九州大学学術情報リポジトリ Kyushu University Institutional Repository

鋼橋におけるコンクリート製床版の取替え技術の高 度化に関する研究

脇坂,英男

https://hdl.handle.net/2324/4784588

出版情報:Kyushu University, 2021, 博士(工学), 課程博士 バージョン: 権利関係:

鋼橋におけるコンクリート製床版の 取替え技術の高度化に関する研究

2022 年 2 月

九州大学大学院工学府 建設システム工学専攻

脇坂 英男

目 次

<u> 第1章 序論</u>

1.1	研究の	背景・		• • • • •	•••	•••	•••	• • • •	• • •	•••	•••	• • • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	•1
1.2	道路橋	の現状	••••	••••	•••	•••	•••	• • • •	•••	•••	•••	• • • •	•••	•••	•••	• • •	•••	•••	•••	•••	•••	•2
1.	2.1 道	路橋の野	見状	••••	•••	•••	•••	• • • •	•••	•••	•••	• • • •	••	• • •	•••	•••	•••	•••	•••	•••		•2
1.	2.2 鋼	橋の床胤	反劣化	の現	状	•••	•••	• • • •	•••	•••	•••	• • • •	•••	• • •	•••	•••	• • •	•••	•••	•••		•4
1.3	本研究	の目的	••••	••••	•••	•••	•••	• • • •	•••	•••	•••	• • • •	•••	• • •	• • •	• • •	•••	•••	•••	•••		•5
1.4	本論文	の構成	••••	••••	•••	•••	•••	• • • •	•••	•••	•••	• • • •	•••	• • •	• • •	• • •	•••	•••	•••	•••		•6
第1	章 参	考文献	• • • •		• • •	• • •	•••		• • •	• • •	• • •		•••	• • •	• • •				•••	•••		• 8

第2章 道路橋床版に関する既往の研究

2.1 既	往の研究成果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.2 道	路橋床版に関する既往の研究 ・・・・・10
2.2.1	床版取替えの経緯と開発 ・・・・・10
2.2.2	床版の劣化メカニズム ・・・・・・・・・・・・・・・・・・・・・・・・・・・・11
2.2.3	プレキャスト床版の接合方法 ・・・・・・・・・・・・・・・・・・・・・・・・13
2.2.4	エンドバンド継手の疲労耐久性の確認 ・・・・・・・・・・・・・・・・・・・・・・15
2.2.5	床版取替えの施工方法について ・・・・・・・・・・・・・・・・・・・・・・・17
2.3 早	強ポルトランドセメントの一部を高炉スラグ微粉末に置換したコンクリート・18
2.3.1	高炉スラグ微粉末の使用背景 ・・・・・18
2.3.2	高炉スラグ微粉末を用いたコンクリートの変遷 ・・・・・・・・・・・18
2.3.3	早強ポルトランドセメントの一部を高炉スラグ微粉末に置換したコンクリート
	の性質 ······20
2.4 エ	ポキシ樹脂塗装鉄筋に関する既往の研究および規準 ・・・・・・・・・・・・・・23
2.4.1	塩害地域でのエポキシ樹脂塗装鉄筋の使用実績と示方書の改定 ・・・・・・23
2.4.2	エポキシ樹脂塗装鉄筋に求められる品質 ・・・・・・・・・・・・・・・・・・・・・23
2.4.3	エポキシ樹脂塗装鉄筋の耐久性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・24
第2章	参考文献

<u>第3章 エポキシ樹脂塗装した機械式定着・重ね継手工法の性能評価と実構造物</u> <u>への適用</u>

3.1 はじめに ・・・・・	
3.2 エポキシ樹脂塗装	したエンドバンド継手の性能確認 ・・・・・・・・・・・・・・・29
3.2.1 定着性能試験	
3.2.2 曲げモーメン	トに対する性能試験 ・・・・・35
3.3 塩害地域での施工	
3.3.1 実橋梁での施工	L
3.3.2 床版厚の低減	
3.3.3 施工性の向上	
3.4 まとめ ・・・・・	
第3章 参考文献 ···	••••••47

第4章 載荷実験を反映した非合成鈑桁橋の合理的な設計手法に関する検討

4.1 は	じめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.2 橋	梁概要 •••••••••••••••••••••49
4.3 試	験方法 ・・・・・・・・・・
4.3.1	試験内容と目的 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・53
4.3.2	計測項目と数量 ・・・・・・54
4.3.3	試験車両
4.3.4	静的載荷試験
4.3.5	動的載荷試験(試験車走行試験) ••••••••••••••••••••••••••61
4.3.6	動的載荷試験(一般車連続走行試験) ••••••••••••••••63
4.4 試	験結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.4.1	静的載荷試験64
4.4.2	動的載荷試験69
4.5 荷	重と応答値に関する考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.6 ま	とめ ・・・・・78
4.6.1	静的載荷試験
4.6.2	動的載荷試験
4.6.3	荷重と応答値に関する考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
第4章	参考文献81

第5章 壁高欄と床版の接合部におけるひび割れ抑制に関する検討

5.1	はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.2	試験概要 •••••••••••••************************
5.3	ひずみ計測 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.4	FEM解析 ······96
5.5	ひび割れ抑制対策の提案 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・103
5.6	まとめ ・・・・・105
第 5	章 参考文献106

第6章 プレキャスト PC 床版に用いる材料の塩分浸透抑制および紫外線劣化抑制に関する検討

6.1 は	じめに ・・・					107
6.2 セ	メントの一	部を高炉スラグ後	数粉末に置	換したコン	クリートの曝靄	통試験 ・・・・108
6.2.1	試験概要		•••••		•••••	108
6.2.2	試験項目	••••••	•••••		••••••	109
6.2.3	試験材料	••••••	•••••		••••••	110
6.2.4	試験結果	••••••	•••••		••••••	112
6.3 I	ポキシ樹脂	塗装鉄筋の曝露	式験 ・・・・・		•••••	121
6.3.1	試験概要	••••••	•••••		••••••	121
6.3.2	試験方法		• • • • • • • • • •		•••••	123
6.3.3	試験結果	••••••	•••••		••••••	126
6.4 ま	とめ		•••••		•••••	135
第6章	参考文献					

<u> 第7章 結論</u>

7.1	本研究の成果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	38
7.2	今後の課題と展望・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41

<u>謝辞</u>

第1章 序 論

1.1 研究の背景

我が国では、1960年代の高度経済成長期から道路橋、トンネル、下水道管、港湾岸壁など といった社会インフラが急速に整備されており、日本経済の発展に大いに貢献してきた。し かし、建設後 50年を超えるインフラがこれから加速度的に増加し、11年後の 2033年には 2018年から倍増し、道路橋や港湾岸壁といった施設では 60%程度となることが想定されて いる(図-1.1)。それに伴い経年劣化が顕著になり、補修や補強といった維持管理の重要性 が増している。

これらの維持管理の重要性が取り上げられるきっかけとなったのは、平成 24 年に多数の 死傷者を出した中央自動車道笹子トンネル天井板落下事故である。国土交通省では、平成 25 年を「社会資本メンテナンス元年」と位置付け、笹子トンネルと同様の事故が発生しないよ うトンネル内の附属物などを対象とした緊急点検などを実施してきた。平成 25 年には国民 生活や社会経済活動を支える各種施設を対象とし、国民の安全・安心を確保し、中長期的な 維持管理・更新などに係るトータルコストの縮減や予算の平準化を図るとともに、維持管理・ 更新に係る産業(メンテナンス産業)の競争力を確保するための方向性を示すものとして、 インフラ老朽化対策の推進に関する関係省庁連絡会議にて「インフラ長寿命化基本計画」が 策定された。また、近年では頻発する豪雨や地震などの自然災害による被害が激甚化してき ており、社会インフラの重要性が一段と高まっている。

建設業はすでに高齢化により団塊の世代などの技能労働者が大量に離職することが見込 まれ,労働人口の減少が顕著になり5年後には100万人以上が不足するとの予測もある。将 来にわたる社会インフラの品質確保と適切な機能維持を図るためには,建設業の将来を担う 人材を確保することも,重要課題である。

1.2 道路橋の現状

1.2.1 道路橋の現状

全国で約72万の道路橋が供用されているが、建設後50年を経過する施設の割合は、2018 年(平成30年)時点では25%であったが、2033年に63%へと急増するとの予測がある。(図 -1.1)。これらの橋梁を管理者別に分けると、市町村が管理する橋梁が71%、都道府県が管 理する橋梁が16%と、地方公共団体が全体の約90%近くを管理している(図-1.2)。また、 高速自動車国道の橋は、全体の3%程度に過ぎないが、それぞれの都市の物流を支える役割 を担っているため重要度は大きい。

今後,老朽化する大量の橋梁を維持していくためには,確実な管理を実施していく必要が ある。点検を実施して劣化が加速している場合やすでに危険な状態にある場合には通常の補 修ではなく,大規模更新などを実施しなければならない。表-1.1に示すように高速自動車国 道は,すでに大規模更新などを実施しており,緊急措置段階になる前に処置が行われている。

図-1.2 道路種別橋梁数²⁾

※グラフは、文献2)を著者により再編

管理者			2014~2019年 点検実施数	判定区分※2 上段:割合、下段:橋梁数						
			※ 1	I	Π	Ш	IV			
国土交通省		緊急輸送道路を跨ぐ跨道橋	2, 144	46%	44%	11%	0%			
				(976)	(940)	(228)	0			
		跨線橋	1,674	29%	4/%	25%	0%			
				(478)	(783)	(413)	0			
		緊急輸送道路を構成する橋梁	31, 194	(19, 274)	(0. 061)	(2.053)	0. 02%			
				(10, 274)	(9, 901)	(2, 933)	0.02			
		(参考)全橋梁	37, 030	(22 153)	(11 415)	970 (3.451)	(11)			
				7%	80%	13%	0%			
高速道路会社		緊急輸送道路を跨ぐ跨道橋	5,092	(349)	(4, 068)	(675)	0			
				4%	76%	20%	0%			
		跨線橋	1,060	(43)	(804)	(213)	0			
				10%	78%	12%	0%			
		緊急輸送道路を構成する橋梁	22, 998	(2, 378)	(17, 951)	(2, 669)	0			
		(参考)全橋梁		10%	78%	12%	0%			
			23, 179	(2, 404)	(18, 094)	(2, 681)	0			
		緊急輸送道路を跨ぐ跨道橋	7, 992	27%	61%	12%	0.01%			
				(2, 185)	(4, 852)	(954)	(1)			
		防治场	6 500	18%	59%	23%	0.05%			
바 수 ^ ·	ᄮᇚᄮᆗ	跨稼僑	6,506	(1, 190)	(3, 844)	(1, 469)	(3)			
地方公:	共団14計	緊急輸送道路を構成する橋梁	68, 185	34%	55%	11%	0.01%			
				(22, 874)	(37, 573)	(7, 733)	(5)			
		(参考)全橋梁	657, 784	42%	49%	9%	0.1%			
				(275, 832)	(322, 125)	(59, 196)	(631)			
		緊急輸送道路を跨ぐ跨道橋	3, 543	29%	59%	12%	0%			
				(1, 021)	(2, 102)	(420)	0			
		마수 수수 수준	3, 436	19%	58%	23%	0%			
	都道府県	「「「」「「」」(「」)」(「」)(「」)(「」)(「」)(「」)(「」)(「」		(664)	(1, 990)	(782)	0			
	政令市等	駆刍輸送道路を構成すス極涩	64 449	33%	55%	12%	0.01%			
		糸心制と迫ഥと構成りつ個木	04, 443	(21, 385)	(35, 630)	(7, 430)	(4)			
		(参考) 全極涩	185 766	38%	51%	11%	0.02%			
		(多特)王侗未	100, 700	(71, 495)	(94, 469)	(19, 771)	(31)			
		駆急輸送道路を踤ぐ踤道橋	4 449	26%	62%	12%	0.02%			
			1, 110	(1, 164)	(2, 750)	(534)	(1)			
		陪線橋	3 070	17%	60%	22%	0.1%			
	市区町村	ומון: אלוי יביא	3,070	(526)	(1, 854)	(687)	(3)			
		堅急輸送道路を構成する埵烫	3 736	40%	52%	8%	0.03%			
		赤心害なに て またっ る 信木	0, 700	(1, 489)	(1, 943)	(303)	(1)			
		(参考) 全橋梁	472 018	43%	48%	8%	0.1%			
		(参方) 土 恦 木	472,018	(204, 337)	(227, 656)	(39, 425)	(600)			

表-1.1 道路管理者別の点検結果²⁾

※1 2020 年 3 月時点での橋梁数のうち、2014~2019 年度に点検を実施した橋梁数の合計。 点検を実施した施設のうち、2020 年 3 月時点で診断中の施設を除く。

※2 判定区分

I (健全) ∴構造物の機能に支障が生じていない状態。

Ⅱ(予防保全段階):構造物の機能に支障が生じていないが、予防保全の観点から措置を講ずることが望ましい状態。

Ⅲ(早期措置段階):構造物の機能に支障が生じる可能性があり,早期に措置を講ずべき状態。

Ⅳ(緊急措置段階):構造物の機能に支障が生じている、または生じる可能性が著しく高く、緊急に措置を講ずべき状態。

※表は、文献2)を著者により再編

1.2.2 鋼橋の床版劣化の現状

道路橋の中でも,30年以上経過した鋼橋の鉄筋コンクリート床版(以下,RC床版)では, 飛来塩分,除塩不足の骨材使用,交通荷重の大型化や交通量の増加によって,鋼材の腐食, コンクリートのはく離,床版上面の土砂化,水みちによる床版下面の漏水が生じるなど著し い劣化が見られる(写真-1.1~写真-1.3)。

写真-1.1 床版ハンチ部のはく離

写真-1.2 床版下面の漏水

写真-1.3 床版上面の土砂化

1.3 本研究の目的

1.2 で述べたように、多くの社会インフラが老朽化しているが、それを維持・管理してい くための予算や人材が不足し始めており、将来的には、さらなる不足が予想されている。ま た、高速道路の橋では鋼鈑桁橋の劣化した RC 床版の抜本的な改善策としてプレキャストプ レストレストコンクリート床版(以下、PCaPC 床版)への取替えを行っているが、供用中の 橋梁における床版取替え現場では、利用者などへの影響を最小限に抑えるために工期短縮が 不可欠となっている。取替え時の構造をプレキャスト化することによって、工期短縮や品質 の向上は図れるものの、将来的な人手不足などを想定するとさらなる施工性の向上やより高 い耐久性を目指すことが求められる。

床版取替え時の構造上解決されるべき課題としては, PCaPC 床版の継手構造の施工性や床版重量の増加が挙げられ,これにより旧基準で作られている橋梁では活荷重の増加とともに 死荷重も増加してしまい,鋼桁が照査を満足しない場合がある。また,橋梁の中間支点部に おいては,壁高欄の目地付け根部と床版の接合部から床版へひび割れが延伸し漏水しやすい 構造となることなどが挙げられる。

材料の耐久性上解決すべき課題としては,高速道路の PCaPC 床版では,セメントを高炉 スラグ微粉末に置換し,耐久性の高い材料を使用しているが PCaPC 床版の製造工場や現場 打ちコンクリートを製造する工場の材料で長期間曝露実験をした実績が少ない。また,プレ キャスト製品にはエポキシ樹脂塗装鉄筋を使用しているが,製品の仮置き,保管時には長期 間紫外線へ曝されることにより塗装の劣化が生じる可能性が高い。

これらの課題を解決すべく、本研究では、鋼橋における PCaPC 床版の取替え技術に着目 し、継手構造の開発および実装、実橋梁の性能確認実験、中間支点部壁高欄付け根の実橋梁 での応力確認を実施した。さらに、使用した材料については、セメントの一部を高炉スラグ 微粉末に置換したコンクリートとエポキシ樹脂塗装鉄筋の曝露試験を実施した。

1.4 本論文の構成

本論文の構成を図-1.3に示す。

第1章「序論」では,研究背景を述べるとともに,RC 床版の取替え工事における現状を 整理し,現在の技術的課題を踏まえ,本研究の目的について述べた。

第2章「道路橋床版に関する既往の研究」では、床版取替え工事で用いられている継手構造に関する既往の研究,耐久性向上のためにコンクリートのセメント成分を高炉スラグ微粉 末に置換した事例などを示した。

第3章「エポキシ樹脂塗装した機械式定着・重ね継手工法の性能評価と実構造物への適用」 では、塩害地域で使用する PCaPC 床版の施工性の向上や死荷重を低減するための新たな継 手構造について実験を行い、実装時の施工性を確認した。

第4章「載荷実験を反映した非合成鈑桁橋の合理的な設計手法に関する検討」では、非合成構造であっても床版の剛性が主桁の挙動に影響を与えると言われていることから、床版取替え前後において車両の載荷試験によって実際の挙動を把握し、主桁の応力の照査方法について検討した。

第5章「壁高欄と床版の接合部におけるひび割れ抑制に関する検討」では、設計計算上、 構造部材として考慮されていない壁高欄において、壁高欄目地(スリット)基部から発生す るひび割れに着目し、床版部へ延伸するひび割れを低減する方法について検討した。

第6章「プレキャスト PC 床版に用いる材料の塩分浸透抑制および紫外線劣化抑制に関す る検討」では、曝露実績の少ないセメント一部を高炉スラグ微粉末に置換したコンクリート について、沖縄本島にて 11 年間の曝露試験を実施し、塩分の浸透抑制効果を確認した。ま た、プレキャスト部材に用いられるエポキシ樹脂塗装鉄筋が、屋外で約 3~6ヵ月間ストッ クされることを想定し、沖縄本島にて 9 か月間の曝露試験を実施し、遮光ネットの有無の違 いによる紫外線劣化抑制効果を確認した。 **第7章「結論」**において,一連の研究から得られた結果を総括すると同時に,今後に残さ れた課題について言及した。

- 7 -

【第1章 参考文献】

1) 国土交通省:令和2年度 国土交通白書, 第I部 第3章 第2節

2) 国土交通省:2020年 道路メンテナンス年報

第2章

道路橋床版に関する既往の研究

2.1 既往の研究成果

この章では、床版取替えに関わる既往の研究成果について調べた。2.2 で道路橋床版に関 する既往の研究、2.3 で高炉スラグ微粉末をセメント成分と置換したコンクリートに関する 既往の研究、2.4 でエポキシ樹脂塗装鉄筋の既往の研究成果を記述する。

2.2 道路橋床版に関する既往の研究

2.2.1 床版取替えの経緯と開発

東京オリンピックなどの開催に伴い昭和 30 年代に道路網が急速に整備され,鋼道路橋の RC 床版も急速施工によって建設された。昭和 40 年代になると,輪荷重による疲労が原因と 思われる床版の抜け落ちが見られるようになり,疲労による劣化が顕著化した。道路橋床版 の劣化に関する問題は,松井らや様々な研究機関により研究が進められてきた^{1)~4)}。道路橋 におけるコンクリート系床版は,橋梁部材の中で最も損傷を受けやすい部材であり,「車両 の大型化や繰り返し走行による疲労損傷」,「塩害地域などの環境条件による損傷」,「コ ンクリート打込み時の作業工程,除塩不足の海砂などの劣化因子を含む材料を用いた初期条 件による損傷」の影響を複合的に受けていることが明らかになってきた。

昭和39年の鋼道路橋示方書以前の規準で設計された床版は,主筋に対する配力筋の比率が 25%程度と少なかったことで,疲労による劣化が進行したとされる。このことを踏まえ,昭 和42年の示方書では,配力筋の比率を大幅に引き上げ70%以上とした。

昭和35年に供用開始された府内大橋は,昭和39年以前の示方書で設計されたことから,配 力筋が少なく疲労による床版劣化が進行していた。この傷んだ床版を取替えるため,九州工 業大学の渡辺らは,橋軸方向と橋軸直角方向の2方向に緊張力を導入したプレキャスト床版 (以下,2方向PCaPC床版とする。)の研究を行い,昭和61年に日本で初めてPCaPC床版を用 いた床版取替え工事を実施した⁵⁾。

一方,床版取替えに使われているループ状鉄筋継手構造(以下,RCループ継手とする。) については、日本道路公団(現在の東・中・西日本高速道路株式会社)によって、平成6年度 にプレキャストPC床版接合部の輪荷重移動載荷試験,平成7年度に破壊性状と終局耐力の確 認を目的とした定点載荷試験を実施しており,RCループ継手の耐力・耐久性が確認された。 それまでのPC床版は、2方向PC構造が主流であったが、平成10年に完成した東海大府高架橋 では、部分取替えが可能であることやコストの低減を積極的に図るために、橋軸方向の接合 方法としてRCループ継手を採用した⁶⁰。この結果を踏まえ、床版取替えにもRCループ継手を 有するプレキャスト床版が採用されるようになった。しかし、RCループ継手を用いると、鉄 筋の曲げ半径の制約の影響で床版厚が既設床版より大きくなり、重量増によって既設橋の耐 荷力に影響を与える懸念が出てきた。そこで、床版厚を薄くするために、各社が継手の開発 を行うようになった。本研究で対象とする鉄筋の先端を鋼管で圧着した継手構造などもその ーつとして開発された。

2.2.2 床版の劣化メカニズム

道路橋床版の維持管理マニュアル⁷によると疲労に起因したひび割れの進行形態は,ステ ップごとに図-2.1のようになることが示されている。

- ステップ1:主に乾燥収縮により,主桁(橋軸)直角方向に一方向ひび割れが数本程度発生 している段階
- ステップ2: 主桁作用により, 橋軸直角方向に曲げひび割れが進展するとともに, 橋軸方向 に床版の曲げによるひび割れも進展し始め, 格子状のひび割れ網が形成される 段階(外観上ひび割れ密度の増加は著しいが床版の連続性(二方向性) は失わ れていない。)
- ステップ3:ひび割れの網細化が進み、ひび割れの開閉やひび割れ面のすり磨きが始まる段階
- ステップ4:ひび割れのスリット化や角落ちが生じコンクリート断面の抵抗は期待できない 段階(床版の押抜きせん断耐力は急速に低下し始める。)
- ステップ5:床版断面内にひび割れが貫通して床版の連続性が失われ,貫通ひび割れで区切ら れたはり状部材として輪荷重に抵抗することになる段階(貫通ひび割れの間隔や コンクリート強度,配筋などが部材としての終局耐力に影響する。水の影響で疲 労が加速されるため雨水の浸透や鉄筋腐食などに配慮する必要がある。)

ステップ1

ステップ 2

ステップ 4

ステップ 5

図-2.1 疲労に起因したひび割れの進行形態⁷⁾

ステップ 3

一方,塩害に起因したコンクリートはく離の進行形態はステップごとに図-2.2 のようになる。

ステップ1:ひび割れ,施工時の初期欠陥による損傷発生

- ステップ2:交通荷重の影響によるひび割れの全断面貫通,水の浸透による床版下面での漏 水・白色の析出物の損傷発生
- ステップ3:常時の水供給による塩分などの材料劣化要因の影響による内部の鉄筋腐食,上 面の部分的な浮き・はく離,舗装上面の大きなひび割れ,錆汁を含む白色の析 出物の損傷発生
- ステップ4:材料劣化進行に伴う部分的なコンクリートはく離,腐食鉄筋の露出,舗装のポ ットホール,舗装上面の石灰分流出,床版上面の砂利化・滞水の損傷発生
- ステップ5:多頻度の舗装のポットホール,大きなコンクリート片のはく離などの床版耐久 性に影響する損傷の発生

図-2.2 塩害に起因したコンクリートはく離の進行形態⁷⁾

2.2.3 プレキャスト床版の接合方法

鋼道路橋の床版取替え工事では,供用中の道路を規制することから,耐久性のある構造物 を短期間で施工する必要がある。この場合,従来の場所打ち PC 床版に代わり PCaPC 床版を 採用する事例が多くを占めている。PCaPC 床版の採用により床版同士の接合部ができるが, 一般的には橋軸方向の接合部を部分取替えが可能なように RC 構造とし,橋軸直角方向を PC 構造としている。橋軸方向の RC 構造の継手を,通常の重ね継手により継手長を確保する場 合,鉄筋直径の 30 倍以上確保する必要があり,たとえば D19 の鉄筋を使用した場合は, 600mm 以上の間詰めが必要になり,場所打ち部が増えプレキャスト化のメリットが大幅に 低下してしまう。そこで,継手長を低減できるループ継手が床版取替えに採用⁸⁾されるよう になった。

PCaPC 床版の床版厚の設定は、荷重、疲労やかぶりによって決まるが、使用する継手によっては、継手自身の形状により床版厚が厚くなる。表-2.1には接合方法ごとの床版厚を示しているが、同一の環境条件で床版厚を設定した場合に、あご付きのループ継手の場合は床版 厚が 240mm 以上必要となり死荷重が増加してしまうことがわかっている ⁹。そこで、ルー プ継手よりも床版厚を薄くできる接合方法として、鉄筋の先端に鋼管を圧着した鉄筋(以下、 エンドバンド鉄筋)を継手構造としたエンドバンド継手を開発した ^{10)~12)}。

構造	概要図	特徴	床版厚目安
ケース1 あご付き ループ継手	間詰め部 PC鋼より 1515.2 0 0 0 0 0 0 0 0 0 0 0 0 0	 JIS化されており、新設橋で最も一般的に 使用され実績は多数あり ・型枠の設置が不要で、施工性に優れる ・RC構造であり、床版の部分取替えが可能 	240mm以上
ケース2 あごなし ループ継手	間詰め部 <u>PC鋼より線</u> 1515.2 <u>鉄筋 D13</u> D19 D19 使命のの鉄筋 D19 接合部の鉄筋 D19	 あご付に比べ床版厚の低減が可能 更新床版で実績が増えている 型枠の設置が必要 RC構造であり、床版の部分取替えが可能 	220mm以上
ケース3 機械式定着用 重ね継手	間詰め部 <u>播軸方向鉄筋</u> 上線D16 下線D19 1515.2 0 0 0 0 0 0 0 0 0 0 0 0 0	 ループ継手に比べ床版厚の低減が可能 更新床版で実績が増えている 架設や鉄筋配置が比較的容易 型枠の設置が必要 RC構造であり、床版の部分取替えが可能 	170mm以上
ケース4 モルタル目地 PC接合	間詰めモルタル PC鋼より線 1521.8 シース φ 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 ・床版厚を薄くできる ・鉄筋が連続して配置されていないため、 接合部の限界値はPC構造として引張応力 発生限界以下とする ・型枠の設置が不要 ・緊張、グラウト作業が必要 ・PC鋼材によるプレストレスを導入してい るため床版の部分取替えができない 	160mm以上

表-2.1 主な橋軸方向の床版相互の接合方法の特徴と床版厚の目安⁹⁾

2.2.4 エンドバンド継手の疲労耐久性の確認

エンドバンド継手を有する PCaPC 床版は, RC 床版に比べて疲労耐久性が優れていること を輪荷重走行疲労試験で確認している¹²⁾。一方,ループ継手を有する PCaPC 床版とは,実 施している輪荷重走行疲労試験の条件が異なる¹³⁾ことから,疲労耐久性の相対的な比較がで きない。そこで,エンドバンド継手の採用にあたっては,ループ継手を新東名自動車道の PCaPC 床版に適用するために実施された輪荷重走行疲労試験と同一条件での試験を実施し ¹⁴⁾,その疲労耐久性を比較した。輪荷重走行疲労試験の実施状況を,**写真-2.1**に示す。

疲労試験での荷重ステップと走行回数を,図-2.3 に示す。各ステップの荷重は,STEP-1 は設計荷重車両を想定した荷重,STEP-2 は橋軸方向の設計曲げモーメントと等価となる荷 重,STEP-3 は橋軸直角方向の設計曲げモーメントと等価となる荷重である。さらに,接合部 での貫通ひび割れの発生を確認する目的で,STEP-2 および STEP-3 の最終 4 万回では,水は り状態で試験を実施した。

写真-2.1 輪荷重走行疲労試験¹⁴⁾

図-2.3 輪荷重走行疲労試験の荷重ステップ¹⁴⁾

試験結果の一例として、図−2.4 に床版の活荷重たわみの経時変化を示す¹⁴)。エンドバン ド継手およびループ継手の活荷重たわみは、各ステップにおいて、ほぼ同等であった。また、 ひび割れ幅も最大で 0.06mm と小さく、貫通ひび割れも発生していない。これらより、エン ドバンド継手は、ループ継手と同等の疲労耐久性を有していると評価した。

図-2.4 RC 接合方法と活荷重たわみ変化¹⁴⁾

2.2.5 床版取替えの施工方法について

劣化した床版の床版取替えの施工手順を写真-2.2に示す。一般的に,床版取替え工事は下 記の手順で行われる。供用中の道路を規制し,舗装を撤去,床版切断,撤去,床版取替え, 間詰め施工,壁高欄施工,舗装の敷設,規制を解放するまでが1連の工事である¹⁵⁾。工期短 縮を図るために PCaPC 床版を採用しており,クレーンの作業半径から1日あたり約4,5枚 /機を架設し,間詰め部に接合部を設けることで一体化を図る構造としている。

写真-2.2 床版取替えの施工手順

2.3 早強ポルトランドセメントの一部を高炉スラグ微粉末に置換したコンクリート

2.3.1 高炉スラグ微粉末の使用背景

国連サミットで採択された SDGs(持続可能な開発目標)では、「気候変動に具体的な対 策を」という目標が掲げられており、地球温暖化を招く二酸化炭素の排出量を抑えることに より、世界各地の気候変動を防止しようとしている。コンクリートの構成材料であるセメン トの製造過程では、多量の産業副産物や産業廃棄物を原料や熱エネルギー源に有効利用して いるが、コンクリート関連部門が二酸化炭素排出量に与える影響は大きい。たとえば、全世 界の二酸化炭素排出量の約 5%は、セメントの製造に由来しており、国内における PC 橋の 上部工の試算例では、建設工事で発生する二酸化炭素排出量の約 40%がコンクリート関連部 門に起因することが¹⁶⁾報告されている。一方、高炉スラグ微粉末は、副産された水砕スラグ を乾燥・粉砕して製造するため、セメントのような焼成工程がなく、燃焼時に発生する二酸 化炭素が削減できることから、高炉スラグ微粉末をセメントと置換することで気候変動への 影響を抑えることができると期待されている。

2.3.2 高炉スラグ微粉末を用いたコンクリートの変遷

高炉セメントや高炉スラグ微粉末4000を用いたコンクリートは, 初期強度の発現が遅れる 特性を有しており、材齢初期に緊張作業が必要であるPC構造物のようなコンクリートへの 適用は困難であった。しかし、比表面積が大きい高炉スラグ微粉末を用いれば初期強度の向 上を図ることができる。1990年には、鹿児島本線のPCスラブ桁¹⁷⁾で高炉スラグ微粉末6000を 用いたコンクリートがPC上部工へ初適用され,1995年3月には,高炉スラグ微粉末がJIS化さ れ,表-2.2のように比表面積ごとに分けられた¹⁸⁾。これを機に,従来から高耐久であるPC構 造物においても更なる耐久性向上を達成するため、高炉スラグ微粉末を用いたコンクリート をPC構造物へ適用させるための検討が進んだ。その後,1998年に日本材料学会の委託研究の 成果報告書「高炉スラグ微粉末を使用した高耐久性プレストレストコンクリート構造物の開 発」¹⁹⁾が発刊され、沖縄の屋嘉比橋²⁰⁾、熊本の俵山4号橋²¹⁾などでの施工実績を踏まえ、実構 造物への適用が広まった。さらに、早強ポルトランドセメントの50%を高炉スラグ微粉末に 置換する組合せが実用化されており, とくに高速道路橋では多くの使用実績がある。 PC構造 物への高炉スラグ微粉末の使用による,耐久性の向上や二酸化炭素の排出量の低減への期待 がますます高まっていることから、2016年1月に「低炭素型セメント結合材の利用技術に関 する共同研究報告書(II)-混和材を用いたプレストレストコンクリート橋の設計・施エマニュ アル(案)-」¹⁶が発刊され,これまでの実績や最新の知見が整理された。施工実績について

は、2021年3現在時点で、橋梁が359件(海外1件),橋梁以外:43件となっており、各地方の施工実績は図-2.5のとおりとなっている²²⁾。

	種類	品質規格							
品質		高炉スラグ 微粉末3000	高炉スラグ 微粉末4000	高炉スラグ 微粉末6000	高炉スラグ 微粉末8000				
密度g/cm ³ 比表面積cm ² /g		2.80以上	2.80以上	2.80以上	2.80以上				
		2750以上 3500未満	2750以上 3500以上 5000以 3500未満 5000未満 7000未		7000以上 10000未満				
	材齢7日	_	55以上	75以上	95以上				
活性度 指数%	材齢28日	60以上	75以上	95以上	105以上				
	材齢91日	80以上	95以上		—				
フロー	一值比	95以上	95以上	90以上	85以上				
酸化マグネシウム%		10.0以下	10.0以下	10.0以下	10.0以下				
三酸化硫黄%		4.0以下	4.0以下	4.0以下	4.0以下				
強熱	咸量%	3.0以下	3.0以下	3.0以下	3.0以下				
塩化物	イオン%	0.02以下	0.02以下	0.02以下	0.02以下				

表-2.2 高炉スラグ微粉末の JIS 品質規格 (JIS A 6206)¹⁸⁾

図-2.5 高炉スラグ微粉末を用いた PC 構造物の利用実績²²⁾

※グラフは、文献 22)を著者により再編

2.3.3 早強ポルトランドセメントの一部を高炉スラグ微粉末に置換したコンクリートの性 質

高炉スラグ微粉末を用いたコンクリートの設計・施工指針²³⁾に記載された,早強ポルトランドセメントの一部を高炉スラグ微粉末に置換したコンクリートの性質を以下に記述する。なお,試験は,設計基準強度を30~80N/mm²で行っている。

(1) コンクリートの圧縮強度,割裂引張強度およびヤング係数

早強ポルトランドセメントの一部を高炉スラグ微粉末に置換したコンクリートの引張強 度およびヤング係数と圧縮強度との関係は、水結合材比 40%の早強ポルトランドセメントの 配合(H40),水結合材比 35%の早強ポルトランドセメントの 30%を高炉スラグ微粉末 4000 に置換した配合(H35B430),水結合材比 35%の早強ポルトランドセメントの 50%を高炉ス ラグ微粉末 6000 に置換した配合(H35B650)の3ケースにより確認されており、早強ポル トランドセメントの一部を高炉スラグ微粉末に置換したコンクリートの引張強度やヤング 係数と圧縮強度との関係は、早強ポルトランドセメントを使用したコンクリートと同様の傾 向であることや、コンクリート標準示方書に示される式で算出した結果と概ね一致すること が示されている¹⁶。

強度発現については、水結合材比40%の早強ポルトランドセメントのみの配合(H40)、水 結合材比40%の早強ポルトランドセメントの30%を高炉スラグ微粉末4000に置換した配合 (H40B430)、水結合材比40%の早強ポルトランドセメントの50%を高炉スラグ微粉末6000に 置換した配合(H40B650)の3ケースにより確認されている。早強ポルトランドセメントの一 部を高炉スラグ微粉末に置換したセメントは、早強ポルトランドセメントと比較して、強度 発現が遅く養生の影響を受けやすい、材齢1年においても圧縮強度が増加することが示され ている。また、すべての配合で材齢28日の圧縮強度に対する比率が50%以上となる湿潤養生 期間は3日、早強ポルトランドセメントの一部を高炉スラグ微粉末に置換したセメントで材 齢28日の圧縮強度に対する比率が70%以上となる湿潤養生期間は7日であることが示されて いる¹⁶。

(2) 中性化に対する抵抗性(曝露試験)

圧縮強度発現で使用された水結合材比40%のH40, H40B430, H40B650のコンクリート試験 体について,中性化深さを確認するため,つくば,新潟,沖縄にて20ヵ月間の曝露試験が実 施された。材齢28日まで水中養生,材齢44~69日まで気中養生,その後,屋外曝露している。 早強ポルトランドセメントの一部を高炉スラグ微粉末に置換したコンクリートの中性化深 さは早強ポルトランドセメントを使用したコンクリートより大きくなったが,中性化が材齢 の平方根に比例して進行すると仮定して求めた100年後の中性化深さの最大値は2.5mm以下 となることが示されている¹⁰。

(3) 塩化物イオン浸透に対する抵抗性

H40, H40B430, H40B650のコンクリート試験体を作製し,新潟と沖縄の沿岸部で20ヵ月間 の曝露試験が実施された。このときの塩化物イオンを測定し算出した見掛けの拡散係数を図 -2.6(a)に示す。早強ポルトランドセメントと高炉セメントを50%置換したコンクリートの 見掛けの拡散係数は早強ポルトランドセメントを使用したコンクリートより小さくなるこ とが示された。また,水結合材40%とした早強ポルトランドセメントの一部を高炉スラグ微 粉末に置換したコンクリートの濃度10%の塩化ナトリウム水溶液に20ヵ月浸せきした見掛 けの拡散係数を図-2.6(b)に示す。曝露試験と同様に早強ポルトランドセメントの一部を高 炉スラグ微粉末に置換したコンクリートの塩化物イオンに対する抵抗性が向上しているこ とが示されている¹⁰。

(4) アルカリシリカ反応に対する抵抗性

早強ポルトランドセメントの 50%を高炉スラグ微粉末 6000 に置換し, NaCl を等価 Na₂O 量で 10kg/m³を添加した反応性骨材を使用したプレテンション桁 (幅 150mm, 高さ 300mm,

桁長 3000mm)を用いて,屋外曝露試験を行い,膨張量や桁のそり量などの測定を行った結果 が報告されている。早強ポルトランドセメントの一部を高炉スラグ微粉末 6000 に置換した プレテンション桁の曝露期間約 8 年後の膨張率は早強ポルトランドセメントを使用したコ ンクリートと比較して膨張率を 1/3-1/2 程度に抑制しており,高炉スラグ微粉末をセメント と置換することでアルカリシリカ反応を抑制する効果が示されている。

2.4 エポキシ樹脂塗装鉄筋に関する既往の研究および規準

2.4.1 塩害地域でのエポキシ樹脂塗装鉄筋の使用実績と示方書の改定

エポキシ樹脂塗装鉄筋は, 飛来塩分の影響を受ける地域や凍結防止剤が使用される橋梁の 床版などの劣化対策として用いられる。国内のエポキシ樹脂塗装鉄筋は, 1978 年から開発が 進められ, 3 年後の 1981 年に生産が開始された。1980 年代の半ばには, 塩害による鉄筋腐 食が問題になったこともあり, 1990 年頃には 1000t 程度だった生産量は 2016 年に 10 倍程度 まで上昇した。日本道路協会は, 1984 年に通達された「道路橋の塩害対策指針(案)」²⁴⁾と国 土交通省が実施した塩害対策実態調査の結果に基づき, 平成 14 年の道路橋示方書の改定で コンクリート橋編に耐久性の章を設けた²⁵⁾。ここでは, 目標とする耐用年数を 100 年と設定 し, コンクリート道路橋の塩害対策に関する規定として塩害の影響が激しい地域を S 区分と して設けた。S 区分の地域は, 沖縄や北陸から北海道の日本海側の海岸から 100m の箇所な どでかぶりに加えて塗装鉄筋の使用もしくはコンクリート塗装の使用が明記された。

2.4.2 エポキシ樹脂塗装鉄筋に求められる品質

エポキシ樹脂塗装鉄筋のエポキシ樹脂系塗料は,鉄素地との密着性に優れ,比較的薄膜で 耐食性が確保できるが,新規に作製される鉄筋防食の性能は,塗装の膜厚,損傷や品質によ って大きく左右される。エポキシ樹脂塗装鉄筋を用いる鉄筋コンクリートの設計施工指針²⁶⁾ では,エポキシ樹脂塗装鉄筋の品質規格や試験方法について土木学会規準に適合するものを まとめている。

エポキシ樹脂塗装鉄筋は、土木学会規準JSCE-E 102「エポキシ樹脂塗装鉄筋の品質規格」 に適合したものでなければならないとあり、その中には、JSCE-E 103「エポキシ樹脂塗装鉄 筋用棒鋼の品質規格」、JSCE-E 104「エポキシ樹脂塗装鉄筋用塗料の品質規格」、その他試 験方法などが記されている。JSCE-E 102「エポキシ樹脂塗装鉄筋の品質規格」には、塗膜の 外観、塗膜厚、ピンホール、耐衝撃性、曲げ加工性、コンクリートとの付着強度、耐食性、 塗膜硬化性の各項目が規定されている。

以下に,2003年版のJSCE-E 102「エポキシ樹脂塗装鉄筋の品質規格」での主な変更点を記 す。

塗膜厚は腐食因子を遮断することやピンホール低減のために大きくするほうが良いが,大 きすぎると、コンクリートとの付着強度や曲げ加工性が低下するため、1986年に制定された 品質規格では、技術的な観点から塗膜厚を200±50µmと定めていた。それから、技術が向上 したことから2003年版の同品質規格では、220±40µmに変更された。これにより、ばらつき が抑えられ腐食因子の抑制を図るとともに塗膜厚の増加による他の性能への影響が最小限 になるよう考慮された。

耐衝撃性は,施工時の衝撃による塗膜の損傷部を最小限にとどめることによって,より確 実な補修が実施できることを考慮し,衝撃によって孔の開かないことが規定されていたが, 実施工を反映し,撃芯が直接あたった部分の周囲で塗膜の破砕,割れ,はく離および浮きな どが生じないことが規定された。

曲げ加工性は、無塗装鉄筋と同じ曲げ形状の加工を行っても、塗膜に損傷を生じさせない ことを原則としており、海外規格より厳しい規定である。2003年版のJSCE-E 102「エポキシ 樹脂塗装鉄筋の品質規格」では、JIS G 3112「鉄筋コンクリート用棒鋼」の改訂にあわせて 評価の対象となる曲げ内半径をさらに小さくし、塗膜自体の追従性が問題ないことを確認す ることとされた。

コンクリートとの付着強度は、塗膜が鋼材に比べて柔軟で表面が滑らかであることから、 1986年版の品質規格では、無塗装鉄筋とコンクリートの付着強度の80%以上を確保すること が規定されていた。それから塗装技術の向上により品質が向上したことにより、2003年版の 品質規格では、無塗装鉄筋の85%以上を確保することと規定された。

耐食性は,1986年版で規定されていたコンクリート中の塗装鉄筋の耐食性を評価する方法 から,塗装鉄筋を直接塩水噴霧環境に長時間さらす方法に変更し,より厳しい条件で耐食性 の評価方法が規定された。

2.4.3 エポキシ樹脂塗装鉄筋の耐久性

近年、工期短縮や品質向上のためにコンクリート製のプレキャスト部材を採用する工事が 増え、長期間保管する事例が見られる。現場では、このプレキャスト部材を接合する必要が ありRCの接合構造となっている場合が多いが、とくに塩害のおそれのある部材については、 腐食対策としてエポキシ樹脂塗装鉄筋を用いている。

エポキシ樹脂は,紫外線によって劣化しやすく,エポキシ樹脂塗装鉄筋を長期にわたり直 射日光(紫外線)のあたる所に置くことは避けなければならない。エポキシ樹脂塗装鉄筋が 長期間紫外線を受けると,色褪せや表面が簡単にこすり取れるような粉末を形成する現象

(以下,チョーキング)が起こる。さらに,曲げ加工性や耐食性も低下することが考えられ, 品質を満足できなくなるおそれがある。したがって,直射日光を受けることのできる期間を 把握することが必要になる。

ここでは,直射日光の影響を受けたエポキシ樹脂塗装鉄筋の耐久性に関する既往の研究に

ついて以下に整理した。

(1) エポキシ樹脂塗装鉄筋の耐候性試験報告書²⁷⁾によると、大阪で行った冬期1ヵ月間のエ ポキシ樹脂塗装鉄筋の曝露試験では、色褪せやチョーキングは認められていない。また、曲 げ加工による塗膜の劣化や270時間の塩水噴霧による異常も認められていない。結果を踏ま えると、1ヵ月程度の直射日光を受ける曝露環境であれば、劣化のおそれはないとしている。 この実験は、冬季の紫外線の弱い時期に行っており、夏場の紫外線の厳しい時期に行うと、 劣化が進行するおそれがある。

(2) 関東で実施した2種類のエポキシ樹脂塗装鉄筋の曝露後の曲げ試験結果²⁸⁾によると,A 種塗料では曝露期間100日で変化がなく,B種の塗料では,曝露期間50日で曲げ加工性に影響 が出始め,100日で塗膜の割れが見られた。また,付着試験結果では,塗料Bの場合には曝露 50日で平均付着強度が約17%低下していたとしている。

(3) 国産塗料6種類,外国産塗料1種類を塗布したエポキシ樹脂塗装鉄筋を用いて最長1ヵ年 東京で実施した曝露試験では²⁹⁾,塗膜厚,ピンホール,電気抵抗については1年経過後も変化 は認められなかった。衝撃強度はわずかではあるが,曝露期間が長くなるほど減少する。曲 げ加工によるクラック発生率は,曝露期間3ヵ月までは急激な変化は見られないものの,6ヵ 月では発生率が増大して使用に耐えるものが減少し,1ヵ年ではすべての鉄筋でクラック発 生率100%になったとしている。

上記の結果を踏まえ,耐候性を確保するために直射日光に曝露できる期間を3ヵ月程度と している。
【第2章 参考文献】

- 1) 松井繁之:道路橋床版 設計・施工と維持管理,森北出版,2007.
- 2) 松井繁之:橋梁の寿命予測,安全工学, Vol.30, No.6, pp.432-440, 1991
- 3) 松井繁之:移動荷重を受ける道路橋 RC 床版の疲労強度と水の影響について、コンクリート工学年次論文報告集, Vol.9, No.2, pp.627-632, 1987
- 4) 福島誉央,甲元克明,青木康素:鋼板接着 RC 床版における損傷事例,第8回道路橋床 版 シンポジウム講演論文集,2014.10
- 5) 倉迫靖夫,村上辰己,花田久,福本泰徳:府内大橋床版打替え工法の設計と施工,プレストレスト・コンクリート Vol.29, No.4, pp.36-44, 1987
- 6) 松井繁之,角昌隆,向井盛夫,北山耕造:RCループ継手を有するプレキャストPC床版の移動載荷試験,第6回プレストレストコンクリートの発展に関するシンポジウム論文集,pp.149-154,1996.10
- 7) 土木学会:道路橋床版の維持管理マニュアル 2020, 2020.10
- 8) プレストレスト・コンクリート建設業協会: PC 床板設計・施工マニュアル(案), pp.26-30, 1999.5
- 9) プレストレストコンクリート工学会: プレキャスト PC 床版による道路橋更新設計施工要 領, p.52, 平成 30 年 3 月
- 10)阿部浩幸, 原健悟, 澤田浩昭, 中村雅之: プレキャスト PC 床版の新しい RC 接合構造に 関する研究, コンクリート工学年次論文集, Vol.29, No.3, pp.493-498, 2007.7
- 11)阿部浩幸,澤田浩昭,大谷悟司,原健悟:新しい RC 接合構造を用いたプレキャスト PC 床版に関する研究,プレストレストコンクリート, Vol.50, No.1, pp.45-53, 2008.1
- 12)原健悟,福永靖雄,今村壮宏,三浦泰博:エンドバンド継手を有するプレキャストPC床 版の輪荷重走行疲労試験,第19回プレストレストコンクリートの発展に関するシンポジ ウム論文集,pp.61-64,2010.10
- 13)松井繁之,角昌隆,向井盛夫,北山耕造: RC ループ継手を有するプレキャスト PC 床版の移動載荷試験,第6回プレストレストコンクリートの発展に関するシンポジウム論文集,pp.149-154, 1996.10
- 14)原健悟,福永康雄,今村壮宏,二井谷教治:RCエンドバンド継手を用いたプレキャスト PC 床版の輪荷重走向疲労試験,第七回道路橋床版シンポジウム論文報告集,pp.201-206, 2012.6

- 15)Kenji.M, Taichirou.N, Hideo.W, Takahisa.I and Meguru.T : S lab Replacement at Igei Viaduct in the Okinawa Expressway, The 12th Japan-Korea Joint Symposium on Steel Bridges , 22-24 August, 2013
- 16)土木研究所,プレストレスト・コンクリート建設業協会:低炭素型セメント結合材の利用 技術に関する共同研究報告書(II)-低炭素型セメント結合材を用いたコンクリート構造物 の設計・施工ガイドライン(案)-,共同研究報告書第472号,2016.1
- 17)中村英佑,古賀裕久,渡辺博志:低炭素型セメントを用いたコンクリート構造物の設計施 エガイドライン,コンクリート工学, Vol.54, pp.993-997, 2016.10
- 18)日本産業規格: JIS A 6206 コンクリート用高炉スラグ微粉末
- 19)日本材料学会:高炉スラグ微粉末を使用した高耐久性プレストレストコンクリート構造物の開発,1998.3
- 20)上津敏,田中和幸,豊福俊泰:塩害に対応した高耐久性PC構造物の建設一屋嘉比橋上部 工工事一,コンクリート工学,vol.37,No.3,pp.20-23,1999.3
- 21)石田裕一,江崎守,前田悦孝,坂本賢次,松下博通:高炉スラグ微粉末を用いた高耐久PC 橋の設計・施工-熊本高森線俵山4号橋-,プレストレストコンクリート,Vol.42, No.3, pp.45-
 - 51, 2000.5
- 22)BSPC研究会ホームページ:http://www.bspc-study.coni/works.html(2021年12月確認)
- 23) 土木学会:高炉スラグ微粉末を用いたコンクリートの設計・施工指針,コンクリートライ ブラリー151, 2018.9
- 24)日本道路協会:道路橋の塩害対策指針(案),1984
- 25)日本道路協会:道路橋示方書・同解説Ⅲコンクリート橋編, 2002
- 26)土木学会:エポキシ樹脂塗装鉄筋を用いる鉄筋コンクリートの設計施工指針[改訂版],コ ンクリートライブラリー112, 2003.11
- 27)安治川鉄工建設(株):エポキシ樹脂塗装鉄筋の耐候性試験結果報告書, 1985.4
- 28)伊藤利治:エポキシ樹脂塗装鉄筋の耐候性に関する一実験,昭和 59 年度科学研究費研究 成果報告書(エポキシ樹脂塗装鉄筋に関する研究),1985.3
- 29)魚本健人, 西村次男: エポキシ樹脂塗装鉄筋の耐候性に関する基礎的実験, 土木学会第42 回学術講演会, pp.410-411, 1987.9

第3章

エポキシ樹脂塗装した 機械式定着・重ね継手工法の 性能評価と実構造物への適用

3.1 はじめに

高度経済成長期に建設された橋はすでに供用後40年以上経過しており,経年劣化に加え て、大型車交通の増加,建設当初の内在塩分,海岸部での飛来塩分,凍結防止剤の散布,ア ルカリシリカ反応などの要因により、とくに鋼橋のRC床版の劣化が深刻な問題となってい る。劣化したRC床版に対しては、劣化程度や供用状況、LCCなどを考慮して、床版増厚や 鋼板・炭素繊維接着による補強、プレキャスト床版を用いた取替えなどの対策が実施されて いる。このうち、床版取替えにPCaPC床版を用いる場合には、その接合方法としてループ継 手が一般的に採用されている¹⁾。しかしながら、ループ継手を用いた接合方法は、ループ鉄 筋の曲げ半径の制約から既設床版に比べて床版厚が厚くなり、①鋼桁や支承などへの作用力 が大きくなる、②取替え区間の前後との路面の段差が大きくなるなどの課題がある。さらに、 ループ継手では、周辺環境への配慮や作業空間などから、継手部の施工が困難となる場合も ある。

そこで, PCaPC 床版の床版厚をより薄くできる接合方法としてエンドバンド継手を開発した^{2)~4)}。エンドバンド継手は,鉄筋の先端に鋼管を圧着した鉄筋(以下,エンドバンド鉄筋) を継手構造としたものである。本章では,塩害地域での使用を目的に開発したエポキシ樹脂 塗料を静電粉体塗装したエンドバンド継手(写真-3.1)の性能確認を行った⁵⁾。さらに,エ ポキシ樹脂塗装のエンドバンド鉄筋を用いた RC 床版取替え工事の実施工での確認として, 沖縄自動車道の伊芸高架橋のにて継手の施工性を確認した。

写真-3.1 エンドバンド継手

3.2 エポキシ樹脂塗装したエンドバンド継手の性能確認

3.2.1 定着性能試験

(1) 試験概要

エポキシ樹脂塗装したエンドバンド継手の必要重ね継手長を確認するため,定着機構に関 する引抜き試験を実施した。

供試体は、図-3.1 に示すように正方形断面を有する直方体のコンクリートにエポキシ樹 脂塗装したエンドバンド鉄筋を埋め込んだものを用いた。供試体の諸元を、表-3.1 に示す。 ここで、コンクリートの目標圧縮強度は、PCaPC 床版の間詰め部に用いられるコンクリート 強度に合わせて、50N/mm²とした。鉄筋は、PCaPC 床版の橋軸方向鉄筋として一般的に用い られる D19 と、非合成桁においても中間支点付近の補強で使用される可能性がある D22 を 対象とし、材質は SD345 とした。また、供試体のかぶりは 48mm とし、埋込み長は鉄筋径の 約 8 倍とした。供試体は、定着機構を把握するためのひずみゲージを貼り付けた「鉄筋付着 あり」と、鋼管部の支圧耐力を把握するために鉄筋の付着を全長でなくした「鉄筋付着なし」 の 2 種類とし、鉄筋径 D19 および D22 に対して各 3 体作製した。

試験は,JSCE-G 503-2010「引抜き試験による鉄筋とコンクリートとの付着強度試験方法 (案)」を参考に行った。載荷方法は、同規準に従って行い、コンクリートが破壊するか、ま たは、鉄筋の規格引張荷重に達するまで載荷を行った。

(単位:mm)

図-3.1 定着性能試験供試体

	コンクリート	コンクリート 試験時 強度 (N/mm ²)	断面	寸法 (mm)		
鉄筋径 φ	目標 強度 (N/mm ²)			鋼管径 	鋼管長 b	鉄筋長 c
D19	50.0	46.1	工士形	29.0	40.0	150.0
D22	30.0	40.1	正力形	34.5	50.0	180.0

表-3.1 定着性能試験供試体の諸元

(2) 試験結果

試験時のコンクリートの圧縮強度は 46.1N/mm²であり,目標値に近い値であった。図-3.2 は,鉄筋径 D19 の供試体における鉄筋応カーすべり量関係である。ここで,鉄筋応力は,載 荷荷重を鉄筋の公称断面積で除した値である。「鉄筋付着あり」の供試体では,規格降伏強 度である 345N/mm²を超えてからすべりが発生し,鉄筋の規格引張強度である 490N/mm²に 近い耐力を示し,脆性的に破壊した。一方,「鉄筋付着なし」の供試体では,鉄筋の規格降 伏強度に達する前にすべりが生じ始め,すべり量が 0.5mm を超えて破壊に至った。最大荷重 は,付着のある供試体の 6 割程度であった。図-3.2 に示した「鉄筋付着あり」の供試体の鉄 筋応カーひずみ関係を,図-3.3 に示す。ここで,測点 S1~S3 は,図-3.1 に示すように付着 区間の 3 等分点である。定着力の分担は,鉄筋の引張端から,徐々に鋼管部の方向に進行し ている。

図-3.3 鉄筋応カー鉄筋ひずみ関係(D19)

(3) 必要重ね継手長の検討

定着性能試験をもとに, エポキシ樹脂塗装したエンドバンド継手の必要重ね継手長を検討 する。図-3.4は, 鉄筋の各応力段階における, 定着力の分担割合を示したものである。各ひ ずみ測点間の付着力は式(3.1)で算出し, 引抜き力の合計から鉄筋の付着力の合計を引いた値 を鋼管による支圧定着力であるとした。また, 鉄筋ひずみが降伏ひずみを超えた場合は, 付 着力は増加しないものと仮定した。

$$\Delta P = \Delta \varepsilon_s \cdot E_s \cdot A_s \tag{3.1}$$

ここに, Δ*P*: 各ひずみ測点間の付着力(kN),

Δε_s: 各ひずみ測点間のひずみ差,

*E*_s:鉄筋の弾性係数(kN/mm²),

 A_s :鉄筋の断面積(mm^2)である。

この結果から荷重が小さいときは、鉄筋の付着力だけで定着されており、荷重が増加する にしたがって、徐々に鋼管の支圧定着部に荷重の一部が負担されていくことがわかる。

次に,定着性能試験の結果から,エポキシ樹脂塗装したエンドバンド継手に必要な重ね継 手長を検討する。各鉄筋径に対する破壊耐力と,必要重ね継手長の算定結果を,表-3.2に示 す。

図 3.4 付着力および支圧力の荷重分担

鉄筋径 φ	破壊耐力 (kN)		鉄筋規格	付着力	必要
	付着あり <i>P</i> b	付着なし P_n	降仅何里 P_y (kN)	⑦ 担何 里 $P_y - P_n$ (kN)	重ね継手長*
D19	137.3	81.7	98.8	17.2	5.9 φ
D22	177.6	114.8	133.5	18.7	5.8 φ

表-3.2 必要重ね継手長

※鋼管部も含む長さ

ここで,破壊耐力は,3供試体の平均値である。必要重ね継手長とは,鉄筋の規格降伏荷 重を満足する定着力を得るために必要となる継手長であり,ここでは鋼管部も含む長さとす る。算定にあたっては,エンドバンド継手の定着力は,鉄筋の付着力と鋼管の支圧力の複合 力であり,それぞれの力は,重ね合わせが成り立つと仮定した。まず,鉄筋の規格降伏荷重 に対して,付着のない供試体の破壊耐力を差し引いた荷重が,鉄筋の付着力の分担であると する。

次に、この付着力分担荷重に対する鉄筋応力を用いて、定着長 *la*を土木学会の基本定着長 算定式に準拠した式(3.2)により算定する^{7),8)}。この定着長 *la*に鋼管長(D19:40mm, D22: 50mm)を加えたものを必要重ね継手長とする。なお、支圧力の分担は試験での平均値を用 いているが、横方向鉄筋による補強のないコンクリートに対する試験結果であることから、 安全係数は考慮しないこととした。

$$l_d = \alpha \frac{f_s}{4f_{bod}} \phi \tag{3.2}$$

$$k_c = \frac{c}{\phi} + \frac{15A_t}{s\phi} \tag{3.3}$$

$$f_{bod} = 0.23 f_{ck}^{\prime 2/3} / \gamma_c \tag{3.4}$$

ここに, φ:鉄筋径(mm),

f_s:付着力分担荷重に対する鉄筋応力(N/mm²),

fbod: エポキシ樹脂塗装鉄筋とコンクリートとの付着強度(≦3.5N/mm²),

 $\alpha = 1.0(k_c \leq 1.0)$

 $=0.9(1.0 \le k_c \le 1.5)$

 $=0.8(1.5 \le k_c \le 2.0)$

 $=0.7(2.0 \le k_c \le 2.5)$

 $=0.6(2.5 < k_c)$ であり,

 $c: 鉄筋の下側のかぶりの値と定着する鉄筋のあきの半分の値のうち小さい方(mm), <math>A_t: 仮定される割裂破断面に垂直な横方向鉄筋の断面積(mm²),$

s: 横方向鉄筋の中心間隔(mm),

f'ck: コンクリートの圧縮強度(N/mm²),

yc: 材料係数(=1.3)である。

非塗装鉄筋を用いたエンドバンド継手の必要重ね継手長は,鉄筋径 D19 で 2.1 ¢, D22 で 4.5 ¢ であったが ^{2),3)}, エポキシ樹脂塗装したエンドバンド継手の必要重ね継手長は,エポキ シ樹脂塗装により付着力が低下することから,鉄筋径 D19 で 5.9 ¢, D22 で 5.8 ¢ となった。

ー方, エンドバンド継手を PCaPC 床版の RC 接合に用いる場合には, 引張荷重に対する必要継手長を満足していても, 曲げモーメントに対しては鉄筋が床版の曲げ変形に追従しきれずに割裂破壊が生じることから, 重ね継手長は割裂破壊が生じない 15φ としている ²⁾。そこで, エポキシ樹脂塗装したエンドバンド継手に対しても, 必要継手長は 15φ として床版の曲げモーメントに対する性能を確認することとした。

3.2.2 曲げモーメントに対する性能試験

(1) 試験概要

エポキシ樹脂塗装したエンドバンド継手を有する供試体と非塗装鉄筋の重ね継手を有す る供試体の高サイクル繰返し性能試験を実施し,疲労耐久性を検証するとともに,高サイク ル性能試験後の試験体を用いて静的曲げ性能試験を実施し,静的耐力を検証した。

供試体の概要および載荷方法を図-3.5 に,諸元を表-3.3 に示す。ここで,試験は,床版の橋軸方向の正曲げモーメントを対象としている。供試体は,D19 および D22 についてそれ ぞれ作製し,コンクリートの目標圧縮強度は 50N/mm² とした。接合部の詳細を,図-3.6 に 示す。橋軸方向の配筋は,D19(上縁側鉄筋は D16)および D22の軸方向筋を 150mm 間隔 で配置した。接合部の継手長は,非塗装鉄筋の重ね継手は 30 々とし,エポキシ樹脂塗装し たエンドバンド継手は,15 々とした。

図-3.5 曲げ試験供試体および載荷概要

表-3.3 曲げ試験供試体の諸元

鉄筋径 ∮	コンクリート 目標 強度 (N/mm ²)	コンクリート		_	寸法 (mm)	
		試験時 強度** (N/mm ²)	床版厚 H	床版幅 B	支間長 L1	L2	L3
D19	50.0	54.8	180	900	2300	900	700
D22			190	900	2590	990	800

※試験時の接合部コンクリートの圧縮強度

(a) エンドバンド継手 (エポキシ樹脂塗装, D19)

(b) エンドバンド継手(エポキシ樹脂塗装, D22)

(c) 重ね継手(非塗装, D19)

(d) 重ね継手(非塗装, D22)図-3.6 曲げ試験供試体の接合部詳細図

(2) 高サイクル繰返し性能試験

疲労性能の確認のため、定点の繰返し載荷試験(5Hz,200万回)を実施した。疲労荷重の 上限は、引張縁の鉄筋応力が許容応力である140N/mm²となる荷重とした⁹。また、応力振 幅は100N/mm²とし、鉄筋応力が40N/mm²となる荷重を下限荷重とした。

図-3.7 は、高サイクル繰返し載荷における供試体の鉄筋ひずみ-繰返し回数の関係であ る。エポキシ樹脂塗装したエンドバンド継手を有する供試体の鉄筋ひずみは、非塗装鉄筋の 重ね継手を有する供試体と同様な傾向であった。また、繰返し載荷に伴う鉄筋ひずみの極端 な増加もほとんど見られず安定している。したがって、エポキシ樹脂塗装したエンドバンド 継手は、床版の高サイクル繰返し曲げに対しても、十分な疲労性能を有していると考えられ る^{2),3)}。

図-3.7 鉄筋ひずみー繰返し回数

(3) 高サイクル繰返し後の静的曲げ性能試験

静的曲げ性能試験は,繰返し載荷が降伏耐力や曲げ耐力に与える影響は小さいとし,高サ イクル繰返し試験後の供試体に対して行った。図-3.8は,静的載荷に対する供試体の荷重– 支間中央の変位関係である。ここで,初期剛性の違いは,重ね継手の長さが異なるため,配 置される鉄筋量が影響したものと考えられる。エポキシ樹脂塗装したエンドバンド継手を有 する供試体および非塗装鉄筋の重ね継手を有する供試体の最大荷重は,鉄筋径 D19 の供試 体でそれぞれ 254.5kN および 271.9kN,鉄筋径 D22 の供試体でそれぞれ 315.5kN および 324.6kN であり,ほぼ同等の曲げ破壊耐力を有し,かつ,計算破壊荷重を上回っている。し たがって,エポキシ樹脂塗装したエンドバンド継手を有する床版は,曲げモーメントに対す る静的耐力に対して,十分な性能を有していると考えられる。

図-3.8 高サイクル繰返し載荷後の荷重-変位関係

3.3 塩害地域での施工

3.3.1 実橋梁での施工

床版取替え工事の対象橋梁である伊芸高架橋(図-3.9)は,沖縄自動車道の北部区間のうち屋嘉 IC~金武 IC 間に位置し,支間長 42.75m の3 径間連続鋼鈑桁橋×3 連から構成された橋長 387.25m の橋である。

北部区間では、沖縄海洋博覧会の関連事業として 1975 年に供用開始するために、沖縄返 還後わずか2年間で建設する必要があったことから、鋼橋の床版には短期施工が可能な1形 鋼格子床版(ソリッドタイプ)が用いられていた。しかしながら、建設時に型枠として利用 した床鋼板により床版内部に水が滞留し、I形鋼や床鋼板の腐食およびコンクリートの疲労 を進展させたため、1988 年から順次、床鋼板を撤去し、I形鋼の表面防錆処理を行っていた ¹⁰⁾。また、建設当時の沖縄は慢性的な水不足であったことから、十分な除塩処理がされてい ない海砂がコンクリートの細骨材として使用されていた。そのため、伊芸高架橋においても、 床版コンクリートの塩化物イオン濃度が、鋼材腐食発生限界を超過する最大 3.7kg/m³に達し ていた。そこで、抜本的な補修対策として PCaPC 床版を用いた全面取替工事を実施した(写 真-3.2)。

本工事では、ループ継手構造を採用した場合にループ鉄筋の曲げ半径の制約により既設 床版に対して床版厚が大幅に増加し、エポキシ樹脂塗装鉄筋の損傷のおそれがあったこと から、これらの影響を最小限に抑えるためエンドバンド継手を採用した。

(a) 許田方面から那覇方面を望む

- (b)夜間の床版架設状況
- 写真-3.2 伊芸高架橋 床版取替え状況

3.3.2 床版厚の低減

PC 床版では,床版支間から定まる最小床版厚は,道路橋示方書では,床版支間が2.5mでは170mm,3.0mでは180mmである。これに対し,PCaPC床版の接合方法に一般的なループ継手を用いた場合は,式(3.5)で算出されるループ鉄筋の必要曲げ内直径から,最小床版厚は210mm以上となる。

$$dB_{req} \ge \left(1.4 + 2.8 \cdot \frac{\phi}{e}\right) \cdot \phi \cdot \frac{\sigma_e}{\sigma_{ck}} \ge 5\phi$$
(3.5)

ここに, φ:鉄筋径,

e:鉄筋間隔,

 σ_e : 鉄筋応力(140N/mm²),

 σ_{ck} :間詰め部のコンクリート強度(50N/mm²)である。

また、塩害対策としてかぶりを増加させる場合には、床版厚はさらに増加する。一方、エ ンドバンド継手を用いた場合は、かぶりや鋼材のあきなどから最小床版厚が決まることから、 ループ継手を用いた場合に比べて、床版厚を低減することができる。

伊芸高架橋の設計条件にて継手構造を比較した結果を,図-3.10 に示す。既設の床版厚 210mmに対して,ループ継手を用いた場合の床版厚は240mmであり約15%の増加であった。 一方,エンドバンド継手を用いた場合の床版厚は220mmであり約5%の増加に抑えることが 可能となった。なお,ループ継手の場合は上縁側と下縁側の鉄筋径が同一となるが,エンド バンド継手では鉄筋径を変更でき設計断面力に対して合理的な鉄筋配置が可能となった。

(a) ループ継手

(b) エンドバンド継手 図-3.10 伊芸高架橋での RC 接合方法の比較

3.3.3 施工性の向上

ループ継手では、鉄筋の引張力の伝達およびコンクリートの割裂力への補強の目的で、継 手内に横方向鉄筋を配置する必要があった(図-3.10)。この継手内の横方向鉄筋は、ループ 鉄筋で閉じられた空間内に配置されることから、PCaPC 床版を架設した後に床版側方または 鋼桁上フランジ位置に設けた挿入空間から挿入する必要があった(写真-3.3)。しかしなが ら、床版側方からの挿入は、側道や民有地などの上空を利用しなければならない場合もあり、 また、住宅地に近接する工事で仮設遮音壁を設置した場合には、挿入もできなくなる可能性 があった(写真-3.4)。さらに、塩害対策としてエポキシ樹脂塗装鉄筋を用いた場合には、 挿入時に塗膜を損傷するリスクが高かった。

エンドバンド継手の場合も,継手内に横方向鉄筋を配置する必要はあるが,エンドバンド 鉄筋は上縁側と下縁側が独立している。そのため,継手内の横方向鉄筋を PCaPC 床版の仮 配置空間に配置した後に架設することが可能となり(図-3.11),側道や民有地などの上空 を利用しないとともに,エポキシ樹脂塗装鉄筋を用いる場合でも塗膜を損傷するリスクを低 減できた。エンドバンド継手での継手内横方向鉄筋の配置フローを,写真-3.5 に示す。

図-3.11 継手内横方向鉄筋の挿入方法

写真-3.3 ループ継手の継手内横方向鉄筋挿入例

写真-3.4 住宅地での仮設遮音壁による継手部施工に制約のある事例

写真-3.5 継手内横方向鉄筋の配置フロー

3.4 まとめ

塩害対策地域への PCaPC 床版の適用にあたり,エポキシ樹脂塗装したエンドバンド継手の定着性能試験および曲げ性能試験を実施した結果,実験により得られた結果は以下である。

- (1) 定着性能試験から,エポキシ樹脂塗装したエンドバンド継手の必要重ね継手長は,15¢ で満足した。
- (2) 高サイクル繰返し性能試験から,エポキシ樹脂塗装したエンドバンド継手を用いた PCaPC 床版は,15 φ の継手長で十分な疲労耐久性を有することが分かった。
- (3) 静的曲げ性能試験から,エポキシ樹脂塗装したエンドバンド継手を用いた PCaPC 床版 は、15 g の継手長で十分な静的曲げ耐力を有することが分かった。

以上の実験結果を受けて、塩害地域の床版取替え工事において、エポキシ樹脂塗装したエ ンドバンド継手を用いた PCaPC 床版を採用した。既設の床版厚 210mm に対して、ループ継 手を用いた場合の床版厚は 240mm であり約 15%の増加であった。一方、エンドバンド継手 を用いた場合の床版厚は 220mm であり約 5%の増加に抑えることが可能となった。さらに、 接合方法をエンドバンド継手としたことにより、橋軸直角方向鉄筋の床版側方からの挿入が 不要となり側道や民有地などの上空を利用しないとともに、エポキシ樹脂塗装鉄筋を用いる 場合でも塗膜を損傷するリスクを低減できた。

【第3章 参考文献】

- プレストレスト・コンクリート建設業協会: PC 床板設計・施工マニュアル(案), pp.26-30, 1999.5
- 2) 阿部浩幸, 原健悟, 澤田浩昭, 中村雅之: プレキャスト PC 床版の新しい RC 接合構造に 関する研究, コンクリート工学年次論文集, Vol.29, No.3, pp.493-498, 2007.7
- 3) 阿部浩幸,澤田浩昭,大谷悟司,原健悟:新しい RC 接合構造を用いたプレキャスト PC 床版に関する研究,プレストレストコンクリート, Vol.50, No.1, pp.45-53, 2008.1
- 4) 原健悟,福永靖雄,今村壮宏,三浦泰博:エンドバンド継手を有するプレキャストPC床版の輪荷重走行疲労試験,第19回プレストレストコンクリートの発展に関するシンポジウム論文集,pp.61-64,2010.10
- 5) 脇坂英男,福永靖雄,今村壮宏,原健悟:塩害対策地域へのプレキャストPC床版のエンドバンド継手の適用,第七回道路橋床版シンポジウム論文報告集,pp.49-54,2012.6
- 6) 脇坂英男,駒谷大三,森崎拓也,岩渕貴久:エポキシ樹脂塗装エンドバンド継手を用いた 伊芸高架橋の床版取替え工事,第21回プレストレストコンクリートの発展に関するシン ポジウム論文集,pp.259-262,2012.10
- 7) 土木学会: 2017 年制定コンクリート標準示方書 [設計編], pp.351-353, 2018.3
- 8) 土木学会:エポキシ樹脂塗装鉄筋を用いる鉄筋コンクリートの設計施工指針,コンクリートライブラリー, 112, p.7, 2003.11
- 9) 日本道路協会:道路橋示方書・同解説,Ⅲコンクリート橋編, pp.171-175, 2002.3
- 10)小川篤生,松田哲夫,江口光昭,福永靖雄:腐食性環境下におけるコンクリート構造物長 寿命化への実践的研究,土木構造・材料論文集,第25号, pp.37-46, 2009.12

第4章

載荷実験を反映した非合成鈑桁橋の 合理的な設計手法に関する検討

4.1 はじめに

沖縄自動車道北部区間の橋梁は、1975年の海洋博覧会に向けて建設された。橋梁設計時に は、建設当時の道路橋示方書に従い、設計活荷重として現在のA活荷重相当であるTL-20を 用いていた。一方、平成6年の道路橋示方書の改定では、道路構造令に規定される橋の設計 荷重の変更を受けて車両の大型化への対応や耐久性の向上などを図るために B 活荷重が採 用された。平成6年以前の道路橋示方書で設計されている既設の非合成鈑桁橋では、B活荷 重を用いて既設主桁を検討すると活荷重の増加、さらに、床版取替え時の死荷重増によって 一般的な設計方法では照査を満足せず、鋼桁の補強が必要となる。

しかし、基準類には、NEXCO 設計要領では「既設桁の応力検討については、大幅に許容 値が相違しない限り大規模な補強ならびに対策工は実施しない」¹⁾との記述や鋼道路橋施工 便覧では「引張材については 30%、圧縮材については、20%程度の許容応力の超過程度では むしろ補強を行わないほうが良い」²⁾との記述もある。この記述には明確な根拠が記載され ていないが、実際の非合成鈑桁橋には、設計上考慮されていないスラブアンカーや頭付きス タッドなどのずれ止めによる床版と主桁の合成作用があり、設計計算により算出される結果 より余裕があると考えられる。さらに、計算上考慮されていない壁高欄の剛性も寄与すると 考えられる。よって、従来の設計方法では補強が必要と判断される場合でも、これらの影響 を合理的に考慮することで、既設主桁の補強が不要になることも考えられ、床版取替え工事 のコスト縮減を図ることが可能となる。

本章では、床版取替え工事における合理的な設計手法の確立を目的に、沖縄自動車道の北 部区間で建設当時に採用された床版取替え前の IB グレーチング床版や取替え後の PC 床版 を有する非合成鈑桁橋について、実橋で載荷試験を実施し、鋼桁の応力照査方法について検 討した。

本章では、まず、4.2「橋梁概要」で橋梁の位置や形状などを示し、4.3「試験方法」で試験に用いる車両や車両の載荷方法を示した。その上で、4.4「試験結果」で各試験によって得られた結果を述べ、4.5「荷重と応答値についての考察」で、実測値と解析値から実際の応力を推定し、4.6「まとめ」で全体を総括した。

4.2 橋梁概要

本研究の対象橋梁は、図-4.1 に示すように北部区間の石川 IC~許田 IC の許田 IC 付近に 位置する松田橋(下り線)である。本橋は、橋長 268.1mを有し、支間 40.0m の 4 径間非合 成鈑桁橋と支間 35.5m の 3 径間非合成鈑桁橋から構成されている。有効幅員は 9.560m で、 4 本の主桁を有する。橋梁の一般図を図-4.2 に示す。既設床版は、図-4.3、図-4.4 に示すよ うに床版厚 210mm の IB グレーチング床版をスラブアンカーで接合したものであり、取替え 後は床版厚 220mm の PCaPC 床版を頭付きスタッドにて接合したものである。

平面図

図-4.2 対象橋梁一般図

(a) 床版取替え前

(b)床版取替え後

図-4.3 床版取替え前後の床版断面

中央分離帯側

中央分離帯側

路肩側

(a) 床版取替え前

(b) 床版取替え後図-4.4 床版取替え前後のずれ止め構造の比較

4.3 試験方法

4.3.1 試験内容と目的

床版取替え前後において,試験車を対象橋梁の橋面上の所定位置に停車させて応答値を計 測する「静的載荷試験」と,試験車や一般車両を対象橋梁上に走行させて応答を計測する「動 的載荷試験」を実施した。取替え前の構造は,IB グレーチング床版を有する床版厚 210mm の路肩側が壁高欄,中央分離帯側がガードレール構造であり,ずれ止めには,スラブアンカ ーとスペーサ用プレートが取り付けられている。取替え後の構造は,PC 床版を有する床版 厚 220mm の両側が壁高欄構造であり,ずれ止めには頭付きスタッドが取り付けられている。 本試験における試験内容と目的を表-4.1 に示す。静的載荷試験では,鋼桁の荷重分担率や各 桁の応力を把握することを目的に実施した。これに対して動的載荷試験では,試験車を走行 させることにより衝撃の影響を把握するとともに,一般車の計測も併せて実施することによ り,実交通荷重による活荷重を測定し,地域特性を把握した。

試験内容	主な目的	分析項目
【静的載荷試験】 試験車 静的載荷試験	 ・床版取替え前後における主桁と床版の合成効果の把握 ・主桁耐荷力の検討 	各主桁などの 応力値分析
【動的載荷試験】 試験車 走行試験	・衝撃(振動)の影響把握	試験車走行時の 応答波形分析
【動的載荷試験】 一般車 連続走行試験 (72時間)	 ・実働荷重による主桁の発生応力レベルの把握 ・疲労の観点からの検討 	応力頻度分析 (ピークバレー法) (レインフロー法)

表-4.1 分析項目と主な目的

4.3.2 計測項目と数量

静的載荷試験および動的載荷試験時の主桁ひずみやコンクリート内部のひずみ測定部位 を表-4.2に、ゲージ貼付け位置を図-4.5、図-4.6に示す。

主桁応力計測用のゲージは赤色(支間中央,中間支点部のウェブ上端,中央,下フランジの 全桁)車両分析用のゲージは青色(主桁端部,径間部のG5,G7桁)で示している。

なお、コンクリート埋め込みゲージについては、取替え後の床版の赤部 G7 桁のみ設置した。

計測項目	計測断面	測定部位			備考*
	支間中央	主桁下フランジ ウェブ中央 ウェブ上端	G5	3	
			G6	3	
	(A 断面)		G7	3	(b)A 四 凹
			G8	3	
	中間支点付近 (B 断面)	主桁下フランジ	G5	3	
主桁 ひずみ			G6	3	
		リエノ中央	G7 3 (c)B 断面	(c)B 町面	
		リエノ上端	G8	3	3
	主桁端部		G5	1	
	(C 断面)	文点 垂直 佣 剛 材	G7	1	(d)C 断面
	径間部		G5	1	(e)D
	(D 断面)	全间部 但 佣 刚 材	G7	1	平 凹分析用
コンクリート 内部ひずみ	支間中央 (A 断面)	コンクリート部のひずみ コンクリート部のひずみ	G7	2	(a)A 断面
	中間支点付近 (B 断面)		G7	2	(b)B 断面 工事後のみ

表-4.2 計測項目·内容

※(a)~(e)は、図-4.5中の図番号を表す。

図-4.5 ゲージ貼り付け位置

図-4.6 ゲージ貼り付け位置(断面図)
4.3.3 試験車両

解析値である格子解析モデルの妥当性を確認するため、載荷試験では、車種、車両重量な どを規定した試験車を用いた。試験車にカウンターウエイトを積載し、重量調整したトレー ラー2 台を載荷させた。

なお,床版取替え前後ともに1号車,2号車は同一車両を用いた。試験車の諸元を図-4.7 および表-4.3に示す。

図-4.7 試験車両

表-4.3 試験車両諸元

項目	車両重量
空車	140 kN
積荷	196 kN
総重量	336 kN

4.3.4 静的載荷試験

交通規制を実施し,試験対象車以外は橋梁上に載荷されないようにし,試験車を対象橋梁 上の所定位置に停車させる静的載荷試験を実施した。静的載荷試験のケースでは,走行車線 および追越車線のそれぞれの単独載荷,走行車線と追越車線に同時載荷する並列載荷,の3 パターンを実施した。静的載荷試験ケースの一覧を表-4.4に,試験車の配置図および試験状 況を図-4.8,写真-4.1に示す。

			載荷	
	載何車線	橋軸方向位置(第3軸)	台数	- • •
CASE-0	_	無載荷 (橋梁外)	0	P1 P2
CASE-1-1		P1-P2 問 3L/4		
CASE-1-2		" L/2		
CASE-1-3	走行車線側	" L/4		
CASE-1-4	(右タイヤ	P1上	1	
CASE-1-5	G7 桁直上)	A1-P1 間 3L/4		
CASE-1-6		" L/2		
CASE-1-7		" L/4		
CASE-2-1		P1-P2 間 3L/4		
CASE-2-2		" L/2		
CASE-2-3	追越単線側	" L/4		
CASE-2-4	(左タイヤ	P1上	1	
CASE-2-5	G6 桁直上	A1-P1 間 3L/4		
CASE-2-6		" L/2		
CASE-2-7		" L/4		
CASE-3-1		P1-P2 間 3L/4		
CASE-3-2		" L/2		
CASE-3-3	並列	" L/4		
CASE-3-4	(走行・追越側	P1上	2	
CASE-3-5	同時載荷)	A1-P1 間 3L/4		
CASE-3-6		" L/2		
CASE-3-7		" L/4		

表-4.4 静的載荷試験ケースの一覧表(L:スパン長)

-

(a) CASE-1 走行車線 右タイヤ G7 直上載荷

(b) CASE-2 追越車線 右タイヤ G7 直上載荷

(単位:mm)

(c) CASE-3 並列載荷

図-4.8 静的載荷時の試験車配置図

写真-4.1 静的載荷試験状況

4.3.5 動的載荷試験(試験車走行試験)

交通規制を実施した上で,試験車を用いて対象橋梁上を特定の速度で走行させる試験を実施した。走行試験ケースは,走行車線および追越車線の通常走行位置をそれぞれ単独走行させた。なお,床版取替え後においては,並走ケースも実施した。走行速度は 50~60km/h とした。試験車走行試験ケースの一覧を表-4.5 に配置図を図-4.9,図-4.10 に示す。並走時については,試験車の走行の安全への配慮から 50km/h としている。写真-4.2 は,実載荷試験の状況である。

ケース	通行車線	通行位置	速度	台数	走行回数
走行	走行車線	通常位置	60 km/h	1	各3回
追越	追越車線	通常位置	60 km/h	1	各3回
並走※	走行・追越	通常位置	50 km/h	2	1回

表-4.5 試験車走行試験ケース一覧

※並走ケースは、取替え後のみ実施。

追越・走行車線:50km/h

図-4.9 試験車走行試験配置図

(a) CASE1 走行車線走行

(b) CASE2 追越車線走行

(単位:mm)

(c) CASE3 並列走行図-4.10 試験車走行試験配置図

写真-4.2 試験車走行試験状況

4.3.6 動的載荷試験(一般車連続走行試験)

橋面上を規制しない状態で一般車を3日間(72時間)常時通行させる試験を実施した。 橋面上には,写真-4.3のように,走行車線,追越車線ともに一般車が走行した。

写真-4.3 一般車走行イメージ

4.4 試験結果

4.4.1 静的載荷試験

(1) 床版取替え前後の比較

静的載荷試験時の主桁の下フランジにおける応力とトレーラー載荷位置との関係を図-4.11 に示す。トレーラーは影響線載荷をしており、車輪の第3軸が基準となるように載荷位 置を決めた。A1-P1 径間の支間中央に荷重を載荷した場合には、主桁の下フランジ応力は床 版取替え後に支間中央(A断面)で引張が77~92%、中間支点付近(B断面)で圧縮が88~ 100%に低減された。床版取替え後には、床版厚が210mmから220mmへ増加したことや鋼 桁天端から床版までの高さが約20mm高くなったことにより主桁の断面2次モーメントが 約4%増加したことや床版部のコンクリートのヤング係数の増加が、応力の低減に影響して いると考えられる。

また,合成桁としての解析(以下,合成桁解析)の取替え前後における主桁の下フランジ の応力についても,取替え後は小さくなり同じ傾向を示した。試験結果も合成桁解析値も非 合成桁としての解析(以下,非合成桁解析)に比べると大幅に小さくなった。非合成桁に対 する応力の低減率については,主桁の応力勾配のところで述べる。

図-4.11 床版取替え前後における主桁の下フランジ応力比較

(2) 主桁応力勾配

静的載荷試験や解析により得られた応力を直線で結んで得られた主桁の応力勾配を図-4.12に示す。なお,解析では鋼材と床版コンクリートのヤング係数比は道路橋示方書に基づ き7を使用した。支間中央(A断面)測点における応力勾配は,床版断面剛性を考慮しない 非合成桁解析では,中立軸位置がウェブのほぼ中央付近にあるのに対して,載荷試験では, ウェブの上側測点のやや下側にあり,傾向的には床版取替え前後ともにほぼ合成桁のような 挙動を示した。また,下フランジの応力に着目すると,大小関係は,非合成桁解析≫取替え 前合成桁解析>取替え後合成桁解析>取替え前静的載荷試験>取替え後静的載荷試験とな り,数値的にも合成桁解析に近い値となった。

非合成桁解析に対する載荷試験の主桁の下フランジ応力は,試験車の並列載荷時(CASE-3)では,支間中央(A断面)の取替え前で64~65%,取替え後で56~59%であった。また, 中間支点付近(B断面)の取替え前で66~69%,取替え後で63~64%であった。非合成解析 に対して,約30%以上応力が小さくなる傾向であった。

図-4.12 床版取替え前後における主桁の応力勾配の比較

(3) 主桁の荷重分配および壁高欄の影響

図-4.13,図-4.14は,A1-P1支間の中央載荷時においてそれぞれ走行車線,追越車線に車両を偏載荷した場合の主桁の下フランジの応力を示している。走行側や追越側の偏載荷では,載荷位置とは逆の主桁で解析より載荷試験の応答が大きい傾向であった。これは,実橋における主桁の荷重分配効果が解析よりも大きく,対傾構の剛性だけでなく床版断面も荷重分配に寄与しているものと考えられる。

また,非合成桁解析に対する載荷試験の応力は,G5桁で43~58%,G8桁で約46~56%となり大幅に小さかった。中桁は,合成桁に近い挙動を示すことで,発生応力が小さくなっているが,G5,G8のような外桁は壁高欄や地覆の応力低減効果が加わり中桁よりも10%程度以上小さくなる傾向が認められた。

⁽b)取替え前の床版断面への載荷 (c)取替え後の床版断面への載荷 図-4.13 床版取替え前後における主桁荷重分配(走行車線載荷)

(b) 取替え前の床版断面への載荷

(c)取替え後の床版断面への載荷

図-4.14 床版取替え前後における主桁荷重分配(追越車線載荷)

(4) 床版コンクリートのひずみ

床版取替え中に設置したコンクリートひずみ計の計測結果から,取替え後における床版内 部の橋軸方向ひずみは,コンクリート圧縮側(支間中央:A断面)測点では直上載荷時に圧 縮ひずみが発生しており,静的載荷試験と解析は,ほぼ同程度であった。一方,コンクリー ト引張側(中間支点付近:B断面)では,解析に対して幾分小さい傾向であった。ただし, 実測の主桁応力を見ると,解析どおりに中央径間載荷時に側径間への曲げモーメントの伝達 があることから,引張応力は鉄筋断面で受け持っており,頭付きスタッドは床版と主桁のず れ止めとして有効に機能しているものと考えられる(図-4.15)。

a. 試験車影響線載荷時の応答(並列載荷: CASE-3)

4.4.2 動的載荷試験

(1)試験車走行試験(車両振動の影響の確認)

試験車を用いて対象橋梁上を通常走行させたときの,各主桁の動的応答値を分析した。分析は,試験車の通行状況が分かるよう連続計測データから約 20 秒間(200Hz, 4096 個)の 波形データを抽出して整理した(図-4.16)。なお,波形データの分析では,床版取替え前後 ともに 50Hz 以下のローパスフィルター処理を行った。

①図-4.16に示すように床版取替え前後で応答波形を比較すると、主桁の振動が低減する傾向であった。床版取替えおよび舗装の打換えによって、路面の凹凸がなくなり、橋梁上を通行する車両の車両振動の影響が低下した³⁾と考えられる。応答波形をフィルター分析した結果、静的な主桁応力の低減効果は94%であり、車両振動の影響を含む応力の低減効果は72%程度であった。

②床版取替え前後の応答値を3波平均した値を表-4.6に示す。取替え後の方が主桁の応力 は低下する傾向であった。下フランジの応力(全振幅)に着目すると,取替え前に対して走 行車線通行時では61~78%,追越車線通行時では69~87%に低下した。床版取替えによる剛 性向上や後述の衝撃振動の低減などの影響が現れているものと考えられる。

③床版取替え前後の車両通過時の応答波形について周波数分析をした結果,約 2.7 Hz, 3.1 Hz, 4.9 Hz といった周波帯の成分が取替え前から取替え後にかけて約 1/3 以下に低減している状況が認められた。これは、床版取替えによる剛性向上による影響のほか、舗装の打換えによって路面の平坦性が向上し、車両振動が低減した影響が大きいと考えられる(図-4.17)。

図-4.16 試験車走行時の応答波形例(支間中央 G8 下フランジ 走行車線通過時)

[⇒ा आग						走行車線			追越車線			
$^{\rm ch}$	計測 1百日	Ň	測定箇所			単位	取替前	取替後	後/前	取替前	取替後	後/前	
	項日						(平均値)	(平均値)	(%)	(平均値)	(平均値)	(%)	
1				ウエブ上端	A-G5-U		2.45	1.29	52.7	3.33	1.39	41.7	
2			G5	ウエブ中央	A-G5-M		6.70	4.29	64.0	8.61	8.44	98.0	
3		支		下フランジ	A-G5-L		13.77	8.33	60.5	18.90	16.28	86.1	
4		間		ウエブ上端	A-G6-U		2.80	1.39	49.6	2.80	1.55	55.4	
5		中	G6	ウエブ中央	A-G6-M		7.28	5.24	72.0	7.37	6.93	94.0	
6		央		下フランジ	A-G6-L		17.20	11.20	65.1	17.03	14.88	87.4	
7		Ā		ウエブ上端	A-G7-U		3.38	1.82	53.8	3.12	1.71	54.8	
8		断	G7	ウエブ中央	A-G7-M		9.06	6.33	69.9	4.88	4.00	82.0	
9		面		下フランジ	A-G7-L		22.35	15.34	68.6	12.37	9.60	77.6	
10	÷	$\overline{}$		ウエブ上端	A-G8-U		3.27	1.55	47.4	2.67	1.49	55.8	
11	析		G8	ウエブ中央	A-G8-M		9.81	6.94	70.7	5.00	3.74	74.8	
12	応			下フランジ	A-G8-L		19.81	13.34	67.3	9.71	6.77	69.7	
13	力			ウエブ上端	B-G5-U		2.67	2.13	79.8	2.91	2.16	74.2	
14		中	G5	ウエブ中央	B-G5-M		3.50	2.35	67.1	4.34	3.78	87.1	
15		間		下フランジ	B-G5-L	N/mm ²	6.50	4.51	69.4	11.42	9.46	82.8	
16		支		ウエブ上端	B-G6-U	-G6-U -G6-M	3.45	2.50	72.5	3.75	3.50	93.3	
17		点	G6	ウエブ中央	B-G6-M		3.41	2.98	87.4	4.19	3.82	91.2	
18		付		下フランジ	B-G6-L		7.61	5.93	77.9	10.39	8.42	81.0	
19		21		ウエブ上端	B-G7-U		3.55	2.64	74.4	2.93	2.18	74.4	
20		В	G7	ウエブ中央	B-G7-M		4.14	3.73	90.1	3.43	2.71	79.0	
21		断		下フランジ	B-G7-L		11.09	8.10	73.0	6.96	5.15	74.0	
22		面		ウエブ上端	B-G8-U		2.77	1.97	71.1	2.41	1.55	64.3	
23)	G8	ウエブ中央	B-G8-M		4.01	3.24	80.8	2.70	2.16	80.0	
24				下フランジ	B-G8-L		9.94	7.37	74.1	4.91	3.39	69.0	
25		十上胡	G5	補剛材	C-1		4.83	3.60	74.5	9.02	8.01	88.8	
26	主桁	又只即	G7	下端	C-2		10.61	9.23	87.0	5.49	4.23	77.0	
27	相剛材 広力		G5	補剛材	C-3		4.13	4.28	103.6	20.16	21.47	106.5	
28	<i>"</i> L·/J	住间部	G7	上端	C-4		12.19	14.35	117.7	6.41	4.96	77.4	
29		中間		床版上側	U-3		-	7.30	-	-	6.13	-	
30	コンク	支点部	07	床版下側	U-4	× 10-6	-	9.24	-	-	7.70	-	
31	リート	リート ンザみ 径間部	67	床版上側	U-1	× 10 °	-	24.44	-	-	16.20	-	
32			径間部	径间部		床版下側	U-2		-	13.96	-	-	12.03

表-4.6 試験車走行試験 応答値

【取替前後比較】

※平均値は、3波の平均値

図-4.17 主桁下フランジ応力の周波数分析結果の例(試験車 走行車線通過時)

(2) 一般車連続走行試験(疲労に関する検討)

一般車の通行状態における連続計測データから,代表的な主桁の応力頻度分析法を用いて, 発生応力レベルの確認を行った。分析には,引張側の波形の極大値(Peak)と圧縮側の波形 の極小値(Vally)を読取り,発生応力の大きさと発生回数を集計するピークバレー法(図-4.18)と,応力(ひずみ)波形から応力範囲(Stress Range:全振幅)の頻度分布を求めるレ インフロー法(図-4.19)用いた。

図-4.18 ピークバレー法の算出例

図-4.19 レインフロー法の算出例

疲労に関する分析結果を以下に示す。

応力の発生頻度を把握するために、支間中央部における G8 桁下フランジについて分析し た結果を図-4.20 に示す。床版取替え前後における一般車走行時の最大応答を比較すると、 表-4.7 に示すように取替え後の方が全体的に主桁発生応力は低減する傾向であった。下フ ランジの発生応力に着目すると、取替え前に対して支間中央測点(A 断面)ではピークバレ ー法の引張側応答が 63~80%、レインフロー法では 64~73%に低減した。また、中間支点付 近測点(B 断面)ではピークバレー法の圧縮側応答が 57~75%、レインフロー法の全振幅で は 63~83%に低減した。床版取替えによる剛性向上や衝撃成分の低減効果となどが影響して いるものと考えられる。

応力については、実橋における3日間の応力頻度測定結果から、レインフロー法による主 桁下フランジの最大応力は、床版取替え前は28N/mm²、取替え後は18N/mm²であった。ま た、主桁上端部の垂直補剛材溶接部の最大応力は26N/mm²であった。これらの値は、継手の 打切り限界としての応力範囲(B等級:155N/mm², E等級 62 N/mm²)⁴⁾を大幅に下回ってい るため、本橋計では鋼桁部に疲労損傷は発生しないと考えられる。

(b) レインフロー法

図-4.20 支間中央部における G8 桁下フランジの応力分析結果

						ピークバレー法					レインフロー法			
百日		≣† :⊟	位金	割占夕 岸	出位	圧縮側(負側)		引張側(正側)			全振幅			
項日				<i>四</i> 示口	中世	取替前	取替後	後/前 (%)	取替前	取替後	後/前 (%)	取替前	取替後	後/前 (%)
			ウエブ上側	A-G5-U		-4	0	0	4	0	0	6	2	33
		G5	ウエブ中央	A-G5-M		-4	-4	100	8	6	75	10	8	80
	支 間 中		下フランジ	A-G5-L		-6	-6	100	14	12	86	20	14	70
			ウエブ上側	A-G6-U		-4	0	0	4	0	0	6	2	33
		G6	ウエブ中央	A-G6-M		-4	0	0	8	6	75	10	8	80
	央		下フランジ	A-G6-L		-6	-6	100	16	10	63	22	16	73
	Â		ウエブ上側	A-G7-U		-4	0	0	4	0	0	6	2	33
	断	G7	ウエブ中央	A-G7-M		-4	0	0	8	6	75	12	8	67
	面		下フランジ	A-G7-L		-6	-6	100	20	16	80	26	18	69
+			ウエブ上側	A-G8-U		-4	0	0	4	4	100	6	6	100
析		G8	ウエブ中央	A-G8-M		-4	-4	100	10	8	80	14	10	71
応			下フランジ	A-G8-L		-8	-6	75	22	14	64	28	18	64
カ	中間支点付近(B	G5 G6	ウエブ上側	B-G5-U	N/mm ²	-4	0	0	4	0	0	6	4	67
			ウエブ中央	B-G5-M		-4	0	0	4	0	0	6	4	67
			下フランジ	B-G5-L		-8	-6	75	4	4	100	12	10	83
			ウエブ上側	B-G6-U		-4	0	0	4	4	100	6	6	100
			ウエブ中央	B-G6-M		-4	-4	100	0	0	-	6	4	67
			下フランジ	B-G6-L		-8	-6	75	4	4	100	12	10	83
		G7	ウエブ上側	B-G7-U		-4	0	0	4	4	100	6	4	67
			ウエブ中央	B-G7-M		-4	-4	100	4	4	100	6	6	100
	断		下フランジ	B-G7-L		-14	-8	57	4	4	100	18	12	67
	血		ウエブ上側	B-G8-U		0	0	-	4	0	0	6	2	33
		G8	ウエブ中央	B-G8-M		-4	-4	100	0	0	-	6	4	67
			下フランジ	B-G8-L		-12	-8	67	6	4	67	16	10	63
	支点	G5	補剛材	C-1		-6	-6	100	4	4	100	10	8	80
主桁	部	G7	下端	C-2		-12	-10	83	0	0	-	14	10	71
補剛材 応力	径間	G5	補剛材	C-3		-18	-16	89	6	4	67	18	20	111
	部	G7	上端	C-4		-20	-24	120	4	0	0	22	26	118
	支点		床版上側	U-3		-	-6	-	-	12	-	-	18	-
コンク	部	07	床版下側	U-4		_	-6	-	-	12	-	-	18	-
リート	径間	G/	床版上側	U-1	$\times 10^{-6}$	-	-24	-	-	10	-	-	30	-
0907	部		床版下側	U-2		-	-14	-	-	8	-	-	20	-

表-4.7 一般車の応力頻度分析結果(最大応答値)

4.5 荷重と応答値に関する考察

今回実施した解析結果や実測結果をもとに、B 活荷重に対する余裕度を確認した。なお、 以下では、フル載荷は図-4.21(a)の状態を、レーン載荷とは図-4.21(b)の状態を表す。検討 項目は、①非合成桁のB活荷重フル載荷(格子解析)、②非合成桁のB活荷重レーン幅載荷 (格子解析)、③床版取替え前後の合成桁B活荷重フル載荷(格子解析)、④床版取替え前後 の静的載荷試験により得られた主桁応力と同様の条件で格子計算により得られた主桁応力 の比率をもとに、B 活荷重フル載荷の格子解析結果に低減率を乗じた、取替え前(後)解析 B 活荷重(実測補正)、⑤床版取替え前後に一般車を走行させピークバレー法で得られた、取 替え前(後)実測値、の5ケース(取替え前後 8ケース)とした。結果を図-4.22 に示す。

①の非合成桁の解析モデルでは、B活荷重載荷時の主桁応力は、一部で許容応力210N/mm²
 を超え、最大 221.2N/mm²、最小-223.3N/mm²であった。解析結果と許容応力との比は P1 支
 点上の負曲げで102%、A1-P1 間支間中央の正曲げで105.3~106.3%であった。

②実際に活荷重が作用するレーン幅を想定した載荷(レーン幅載荷)では許容応力を超え る応力は発生しておらず,最大 194.9N/mm²,最小-196.8N/mm²となった。

③合成桁の解析モデルでは、床版取替え前後ともに許容応力を超える応力は発生しておらず、最大 168.2N/mm²、最小-151.5N/mm²であった。実橋における発生応力は、合成桁とした解析モデルよりもさらに小さく、ほぼ合成桁の挙動を示している。

④合成桁の B 活荷重の解析結果を実測/解析比で補正した場合の推定発生応力は,最大 140.6N/mm²,最小-128.0N/mm²であった。

⑤一般車走行時に実際に計測された応力は,最大 125.0N/mm² で最小-115.0N/mm² であった。

これらの結果から、本橋では、床版取替え前後において B 活荷重作用時の許容値に対して 40%程度(①/④)の余裕があり、非合成鈑桁橋の設計計算において 20%~30%程度の超過で あれば十分余裕があるものと考えられる。

- 76 -

(a)B活荷重フル載荷

図-4.21 B活荷重フル載荷とレーン幅載荷

図-4.22 検討項目ごとの主桁の応力解析結果

4.6 まとめ

本章では,非合成鈑桁橋の合理的な設計手法の構築を目的に車両の実載荷結果を反映させて,主桁の応力について考察した。各載荷試験で得られた結果を下記に示す。

4.6.1 静的載荷試験

(1) 床版取替え前後の比較

A1-P1 径間の支間中央にトレーラー荷重を載荷した場合には,主桁の下フランジ応力は床版取替え後に支間中央(A断面)で引張が77~92%,中間支点付近(B断面)で圧縮が88~100%に低減された。床版取替え後の主桁の断面2次モーメントが約4%増加したことが,応力の低減に影響していると考えられる。試験結果も合成桁解析結果も非合成桁解析結果に比べると大幅に小さくなった。

(2) 主桁応力勾配

支間中央(A 断面)測点の中立軸位置は,非合成解析値は床版断面を無視しているため, 主桁中立軸位置はウェブのほぼ中央付近にあるのに対して,実測値は,ウェブ上側測点のや や下側にあり,床版取替え前後ともにほぼ合成桁の挙動を示す傾向であった。実測と解析非 合成桁の主桁下フランジの発生応力を比較すると,試験車の並列載荷時(CASE-3)では,支 間中央(A 断面)は取替え前 64~65%,取替え後 56~59%であった。また,中間支点付近(B 断面)は取替え前 66~69%,取替え後 63~64%であった。実測では解析非合成に対して約 30%以上発生応力が小さくなる傾向であった。

(3) 主桁の荷重分配および壁高欄の影響

走行車線や追越車線の偏載荷では,載荷位置とは逆の主桁で解析結果よりも実測値の応答 が大きい傾向であった。これは,実橋における主桁の荷重分配効果は解析よりも大きく,対 傾構の剛性だけではなく床版断面も荷重分配に寄与していると考えられる。

また,解析値(非合成桁)に対する実測値の応力は,G5 桁で43~58%,G8 桁で約46~ 56%となり大幅に小さかった。中桁は,合成桁に近い挙動を示すことで,発生応力が小さく なっているが,外桁は壁高欄や地覆の応力低減効果が加わり中桁よりも10%程度以上小さく なる傾向が認められた。

(4) 床版コンクリートのひずみ

床版取替え中に設置したコンクリートひずみ計の計測結果から,取替え後における床版内 部の橋軸方向ひずみは,コンクリート圧縮側(支間中央;A断面)測点では直上載荷時に圧 縮ひずみが発生しており,実測ひずみは解析値とほぼ同程度であった。一方,コンクリート 引張側(中間支点付近;B断面)では,解析値と比較してやや小さい傾向であった。ただし, 実測の主桁応力を見ると,解析どおりに中央径間載荷時に側径間への曲げモーメントの伝達 があることから,引張応力は鉄筋断面で受け持っており,頭付きスタッドは床版と主桁のず れ止めとして有効に機能しているものと考えられる。

4.6.2 動的載荷試験

(1)試験車走行試験(動的軸重変動の影響の確認)

床版取替え前後の応答値を3波平均した値は,取替え後の方が主桁の応力は低下する傾向 であった。下フランジの発生応力(全振幅)に着目すると,取替え前に対して走行車線通行 時では61~78%,追越車線通行時では69~87%に低下した。また,応答波形について周波数 分析をした結果,約2.7 Hz,3.1 Hz,4.9 Hz といった周波帯の成分が取替え前後で約1/3以 下に低減していた。これは,床版取替えによる剛性向上による影響のほか,舗装の打換えに よって路面の平坦性が向上し,車両振動が低下した影響が大きいと考えられる。

(2) 一般車連続走行試験(疲労に関する検討)

床版取替え前後における最大応答を比較すると、取替え後の方が全体的に主桁応力は低減 する傾向であった。実橋における3日間の応力頻度測定結果から、レインフロー法による主 桁下フランジの最大発生応力は、床版取替え前は28N/mm²,取替え後は18N/mm²であった。 また、主桁上端部の垂直補剛材溶接部の最大応力は26N/mm²であった。これらの値は、継手 の打切り限界としての応力範囲を大幅に下回っているため、本橋では鋼桁部に疲労損傷は発 生しないと考えられる。

4.6.3 荷重と応答値に関する考察

合成桁の解析モデルでは、B活荷重載荷時に一部主桁で許容応力 210N/mm²を超え、最大 221.2N/mm²、最小-223.3N/mm²であった。解析結果と許容応力との比は P1 支点上の負曲げ で 102%、A1-P1 間支間中央の正曲げで 105.3~106.3%であった。その他、レーン幅載荷、合 成桁の解析モデル、B活荷重試験値補正解析モデル(静的試験の比率補正)、一般車走行時 の実応力は、すべて照査を満足した。B活荷重試験値補正モデルは、最大 140.6N/mm²、最小 -128.0N/mm²であった。床版取替え前後において B活荷重作用時の許容値に対して 40%程度 の余裕があり、非合成鈑桁橋の設計計算において 20~30%程度の超過であれば、十分余裕が あることが確認できた。

一般的な主桁の補強では,部材を取り付けるためにボルト孔を設けボルト接合する必要が あるが,接合部が将来的な劣化要因となるおそれがあった。本章で行った検討によって,非 合成鈑桁橋の実挙動を主桁の応力計算に反映させれば,フランジの応力が低減できることが 分かり,補強設計や工事を必要としない経済的で合理的な設計を行うことが可能となった。

【第4章 参考文献】

- 1) 東·中·西日本高速道路(株):設計要領第二集 橋梁保全編, pp.4-24, 平成 27 年 7 月
- 2) 日本道路協会:鋼道路橋施工便覧, p.213, 昭和47年
- 玉越隆史,中洲啓太,石尾真理,中谷昌一:国土技術総合研究所資料 道路橋の交通特性 評価手法に関する研究,2004.7
- 4) 日本道路協会:道路橋示方書・同解説 Ⅱ鋼橋編,鋼部材編, p.163, 平成 29 年 11 月

第5章

壁高欄と床版の接合部における ひび割れ抑制に関する検討

5.1 はじめに

本章では、非合成鋼鈑桁橋の RC 床版取替え工事において、床版取替え後の中間支点部の PCaPC 床版のひび割れについて着目した。中間支点部の橋軸方向には、図-5.1 に示すよう に床版が硬化した後で作用する荷重(以下、後死荷重)や橋面全体に分布する活荷重によっ て主桁に負の曲げモーメントが作用し、床版部には、引張力が作用する。さらに、中間支点 部には、壁高欄に伸縮目地(以下、スリット)を設けるのが一般的であり、これらの影響に より、写真-5.1 のようにスリット付け根部に大きな応力が発生し、ひび割れが床版部まで到 達しているものが見られる。このひび割れは、将来的に水みちとなり鋼桁や支承の腐食へつ ながる可能性があった。

(b)中間支点部のひずみ分布(負曲げによる床版引張発生状況)

図-5.1 中間支点部のモーメント分布と床版の引張力

既往の研究では,壁高欄自体のアルカリシリカ反応や乾燥収縮などのひび割れに関する検討^{1),2)}や壁高欄スリットの有無の影響による主桁応力の検討³⁾などは行われているが,中間 支点部のスリットから床版部へのひび割れについての検討は行われていない。また,現在の 鋼鈑桁橋の設計では,2次元の格子解析や3次元のフレーム解析を実施し,床版検討時に中

写真-5.1 中間支点部の壁高欄スリット付け根部におけるひび割れ事例

間支点部の合成効果を考慮するが,壁高欄の剛性は考慮されていないため,床版部に発生す る応力は,実際と異なる。実構造物で壁高欄の剛性を考慮した場合は,橋梁としての剛性が 高くなり,床版部への応力は低減される。しかし,中間支点部には壁高欄にスリットが設け られており,スリットのある箇所と無い箇所での著しい剛性差が生じ,スリット付け根部に 局部的な応力が集中し,ひび割れが発生すると考えられる。

そこで、本研究では、3 径間連続非合成鋼鈑桁橋の実橋をモデル橋梁として採用し、応力 が集中すると想定される中間支点部のコンクリート床版にひずみゲージを埋め込み,壁高欄 スリット付け根部の応力を確認した。さらに、壁高欄の剛性やスリットを考慮した上部工全 体をモデル化した FEM 解析を行い、発生する応力の抑制方法について示した。

5.2 試験概要

(1)橋梁概要

本研究で使用するモデル橋梁は,桁長:101.100m,支間長:3@33.5m,主桁間隔:3@2.650m, 幅員:10.450m,有効幅員:9.560m,床版厚:220mm,アスファルト舗装厚 80mm,桁高: 1.800mの3径間非合成鋼鈑桁橋である(図-5.2)。床版部は,PCaPC床版を採用しており, 割付は図-5.3に示すように,2か所の中間支点上の床版を含め約2m間隔で52枚配置して いる。床版取替え後の構造については,橋軸方向を部分的取替えが可能なRC構造とし,直 角方向をPC構造としている。標準版や中間支点部の異形版の直角方向のPC鋼材には1S15.2 を採用し,鉄筋はエポキシ樹脂塗装鉄筋を採用している。コンクリート床版部の材料は,表 -5.1に示すように,設計基準強度 f'ck=50N/mm²とし,結合材に早強ポルトランドセメント を高炉スラグ微粉末 6000で 50%置換したものを用い,水結合材比を 33.3%とすることで耐 久性の高い材料を採用している⁴)。なお,壁高欄については,現場施工の都合によりプレキ ャスト壁高欄を用いた。

橋長 208600(CL上)

図-5.2 対象橋梁

図-5.3 床版割付図

単位量(kg/m ³)							
水	W	150					
セメント	С	225					
高炉スラグ微粉末	BFS6000	225					
細骨材	S	694					
粗骨材	G	1080					
高性能AE減	成水剤	2.52					
AE剤		0.248					
種類	H+BI	FS6000					
設計基準強度σ28	N/mm ²	50					
粗骨材の最大寸法	mm	20					
スランプ	cm	15					
水結合材比	%	33.3					
空気量	%	4.5±1.5					

表-5.1 コンクリート配合および設計基準強度

(2) 床版および壁高欄形状

PCaPC 床版の形状および壁高欄の形状を図-5.4 に示す。PCaPC 床版は,床版厚 220mm, 地覆部幅 445mm,水切り幅 230mm としている。壁高欄の形状は,フロリダ型で頂部幅 250mm, 底部が 445mm の形状としている。中間支点部の目地部については,図-5.5 のように 10mm のスリットを設け,壁高欄自体にひび割れが入りにくい構造としている。欠損断面の高さは, 850mm である。

図-5.4 床版および壁高欄断面図

<u>平面図</u>

図-5.5 中間支点部におけるスリットの配置状況

5.3 ひずみ計測

(1)ひずみゲージの配置

前述したように壁高欄はひび割れの入りにくい構造としているが、付け根部には応力の集中によりひび割れが入る可能性が高いため、P4橋脚上の壁高欄付け根付近の PCaPC 床版部 にコンクリート表面ゲージと埋め込み用のひずみゲージを配置した。ひずみゲージの配置位置を、図-5.6に示す。

路肩側の表面ゲージは,地覆の橋梁の外側にある鉛直面(以下,地覆背面)に配置し,7-7 断面のように地覆天端から 100mm の位置に 150mm ピッチで HU7-1~3 を 3 か所,315mm の位置に 150mm ピッチで HL7-1~3 を 3 か所それぞれ配置,さらに,9-9 断面のように床版 下面の地覆部に 150mm ピッチで H1-1~3 を 3 か所,床版張り出し部に 150mm ピッチで H2-1~3 を 3 か所,桁上に H3 を 1 か所,床版支間部に H4 を 1 か所配置した。路肩側の埋め込 みゲージは、1-1 断面のように地覆背面の水平かぶり 100mm で地覆天端から 100mm の位置 に IU1-1~3 を 3 か所,315mm の位置に IL1-1~3 を 3 か所,2-2 断面のように地覆背面から 水平かぶり 330mm で上縁から 100mm の位置に 150mm ピッチで IU2-1~3 を 3 か所,315mm の位置に IL2 を 1 か所配置した。

張出し床版部と床版支間部には、3-3、4-4 断面のように床版天端から150mmの位置にI3、
I4 をそれぞれ1か所配置した。中央分離帯側については、路肩側と同様に表面ゲージは、8-8 断面にHU8、HL8 を配置し、9-9 断面にH5、H6 を配置した。埋め込みゲージは、5-5、6-6 断面のようにIU5-1~3、IL5、IU6-1~3、IL6-1~3、を張り出し部と地覆部に配置した。なお、温度についても確認するため、地覆と床版部に熱電対を設置した。ゲージを取り付けた床版の設置状況を写真-5.2 に示す。

図-5.6 中間支点部におけるプレキャスト PC 床版のゲージ取付け位置

写真-5.2 床版のゲージ取り付け状況

(2)計測ステップ

橋軸方向に作用する荷重状態は,施工ステップごとに異なる。そこで,図-5.7に示すよう に,各ステップの施工完了後に壁高欄のスリット付け根部のひずみ,ひび割れ幅と長さを計 測した。床版架設直後は,橋軸方向に一体化されておらず,床版に拘束力の影響がおよばな いことから,合成効果によるひずみが発生していないものとし,このステップをイニシャル 値として設定した。計測ステップとしては,間詰め部のコンクリート荷重が作用する PCaPC 床版の間詰め施工後を STEP1,間詰めと壁高欄のコンクリート荷重が作用する壁高欄施工後 を STEP2, さらに間詰め,壁高欄のコンクリート荷重と舗装の荷重が作用する舗装施工後を STEP3 とした。

図-5.7 床版取替え施エステップ図

(3) 計測結果

各ステップでひずみを計測するとともにひび割れの発生状況を確認した。STEP1の間詰め 施工後には、ひび割れは見られなかったが、STEP2の壁高欄施工後からひび割れが見られた。 壁高欄スリット付け根部付近のひび割れ発生状況を図-5.8 に示す。この図から明らかなよ うに、壁高欄スリット付け根部にひび割れが発生し、ここから下方にひび割れが進展してい ることがわかる。路肩側は、壁高欄施工完了後に地覆背面に幅 0.04mm 程度のひび割れが, 地覆下面には 0.03mm 程度のひび割れが見られた。舗装後の地覆背面のひび割れ幅はさらに 大きくなっており、0.1mm 程度となっていた。また、中央分離帯側は、壁高欄施工後までに ひび割れが見られなかったが、舗設後には、地覆背面に路肩側と同等の幅 0.1mm 程度のひび 割れが見られた。このひび割れは、壁高欄スリットの有無による剛性差の影響が顕著に表れ たものと考えられる。

(b) 中央分離帯側壁高欄 図-5.8 壁高欄スリット付け根部のひび割れ発生状況

図-5.9(a)は路肩側,図-5.9(b)は中央分離帯側について,計測したひずみの経時変化を示 す。図-5.9の記号 IU1-2, IL1-2, IU2-2, IL2, I3, I4, IU5-2, IL5, IU6-2, IL6-2 は,図-5.6 のひずみゲージを示している。また,ひずみの挙動と部材間(床版と壁高欄)の温度差との 相関性を考察するため,「床版温度-壁高欄温度」の値を図中の黒線で示している。

STEP1 の間詰めの施工完了時には、間詰めコンクリートの重量が付加されることにより、 中間支点部の橋軸方向には、主桁に負の曲げモーメントが作用し、床版部には、引張力が作 用する。STEP1 では、図-5.9(a)、(b) ともにひずみの変化はほとんど見られなかった。

一方, STEP2 の壁高欄の施工完了直後には,壁高欄の重量と剛性が付加され,さらに,壁 高欄のスリット部には剛性差が生じることから,スリット付け根部は,局部的に引張力が作 用する。図-5.9(a),(b) に示すように,壁高欄施工直後に,IU1 と IU6 のどちらもコンクリ ートの引張強度相当である 95×10⁻⁶以上のひずみが発生し,実橋梁には,ひび割れが見られ た。また,STEP2 では,図-5.9(a)の IL1 や IU2,図-5.9(b)の IU5 や IL6 のように舗装の 施工開始までの間に引張ひずみが大きくなっている箇所があった。壁高欄施工完了直後から 舗装施工開始までは,重量や剛性の変化はないことから,他の要因が考えられた。これらの ひずみの経時変化の曲線は,床版と壁高欄の温度差の経時変化の曲線と同様の変化を示して いることから,壁高欄の重量に加えて温度差の影響が局部的な引張応力の発生に大きく影響 しているものと推測される。

表面ゲージについては、ひび割れ発生後に応力が集中した箇所以外は、ひずみの変化が見 られないことから、評価項目から除外した。

図-5.9 壁高欄スリット付け根部のひずみ計測結果

※図中の記号は、図-5.6参照

5.4 FEM 解析

(1) 解析モデル

計測値の妥当性を確認するために,FEM 解析を行った。解析には,FORUM8の線形FEM 解析ソフト FEMLEEG Ver.10を用いた。解析モデルは、図-5.10に示すように床版および壁 高欄をソリッド要素,主桁をシェル要素とし,床版と主桁の接合については,剛結構造とし 合成効果を考慮した。各部材のヤング係数は,道路橋示方書に従い,主桁を 2.00×10⁵N/mm², 床版を 3.30×10⁴N/mm²,壁高欄を 2.80×10⁴N/mm²とし,ポアソン比は、コンクリート部材 を,0.2,鋼部材を,0.3とした。

主桁解析ステップは,計測時と同様とし,STEP1(間詰め施工後),STEP2(壁高欄施工後), STEP3(舗装施工後)とした。なお,壁高欄の剛性の影響を確認するため,実橋の形状を反 映させた壁高欄の剛性を考慮するものを STEP2-1,STEP3-1とし,一般的な設計計算である 壁高欄の剛性を考慮しないものを STEP2-2,STEP3-2とした。

図-5.10 FEM 解析モデル

(2)解析結果

解析によって得られた橋軸方向の引張応力のコンター図を図-5.11,図-5.12 に示す。なお, f'ck=50N/mm²に対する引張強度 ftk は、土木学会コンクリート標準示方書の設計編に示される式 ⁵⁾より、3.12N/mm²となる。算出式を式(5.1)に示す。

$$f_{tk} = 0.23f'_{ck} c_{k}^{2/3}$$
(5.1)

ここに, *f_{tk}*:設計引張強度 (N/mm²),

 f'_{ck} :設計基準強度 (N/mm²)

これに対して間詰め施工後の STEP1 では、中間支点部上の壁高欄部の発生応力は 0.46N/mm²となり、局部的な応力の集中はなくひび割れが発生する引張強度には達しない。 壁高欄施工後の STEP2-1 の壁高欄の剛性を考慮した場合には、スリット付け根部に応力集中 が起きており、引張強度を大幅に超える 40.7N/mm²が発生する。一方、壁高欄の剛性を考慮 しない STEP2-2 では応力集中は見られず、1.4N/mm² 程度と引張強度に達しない。舗装施工 後の STEP3 においても同様の傾向がみられ、壁高欄の剛性を考慮した STEP3-1 では、目地 部に応力集中が起きており、舗装施工前より 1.6 倍の 64.5N/mm²が発生するのに対して、壁 高欄の剛性を考慮しない STEP3-2 では 2.27N/mm² 程度と応力集中は見られない。壁高欄の 剛性の効果が大きく出ていることがわかる。さらに、壁高欄施工後の応力増加は温度差が影 響していると推測されたことから、STEP2-3 では、死荷重に加えて温度の影響を考慮した解 析を行った。温度の影響は、計測データをもとに床版と壁高欄の温度差が 10℃となった場合 を想定した。床版の温度差を考慮した場合は、考慮しないものより 20N/mm²程度の上昇が見 られた。この結果から床版と壁高欄の温度差によって、床版のひび割れが助長されると考え られる。

図-5.11 各施工段階の橋軸方向応力のコンター図 (その1)

図-5.12 各施工段階の橋軸方向応力のコンター図 (その2)

(3) 計測値と FEM 解析値の比較

計測値と FEM 解析値を比較しやすいように、計測したひずみをコンクリートの応力に換算した結果を図-5.13、図-5.14 に示す。なお、施工ステップごとに結果を確認すると、(a-1)と(b-1)の間詰め施工後は、計測値と解析値ともに 1.0N/mm²程度以下となりコンクリートの引張強度を超える応力が発生する箇所は見られず整合は取れている。(a-2)の路肩側壁高欄施工後は、実構造物には地覆背面にひび割れが入っており、地覆前面にもひび割れが入っていたものと推測される。ひずみゲージの結果もコンクリートの引張強度を超える応力が地覆背面と前面ともに作用している。

一方,解析値では壁高欄の死荷重増を見込んで検討した場合でも,壁高欄の剛性の有無に かかわらず影響は小さく,ひび割れに寄与する大きさではないことから,荷重以外の要因と して床版と壁高欄との温度差が影響したものと考えられ,10℃の温度差による影響を考慮し た場合には,より計測値に近い結果となる。(b-2)の中央分離帯側については,地覆背面に はひび割れは見られず,温度応力の効果を無視した方が計測値に近い値となっている。

これらの結果から,壁高欄スリット付け根部の地覆上端にひび割れが入った場合はひび割 れが進展していき,地覆下端まで引張力が伝わりさらに温度差が加わって解析値より応力が 増加しているものと思われる。(a-3)と(b-3)の舗装施工後については,路肩側も中央分離帯 側も,壁高欄施工後に比べ計測値の引張応力が大きくなっており,壁高欄の下端までひび割 れが伝達して発生応力が大幅に増加したと考えられる。また,ひび割れを考慮しない解析値 の場合も同様の箇所の応力が引張強度に近い値となっており,床版部にひび割れが入ること が想定される。ひび割れのような非線形挙動を示す部材を線形要素でモデル化しているため, 精度は下がるが,計測値との比較によって,施工完了時には現在の構造では引張応力が大き くなりひび割れが入る可能性が高いことが分かった。

図-5.13 路肩側壁高欄部における応力の比較

※図中の記号は、図-5.6参照

※図中の記号は、図-5.6参照

5.5 ひび割れ抑制対策の提案

壁高欄スリット付け根部のひび割れの発生を抑えるため,以下の3ケースについて検討を 行った。CASE1 は、図-5.15 に示すように中間支点のプレキャスト床版の地覆部に緊張力 (1S21.8 を 2 本で約 600kN)を導入し、壁高欄部は、現状の支点部スリットを設けた構造で ある。CASE2 は、支点部のプレキャスト壁高欄にスリットを設けない構造である。CASE3 は、中間支点部にスリットを設けない構造とし、10m 程度のプレキャスト壁高欄に緊張力 (1S21.8 を 3 本で約 900kN)を導入したものを架設する構造である。

死荷重時の検討結果を図-5.16に示す。CASE1については、中間支点のプレキャスト床版の地覆部に緊張力を導入することにより、全体的な引張力は、大幅に低減できるものの、局部的に 30N/mm²を超えるような引張応力が発生するため、ひび割れの発生は避けられない。

一方, CASE2 については, スリットを無くし断面性能を向上することで応力集中が無くな り有利に働いているが,壁高欄上面の引張応力 2.5N/mm²は,一般的である壁高欄の設計基 準強度 30N/mm²のコンクリート引張強度 2.2N/mm²を超えている。CASE3 は, CASE2 の引 張力超過を補うために,緊張力を導入しており,上面には,合成応力として 3.9N/mm² 程度 の圧縮力が作用している。死荷重時については,壁高欄に緊張力を導入した CASE3 のみが 作用する引張力に対して抵抗できる構造といえる。

以上は,死荷重に対する検討であったが,さらに,CASE3'として,活荷重相当の荷重を載荷した場合についても検討を行った。その結果,図-5.16の CASE3'のように壁高欄上端部には1.0N/mm²程度の圧縮状態が残る結果となった。以上より,CASE3の構造にすることにより,供用中のひび割れを抑制できると考えられる。

図-5.15 緊張力の導入位置

図-5.16 改善策ごとの橋軸方向応力のコンター図

5.6 まとめ

現地計測および FEM 解析を実施した結果,中間支点部の間詰めの施工後までは壁高欄ス リット付け根部に位置する地覆の発生応力は小さいが,壁高欄のひび割れの発生位置をコン トロールするために壁高欄にスリットを設けると,壁高欄施工後からスリット付け根部の地 覆にコンクリートの引張強度 3.1N/mm² を大幅に超える引張応力が発生することが明らかと なった。また,ひび割れが発生した場合は,さらなる後荷重や温度の影響も加わりさらに引 張応力が増加しひび割れの延伸が発生すると考えられる。

これらの現象に対するひび割れ抑制対策として,以下の3ケースを提案し,その効果について FEM 解析の結果をもとに検証した。その結果,壁高欄スリット有りの形状で中間支点のプレキャスト床版の地覆部に緊張力を導入した CASE1 では,効果はあるものの局部的な引張応力が発生した。壁高欄部のスリットを無くした CASE2 では応力集中は発生しないものの,コンクリートの引張強度以上の引張応力が発生した。最も効果のあった CASE2 の壁高欄に緊張力を導入した CASE3 では,活荷重作用時においても壁高欄上端に圧縮力を残すことができ発生応力が引張強度以下になることを示した。

今後の鋼鈑桁橋の設計・施工では、中間支点部のひび割れ対策として、緊張力を導入した プレキャスト壁高欄を採用するなど、壁高欄のスリット構造を見直す必要があることが明ら かになった。

【第5章 参考文献】

- 1) 松村達也,師山裕,塩永亮介,小川潤一郎:地覆・壁高欄コンクリートの収縮ひび割れ幅 算定に関する検討,コンクリート工学年次論文集, Vol.7, No.1, pp.535-540, 2005
- 2) 蓑輪圭祐, 下村匠: 実橋梁の壁高欄部に生じたひび割れの発生原因に関する解析的検討, コンクリート工学年次論文集, Vol.39, No.1, pp.355-360, 2017
- ヘン サルピソット、石川敏之、河野広隆、服部篤史:鉄筋コンクリート壁式防護柵のス リットが鋼桁に生じる応力に与える影響、コンクリート工学論文集, Vol.24, No.3, pp.113-121, 2013
- 4) 脇坂英男,吉村徹,和田吉憲,有働昌史,濵田秀則:沖縄における高炉スラグ微粉末を配合したコンクリートおよびエポキシ樹脂塗装鉄筋の曝露試験,土木構造・材料論文集,第36号, pp.77-85, 2020
- 5) 土木学会: 2017 年制定コンクリート標準示方書 [設計編], pp.38-41, 2018.3

第6章

プレキャスト PC 床版に用いる材料の 塩分浸透抑制および紫外線劣化抑制 に関する検討

6.1 はじめに

日本列島の南西端に位置する沖縄は、高温多湿の亜熱帯海洋性気候の地域に属しており、 潮風や台風によって塩分を含んだ飛沫が島全体にもたらされる。このような理由から,沖縄 は国内で最も厳しい塩害環境の地域と認識されている。3 章にも記載したが,沖縄自動車道 の北部区間(石川 IC~許田 IC)では、1974 年から2 年間という急速施工が行われたが、海砂 の除塩処理が不十分であったために、供用開始直後から RC 床版などの塩害劣化が生じてい た。そこで、抜本的な対策として、鋼鈑桁橋の RC 床版を PCaPC 床版に取替える工事を行っ ている。沖縄自動車道の床版取替え工事では,耐久性を向上させるためにコンクリート中の セメントの一部を高炉スラグ微粉末に置換し、鉄筋には、エポキシ樹脂を粉体塗装したエポ キシ樹脂塗装鉄筋を使用している。しかし、高炉スラグ微粉末に置換したコンクリートは, 曝露実績が少なく、また、PCaPC 床版などの継手構造に用いるエポキシ樹脂塗装鉄筋は、長 期間の曝露による紫外線劣化が懸念された。そこで、本試験では、高炉スラグ微粉末の置換 の有無によるコンクリートの性能確認を曝露期間 11 年で実施するとともに、エポキシ樹脂 塗装鉄筋の紫外線劣化に対する性能確認を曝露期間 9 ヵ月で実施した。図-6.1 に曝露試験 場の位置を、図-6.2に名護市における気象庁の過去10年間の平均気温および降水量¹⁾を示 す。6.2 では、セメントの一部を高炉スラグ微粉末に置換したコンクリート曝露試験を、6.3 では、エポキシ樹脂塗装鉄筋の曝露試験について詳述する。

図-6.2 過去 10 年の平均気温および降水量¹⁾ ※グラフは、文献 1)を著者により再編

6.2 セメントの一部を高炉スラグ微粉末に置換したコンクリートの曝露試験

6.2.1 試験概要

2009年の億首川橋のRC中空床版橋のリニューアル工事^{2),3)}以来,高炉スラグ微粉末6000が, 沖縄自動車道のコンクリート配合として用いられている。比表面積3000,4000,6000,8000 cm²/gのJIS化された高炉スラグ微粉末があるが,中でも6000cm²/gは早期に強度が発現するた め,プレストレストコンクリートに適用した場合,経済性や施工性に優れているといわれて いる。これらの橋では,コンクリート中のセメント成分の50%が高炉スラグ微粉末に置き換 えられており,この配合のコンクリートを用いることにより,塩化物イオン浸透性と微結晶 石英を含む反応性骨材に対するアルカリシリカ反応が大きく抑制された。この抑制効果は, 2009年の建設中に行った電気泳動試験や80℃のNaOH溶液中への浸漬試験などの促進試験に よって確認されたが³⁾,実際の環境に長期間曝露した後にコンクリートを評価する必要があ ると考えた。そこで,海岸部に近接し,飛来塩分が多く過酷な腐食環境下である許田高架橋 の橋下を試験場として選定し,億首川橋と同様のコンクリート配合を用いて曝露試験を行っ た。図-6.3に曝露試験の位置や現地状況を示す。曝露試験体はφ100×200mmの円柱試験体と 高さ700×幅2000×奥行400mmの直方体試験体である。曝露場は許田高架橋下り線のP5~P6間 にあり,海岸線に近く,短期間でコンクリートの耐久性を評価できる箇所を選定した。

円柱供試体(圧縮,ASR 試験体)

図-6.3 曝露試験位置

6.2.2 試験項目

今回の曝露試験で実施した試験項目は,(1)圧縮強度試験,(2)中性化深さ試験,(3)塩化物 イオン浸透性,(4)鋼材腐食センサの自然電位,(5)アルカリシリカ反応などに伴う長さ変化 で,各試験の内容については,**表-6**.1に示す。

試験 試験名 試験内容 実施時期 圧縮強度 JISA1108に準拠し、圧縮強度試験を実施 試験 (配合:6種類,円柱試験体: φ100×200mm) 模擬試験体内に設置した鋼材腐食センサの自然電位を計測することによ 2009年 竣工時 鋼材腐食センサ り、腐食の進行度を評価する(腐食の判定基準はASTM-C876,配合:6種 の調査 3月 の自然電位 類, センサ1箇所でかぶり深さ方向に対し25mm, 35mm, 45mmでの計測 が可能) 円柱試験体に埋め込んだゲージプラグの2点間距離を, JIS A 1129-2 (コン アルカリシリカ反応 タクトゲージ法) に準拠して測定する などに伴う長さ変化 (配合:6種類,円柱試験体: φ100×200mm) 圧縮強度 竣工時と同様 試驗 模擬試験体からコアを採取し、JISA 1152 に準拠して中性化深さを測定する(配合: 中性化 6種類, コア供試体: φ 50×100mm, 1配合あたり海側面および山側でそれぞれ測定) 2012年 深さ試験 3年後 ただし、EPMA分析と兼用するためのコアは φ 100×100mm で採取する 7月 の調査 模擬試験体から抜いたコアから試験片(45×45mm)を切り出し, EPMAに よる面分析を実施。浸せき法(JSCE-G572)を参考に、見掛けの拡散係数 塩化物イオン 2016年 7年後 浸透性 を算出(配合:6種類,模擬試験体:700×400×2000mm,試験片:縦横 1月 の調査 45mm・厚さ17mm) 鋼材腐食センサ 竣工時と同様 の自然電位 アルカリシリカ反応 竣工時と同様 などに伴う長さ変化 模擬試験体からコアを採取し、JISA 1108 に準拠し、圧縮強度試験を実施 圧縮強度 試験 (配合:6種類,円柱試験体: φ100×200mm) 模擬試験体からコアを採取し、JISA 1152 に準拠して中性化深さを測定する(配合: 中性化 6種類, コア供試体: φ 100×100mm, 1配合あたり海側面および山側でそれぞれ測 深さ試験 定) 11年後 2019年 の調査 11月 塩化物イオン 3年後と同様 浸透性 アルカリシリカ反応 竣工時と同様 などに伴う長さ変化

表-6.1 曝露試験内容一覧

6.2.3 試験材料

36B

153

158

178

使用したコンクリートの配合を表-6.2,使用骨材の産地と岩種を表-6.3,直方体試験体の 詳細を図-6.4に示す。セメントと置換する材料は、高炉スラグ微粉末6000とし置換率は50% とした。なお、プレキャスト部材に相当する試験体の60H,60Bは、福岡の工場で作製し、そ の他の場所打ち部材に相当する40N,40B,36N,36Bは沖縄の現場ヤードにて作製した。

表-6.2 コンクリート配合

試験体名	セメントの種類	圧縮 強度 (N/mm ²)	スランプ (cm)	水結合材 比 (%)
60H	早強セメント	60	12	30.9
60B	早強セメント50% +高炉スラグ微粉末6000 50%	60	12	31.9
40N	普通セメント	40	18	40.0
40B	普通セメント50% +高炉スラグ微粉末6000 50%	40	18	40.0
36N	普通セメント	36	12	43.0
36B	普通セメント50% +高炉スラグ微粉末600050%	36	12	43.0

36N	普通セメント		3	36	12	43.0	
36B	普通セメント50% +高炉スラグ微粉末6000 50%		3	36	12	43.0	
試験	単位量 (kg/m ³)						
体 名	水	セメント	高炉スラグ 微粉末 6000	粗骨材	細骨材	膨張材	AE剤
60H	150	485	-	1154	722	-	4.85
60B	150	235	235	1094	778	-	4.47
40N	170	405	-	964	762	20	2.76
40B	162	183	202	964	791	20	1.82
36N	159	350	-	1023	783	20	2.41

※プレキャスト部材は圧縮強度 60N/mm²を想定 場所打ち部材は圧縮強度 36,40N/mm²を想定

799

20 1.60

1023

表-6.3 使用骨材の産地と岩種

な 0.0 及用有例の性地と相性					
試験体名	骨材	産地	岩種		
60H 60B	細骨材 (海砂)	福岡県朝倉産	緑色片岩,砂泥質片岩		
	粗骨材 (砕石)	福岡県朝倉産	(一部微晶性石英を含む)		
40B 36B	細骨材① (海砂)	沖縄県東村産 (新川沖)	石匠岩 泥岩 动岩 百岩		
	細骨材② (砕砂)	沖縄県本部半島産	建岩, 粘板岩, 或名, 或名 建岩, 粘板岩 建質粘板岩, 砂質片岩		
	粗骨材 (砕石)	沖縄県本部半島産	(一部に隠僦館賀石央を古む)		
40N 36N	細骨材① (海砂)	沖縄県東村産 (新川沖)	工成出 泥出 动虫 百虫		
	細骨材② (砕砂)	沖縄県本部半島産	100名, 60名, 60名, 60名 建岩, 粘板岩 建質粘板岩, 砂質片岩		
	粗骨材 (砕石)	沖縄県国頭村産	(一部に隠俶		

図-6.4 直方体試験体

6.2.4 試験結果

(1) 圧縮強度試験

図-6.5にモールドで作製した円柱供試体(28日,3年および7年)とコア供試体(11年)の 圧縮強度試験結果を示す。60Hと60Bは,曝露開始時の試料の材齢が異なるが,すべての円柱 供試体で強度が増加しており,3年後のセメントを高炉スラグ微粉末に置換した試験体は, セメント単味の場合と比較し強度の伸びが大きかった。また,11年間の調査の結果,高炉ス ラグ微粉末に置換した試験体は,セメント単味の試験体と比較して,強度が約15%から20% 増加することが確認された。11年目のコア試験体の強度が7年目の円柱供試体の強度に比べ て最大で7%程度低下しているが,円柱供試体とコア供試体の差によるものと考えられる。文 献によると30N/mm²で15%程度,60N/mm²で9%程度圧縮強度が低下するとの報告もある⁴⁾。 なお,モールドで作製した円柱供試体は,1回分残しており,次回の試験の際にコア試験体 との強度比較を行う予定である。

図-6.5 圧縮強度試験結果

(2) 中性化深さ試験

図-6.6は,各強度水準での海側と山側の中性化深さの平均値を示したものである。このグ ラフより試験体36N,36Bで約0.6~1.4mmの中性化深さを示したが,それ以外の中性化深さ は非常に小さかった。11年目の36Bは計測値が7年目より小さくなっているが,深さが1mm程 度と浅いため,細骨材などの影響で0.2mm程度のばらつきが見られる。高炉スラグ微粉末に 置換した試験体とセメント単味の試験体の間に明確な差異は観察されなかった。

図-6.7は各有効水結合材比について測定した中性化深さを示すグラフである。図中の線は, コンクリート標準示方書で想定されている中性化速度係数の特性値αから算出した予測値で ある。αは式(6.1)から計算される。実線は,乾きやすい環境 (βe=1.6) における予測値を示し, 破線は,乾きにくい環境 (βe=1.0) における予測値を示している。

$$\alpha = -3.57 + 9.0 W/B \ (mm/\sqrt{\mp})$$
 (6.1)

ここに, W/B: 有効水結合材比

t:年

 $B: C_p + k \cdot A_d$

C_p: 単位容積あたりのポルトランドセメントの質量

k:0.7(高炉スラグ微粉末の場合)

A_d:単位体積あたりの混和材の質量

セメント単味の場合の試験体については3年後および11年後に測定した中性化深さは,コ ンクリート標準示方書⁵⁾の予測値とほぼ一致したが,高炉スラグ微粉末に置換した試験体は, 予測値をはるかに下回り,セメント単味の場合とほぼ同等であった。

(3) 塩化物イオン浸透性試験

本研究では、直方体試験体から採取した試験片について EPMA による表面分析を行い、 JSCE-G 572 に基づいて見掛けの拡散係数を算出した。写真-6.1 に 3 年、写真-6.2 に 11 年 曝露時に採取した試験片の EPMA 分析による塩化物イオンの濃度分布を示す。塩分濃度の 変化は、36N では、30~38mm 付近まで、40N では、28mm 程度まで影響が及んでいること がわかる。また、図-6.8 に見掛けの拡散係数と水結合材比の関係式を示す。図-6.8 中の高 炉セメントの直線式は、コンクリート標準示方書 5 に示されている高炉セメントの予測式を 用いて水結合材比に対する見掛けの拡散係数を算出したものであり、関係式(6.2)による。

$$logD = -3.2 \quad (W/C) \quad -2.4 \tag{6.2}$$

ここに、D(cm²/年): 塩化物イオンの見掛けの拡散係数

W/C(%):水結合材比

供試体は,直方体試験体の海側と山側の両方から取り出し,その結果を示した。いずれの 強度水準の試験体であっても,高炉スラグ微粉末を使用した方が見掛けの拡散係数が小さく なる傾向にあり,高炉スラグ微粉末の置換により塩分浸透抵抗性が向上することがわかる。 また,材齢による変化に着目すると,高炉スラグ微粉末に置換した場合は,拡散係数の変化 はあまり見られないが,セメント単味の場合では,とくに,36Nでは材齢とともに拡散係数 が大きくなる。

写真-6.1 曝露3年後の EPMA 表面分析による CI-濃度分布

写真-6.2 曝露 11 年後の EPMA 表面分析による CI-濃度分布

図-6.8 水結合材比と塩化物イオン拡散係数の関係

(4) 鋼材腐食センサの自然電位

鋼材腐食センサの電位を計測した結果を図-6.9に示す。なお、システムの不具合により11 年目の自然電位は計測できておらず7年目の値を記載している。ASTM C876による腐食の 評価基準を表-6.4に示す。ASTMによる基準のは、鋼硫酸銅電極に対する自然電位であるた め、本システム^ので得られた電位を式(6.3)により変換し得られたデータにより評価した。

$$E = E' - 93$$
 (6.3)

ここに、E(mV): 銅硫酸銅電極に対する試料極の自然電位

E'(mV):鋼材腐食センサの参照極に対する試料極の自然電位

図-6.9より,40Nと36Nを除く4配合の結果はいずれも-200mV以上の電位で推移しており,90%以上の確率で腐食なしと判定できる。40Nと36Nの結果は、ほかの4配合に比べれば不確定と判定される電位付近で推移しているが、計測開始からこれまでほぼ同じ電位で推移しているため、腐食が進行している可能性は低いと考えられる。高炉スラグ微粉末に置換した配合で作製した試験体は、セメント単味配合で作製した試験体に比べ鋼材が腐食しにくい環境にあることが確認できた⁷。

図-6.9 自然電位

表-6.4 ASTM C876 における腐食判定基準

自然電位 (E) (mV vs. C.S.E)	腐食確率	
-200 < E	90%以上の確率で腐食なし	
$-350 {<} E {\leq} -200$	不確定	
E ≦ -350	90%以上の確率で腐食あり	

(5) アルカリシリカ反応などに伴う長さ変化

本試験体は、細骨材と粗骨材に微結晶性石英が含まれており、これにより遅延膨張性のア ルカリシリカ反応を誘発する懸念があった。しかし、図-6.10に示すように、初期状態から 収縮する方向に変化しており、さらに、3年目から11年目にかけての変化率の変動は小さ く、アルカリシリカ反応を示すような膨張は確認されなかった。

図-6.10 アルカリシリカ反応などに伴う長さ変化

6.3 エポキシ樹脂塗装鉄筋の曝露試験

6.3.1 試験概要

飛来塩分の影響を受ける地域では、塩害対策としてコンクリートに埋め込む鉄筋をエポキ シ樹脂塗装鉄筋としている。このエポキシ樹脂塗装鉄筋は、工期短縮のために作られるプレ キャスト部材の接合部にも使用されているが、工場で製造されてから現場で設置されるまで、 約3~6ヵ月間ストックされるため長期間曝露状態にさらされ紫外線劣化の可能性がある。と くに、沖縄は、図-6.11に示された気象庁の紫外線計測データ¹⁾のように、エポキシ樹脂塗装 の紫外線劣化に最も影響を及ぼす280-315nmのUV-B量が日本の中でも高い地域であること が分かっている。なお、エポキシ樹脂塗装鉄筋を用いる鉄筋コンクリートの設計施工指針⁸⁾ では、曝露期間が3ヵ月を超えると性能の低下が見られるとの記載があるが、塗装技術の進 歩により、性能が向上していることから、3ヵ月以上曝露されたものがどの程度の性能を維 持しているか改めて確認する必要がある。また、長期的な曝露による紫外線対策として**写真** -6.3のように遮光ネットで覆っているが、その効果が明らかになっていない。

そこで、本章では、コンクリート製品のストック時におけるエポキシ樹脂塗装鉄筋の性能 を明らかにするために、紫外線劣化を受けやすい環境である沖縄を曝露試験場に選定し、エ ポキシ樹脂塗装鉄筋に対して遮光ネットを用いて曝露した場合と日光に直接曝露した場合 について試験を実施した。

図-6.11 2017 年の各月ごとの日積算 UV-B 量¹⁾ ※グラフは、文献 1)を著者により再編

写真-6.3 遮光ネットによる紫外線劣化対策の例

6.3.2 試験方法

曝露試験では,表-6.5 に示す材料を用いてエポキシ樹脂塗装鉄筋の塗装の性能を確認した。試験に用いるエポキシ樹脂塗装鉄筋は、塗装後2時間以内に塗膜硬化性試験を行い、適 正に硬化していることを確認し、規定長さ(1m)に切断した後、端面にそれぞれ補修塗装を 行った。曝露試験実施場所は、直射日光の当たる沖縄自動車道の許田料金所に隣接する曝露 試験場(図-6.12)とした。鉄筋を紫外線の曝露環境に置くため、写真-6.4に示すように、 ゴム系材料で絶縁処理した単管パイプの上面に、未塗装鉄筋、エポキシ樹脂塗装鉄筋の2種 類を水平に設置した。さらに、遮光ネットの影響を確認するために、写真-6.5のように同一 試験場にて遮光ネットで覆う遮光有りのグループと覆わない遮光無しのグループに分け、覆 うグループはグループ全体を遮光ネットで覆うようにした。遮光材には、一般的に用いられ ている遮光率 70~75%のポリエチレン製遮光ネットを用いた。曝露期間は、ストックする期 間を考慮し最長9ヵ月とし 2017年1月~9月に実施した。D13の試験は初期、1ヵ月、3ヵ 月、6ヵ月、9ヵ月の5回実施した。なお、付着強度試験は、D13に加えて、D19も実施し た %。

図-6.12 曝露試験実施場所

試験材料	材料名	備考(性能など)
鉄筋	D13 D19(付着強度のみ)	SD345
塗装	エポキシ樹脂粉体塗装	青色
遮光材	ポリエチレン製遮光ネット	遮光率 70~75%

表-6.5 曝露試験に用いる材料

写真-6.4 絶縁処理

(a) 遮光無し

(b) 遮光有り

写真-6.5 曝露試験状況

期間ごとの材料の性能を評価するために、土木学会のエポキシ樹脂塗装鉄筋の品質規格 (JSCE-E 102)に規定されている方法に準拠し、目視観察、塗膜厚さ、ピンホール、曲げ、 耐衝撃性,付着強度,耐食性の7項目を試験した。各項目の評価方法は以下のとおりである。

- (1) 外観:塗膜が均一で、たれ、突起、異物付着などの著しいものがあってはならない。
- (2) ピンホール (JSCE-E 512):エポキシ樹脂塗装鉄筋のピンホール試験方法で求めた値が, 鉄筋 1m あたり,鉄筋径の呼び径が D19 以下の場合は,5 個以内,D22 以上の場合は, 8 個以内でなければならない。
- (3) 塗膜厚(JSCE-E 513):エポキシ樹脂塗装鉄筋の塗膜厚試験方法で求めた塗膜厚が 220 ±40μmで,かつ,その範囲を越える頻度が10%以下でなければならない。
- (4) 耐衝撃性(JSCE-E 514):エポキシ樹脂塗装鉄筋の耐衝撃性試験方法に規定する、衝撃 による塗膜の破壊状況を確認する方法により衝撃強度試験を行い、撃芯が直接当った部 分の周囲で塗膜の破砕、割れ、はく離および浮きなどが生じてはならない。

- (5)曲げ加工性(JSCE-E 515):樹脂被膜鉄筋の曲げ試験方法によって試験を行い、20±2℃ および 5±1℃のいずれの条件においても、曲げた部分の塗膜に生じた割れ、はく離およ び浮きなどの発生頻度が 20%以下でなければならない。
- (6) 付着強度(JSCE-E 516):樹脂被膜鉄筋の付着強度試験方法によって試験を行い,最大 付着応力が無塗装鉄筋の 85%以上でなければならない。
- (7) 耐食性(JSCE-E 518):エポキシ樹脂塗装鉄筋の耐食性試験方法によって試験を行い, 平均発せい面積率が 0.5%以下でなければならない。

曝露期間と試験方法の一覧については、表-6.6のとおりである。

試験項目		對毆頂日	曝露期間						스카
		1110次 4 日	初期	1ヵ月	3力	月 6ヵ	月	9ヵ月	
	未塗装 (遮光無し)	外観	3						3
D13	未塗装 (室内保管)	コンクリート付着性	3	3	3	3		3	15
	エポキシ樹脂塗装鉄筋 (遮光無し)	外観・膜厚・ピンホール	3					3	
		外観(経時の変化)	1				1		
		曲げ加工	5	5	5	5		5	25
		耐衝擊	3	3	3	3		3	15
		コンクリート付着性	3	3	3	3		3	15
		耐食性(塩水噴霧)	3	3	3	3		3	15
	エポキシ樹脂塗装鉄筋 (遮光有り)	外観・膜厚・ピンホール	3					3	
		外観(経時の変化)	1					1	
		曲げ加工	5	5	5	5		5	25
		耐衝撃	3	3	3	3		3	15
		コンクリート付着性	3 3		3	3		3	15
		耐食性(塩水噴霧)	3	3	3	3		3	15
			曝霰期間						
試験項目		試験項目	初期 1ヵ月		月 3ヵ月			6ヵ月	合計
D19	未塗装鉄筋	コンクリート付着性	3 3			3		3	12
	エポキシ樹脂塗装鉄筋 (遮光無し)	11	3		3			3	12
	エポキシ樹脂塗装鉄筋 (遮光有り)	11	3	3		3		3	12

表-6.6 性能試験一覧表

単位:本

6.3.3 試験結果

(1) 外観

外観の確認のため全曝露期間にわたり塗装の均一性・たれ・突起・異物付着,光沢の変化 を目視観察した。写真-6.6は,曝露期間におけるエポキシ樹脂塗装鉄筋の外観の変化である。 アルミ箔で鉄筋を覆い紫外線を完全に遮断し,初期,1,3,6ヵ月の曝露期間になるように調 整した。その結果,時間の経過とともに光沢の低下,消失および白亜化が観察された。光沢 低下は「遮光無し」が3ヵ月後に認められたのに対し「遮光有り」は6ヵ月後であったが,9ヵ 月後には,遮光の有無にかかわらずその差はほとんどなくなり光沢が消失した。さらに,白 亜化については,写真-6.7のように測定用の透明テープを塗膜表面に貼り,剥がしたテープ の表面に粉の付着が無いか確認した。その結果,9ヵ月後には表面は白亜化していることが 分かった。

写真-6.7 テープ貼付けによる白亜化の確認結果

(2) ピンホール

ピンホールの有無を確認するにあたり、試験材表面に油・水・ほこりなどが付着していないことを確認し、付着している場合にはウェスで拭き取った。検査は写真-6.8 のようにJSCE-E 512 に準拠し、試験電圧は 1000V、走査速度 0.5m/s 以下で探触子を移動させ、試験材全長に対しピンホールの有無を調べた。なお、塗膜表面が探触子の真ちゅうブラシで傷がつく可能性があるため、できるだけ丁寧に行い、試験材全長に対して発生した放電回数をピンホール数とした。

試験の結果、曝露期間を通してピンホールに増減はなく、規格値を満足した。

写真-6.8 ピンホール試験状況

(3)塗膜厚

塗膜厚は、図-6.13 のように電磁式膜厚測定機(塗膜厚 100~400μm の範囲で測定精度が ±4%以内)を使用して、長さ 1m のエポキシ樹脂塗装鉄筋の曝露された上面側の節と節との 間の平面部を1本あたり9箇所ずつ測定した。全曝露期間において、塗膜の平均厚は当初の 222μm から変化はほとんど見られず、標準偏差は13.5~17.5μm であった。計測値は、図-6.14 に示すように土木学会規準で規定されている220±40μm を満足した。

図-6.13 膜厚計測方法

図-6.14 塗膜厚計測結果

(4) 耐衝撃性

耐衝撃性試験では、図-6.15に示す衝撃試験機を使用し、衝撃強度3.0N・mとなるように 1.8kgのおもりを17cmの高さから落下させた。おもりの落下位置は、エポキシ樹脂塗装鉄筋1 本につき、曝露面の5箇所の節とした。撃芯が直接当たった箇所の鉄筋素地の露出面積を測 定するとともに、衝撃を受けた周囲の塗膜の破砕、割れ、はく離および浮きの有無を確認し た。

図-6.15 耐衝撃性試験方法

全曝露期間で遮光の有無にかかわらず,写真-6.9 のように打撃周辺部で塗膜の破砕・割 れ・はく離などの異常は発生せず,規格を満足した。なお,はがれなどを確認するためにテ ープを鉄筋表面に貼って写真-6.10のように確認したが,はがれてくるものはなかった。

写真-6.9 塗膜厚計測結果

【曝露初期】

【曝露9ヵ月後】

(5)曲げ加工性

曲げ加工性試験では,エポキシ樹脂塗装鉄筋を試験前の24時間以上20±2℃で保管した後, 支点・力点・ローラーで構成される曲げ装置を用いて,内半径が鉄筋の公称直径の1.5倍と なるよう180°曲げた。なお,曝露面はひび割れを評価するために曲げ加工の外側にし,エポ キシ樹脂塗装鉄筋と接触する部分は,ウレタン材などでライニングし機械との摩擦でエポキ シ樹脂塗装が傷つかないようにした。曲げ加工完了後,外周および内周表面の塗膜を観察し, 微少割れ,開孔割れ,はく離などの欠陥の数を記録した(図-6.16)。

図-6.16 曲げ加工性試験方法

表-6.7 にエポキシ樹脂塗装鉄筋の曲げ加工後の割れ発生率の経時変化を示す。遮光無しの9ヵ月後に1mm以下の微小な割れの発生(試験体5本中,1本に発生)が認められたが, すべて土木学会規準の規格を満足した。

改 0.7 固己 医裂后术								
遮光の有無	初期	1ヵ月	3ヵ月	6ヵ月	9ヵ月			
遮光無し	0%	0%	0%	0%	20%			
遮光有り	0%	0%	0%	0%	0%			

表-6.7 曲げ試験結果

※20%以下を合格とする

(6)付着強度

付着強度試験では、図-6.17 に示すように 150mm の立方体のコンクリート試験体の中に 定着長が 75mm となるように曝露した鉄筋をフレッシュコンクリート中に埋め込み、硬化後 に引抜き試験機にて付着強度の確認を行い、エポキシ樹脂塗装鉄筋の引抜き強度が無塗装鉄 筋の 85%以上有しているか確認した。付着試験体の作製状況および試験状況を写真-6.11 に 示す。なお、打設するコンクリートは、土木学会規準に従い、骨材の最大寸法 20mm、スラ ンプ 10±2.5cm、目標強度を 30.0±3.0N/mm²とし、一試験体につき 3 体作製した。

図-6.17 鉄筋付着試験体

(a) 鉄筋付着試験体作製状況

(b) 鉄筋付着試験状況

写真-6.11 鉄筋の付着強度試験体の作製状況と強度試験

曝露期間ごとに、D13およびD19の無塗装鉄筋に対する付着応力の比率を確認した結果を 図-6.18に示す。D13およびD19のエポキシ樹脂塗装鉄筋の付着強度は、遮光の有無にかかわ らず、全曝露期間で規格値の85%を満足した。

図-6.18 鉄筋の付着強度試験結果

(7) 耐食性

耐食性試験では、各曝露期間経過後に、曲げ試験と同様の方法でエポキシ樹脂塗装鉄筋を 曲げ加工し、促進試験を行うために写真-6.12 に示すように塩水噴霧試験装置内に配置した。 試験方法は、JIS Z 2371 の塩水噴霧試験法に従い、塩水の濃度を 50g/l±5g/l とし、試験時間 を 1000~1100 時間とした。さらに、試験後には、表面のさび・ふくれ・はく離などの異常 を調べ、また腐食が認められる場合には、発錆面積を 1mm²単位で求めた。

靖面積/塗装全面積の比率試験結果を表-6.8, 発錆状況を写真-6.13 に示す。エポキシ樹 脂鉄筋は,遮光無しの場合,9ヵ月後にわずかな程度の腐食が確認された。これは曲げ加工 時に生じた確認できない微小な割れが原因と考えられる。ただし,すべての曝露期間で平均 発錆面積率が0.5%以下となり規格を満足した。

写真-6.12 塩水噴霧装置内の鉄筋配置状況

エポキシ樹脂塗装鉄筋 遮光無し 写真-6.13 発錆状況(曝露9ヵ月)

遮光の有無	初期	1ヵ月	3ヵ月	6ヵ月	9ヵ月
遮光無し	0.0%	0.0%	0.0%	0.0%	0.1%
遮光有り	0.0%	0.0%	0.0%	0.0%	0.0%

表-6.8 平均発錆面積率の経時変化

※0.5%以下を合格とする。

- 134 -

6.4 まとめ

まず,セメントを高炉スラグ微粉末 6000 に置換したコンクリートの 11 年間の曝露試験に より得られた結果について,以下にまとめる。

- (1) 圧縮強度試験の結果から、11 年目のすべての強度水準の試験体において、同強度のセメント単味配合の試験体に比べ 15%~20%程度の強度増加が期待できる。
- (2)中性化深さ試験では、36N/mm²の強度水準の試験体で1mm 程の中性化深さで、それ以外では微小であった。高炉スラグ微粉末を使用することによる明確な差は確認されていない。
- (3)塩化物イオン浸透性試験では、高炉スラグ微粉末を使用することで水結合材比 43%の試験 体では、最も効果が大きく、塩化物イオン拡散係数が 20%程度に低減され塩分浸透抵抗 性が向上することが確認された。
- (4)鋼材腐食センサの自然電位計測では、7年目の結果であるが、高炉スラグ微粉末に置換した配合はセメント単味配合に比べ電位が貴電位側にあり、高炉スラグ微粉末に置換した試験体は、単味配合の試験体に比べ、鋼材が腐食しにくい環境にあることが確認できた。
- (5)アルカリシリカ反応などに伴う長さ変化の確認では、細骨材と粗骨材に微結晶性石英が含まれているコンクリートであったが、異常な膨張は確認されなかった。

本曝露試験は、15年後の追跡調査も実施する予定であり、高炉スラグ微粉末 6000 がコン クリートの高耐久化に寄与していることをさらに確認する予定である。

次に,エポキシ樹脂塗装鉄筋の9ヵ月間の曝露試験よって得られた結果について,以下に まとめる。

- (1)目視観察では,光沢低下は遮光無しで3ヵ月後に,遮光有りは6ヵ月後に見られた。9ヵ 月後には,遮光の有無にかかわらずその差はほとんどなくなり光沢が消失した。
- (2)塗膜厚試験では、全曝露期間において、塗膜厚の変化はほとんど見られず土木学会規準の 規格値を満足した。
- (3)ピンホール試験では,試験の結果,ピンホールの増加はみられず土木学会規準の規格値を 満足した。
- (4)曲げ試験では、遮光無しの9ヵ月後に微小な割れの発生(試験体5本中、1本のみに発生) が認められたが、土木学会規準の規格値を満足した。曲げ加工による割れの原因としては、 通常の白亜化がごく表面部分の現象と考えられるのに対し、9ヵ月曝露した状態では、目 視では確認できないような劣化箇所が塗装表面に存在したことが考えられる。

- (5)耐衝撃性試験では,遮光の有無にかかわらず,全曝露期間で打撃周辺部の塗膜の異常は発 生せず,土木学会規準の規格値を満足した。
- (6)付着強度試験では、エポキシ樹脂塗装鉄筋の付着強度は、遮光の有無にかかわらず、全曝 露期間で土木学会規準の規格値を満足した。
- (7)耐食性試験では、遮光無しの場合において9ヵ月後にわずかな腐食が確認されたが、すべての曝露期間で平均発錆面積率が0.5%以下となり土木学会規準の規格値を満足した。腐食については、曲げ加工時に生じた目視で確認できない微小な割れが原因と考えられるが、土木学会規準の規格値を満足していることからも十分な性能を有していると考えられる。

エポキシ樹脂塗装鉄筋を用いる鉄筋コンクリートの設計施工指針では,直射日光の当たる ところで保管できる曝露期間の目安を3ヵ月としていたが,今回の曝露試験で曝露期間9ヵ 月までは,遮光の有無にかかわらず土木学会規準の性能を満足することが明らかになった。

なお,遮光の有無にかかわらず土木学会規準の性能は満足したが,遮光無しの場合は,紫 外線劣化と見られる現象が一部発生した。一方,遮光ネットを使用した場合は,土木学会規 準の試験による紫外線劣化の発生がほとんど見られず,劣化の進行が抑制されており,6ヵ 月以上曝露する場合は,遮光ネットを使用する必要があることが分かった。

【第6章 参考文献】

- 1) 気象庁ホームページ: https://www.jma.go.jp/jma/menu/menureport.html (2022 年 1 月確認)
- 2) 福永靖雄,石塚純,山戸隆秀,田中正裕,下村憲一郎,吉村徹:沖縄自動車道・億首川橋 における RC 床版橋リニューアル工事(上),橋梁と基礎, Vol.43, No.2, pp.20-26, 2009
- 3) 福永靖雄,石塚純,山戸隆秀,田中正裕,下村憲一郎,吉村徹:沖縄自動車道・億首川橋 における RC 床版橋リニューアル工事(下),橋梁と基礎, Vol.43, No.3, pp.13-19, 2009
- 4) 蓮尾孝一, 松田拓: コア採取がコンクリート強度試験結果に与える影響, コンクリート工 学年次論文集, Vol.35, No.1, pp.409-414, 2013
- 5) 土木学会: 2018 年制定コンクリート標準示方書 [規準編], 2018.10
- 6) ASTM: Section 4 Construction, Annual Book of ASTM Standards, p.434, 1995
- 7) 吉村徹、二井谷教治、俵道和、枝木太一郎:高炉スラグ微粉末混合コンクリートの耐腐食 性調査のための曝露試験と腐食電位の遠隔モニタリング、材料と環境、Vol.64、No.9、 pp.405-413、2015
- 8) 土木学会:エポキシ樹脂塗装鉄筋を用いる鉄筋コンクリートの設計施工指針,コンクリートライブラリー,第112号,2003.11
- 9) 脇坂英男、工藤真一、森勝、宮永憲一、荻本雄一郎、上久保道夫:遮光ネットで養生した エポキシ樹脂塗装鉄筋の曝露試験について、 土木学会第73回年次学術講演会、VI-207、 pp.413-414、2018.8

第 7 章 結 論

7.1 本研究の成果

本研究では,鋼橋の劣化した RC 床版の PCaPC 床版への取替えにおいて,将来的な人手不 足を想定し,さらなるプレキャスト部材の施工性や品質の向上を図る目的で,各種検討を行 った。以下に,各章で行った検討結果を示す。

第3章「エポキシ樹脂塗装した機械式定着・重ね継手工法の性能評価と実構造物への適用」 では、塩害地域で使用する PCaPC 床版の施工性の向上や死荷重を低減するための新たな継 手構造について実験を行い、実装時の施工性を確認した。検討結果は以下のとおりである。

- (1)定着性能試験から,エポキシ樹脂塗装したエンドバンド継手の必要重ね継手長は,15 ¢ で 満足することが明らかになった。
- (2)高サイクル繰返し性能試験から,エポキシ樹脂塗装したエンドバンド継手を用いた PCaPC 床版は,十分な疲労耐久性を有していることが明らかになった。
- (3)静的曲げ性能試験から,エポキシ樹脂塗装したエンドバンド継手を用いた PCaPC 床版は, 十分な静的曲げ耐力を有していることが明らかになった。
- (4)塩害地域での床版取替え工事では,エポキシ樹脂塗装したエンドバンド継手構造の PCaPC 床版を用いることで,既設の床版厚 210mm に対して,ループ継手を用いた場合の床版厚 は 240mm となり約 15%の増加であった。一方,エンドバンド継手を用いた場合の床版厚 は 220mm となり約 5%の増加に抑えることが可能となった。
- (5)接合方法をエンドバンド継手としたことにより,橋軸直角方向鉄筋の床版側方からの挿入 が不要となり鉄筋配置時の周辺環境への影響を抑え,エポキシ樹脂塗装鉄筋を用いた場合 には,挿入時の塗膜損傷リスクを大幅に低減することが可能となった。

第4章「載荷実験を反映した非合成鈑桁橋の合理的な設計手法に関する検討」では、非合成構造であっても床版の剛性が主桁の挙動に影響を与えると言われていることを踏まえ、床版取替え前後において車両の載荷試験によって実挙動を把握し、主桁応力の照査方法について検討した。検討結果は以下のとおりである。

合成桁の解析モデルでは, B 活荷重載荷時において一部の主桁で許容応力 210N/mm²を超 え,最大 221.2N/mm²,最小-223.3N/mm²の応力となった。解析結果と許容応力との比は P1 支点上の負曲げで 102%,A1-P1 間支間中央の正曲げで 105.3~106.3%であった。その他,活 荷重レーン幅載荷,合成桁の解析モデル,B活荷重試験値補正解析モデル(静的試験の比率 補正),一般車走行時の実応力は,すべて照査を満足した。B 活荷重試験値補正モデルは,最 大 140.6N/mm²,最小-128.0N/mm²であった。床版取替え前後において,B活荷重作用時の許容値に対して 40%程度の余裕があり,非合成鈑桁橋の設計計算において 20~30%程度の超過であれば,十分余裕があることが確認できた。載荷実験の結果を反映させることで,主桁の補強を必要としない合理的な設計を行うことが可能となった。

第5章「壁高欄と床版の接合部におけるひび割れ抑制に関する検討」では、床版部のひび 割れは、将来的に水みちとなり鋼桁や支承の腐食に影響すると考えられた。設計計算上、構 造部材として考慮されていない壁高欄において、壁高欄の目地(以下、スリット)付け根か ら発生するひび割れに着目し、床版部へ延伸するひび割れを低減する方法について検討した。 現地計測を実施した結果、中間支点部の壁高欄施工時にひび割れの発生位置をコントロール するスリットを設けると、スリットの付け根にコンクリートの引張強度 3.1N/mm²を大幅に 超える引張応力が作用することが明らかとなった。FEM 解析においても同様の現象が生じ ることが検証された。ひび割れ対策として、壁高欄に緊張力を導入したプレキャスト部材を 用いることを提案し、解析した結果、活荷重作用時においてもコンクリートの引張強度以下 になることを示した。今後の鋼鈑桁橋の設計・施工では、中間支点部のひび割れ対策として、 緊張力を導入したプレキャスト壁高欄を採用するなど、壁高欄のスリット構造の見直す必要 があることが明らかになった。

第6章「プレキャスト PC 床版に用いる材料の塩分浸透抑制および紫外線劣化抑制に関す る検討」では、コンクリートおよび鉄筋の曝露試験を実施した。

(1)セメントの 50%を高炉スラグ微粉末 6000 に置換したコンクリートの 11 年間の曝露試験 によって得られた結果は、以下のとおりである。

圧縮強度試験の結果から、同強度のセメント単味配合の試験体に比べ15%~20%程度の強 度増加が期待できる。中性化深さ試験では、36N/mm²の強度水準の試験体で1mm程の中性 化深さで、それ以外では微小であった。中性化に関しては、高炉スラグ微粉末を使用するこ とによる明確な差は確認されていない。塩化物イオン浸透性試験では、高炉スラグ微粉末を 使用することで水結合材比43%の試験体では、最も効果が大きく、塩化物イオン拡散係数が 20%程度に低減され塩分浸透抵抗性が向上することが確認された。7年目の結果であるが、 高炉スラグ微粉末に置換した配合はセメント単味配合に比べ電位が貴電位側にあり、高炉ス ラグ微粉末に置換した試験体は、単味配合の試験体に比べ、鋼材が腐食しにくい環境にある ことが確認できた。アルカリシリカ反応に伴う長さ変化の確認では、細骨材と粗骨材に微結 晶性石英が含まれているコンクリートであったが、異常な膨張は確認されなかった。

(2)エポキシ樹脂塗装鉄筋の 9 ヵ月間の曝露試験によって得られた結果は、以下のとおりである。

エポキシ樹脂塗装鉄筋を用いる鉄筋コンクリートの設計施工指針では,直射日光の当たる ところで保管できる曝露期間の目安を3ヵ月としていたが,今回の曝露試験で曝露期間9ヵ 月までは,遮光の有無にかかわらず土木学会規準の性能を満足することが明らかになった。

なお,遮光の有無にかかわらず土木学会規準の性能は満足したが,遮光無しの場合は,曲 げ試験や耐食性試験で紫外線劣化と見られる現象が一部発生した。一方,遮光ネットを使用 した場合は,土木学会規準の試験による紫外線劣化の発生がほとんど見られず,劣化の進行 が抑制されていることが分かった。6ヵ月以上曝露する場合は,遮光ネットを使用する必要 があることが分かった。

7.2 今後の課題と展望

本研究では,将来的な,労働者不足やカーボンニュートラルに向けて,床版取替え時の構造の合理化や耐久性の向上を図ることができた。各章の内容に関する課題と展望については, 以下のとおりである。

第3章「エポキシ樹脂塗装した機械式定着・重ね継手工法の性能評価と実構造物への適用」 では、かぶりを確保した上でループ継手に比べて床版厚を抑えることができた。しかし、塩 害地域では、床版取替えにより床版の厚みが増加することから、腐食しない材料などを用い てさらなる床版厚の低減を図ることが望まれる。

第4章「載荷実験を反映した非合成鈑桁橋の合理的な設計手法に関する検討」では、荷重 の増加の程度によっては、補強が必要となる場合がある。補強する場合は、ボルト接合によ り補強部材を取り付けるが、できるだけ桁のボルト孔を減らせるよう工夫し、Al·Mg 溶射な どの耐久性の高い材料を用いて、既設の鋼桁をできるだけメンテナンスしやすいようにして おく必要がある。

第5章「壁高欄と床版の接合部におけるひび割れ抑制に関する検討」では、壁高欄スリット付け根に発生するひび割れの低減する方法については、解析のみが実施されており、今後 実証実験などを行い採用に向けて取り組んでいきたい。

第6章「プレキャスト PC 床版に用いる材料の塩分浸透抑制および紫外線劣化抑制に関す る検討」では、コンクリート曝露試験は、11 年目までの結果は得られたが、試験体は現在も 曝露を継続している。さらに、長期的な曝露試験を行うことで、セメントの 50%を高炉スラ グ微粉末 6000 に置換したコンクリートの耐久性が向上していることを確認し、利用を促進 することで、二酸化炭素の排出量の削減に取り組んでいきたい。また、高炉スラグ微粉末や 高炉スラグ微粉末入りの PCaPC 床版を運搬する際にも二酸化炭素が発生していることから、 床版取替え工事全体での二酸化炭素の排出量の評価も必要となる。

エポキシ樹脂塗装鉄筋の曝露試験では、9ヵ月程度までは土木学会規準の性能を満足する ことを確認した。曝露期間はできるだけ短くするべきではあるが、さらに長期的な曝露期間 になる場合に備え、コストや使いやすさを考慮した上で、遮光ネットを別の材料に変えた場 合の試験を実施しておく必要がある。

今後の技術開発では、高齢化、労働者不足、カーボンニュートラルを考えつつ、近年、注 目されている DX (デジタルトランスフォーメンション)といったデジタル技術と融合する ことで、さらなる生産性の向上を図ることが望まれる。

謝 辞

本論文は、鋼鈑桁橋の PCaPC 床版の床版取替え工事の合理化や耐久性の向上に関する成 果をとりまとめたものです。本論文を取りまとめるにあたり、研究の方向性、論文の作成の アドバイスなど、不慣れな筆者へ最後までご指導・ご鞭撻を賜りました九州大学大学院工学 研究院社会基盤部門教授の濵田秀則先生に対し、心より感謝申し上げます。また、非常にご 多忙の中、副査をお引き受け頂き、数多くのご指導、ご指摘、ご助言を下さいました、九州 大学大学院工学研究院社会基盤部門教授の松田泰治先生、九州大学大学院人間環境学研究院 都市・建築学部門准教授の小山智幸先生、九州大学大学院工学研究院社会基盤部門准教授の 佐川康貴先生には心より感謝申し上げます。また、佐川康貴先生には、床版取替えの現場も 確認いただき、ご指導、ご助言を頂きましたことに、重ねて感謝申し上げます。

九州大学大学院工学研究院社会基盤部門助教の福永隆之先生には,研究室にて多くの御協 力を頂きましたことに感謝申し上げます。九州大学大学院の修士2年の鹿田陽斗氏には,博 士課程入学当初から,解析モデルの作成などに協力を頂きましたことに感謝申し上げます。

床版取替え工事に絡む研究では,NEXCO 西日本コンサルタンツ株式会社社長の福永靖雄 氏,技師長の角本周氏,西日本高速道路株式会社の今村壮宏氏,宮本健次氏,谷口祐治氏, 和田吉憲氏,岩尾省吾氏,宮永憲一氏,鮫島力氏,駒谷大三氏,荻本雄一郎氏,有働昌史氏, 今村光志氏には,エンドバンド継手構造の採用,鉄筋およびコンクリートの曝露試験にあた り,ご指導を頂きましたことを心より感謝申し上げます。とくに,角本周氏にはオリエンタ ル白石株式会社に在籍中に,開発に関する考え方や論文の作成方法などについても,丁寧に 教えていただきましたことに重ねて,感謝申し上げます。

床版取替えの継手の開発や工事に際し,オリエンタル白石株式会社技術研究所の原健悟氏, 本社の技師長の二井谷教治氏,工事部長の照井満氏,技術部長の井隼俊也氏,浦川洋介氏, 東京支店の梅本洋平氏,大阪支店の亀崎誠志氏,福岡支店工事部長の藤木慶博氏,福岡支店 工事部の井手啓雄氏,岩渕貴久氏をはじめ,床版取替え現場の皆様,日本橋梁株式会社の田 中正裕氏には多くの御協力を頂きましたことに感謝申し上げます。

NEXCO 西日本イノベーションズ株式会社の広野邦彦氏には、沖縄での実構造物の載荷試験に際し、時間的に余裕の無い中で、載荷方法、計測方法などのご指導およびご協力いただきましたことに感謝申し上げます。

安治川鉄工株式会社の上久保通夫氏には,エポキシ樹脂塗装鉄筋の作製を始め,沖縄での 現地曝露試験や性能試験の際は,ご協力いただきましたことに感謝申し上げます。

九州大学名誉教授の大塚久哲先生には,入学前に研究に関するご相談をさせていただき, 数多くのご指導,ご助言を下さいましたことに,深く感謝申し上げます。 日常業務との兼ね合いもある中で研究を進めさせて頂きましたが、オリエンタル白石株式 会社福岡支店技術部長の堀越直樹氏には、論文のまとめに際し、執筆に専念させて頂きまし たことを大変感謝申し上げます。また、所属部署の皆様にも、温かいご支援およびご声援を 頂きましたことに感謝申し上げます。

本研究を始めるにあたり博士課程への入学を勧めていただき,その後も暖かいご支援を賜 りました,大阪支店技術部の大仁田朝生氏には,深く感謝申し上げます。また,研究を始め る機会を与えて頂き,オリエンタル白石株式会社社長の大野達也氏,技術本部長の正司明夫 氏,福岡支店長の山崎直人氏には,深く感謝申し上げます。

最後に, 論文作成に専念させてくれた家族へ感謝し, 謝辞と致します。

令和4年2月 脇坂 英男