of P� on the reversed path and the right

arm of P� on the path from u to va with naı̈ve character comparisons. Now suppose we are

processing P�. Let s = |P�|, c be the center of P� in the path string from the root, and τ be the

length of the extension of P�, namely, P� has been extended to a maximal palindrome of length
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Figure 6.2: Illustration for our alternative algorithm that computes maximal palindromes in a

given trie, that is based on Manacher’s algorithm.

s+ 2τ for center c. This means that the maximal palindromes for any centers less than c in the

path from the root to u have already been computed. Then we process Pf . Let s′ = |Pf | and c′

be the center for Pf . There are three possible cases:

(1) The depth of the left-end of the maximal palindrome for center 2c − c′ in the path from

the root is lager than |str(r, u)| − s− τ .

(2) The depth of the left-end of the maximal palindrome for center 2c − c′ in the path from

the root is less than |str(r, u)| − s− τ .

(3) The depth of the left-end of the maximal palindrome for center 2c − c′ is equal to

|str(r, u)| − s− τ .

See Figure 6.2 for illustration of the above three cases.

In Case(1), by symmetry Pf is extended exactly to the same length as the maximal palin-

drome for center 2c − c′. We keep � = 1 and update f ← f + 1. In Case (2), Pf is extended

exactly to length s′ + 2τ , because of the mismatching characters str(r, u)[|str(r, u)| − s − τ ]

and str(u, va)[τ + 1]. We keep � = 1 and update f ← f + 1. In Case (3), Pf is extended at

least to length s′ +2τ . Now we update � ← f and then f ← f +1. To check if this palindrome

is further extended, we perform naı̈ve character comparisons until we find the final value of the

extension.
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We perform the above procedure until we read all characters on the edge ea, or we finish

extending all palindromes from Pa. This gives us the maximal palindromes whose centers are

in the path spelling out str(r, u). Then we store all these extended maximal palindromes at

va as O(log h) arithmetic progressions, and exclude all these maximal palindromes from the

set of maximal palindromes ending at u. This ensures that, as in the previous subsection, the

number of maximal palindromes stored at the nodes in the current path string is bounded by the

height h of the original trie. Note that all maximal palindromes whose centers are on ea need

to be additionally computed. This can be done in linear time in the length of the label of ea, by

running Manacher’s algorithm on this edge label.

Suppose that we have performed the above procedures for all out-edges of u in T ′. Then,

we output, as the maximal palindromes ending at u, all suffix palindromes of u that did not

extend with any out-edges. Also, each time we reach a leaf in the traversal, we simply output

all suffix palindromes ending at the leaf as the maximal palindromes ending at the leaf.

Let us analyze the complexities of this method. Consider each branching node u in T ′. For

each a ∈ Σa, we can find the arithmetic progressions representing Pa in O(log h) time as in the

previous subsection. Each character in edge ea is involved in exactly one character comparison.

To perform each character comparison on the trie in O(1) time, we preprocess the original trie T
with N edges in O(N) time and space so that level ancestor queries on the trie can be answered

in O(1) time each [16]. Hence, if N ′ is the number of edges in the path-contracted trie T ′, then

our algorithm of this subsection runs in O(N ′ log h+N) time and O(N) space.

Theorem 6.2. We can compute all maximal palindromes in a given trie T in O(N ′ log h+N)

time and O(N) working space, where N and h respectively denote the number of edges in T
and the height of T , and N ′ denotes the number of edges in the path-contracted trie T ′.

Remark 6.2. Note that N ′ ≤ N always holds, and therefore the algorithm of Theorem 6.2 is

at least as fast as the algorithm of Theorem 6.1. Moreover, in case where N ′ = O(N/ log h)

(which happens when the average length of the unary paths in T is Ω(log h)), then the algorithm

of Theorem 6.2 runs in O(N) time.

Also, we obtain the following corollary:

Corollary 6.1. We can compute all maximal palindromes in a trie T in an online manner in

O(N logN) time and O(N) working space, where N denotes the number of edges in T .
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6.3 Computing Distinct Palindromes in a Trie

In this section we present our algorithm that computes all distinct palindromes in a given trie.

Our algorithm is based on Groult et al.’s [56] that finds distinct palindromes in a single

string. Recall the proof of Lemma 6.2 in Section 6.1. There we showed that for each node

u in a trie T , only the longest suffix palindrome of str(r, u) can be accounted for as a distinct

palindrome, where r is the root of T . Let N and h be the number of edges in T and the height of

T . In this section, we assume that the root has a single out-edge labeled with a special character

$ that does not appear elsewhere in the trie and is lexicographically the smallest.

Lemma 6.3. For each node u in a given trie T , we can compute the longest suffix palindrome

of str(r, u) in a total of O(N ′ log h+N) time with O(N) working space, where N ′ denotes the

number of edges in the path-contracted trie T ′.

Proof. Clear from our algorithm to compute maximal palindromes in T which was presented

in Section 6.2.

Now, we consider the reversed trie T R. For any reversed path from u to u′ in T R in the

leaf-to-root direction, let (u, u′) = str(u′, u)R. Observe that a suffix of str(r, u) is a prefix of

rev str(u, r). Therefore, a suffix palindrome of str(r, u) that ends at node u in T is a prefix

palindrome of rev str(u, r) that begins at node u in the reversed trie T R. For each 1 ≤ j ≤ N ,

let ej denote the (N − j + 1)th visited edge in a breadth-first traversal on the original trie T .

The id of edge ej is j. See Figure 6.3 for examples of a reversed trie and the associated integers

to its edges.

For each edge id j, let ej = (vj, uj) be the corresponding reversed edge. Let LPrePal be

an array of length N such that for each 1 ≤ j ≤ N LPrePal [j] stores the length of the longest

prefix palindrome in the reversed path string beginning with ej (namely rev str(vj, r)). Also,

let LFF be an array of length N called the longest following factor array, such that for each

1 ≤ i ≤ N LFF [j] stores the length of the longest prefix of rev str(vj, r) that occurs as a prefix

of rev str(vk, r) with k > j. See Figure 6.3 for examples of LPrePal and LFF arrays.

We design an algorithm that reports a shallowest occurrence of each distinct palindrome in

the (reversed) trie. If there are multiple occurrences of the same palindrome beginning at nodes

on the same depth, then we report the occurrence that begins with the edge with the largest id.

Now we can see that for each j, the occurrence of the longest prefix palindrome of rev str(vj, r)

should be reported iff LFF [j] < LPrePal [j]. Hence, we can report all distinct palindromes

in the trie in O(N) time by simply scanning the two arrays LFF and LPrePal from left to
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$

root root

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

SA[j] 24 23 9 2 17 12 21 10 18 4 13 15 6 22 8 1 11 20 5 19 16 7 3 14

LCP [j] - 0 1 2 4 3 1 3 3 5 2 3 1 0 2 3 5 2 4 1 2 0 4 3

LFF [j] 0 0 2 4 1 3 1 3 3 5 3 2 1 0 3 5 2 2 4 1 2 3 4 0

LPrePal [j] 1 1 3 5 2 2 3 6 5 10 4 5 3 1 5 4 4 3 8 2 3 1 1 1

Figure 6.3: Upper left: An example of a reversed trie. Upper right: The edge id’s based on a

breadth-first traversal. Lower: SA, LCP , LFF and LPrePal arrays built on the reversed trie

shown above.

right. The LFF array can be computed in O(N) time from the LCP array for the trie, by using

the same technique for the longest previous factor array (LPF array) for a single string [32].

Together with Theorem 6.2, we obtain the following:

Theorem 6.3. We can compute all distinct palindromes in a given trie T in O(N ′ log h + N)

time and O(N) working space, where N and h respectively denote the number of edges in T
and the height of T , and N ′ denotes the number of edges in the path-contracted trie T ′.

Remark 6.3. The suffix array of the reversed trie with N edges can be constructed in O(N)

time and space if the edge labels are drawn from a constant-size alphabet or an integer alphabet

of polynomial size in N [113]. In the case of a general ordered alphabet of size σ, the suffix

array of the reversed trie can be constructed in O(N log σ) time and space [23]. The other

arrays can be constructed in O(N) time after the suffix array has been built. In summary, our

algorithm runs in O(N ′ log h + N log σ) time and O(N log σ) working space in the case of a

general ordered alphabet.

With a little effort, we can obtain the following corollary:

Corollary 6.2. We can compute all distinct palindromes in a trie T in an online manner in

O(N logN) time and O(N) working space, where N denotes the number of edges in T .
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Chapter 7

Conclusions and Future Work

In this thesis, we studied regularities and algorithms on dynamic strings.

In Chapter 3, we analyzed sensitivities for string compressors and repetitiveness measures.

In the seminal paper by Varma and Yoshida [118] which first introduced the notion of sensitivity

for (general) algorithms and studied the sensitivity of graph algorithms, the authors wrote:

“Although we focus on graphs here, we note that our definition can also be ex-

tended to the study of combinatorial objects other than graphs such as strings and

constraint satisfaction problems.”

Our study was inspired by the afore-quoted suggestion, and our sensitivity for string compres-

sors and repetitiveness measures enables one to evaluate the robustness and stability of com-

pressors and repetitiveness measures.

The major technical contributions of this thesis are the tight and constant upper and lower

bounds for the multiplicative sensitivity of the smallest bidirectional scheme, the LZ77 family,

and the substring complexity δ. We also presented non-trivial upper and lower bounds for other

string compressors and repetitive measures: the smallest string attractor, RLBWT, LZ78.

Apparent future work is to complete Tables 1.1 and 1.2 by filling the missing pieces and

closing the gaps between the upper and lower bounds which are not tight there.

While we dealt with a number of string compressors and repetitiveness measures, it has to

be noted that our list is far from being comprehensive: It is intriguing to analyze the sensitivity

of other important and useful compressors and repetitiveness measures including the size ν

of the smallest NU-systems [98], the sizes of the other locally-consistent compressed indices

such as ESP-index [89] and SE-index [100], and the sizes of the global grammar compression

algorithms such as Re-pair [84], Longest-Match [71], and Greedy [10].
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Our notion of the sensitivity for string compressors/repetitiveness measures can naturally be

extended to labeled tree compressors/repetitiveness measures. It would be interesting to analyze

the sensitivity for the smallest tree attractor [107], the run-length XBWT [107], the tree LZ77

factorization [49], tree grammars [44, 85], and top-tree compression of trees [20].

In Chapter 4, we dealt with the problems of computing the LPS of a string after a single-

character edit operation or a block-wise edit operation. We proposed an O(log(min{σ, log n}))-
time query algorithm that answers the LPS after a single-character edit operation, with O(n)-

time and space preprocessing, where σ is the number of distinct characters appearing in the

string. Furthermore, we presented an O(� + log(min{σ, log n}))-time query algorithm that

answers the LPS after a block-wise edit operation, with O(n)-time and space preprocessing,

where � denotes the length of the block after an edit. Our future work of this chapter includes

the following:

(1) Can we efficiently compute the longest gapped palindrome in a string after an edit op-

eration? We suspect that it might be possible with a fixed gap length, perhaps using

combinatorial properties of gapped palindromes with a fixed gap length from [62].

(2) Can we extend our algorithm to biological palindromes with reverse complements such

as those in DNA/RNA sequences? The key will be whether or not periodic properties

hold for such palindromes.

(3) Amir et al. [4] proposed a fully-dynamic algorithm that can maintain a data structure of

Õ(n) space to report a longest square substring after a single character substitution in

no(1) time. The preprocessing cost for their data structure is Õ(n) time. It is interesting if

one can achieve a faster and/or more space-efficient algorithm for finding a longest square

substring, if the edit operation is restricted to a query as in this thesis.

In Chapter 5, we dealt with the problem of updating the set of MUPSs of a string after

a single-character substitution. We showed that the number d of changes of MUPSs after a

single-character substitution is O(log n). Also, we showed tight lower bounds d ∈ Ω(log n).

Furthermore, we presented an algorithm that uses O(n) time and space for preprocessing, and

updates the set of MUPSs in O(log σ + (log log n)2 + d) time where σ is the alphabet size. We

also proposed a variant of the algorithm, which runs in optimal O(1+d) time when the alphabet

size is constant. Our future work of this chapter includes the following:

(1) Can our algorithm be adapted to the cases of insertions and deletions?
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(2) Can we extend our algorithm to a fully dynamic setting? It is interesting whether the

techniques in [3, 6] can be utilized in the dynamic version of the MUPS problem.

In Chapter 6, we dealt with the problem of computing maximal/distinct palindromes in a

trie. In Section 6.1, we showed that the number of maximal palindromes in a trie T with N

edges and L leaves is exactly 2N − L and that the number of distinct palindromes in T is at

most N + 1. These generalize the known bounds for a single string [33, 86]. In Section 6.2, we

presented two algorithms to compute all maximal palindromes both of which run in O(N log h)

time and O(N) space in the worst case, where h is the height of the trie T . In Section 6.3,

we presented the algorithm to compute all distinct palindromes in a given trie T in O(N log h)

time with O(N) space. Our future work of this chapter includes the following.

(1) Can we compute maximal/distinct palindromes in a trie in optimal O(N) time?

(2) Can we efficiently compute maximal palindromes in an unrooted tree?
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