九州大学学術情報リポジトリ Kyushu University Institutional Repository

CHO細胞を利用した高機能抗体発現系の開発

増田, 兼治

https://hdl.handle.net/2324/4784583

出版情報:Kyushu University, 2021, 博士(工学), 課程博士 バージョン: 権利関係:

CHO細胞を利用した高機能抗体発現系の開発

2022年1月

増田 兼治

1.	序論…		5		
1.1	研究の背景5				
1.2	本研究の目的14				
1.3	本論文の構成16				
2.	抗体高	発現株のモノクローン化検討17	7		
2.1	要旨.		7		
2.2	背景.		8		
2.3	実験林	オ料及び実験方法2:	5		
	2.3.1	培地2:	5		
	2.3.1.1	C/E 培地2:	5		
	2.3.1.2	軟寒天培地	5		
	2.3.1.3	生産培地	6		
	2.3.2	ステーブルプール細胞及び P15 画分20	6		
	2.3.3	抗体発現株の作製2/	7		
	2.3.4	Fed-batch 培養	7		
2.4	結果.		8		
	2.4.1	抗体発現株の作製と Fed-batch 培養による生産性評価	8		
			~		
	2.4.2	抗体高発現株 L003 を用いた培地の開発32	2		
2.5	2.4.2 まとめ	抗体高発現株 L003 を用いた培地の開発32 か	2 4		
2.5 3 .	2.4.2 まとび 抗体高	抗体高発現株 L003 を用いた培地の開発32 か	2 4 5		
2.5 3. 3.1	2.4.2 まとる 抗体高 要旨.	抗体高発現株 L003 を用いた培地の開発32 b	2 4 5 5		
 2.5 3. 3.1 3.2 	2.4.2 まとめ 抗体高 要旨. 背景.	抗体高発現株 L003 を用いた培地の開発	2 4 5 5 6		
 2.5 3. 3.1 3.2 3.3 	2.4.2 まとる 抗体高 背景. 実験林	抗体高発現株 L003 を用いた培地の開発	2 4 5 5 6 2		
 2.5 3.1 3.2 3.3 	2.4.2 まとめ 抗体高 要旨. 背景. 実験林 3.3.1	抗体高発現株 L003 を用いた培地の開発	2 4 5 5 6 2 2		
 2.5 3. 3.1 3.2 3.3 	2.4.2 まとめ 抗体高 要旨. 背景. 実験林 3.3.1 3.3.1.1	抗体高発現株 L003 を用いた培地の開発	2 4 5 5 6 2 2 2 2		
 2.5 3. 3.1 3.2 3.3 	2.4.2 まとめ 抗体高 要旨. 背景. 実験林 3.3.1 3.3.1.1 3.3.1.2	 抗体高発現株 L003 を用いた培地の開発	2 4 5 5 6 2 2 2 2 2		
 2.5 3. 3.1 3.2 3.3 	2.4.2 まとき 抗体高 要旨. 背景. 実験林 3.3.1 3.3.1.1 3.3.1.2 3.3.2	 抗体高発現株 L003 を用いた培地の開発	2 4 5 6 2 2 2 2 3		
2.5 3. 3.1 3.2 3.3	2.4.2 まとめ 抗体高 要旨. 背景. 実験林 3.3.1 3.3.1.1 3.3.1.2 3.3.2 3.3.3	 抗体高発現株 L003 を用いた培地の開発	2 4 5 5 6 2 2 2 2 3 3		
2.53.3.13.23.3	2.4.2 まとめ 抗体高 要旨. 背景. 実験林 3.3.1 3.3.1.1 3.3.1.2 3.3.2 3.3.3 3.3.4	 抗体高発現株 L003 を用いた培地の開発	2 4 5 5 6 2 2 2 2 3 3 3		
2.5 3. 3.1 3.2 3.3	2.4.2 まとき 抗体高 要旨. 背景. 実験林 3.3.1 3.3.1.1 3.3.1.2 3.3.2 3.3.3 3.3.4 3.3.5	抗体高発現株 L003 を用いた培地の開発	2 4 5 5 6 2 2 2 3 3 4		
2.5 3. 3.1 3.2 3.3	2.4.2 まとき 抗体高 要旨. 背景. 実験林 3.3.1 3.3.1.1 3.3.1.2 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6	抗体高発現株 L003 を用いた培地の開発 32 か 34 発現株への翻訳装置活性化技術の適用検討 35 第 36 オ料及び実験方法 37 増地 42 C/E 培地 42 生産培地 42 技体発現細胞株 L002 及び L003 42 2 因子発現ベクター 42 Fed-batch 培養 42 産生抗体の品質評価 42	2 4 5 5 6 2 2 2 2 3 3 4 5		
2.5 3. 3.1 3.2 3.3	2.4.2 まとき 抗体高 要旨. 背景. 実験林 3.3.1 3.3.1.1 3.3.1.2 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7	抗体高発現株 L003 を用いた培地の開発	2 4 5 5 6 2 2 2 3 3 4 5 5 5 6 2 2 2 2 3 3 4 5 5 6 2 2 2 3 3 4 5 5 7 3 3 4 5 5 5 5 5		
2.5 3. 3.1 3.2 3.3	2.4.2 まとき 抗体高 要旨. 背景. 実験林 3.3.1 3.3.1.1 3.3.1.2 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8	抗体高発現株 L003 を用いた培地の開発	2 4 5 5 6 2 2 2 3 3 4 5		
2.5 3. 3.1 3.2 3.3	2.4.2 まとき 抗体高 要旨. 背景. 実験林 3.3.1 3.3.1.1 3.3.1.2 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9	抗体高発現株 L003 を用いた培地の開発	2 4 5 5 6 2 2 2 3 3 4 5 5 6 2 2 2 2 3 3 4 5 5 5 6		

	3.3.11	ポリリボソーム解析	. 47			
3.4	結果	<u>I</u>	. 47			
	3.4.1	抗体高発現株 L002 での 2 因子 (p180 と SF3b4) 過剰発現の検討	. 47			
	3.4.1.	1 2因子発現株の作製と Fed-batch 培養による評価	. 47			
	3.4.1.2	2 2 因子発現株 M1-M6 のウエスタンブロット法による 2 因子発現	量			
		の解析	. 53			
	3.4.1.3	3 2因子発現株 M1-M6 のポリリボソーム解析	. 54			
	3.4.2	抗体高発現株 L003 での 2 因子 (p180 と SF3b4) 過剰発現の検討	. 55			
	3.4.2.	1 2因子発現株の作製と Fed-batch 培養による評価	. 55			
	3.4.2.2	2 2 因子発現株 N5 を用いたフィード培地の最適化	61			
	3.4.2.3	3 2因子発現株 N5 を用いた培養プロセスの開発	. 63			
	3.4.2.4	4 2因子発現株の継代安定性の評価	. 65			
	3.4.2.5	5 2 因子発現株 N5 の抗体 H 鎖遺伝子 mRNA 発現量の評価	. 67			
	3.4.2.0	5 2 因子発現株 N5 のウエスタンブロット法による 2 因子発現量の	解			
		析	. 68			
	3.4.2.7	7 2因子発現株 N5 のポリリボソーム解析	. 69			
3.5	まと	ප්රා	. 70			
4.	総括		74			
5.	参考	文献	76			
6.	謝辞.		86			
Fig	ure 1	抗体の構造	7			
Fig	ure 2	抗体の製造プロセス	9			
Fig	ure 3	細胞構築プロセスならびにセルバンク作製プロセス	. 10			
Fig	ure 4	CHO 細胞の系統樹	11			
Fig	ure 5	本研究で検討した細胞構築関連技術	. 15			
Fig	ure 6	FSC 及び SSC 分割を利用した FCM による抗体高発現細胞の濃縮	. 23			
Fig	ure 7	抗体高発現株のモノクローン化検討のフロー	. 24			
Fig	ure 8	re 8 ステーブルプール及び P15 画分の細胞由来抗体発現株の生産性評価29				
Fig	igure 9 L002 と L003 の Fed-batch 培養による生産性評価					
Fig	igure 10 L003 を用いた Fed-batch 培養による生産培地の評価					
Fig	ure 11	p180 と SF3b4 の過剰発現、及び cis-エレメントによる分泌型アルカリ	朩			
ъ.	10	スノアメーゼの発現重増入	. 39			
Fig	ure 12	spEKt ^M 技術によるホリリホソーム形成促進モアル	. 39			
Fig	ure 13	加体局発現株への翻訳装直活性化技術の適用検討のフロー	. 41			
Fig	ure 14	L002 を佰土として作製した 2 因于発現ステーブルフール細胞	()			
		Fed-batch	. 48			

Figure 15	L002 を宿主として作製した 2 因子発現株の継代培養中の比生産速度の)
	比較4	9
Figure 16	L002 を宿主として作製した 2 因子発現株 M1-M3 の生産培地-1 を用い	1
	た Fed-batch 培養による生産性評価5	;1
Figure 17	L002 を宿主として作製した 2 因子発現株 M1-M3 の生産培地-2 を用い	ł
	た Fed-batch 培養による生産性評価5	;2
Figure 18	ウエスタンブロット法による2因子発現量の解析	;3
Figure 19	2因子発現株 M1-M6のポリリボソーム解析 5	;4
Figure 20	各2因子発現株のp180mRNA発現量と比生産速度の関係5	;6
Figure 21	L003 を宿主として作製した 2 因子発現株の生産培地-3 を用いた	-
	Fed-batch 培養による生産性評価5	;8
Figure 22	2因子発現株及びL003を用いた Fed-batch 培養により産生された抗体の)
	品質評価	50
Figure 23	2因子発現株N5を用いたFed-batch 培養による3種類のフィード培地の)
	評価	52
Figure 24	2因子発現株 N5 を用いた播種細胞密度とフィード量の検討による培養	(illes)
	プロセスの開発	5 4
Figure 25	継代前後の2因子発現株を用いた Fed-batch 培養による抗体生産性の比	ĥ
	較	6
Figure 26	2因子発現株 N5 とその親株 L003 間での抗体 H 鎖遺伝子 mRNA 発現量	1
	の比較	57
Figure 27	ウエスタンブロット法による2因子発現量の解析	58
Figure 28	2因子発現株 N5 のポリリボソーム解析	<u>;</u> 9
Table 1	2020 年医薬品売上の上位 10 品目	6
Table 2	これまでに細胞構築プロセスで実施された生産性向上のためのアプロー	-
	チー覧1	3

1. 序論

1.1 研究の背景

バイオ医薬品は、バイオテクノロジーによって創製される医薬品の総称であ り、抗体、タンパク質、ホルモン、ペプチド、ワクチン、酵素、サイトカイン 類などが挙げられる。1980年代に遺伝子組換え技術を用い、大腸菌を宿主とし てヒトインスリンが開発、上市された。そして、1990年代にリツキサンとハー セプチンが抗がん剤として開発、上市されて以降、バイオ医薬品の中でも抗体 医薬品が注目を集めるようになった。近年、がん、自己免疫疾患、神経疾患、 感染症等の治療薬として、様々なモノクローナル抗体が開発され、その市場が 急速に拡大している (1,2)。全世界での医薬品売上の上位10品目を見ると、2000 年ではバイオ医薬品が1品目 (8位 エスポー)であったのに対し、2020年では バイオ医薬品が5品目 (1位 ヒュミラ、2位 キイトルーダ、5位 アイリーア、 7位 ステラーラ、8位 オプジーボ)に増加しており、ヒュミラの年間売上高は 204億ドルに達している (3)(Table 1)。また、2020年において、157品目が年間 売上高 10億ドルを超える大型先発医薬品を指すブロックバスターと位置付け られているが、その中でバイオ医薬品、抗体医薬品はそれぞれ 47、22%を占め ており、重要性が年々増加している。

Table 1 2020 年医薬品売上の上位 10 品目

(国際医薬品情報 Vol.1176 (3) より引用)

20年 順位	製品名	20年売上高 (百万ドル)	増減率	主たる適応疾患または 製剤	モダリティ
1	ヒュミラ	20, 389	3.3	関節リウマチ	抗体
2	キイトルーダ	14, 380	29. 7	がん	抗体
3	エリキュース	14, 117	16. 2	抗血液凝固薬	低分子化合物
4	レブラミド	12, 106	12.0	がん	低分子化合物
5	イムブルビカ	9, 442	16.8	がん	低分子化合物
6	アイリーア	8, 360	4.6	加齡性黄斑変性	融合タンパク質
7	ステラーラ	7, 975	25.4	乾癬	抗体
8	オプジーボ	7, 888	▲ 1.5	がん	抗体
9	イグザレクト	7, 497	8. 1	抗血液凝固薬	低分子化合物
10	ビクタルビ	7, 259	53.2	HIV感染症	低分子化合物

バイオ医薬品を太字で示した。

抗体は液状免疫作用を担うタンパク質であり、免疫グロブリン (Ig) とも呼ば れ、特定の抗原とのみ結合することができる (4)。抗体は、5 つのクラス IgG、 IgM、IgA、IgE、IgD に分類されるが、抗体医薬品として用いられる抗体分子 は大部分が IgG である。IgG は 2 本の H 鎖と 2 本の L 鎖の計 4 本のポリペプチ ド鎖から構成されるヘテロテトラマーであり、Y 字形の構造をしている (Figure 1)。Y 字形の下半分の縦棒に相当する領域、上半分の V 字に相当する領域はそ れぞれ Fc 領域 (Fragment, crystallizable)、Fab 領域 (Fragment, antigen binding) と 呼ばれている。Fab 領域の先端に近い半分、すなわち、H 鎖と L 鎖の N 末端か ら約 110 個程度のアミノ酸から構成される領域は、抗体分子によってそのアミ ノ酸配列が著しく異なっており、非常に多様である。この部分は抗原との結合 に関与する領域であり、可変領域 (V 領域) といい、H 鎖、L 鎖の可変領域はそ れぞれ V_H、V_Lと呼ばれている。可変領域の多様性により、抗体は 10⁶–10⁸ 種類 もの抗原と結合することができる。一方、可変領域以外の部分は、定常領域(C 領域)と呼ばれ、抗体間で比較的配列が類似している。また、Fc 領域のアスパ ラギンには N型糖鎖が付加していて、N型糖鎖パターンが抗体の安定性、生物 活性及び免疫原性等に影響を及ぼすことが知られている。抗体医薬品は、低分 子医薬品と比較して標的である抗原への特異性が高いため、高い治療効果と副 作用の低減が期待されている。

Figure 1 抗体の構造

抗体分子は、複雑な立体構造と糖鎖などの翻訳後修飾が必要であることから、 抗体医薬品の生産には高等真核生物である動物細胞が宿主として主に用いられ ている。使用される動物細胞としては、SP2/0、NS0 等のマウスミエローマ細胞、 HEK293 (Human Embryonic Kidney 293) 細胞、BHK (baby hamster kidney) 細胞、 ヒト網膜に由来する PER.C6 細胞等が挙げられるが、主に用いられているのは チャイニーズハムスター卵巣 (Chinese hamster ovary: CHO) 細胞である (5–7)。 CHO 細胞には、ヒトの抗体と類似した糖鎖構造を有すること、無血清培地を用 いた高密度での浮遊培養が容易であること、遺伝子導入が容易で組換え細胞が 構築しやすいこと、遺伝子増幅システムが早期に開発されたこと、様々な培地 が開発されて生産スケールでの製造実績が多いこと、さらに規制当局による承 認実績が多数あり世界中で多くの臨床試験が行われていて安全な宿主細胞とみ なされていること、等の利点があるためである。しかしながら、抗体医薬品は、 投与量が多いこと、製造コストが高いと言われている動物細胞を製造に用いて いることから、コストの低減が求められている。

抗体の製造プロセスは、CHO 細胞を用いた発現システム、すなわち宿主の CHO 細胞と発現ベクターによって構築された生産細胞を出発原料とし、細胞培 養プロセスと精製プロセスから構成されている (Figure 2)。抗体の生産性向上 ならびにコストの低減を目的として、効率的な抗体製造プロセスが開発されて きた。そして、1980年代では 100 mg/L に満たなかった抗体生産性は、その後 20年間で 100 倍以上に上昇し (8)、現時点では 1-10 g/L が Fed-batch 培養での 抗体濃度の典型的な値となっている (9)。培養上清中の抗体濃度は、1細胞が1 日あたりに生産する抗体量である比生産速度 (specific productivity: SPR) と生 細胞密度の経時変化の積分値 (integral viable cell density: IVCD) の掛け算によ って表される。抗体濃度を上昇させるためには、第一に、細胞の生産能力であ る比生産速度が高い発現株を取得し、生産株に採用することが重要であり、主 に細胞構築プロセスの改善によって成し遂げられてきた。そして、抗体濃度の 最大化には、細胞培養プロセスにおいて生細胞密度を高い値に到達させ、培養 後期までその値を維持させることも大きく寄与し、主に細胞培養プロセス開発 の進展によって実現されてきた。細胞培養プロセス開発の中でも、特に培地成 分の最適化ならびに培養途中でのフィード培地の添加によって、生細胞密度の 向上、培養期間の長期化、培養後期までの比生産速度の維持が可能となり、そ の結果として、抗体濃度が大幅に上昇している。

Figure 2 抗体の製造プロセス

高発現細胞の構築は、抗体の工業的な生産において重要かつ最初のステップ である。抗体生産株は、宿主の CHO 細胞に目的とする抗体遺伝子の発現カセ ットを含む発現ベクターを遺伝子導入して得られたステーブルプール細胞の中 から、高発現株をスクリーニングして構築される (Figure 3)。すなわち、高発 現株を取得するためには、宿主細胞、発現ベクター、遺伝子導入方法ならびに スクリーニング方法を最適化することが求められる。

Figure 3 細胞構築プロセスならびにセルバンク作製プロセス

宿主の CHO 細胞については、1950 年代に Puck らによってチャイニーズハム スターの卵巣組織から樹立された細胞 (10) を起源とし、様々な派生細胞が構 築されてきた (11–14)。現在、抗体などのバイオロジクスの生産に用いられる 宿主としては、ATCC あるいは ECACC が保管管理している CHO-K1 細胞、Lonza 社が開発した CHOK1SV 細胞、dihydrofolate reductase (dhfr) 遺伝子欠損株の CHO DG44 細胞、Life Technologies 社から販売されている CHO-S 細胞等が挙げ られる (Figure 4)。さらに、増殖あるいは生産能力の改善を目的として、宿主 細胞のエンジニアリング (15–17) あるいはリクローニング (18, 19) が行われ、 報告されている。

Figure 4 CHO 細胞の系統樹

(Lewis, N. E. et al, 2013 (20) より引用)

発現ベクターのデザインもまた、細胞構築プロセスで最も重要なポイントの 一つである。その構成要素には、目的抗体遺伝子の発現に用いられるプロモー ター (21-23)、ポリアデニレーションシグナル、遺伝子発現を増強するための DNA エレメント (24-27)、薬剤耐性遺伝子 (28,29) の発現カセット等が含まれ る。これら発現ベクターの構成要素の商業的な利用にあたっては、その権利関 係を明確にし、用いる宿主細胞に最適な構成要素を選択あるいは開発する必要 がある。一般的に、生産細胞は、目的抗体遺伝子と共に薬剤耐性遺伝子の発現 カセットを有する発現ベクターを宿主細胞に遺伝子導入し、薬剤選択培養を経 て樹立される。導入遺伝子は CHO 細胞のゲノムにランダムに挿入されるため、 薬剤選択培養後に得られるステーブルプール細胞には、目的の抗体生産量や継 代安定性が異なる様々な生産株が含まれる。ステーブルプール細胞の中にわず かに含まれる高発現かつ高安定細胞を取得することは多大な労力と手間がかか る。それゆえ、目的とする高発現・高安定細胞を効率的に選び出すために、様々 なスクリーニング方法が開発されてきた (30,31)。このような取り組みと対照 的なアプローチとして、宿主細胞ゲノムの特定の位置への部位特異的遺伝子導 入法が開発され、高安定細胞を短期間で効率よく取得する方法として期待され ている (32, 33)。宿主細胞のゲノムのターゲットサイトに導入遺伝子を繰り返 し組み込むために、逐次遺伝子組込みシステム (Accumulative Gene Integration System: AGIS) が開発、報告された (34)。このシステムでは、導入遺伝子のコ ピー数に応じて、目的タンパク質濃度を上昇させることが可能である (35)。

Table 2 これまでに細胞構築プロセスで実施された生産性向上のための

アプローチー覧

構成要素・ 技術	着眼点	内容	引用文献
宿主細胞	エンジニアリング	 ✓アポトーシスの抑制 ✓代謝の改善 ✓翻訳後プロセスの改善 ・小胞体分子シャペロンの過剰発現 ・小胞体ストレス応答因子の過剰発現 	16 15 17, 60 61, 62
	リクローニング	✔増殖性/生産性に優れた発現株の採用	18, 19
	プロモーター	✔高活性プロモーターの採用	21-23, 36
	DNAエレメント	✔遺伝子発現増強/サイレンシング抑制配列の採用	24–27, 36
発現ベク ター	薬剤耐性遺伝子	 ✓機能の減弱化 ・変異導入 ・低活性プロモーターの採用 ・使用頻度の少ないコドンの使用 ・TTGを開始コドンに採用 ✓遺伝子増幅システム ・DHFRシステム ・GSシステム 	41, 42 43 44 45 14, 28, 46, 47 29, 48-50
遺伝子導入 方法ならび にスクリー	高効率 スクリーニング	✔ClonePixシステム ✔フローサイトメトリーによるスクリーニング ・レポータータンパク質の共発現 ・細胞表面あるいは近傍の目的タンパク質の検出	51–53 54–56
ニング方法	ホットスポット への導入	✔ 部位特異的遺伝子導入 ・Cre-loxPシステム、FLP-FRTシステム	32–35

1.2 本研究の目的

抗体医薬品の市場は急速に拡大していて、現在 Phase 1、Phase 2 の臨床試験 が進められている抗体の数はそれぞれ 450 以上、300 弱に達している。このこ とから、抗体医薬品の市場拡大トレンドは今後も継続すると期待される (1,2)。 抗体医薬品は投与量が多く、また開発スピードの加速化が求められていて、よ り安価に、早期に、確実に製造できるプロセスを開発することが必要である。 細胞構築プロセスは抗体製造プロセスとは独立したプロセスであるものの、得 られた生産株はセルバンク化されて抗体製造プロセスの出発原料となり、抗体 生産性を決定する主要因の一つであることから、非常に重要性の高いプロセス と言える。細胞構築プロセスでは、宿主細胞、発現ベクター、遺伝子導入方法 ならびにスクリーニング方法を開発・選択し、高発現株を容易に取得すること が可能な統合技術として完成させる必要がある。また、細胞培養プロセスでは、 培地組成の最適化を行い、生産株のポテンシャルを最大限引き出すことができ る培地を開発することが求められている。

これまでに、我々は、目的遺伝子を高発現することが可能な新規プロモータ ー及び目的遺伝子の発現増強能を有する新規 DNA エレメントを開発し (36)、 これら構成要素を含む抗体発現ベクターpDSLH4.1 を構築している (未発表デ ータ)。さらに、CHO-K1 細胞に pDSLH4.1 を遺伝子導入して作製したモデル抗 体産生ステーブルプール細胞を用いてフローサイトメトリー (FCM) による高 発現細胞の濃縮を試み、前方散乱 (Forward Scatter: FSC) と、側方散乱 (Side Scatter: SSC) を指標に細胞を分画することで、高発現細胞を効率的に濃縮でき ることを報告している (37)。

本研究では、発現ベクター、改良宿主細胞、抗体高発現細胞の取得技術、構築した高発現細胞を培養するための培地から成る一連の細胞構築関連技術を、高発現細胞取得ならびに細胞培養技術としてパッケージ化することを最終目標に (Figure 5)、第2章では「抗体高発現株のモノクローン化検討」、第3章では「抗体高発現株への翻訳装置活性化技術の適用検討」を行った。

Figure 5 本研究で検討した細胞構築関連技術

(一部、Goto, K. et al, 2019 (38) より引用)

1.3 本論文の構成

第2章「抗体高発現株のモノクローン化検討」では、FSCとSSCを指標にFCM によって分画した P15 画分の細胞、あるいは、ステーブルプール細胞からモノ クローン化を行い、得られた発現株の生産性を比較した。さらに、P15 画分の 細胞に由来する高発現細胞を用いて、培地の最適化を実施した。

第3章「抗体高発現株への翻訳装置活性化技術の適用検討」では、株式会社 ニッピにて開発された spERt[™] (Selective Polyribosome assembly on the

Endoplasmic <u>Reticulum with Three factors</u>) 技術の構成要素である p180 と SF3b4 を、第2章でステーブルプール細胞あるいは P15 画分の細胞から取得した高発 現細胞へ過剰発現させて2因子発現株を構築し、抗体生産能ならびに産生抗体 への影響を評価した。さらに、構築した2因子発現株を用いて、フィード培地 ならびに培養プロセスの最適化を行い、Fed-batch 培養での抗体濃度の最大化を 試みた。

2. 抗体高発現株のモノクローン化検討

2.1 要旨

抗体医薬品は、CHO 細胞発現系により樹立された抗体発現株を出発物質とし た製造プロセスが確立されている。様々な技術開発が行われてきたものの、薬 剤選択により得られたヘテロな細胞集団であるステーブルプール細胞の中から、 目的とする抗体の高発現かつ高安定細胞を選び出すのは、煩雑な手間と時間が かかっていた。これまでに、我々はフローサイトメーターにおいて前方散乱 (Forward Scatter: FSC) と側方散乱 (Side Scatter: SSC) を指標に細胞を分画する ことで、高発現細胞を効率的に濃縮できることを報告している (37)。しかしな がら、濃縮した高発現細胞集団からクローニングを実施していなかったため、 既存のモノクローン化方法と比較して高発現細胞を簡便に取得できるのか不明 であった。そこで、フローサイトメトリー (FCM) により取得した P15 画分の 細胞から ClonePix システムを用いて約 250 株をピッキングしてモノクローン化 を行い、その生産性を評価した。そして、ステーブルプール細胞から ClonePix システムを用いて約 500 株をピッキングして取得した発現株と生産性を比較し た。生産培地-1を用いた 14 日間の Fed-batch 培養での最終抗体濃度は、ステー ブルプール細胞由来の発現株では最大でも 0.9 g/L であったのに対し、P15 画分 の細胞に由来する生産量上位4株では0.9-2.4 g/L との結果で、P15 画分の細胞 から高発現株を取得可能であることを示すことができた。さらに、P15 画分の 細胞に由来し、最も高い抗体生産性を示した発現株 L003 を用いて培地の開発 を行い、14 日間の Fed-batch 培養での最終抗体濃度を 3.2 g/L に上昇させること ができた。

2.2 背景

CHO 細胞発現系を用いた抗体医薬品の工業的な生産において、抗体高発現株 の作製は重要でありかつ最初の一歩である。一般的に、生産細胞は、目的タン パク質と薬剤耐性遺伝子の発現カセットを有する発現ベクターを宿主細胞に遺 伝子導入した後、薬剤選択培養を経て樹立される。薬剤選択培養は、非直接的 かつ非効率的な選択手法であり、目的とする抗体を発現しない細胞、抗体の発 現量が低い細胞も同時に得られる。また、導入遺伝子は CHO 細胞のゲノムへ ランダムに挿入されるため、目的遺伝子の生産性及び安定性を予測することは 困難である。それゆえ、薬剤選択後に生じたステーブルプール細胞の中から多 数の発現株のスクリーニングを行い、高生産細胞を取得する必要がある。さら に、導入遺伝子は、CHO 細胞のゲノムに挿入された位置によっては周囲の染色 体の影響を受け、その発現がサイレンシングされることが知られていて、位置 効果と呼ばれている (39)。そのため、生産性評価を行って取得した高生産株に ついて継代安定性評価を行い、安定性の高い発現株を選択する必要がある。限 界希釈法 (Limiting Dilution: LD) は、高発現株を取得するための最も一般的か つ古典的な方法であり、これまで多くのバイオロジクス生産株の構築に用いら れてきた。本方法では、多くの場合、384 well plate あるいは 96 well plate 等に1 well 当たり1細胞以下となるようにステーブルプール細胞を播種し、順次拡大 培養して発現株を取得する。本方法には、特殊な機器を必要としない単純な手 法であるという利点がある。しかしながら、多数の発現株を拡大培養して、そ の生産性を評価するには、長時間の作業を要し、煩雑な手間がかかる。バイオ ロジクスの生産に用いられる発現株には1細胞由来であることが求められてい る (40)。限界希釈法では、取得した発現株が1細胞由来である確率は播種生細 胞濃度等により決定され、統計学的手法により算出することができる。通常、 限界希釈法では、得られた発現株が1細胞由来であることを証明することが困 難であるため、複数回の限界希釈法によってクローニングを行うことが必要で

あり、さらに手間と時間がかかる。そのため、これまでに、高生産株を容易に 取得するために、様々な方法が開発されてきた。

発現ベクターに含まれる薬剤耐性遺伝子の発現カセットに着目し、その機能 を減弱化する取り組みがなされてきた。本方法では、薬剤選択後に薬剤耐性遺 伝子の発現量が低い、すなわち目的遺伝子発現量の低い発現株が生じにくくな り、ステーブルプール細胞に含まれる低発現株の割合が減少し、その結果、高 発現株を容易に取得することが可能となる。Yenofsky らは、ネオマイシン耐性 遺伝子への E182D 変異の導入によって、その活性が低下することを報告してい る (41)。その後、いくつかのグループによって E182D 以外の新規変異によって ネオマイシン耐性遺伝子の活性が低下することが報告され、さらに Sautter らに よって、E182D、D261N、F240I 等のネオマイシン耐性遺伝子の変異体を薬剤耐 性遺伝子として使用することで、得られたステーブルプール細胞の目的遺伝子 発現量が野生型と比較して上昇したと報告された (42)。丹羽らは、E182D 変異 を導入したネオマイシン耐性遺伝子に加えて、薬剤耐性遺伝子のプロモーター に活性の低い HSVtk (Herpes Simplex virus thymidine kinase) プロモーターを採 用することで、ステーブルプール細胞の目的タンパク質発現量が上昇したと報 告した (43)。Westwood らは薬剤耐性遺伝子のコドン非最適化、すなわち使用 頻度の低いコドンを薬剤耐性遺伝子に用い、その発現量を低下させることによ って、ステーブルプール細胞ならびに発現株の目的タンパク質発現量が向上し たことを報告している (44)。Blokland らは、ゼオシン耐性遺伝子の開始コドン を ATG から翻訳開始効率の低い TTG に変更、その下流に目的タンパク質の遺 伝子を配する発現ベクターを開発し、薬剤選択後に得られるコロニーの大部分 を目的タンパク質の高発現株とすることが可能となったと報告している (45)。

薬剤耐性遺伝子に着目した高発現株を効率的に取得するためのもう一つの方法として、遺伝子増幅を利用した手法が挙げられる。本方法として、DHFR システムや GS システムが知られていて、薬剤耐性遺伝子にそれぞれ dihydrofolate

reductase (dhfr) 遺伝子 (28)、あるいは、glutamine synthetase (GS) 遺伝子 (29) を 用い、遺伝子導入後の細胞をその阻害剤である methotrexate (MTX)、あるいは、 methionine sulfoxamine (MSX) で選択する (46–49)。薬剤選択中に、阻害剤の濃 度を段階的に上昇させることによって、薬剤耐性遺伝子とその近傍に位置して いる目的遺伝子のコピー数を上昇させ、目的遺伝子の生産性を向上させること が可能である。また、宿主細胞に関しては、DHFR システムでは、遺伝子増幅 を容易に実施するために dhfr 遺伝子欠損株の CHO DG44 細胞 (14) が開発され、 広く使用されている。GS システムでは、ZFN (zinc finger nuclease) による遺伝 子編集技術を利用して GS 遺伝子をノックアウトした宿主細胞が開発され、ス テーブルプール細胞の生産性が上昇したとの報告がなされている (50)。しかし ながら、上記の遺伝子増幅手法には、一般的に、発現株の作製に長い時間がか かる、増幅した導入遺伝子の安定性が低いとの課題がある。

薬剤選択後に得られたステーブルプール細胞の中から、高発現株を効率的に スクリーニングする手法についても精力的に検討がなされてきた。軟寒天培地 と自動細胞ピッキング装置 ClonePix システムを用いたスクリーニング方法が開 発され、よく使用されている。本方法では、軟寒天培地中に懸濁後、プレート に播種された細胞は、拡散されずにその場所で増殖し、コロニーを形成させる。 その際、細胞から分泌された抗体もまた拡散されずコロニー近傍に留まるため、 予め蛍光標識した二次抗体を軟寒天培地に添加しておいて、培養して得られた コロニー近傍の蛍光強度を測定することで、高発現株を簡便にスクリーニング することができる。また、細胞のピッキングを自動で実施することができるた め、作業時間の短縮も可能となる。しかしながら、本方法には、コロニー近傍 の蛍光強度と拡大培養して得られた発現株の目的タンパク質発現量との相関が 不十分であるという課題があった。また、評価できるコロニー数も限られてい ることから、より効率的かつスループットの高いスクリーニング方法を開発す る必要がある。 FCM は、液流に懸濁した細胞を一列とした状態でレーザーの前を通過させ、 個々の細胞の光散乱と蛍光強度を測定し、目的とする細胞を選別する技術であ る。FSC から細胞の大きさ、SSC から細胞内密度に関する情報が得られ、細胞 の物理的ならびに化学的性質を推定することができる。また、本方法では、1 秒間に数万細胞の解析が可能であるため、多数の細胞を短期間で評価し、選別 することができ、高発現細胞のスクリーニングに大きなアドバンテージとなり うる。一方、目的タンパク質の高発現細胞を選別する手法として本方法を利用 するためには、それぞれの細胞の目的タンパク質発現量と蛍光強度をより正確 に関連付ける必要がある。

いくつかのグループによって、目的タンパク質と共にレポータータンパク質 を発現させ、その蛍光強度に基づいて高発現株を選別する方法が開発、報告さ れた (51-53)。具体的には、GFP、CD20、CD52 等のレポータータンパク質を、 独立した発現カセットとして、目的タンパク質発現カセットの下流に internal ribosome entry site (IRES) を利用して、あるいは、翻訳開始効率の低い TTG を 開始コドンに利用して、目的タンパク質と共発現させる。GFP の蛍光強度、蛍 光標識した抗 CD20 抗体、あるいは、抗 CD52 抗体で染色して得られた蛍光強 度を指標に、目的タンパク質の高発現株をスクリーニングする手法が提案され た。他方、いくつかのグループから、目的タンパク質に特異的に結合する蛍光 標識抗体を用いて、それぞれの発現株の細胞表面あるいは近傍に位置する目的 タンパク質を直接検出することにより、高発現細胞を分画する手法が報告され ている (54-56)。この方法では、細胞をゲルマイクロドロップに封入しておい て、その中に分泌された目的タンパク質の発現量に基づいてゲルマイクロドロ ップを分画する方法、ビオチン化した細胞、ニュートラアビジン、目的抗体へ の結合能を有するビオチン化一次抗体、ならびに、蛍光標識した二次抗体を用 いる affinity capture surface display 法等により行われている。

これまでに、我々は宿主細胞に CHO-K1 細胞を使用して作製したモデル抗体 産生ステーブルプール細胞を用いて、FCM による高発現細胞の濃縮を試みてき た。そして、FSC と SSC を指標に細胞の大きさと細胞内密度で分画することで、 高発現細胞を効率的に濃縮できることを報告している (37)。本方法では、まず、 蛍光標識した抗 IgG 抗体を用いて、細胞表面に存在する分泌途中の抗体を染色 する。染色後のステーブルプール細胞を FCM に供し、FSC で 4 分割、SSC で 2 分割し (Figure 6 A)、この 8 分割した各画分について、それぞれ蛍光強度の上位 5%の画分を回収する (Figure 6 B)。FSC が最も小さく、SSC が最も低い P7 画分 に由来し、高蛍光強度を示す P15 画分の細胞は、Fed-batch 培養で最も高い抗体 濃度を示し、分画を行っていないステーブルプール細胞の約 4 倍の抗体生産性 を示した (Figure 6 C)。

本研究では、ステーブルプール細胞及び高い生産性を示した P15 画分の細胞 からモノクローン化を行い、抗体高発現細胞の取得を試みた (Figure 7)。そし て、得られた抗体高発現細胞を用いて、培地の開発を行った。

縮

(Okumura, T. et al, 2015 (37) より引用)

(A) FSC vs SSC のドットプロットと FSC と SSC による 8 分画、(B) P3 画分の細胞の蛍光強度ヒストグラムと蛍光強度上位 5% (P11) の分画、(C) 各画分由来の細胞集団及び未分画細胞の Fed-batch 培養による生産性評価結果。 黒色の縦棒、白色の丸は、それぞれ 14 日目の抗体濃度、生細胞密度を示す。

Figure 7 抗体高発現株のモノクローン化検討のフロー

2.3 実験材料及び実験方法

2.3.1 培地

2.3.1.1 C/E 培地

原材料名	メーカー	必要量
CD CHO	Life Technologies	600 mL
EX-CELL 325-PF	SAFC	400 mL
CHO Feed Bioreactor Supplement	SAFC	20 mL
200 mM Alanyl-glutamine	Sigma-Aldrich	20 mL
100×HT supplement	Life Technologies	10 mL
anti-clumping agent	Life Technologies	2 mL

2.3.1.2 軟寒天培地

原材料名	メーカー	必要量
CloneMedia-CHO	Molecular Devices	90 mL
C/E	-	10 mL
100×HT supplement	Life Technologies	1 mL
Clona Cell-CHO ACF Supplement	Stemcell	0.7 mL
CloneDetect Anti-Human Detection Agent BSA Free FITC Labeled	Molecular Devices	1 mL
Geneticin	Life Technologies	1.44 mL

2.3.1.3 生産培地

はした		一、 1914世		基礎培地への
培地名	基礎培地	ノイート培地	×	添加物
上立拉地 1			Life Technologies	20 mM HEPES
土库垣地-1	DAI	DAFWIS	Life recimologies	4 mM L-Gln
生 实控制 3	C12	E12	Fujifilm Wako Pure	1 mML Cla
生產培地-2	013	F13	Chemical	I MM L-GIN
上 立拉地 2	JX	JX	Fujifilm Wako Pure	1 mML Cla
土) 上) 土)	G017-MAB01	F003-MAB24	Chemical	i mivi L-Gin

以下の3種類の生産培地を用いた。いずれもカスタム培地である。

2.3.2 ステーブルプール細胞及び P15 画分

これまで第一三共㈱にて作製されたモデル抗体産生ステーブルプール細胞及 び P15 画分の細胞を使用した。簡潔に記載すると、CHO-K1 細胞 (CCL-61; American Type Culture Collection) に由来し、無血清、浮遊培養に馴化した CHO 派生細胞を宿主細胞に使用し、Neon transfection system (Invitrogen) を用いて抗 体発現ベクターpDSLH4.1 を遺伝子導入した。形質転換した CHO 細胞は、C/E 培地中にて 800 µg/mL Geneticin (Life Technologies) で選択し、抗体産生ステーブ ルプール細胞を得た。fluorescein isothiocyanate (FITC)-conjugated goat F(ab')₂ fragment anti-human IgG (H + L) (Beckman Coulter) を用いて染色したステーブル プール細胞はBD FACSAria Fusion cell sorter (BD Biosciences) を用いてソーティ ングした。

2.3.3 抗体発現株の作製

抗体発現株は、ステーブルプール細胞、P15 画分の細胞から ClonePix FL あ るいは ClonePix 2 (Molecular Devices) を用いて取得した。具体的には、軟寒天 培地に、C/E 培地で希釈したステーブルプール細胞あるいは P15 画分の細胞の 培養希釈液を生細胞密度 48 cells/mL となるように添加した。穏やかに混和し た後、6 well plate に約 2 mL/well ずつ播種し、37°C、5% CO₂ で静置培養した。 11、12、16 日間培養して得られたコロニーについて、サイズ、形状、近接す るコロニーの有無、コロニー周辺の蛍光積算値 (Exterior Total Intensity) を測定 し、シングルクローンと判定された発現株をコロニー周辺の蛍光積算値の高い 順番にピッキングした。ピッキングしたコロニーは 800 μg/mL Geneticin を含 む C/E 培地に播種し、37°C、5% CO₂ で静置培養した。各クローンは拡大培養 後、凍結保存した。

2.3.4 Fed-batch 培養

各抗体発現株の細胞培養液を各基礎培地で 3×10⁵ cells/mL に希釈し、125 mL 容量のフラスコを用いて、37℃、5% CO₂、120 rpm の条件で 14 日間の Fed-Batch 培養を実施した。サンプリングは 7 日目、10 日目、14 日目に行い、細胞数と生 存率の測定は Guava PCA (EMD Millipore Corporation) を用い、抗体濃度は Protein A-HPLC で測定した。フィード培地として、DAFM3 を使用する場合は 4、6、8、10 日目にそれぞれ初発液量の 10%分を添加した。F13 を使用する場合は 3 日目から 13 日目にかけて初発液量の 33%を、JX F003-MAB24 を使用する場合は 5 日目から 13 日目にかけて初発液量の 28.5%を添加した。

2.4 結果

2.4.1 抗体発現株の作製と Fed-batch 培養による生産性評価

モデル抗体産生ステーブルプール細胞、P15 画分の細胞を軟寒天培地に添加 し、6 well plate に播種して、静置培養した。得られたコロニーの中から、ClonePix 2 を用いて、高い蛍光を示した、ステーブルプール細胞、P15 画分の細胞由来 のコロニーをそれぞれ約 100、250 株ピッキングした。ピッキングしたコロニー を拡大培養して、抗体発現株を取得した。得られた抗体発現株は、生産培地-1 を加いた 14 日間の Fed-batch 培養を実施して、その抗体生産性を比較した。ス テーブルプール細胞由来、P15 画分の細胞由来のそれぞれ生産性上位 4 株を s1-s4, p1-p4 とし、これら抗体発現株の Fed-batch 培養結果を Figure 8 に示す。 培養 14 日目の抗体濃度は、s1-s4 が 0.5-0.8 g/L であったのに対し、p1-p4 では 0.9-2.4 g/L を示した (Figure 8 C)。P15 画分由来の抗体発現株はステーブルプー ル細胞由来の抗体発現株と比較して抗体濃度が高いとの結果が得られたものの、 生産性評価を行った株数が異なるため、本結果から FCM による濃縮を行うこ とで高発現株を容易に取得可能と結論付けることはできなかった。

Figure 8 ステーブルプール及びP15 画分の細胞由来抗体発現株の生産性 評価

生細胞密度 (A)、細胞生存率 (B)、抗体濃度 (C) は、7 日目 (黒の縦棒)、 10 日目 (グレーの縦棒)、14 日目 (白色の縦棒) に測定した。 そこで、これまでに上述のステーブルプール細胞から ClonePix FL を用いて 取得していた約 400 株の中で最も高い生産性を示していた発現株 L002 と抗体 生産性を比較した。なお、P15 画分由来の発現株として p1 を使用したが、以降 では発現株名を L003 に変更している。抗体生産性の比較は、生産培地-1 を用 いた 14 日間の Fed-batch 培養により実施した。L003 の培養 14 日目の抗体濃度 は 2.1 g/L を示し、Figure 8 の結果とほぼ同等の値であった (Figure 9 C)。また、 L003 の培養 14 日目の抗体濃度は L002 と比較して 2.2 倍の値を示した。これま でに、ステーブルプール細胞から合計約 500 株の生産性評価を実施したが、1.0 g/L を超える抗体濃度を示す高発現株を取得することができなかった。今回、 P15 画分の細胞から、その約 1/2 の発現株の評価によって、ステーブルプール 細胞に由来し、最も高い抗体生産性を示した L002 の 2、1.5、1 倍以上の抗体濃 度を示す発現株をそれぞれ 1、2、4 株取得することができた。

Figure 9 L002 と L003 の Fed-batch 培養による生産性評価
生細胞密度 (A)、細胞生存率 (B)、抗体濃度 (C) は、7 日目 (黒の縦棒)、
10 日目 (グレーの縦棒)、14 日目 (白色の縦棒) に測定した。

2.4.2 抗体高発現株 L003 を用いた培地の開発

P15 画分の細胞に由来し、最も高い抗体生産性を示した L003 を用いて、培地の開発を行った。まず、batch 培養による基礎培地の評価を行い、高い生産性を示す培地を選定した。次に、選定した3種類の基礎培地とフィード培地を用いて Fed-batch 培養になる種類の基礎培地とフィード培地の組み合わせを選定した。さらに、Fed-batch 培養にて経時的に取得した細胞培養液の上清を用いて、スペントメディアアナリシスを実施して、培養液から枯渇している成分を増強、過剰となっている成分を低減し、フィード培地の最適化を行った。最終的に、基礎培地に JX G017-MAB01、フィード培地の最適化を行った。最終的に、基礎培地に JX G017-MAB01、フィード培地に JX F003-MAB24を選定し、生産培地-3の開発に至った。開発した生産培地-3の評価を、L003を用いた14日間のFed-batch 培養により実施した。比較対象として、抗体発現株 L002を用いて開発したカスタム培地である生産培地-2 を使用した。生産培地-3 での7、10日目の抗体濃度は、生産培地-2 の約1.1倍の値であったのに対し、14日目の抗体濃度は 3.2 g/L に到達し、生産培地-2 の約1.3倍の値を示した(Figure 10 C)。すなわち、培地の最適化によって、特に培養後期の抗体生産性が向上し、3 g/L を上回る抗体生産性を達成することができた。

Figure 10 L003 を用いた Fed-batch 培養による生産培地の評価

生細胞密度 (A)、細胞生存率 (B)、抗体濃度 (C) は、7 日目 (黒の縦棒)、 10 日目 (グレーの縦棒)、14 日目 (白色の縦棒) に測定した。

2.5 まとめ

今回、FCM により分取した P15 画分の細胞集団から、ClonePix システムを用 いて約250株をピッキングし、抗体発現株を取得した。生産培地-1を用いた14 日間の Fed-batch 培養を行った結果、生産量上位4株の最終抗体濃度は0.9-2.4 g/L であった。これまでにステーブルプール細胞から ClonePix システムを用い て約 500 株をピッキングして抗体発現株を単離しているものの、生産培地-1 を 用いた 14 日間の Fed-batch 培養で1 g/L の生産性を超える株を取得することが できなかった。以上の結果から、ClonePix システムによるモノクローン化の前 に、FSC 及び SSC 分割を利用した FCM によるスクリーニングを行うことで、 抗体高発現細胞を容易に取得できることが明らかとなった。構成要素の一つで あるプロモーターのみが異なる発現ベクターを用いて検討した結果、FCM によ る高発現細胞の濃縮を経ることで、生産培地-2を用いた14日間のFed-batch 培 養で約4g/Lの生産性を示す抗体生産株の取得に成功している (57)。また、上 記のプロモーターを採用した各抗体発現ベクターを用いて検討を行った結果、 検討した 10 種類のモデル抗体全てで FCM によるスクリーニングが機能し、得 られた P15 画分の細胞はステーブルプールと比較して抗体生産性が向上するこ と、さらにクローニングを行った複数のモデル抗体発現系で P15 画分の細胞集 団から3 g/L 以上の抗体生産性を示す高発現株を複数取得することに成功して いる (未発表データ)。以上の結果から、FSC 及び SSC 分割を利用した FCM に よる高発現細胞のスクリーニング手法は、抗体高発現細胞株を構築するための 一般的な方法として有用と結論付けることができる。

3. 抗体高発現株への翻訳装置活性化技術の適用検討

3.1 要旨

CHO 細胞発現系を用いた抗体などのバイオロジクスの生産技術は近年大き く進展し、細胞構築ならびに細胞培養プロセスの技術開発によって、生産性が 大きく向上している。CHO 細胞での抗体生産プロセスは、転写プロセス、翻訳 プロセス、翻訳後プロセスから構成されている。これまでに、翻訳プロセスに 着目して、抗体生産性を工業レベルに向上させた報告はなされていない。近年、 上野らは、小胞体 (endoplasmic reticulum: ER) でのタンパク質への翻訳に p180 と SF3b4 (Splicing factor 3B subunit 4) が重要な役割を果たし、当該2因子の過 剰発現によって分泌型アルカリフォスフォターゼの生産性が上昇することを報 告している (58, 59)。本章では、上述の翻訳能増強技術を抗体高発現細胞に適 用し、抗体生産性、産生抗体の品質ならびに継代安定性に及ぼす影響を評価し た。まず、抗体発現株 L002 ~ 2 因子を導入し、得られた 2 因子発現株の生産 性を評価した。その結果、生産性上位3株では、Fed-batch 培養7日目の抗体濃 度が親株 L002 の 2.5 倍以上に上昇していた。次に、より高い生産性を示した抗 体発現株L003~2因子を導入し、取得した2因子発現株の生産性を評価した。 その結果、生産量上位5株では、親株L003と比較して、Fed-batch 培養初期の 抗体生産性が~3.1 倍に上昇していた。産生抗体の品質を評価したところ、2 因 子発現株とその親株に顕著な差は見られなかった。また、継代安定性評価を行 ったところ、評価した2因子発現株4株のうち2株では、16回継代培養後の細 胞を用いた Fed-batch 培養での抗体濃度が 1 回継代培養したものの 90%以上の 値を示した。2因子発現株では、抗体遺伝子のmRNA発現量が親株とほぼ同程 度であった一方、小胞体のポリリボソームの割合が親株と比較して大きく増加 していたことから、小胞体の翻訳装置活性化によって抗体生産性が上昇したこ とが示唆された。そして、スペントメディアアナリシスによってフィード培地 組成の最適化を実施し、さらに播種生細胞密度とフィード量の増強と組み合わ
せることによって、17日間の Fed-batch 培養での最終抗体濃度を 9.5 g/L に上昇 させることができた。

3.2 背景

抗体などの分泌タンパク質の生産において、培養上清中の目的タンパク質濃 度は、1 細胞が 1 日あたりに生産する抗体量である比生産速度 (specific productivity: SPR) と生細胞密度の経時変化の積分値 (integral viable cell density: IVCD) の掛け算によって表される。近年の Fed-batch 培養における抗体濃度の 飛躍的な上昇は、比生産速度と積算生細胞密度の両方の増大によって成し遂げ られてきた。

CHO 細胞における抗体生産のプロセスは、転写プロセス、翻訳プロセス、翻 訳後プロセスの3 つのプロセスから構成されている。まず、核内で DNA から 合成された mRNA 前駆体はプロセシングを受けて成熟 mRNA となり、細胞質 へと輸送される。抗体等の分泌タンパク質は、小胞体膜上で mRNA からタンパ ク質へと翻訳される。続いて、小胞体内腔へと輸送され、シグナルペプチドが 切断され、N 型糖鎖の基本構造が付加される。また、ジスルフィド結合が形成 され、シャペロンタンパク質によるフォールディングを受ける。その後、ゴル ジ体へと輸送され、N 型糖鎖等の様々な修飾を受けた後、トランスゴルジで濃 縮され、分泌顆粒を経て、細胞外へと分泌される。細胞の比生産速度の上昇、 すなわち、目的タンパク質の生産性を改善するために、転写プロセス、翻訳プ ロセス、翻訳後プロセスのそれぞれのプロセスについて様々な検討が行われて きた。

これまでに行われた多くの研究は転写プロセスに着目して実施されてきた。 転写プロセスに注目したアプローチの一つが、目的タンパク質の発現を増強す るために、強力なプロモーターならびにエンハンサーを使用することである。 ヒト cytomegalovirus (CMV) プロモーター (21) やヒトあるいはチャイニーズ ハムスター由来 elongation factor-1a (EF-1a) プロモーター (22, 23) 等が開発さ れ、現在、頻繁に使用されている。ポリアデニレーションシグナルもまた目的 タンパク質遺伝子の下流に付加して使用され、mRNA の安定性向上に寄与して いる。また、CHO 細胞のゲノムに挿入された導入遺伝子は周囲の染色体の影響 を受け、その発現がサイレンシングされることが知られていて、位置効果と呼 ばれている (39)。目的遺伝子の発現増強及び/あるいは位置効果を抑制するため に、ubiquitous chromatin opening elements (UCOE)、matrix attachment regions (MAR), anti-repressor elements, transcriptional enhancing elements $\oplus O$ DNA $\pm V$ メントが開発され、使用されている (24–27)。加えて、CHO 細胞のゲノム上で の目的遺伝子のコピー数を増加させるために、DHFR システムや GS システム が開発された (46-49)。これらの発現システムでは、選択遺伝子に dihydrofolate reductase (dhfr) 遺伝子 (28)、あるいは、glutamine synthetase (GS) 遺伝子 (29) を 用い、遺伝子導入後の細胞をその阻害剤である methotrexate (MTX)、あるいは、 methionine sulfoxamine (MSX) で選択する。薬剤選択中に、阻害剤の濃度を段階 的に上昇させることによって、選択遺伝子とその近傍に位置している目的遺伝 子のコピー数を上昇させ、目的遺伝子の生産性を向上させることが可能である。

翻訳後プロセスに着目した取り組みとしては、細胞の分泌能増強を目指し、 未成熟タンパク質のフォールディングを容易にするため、protein disulfide isomerase (PDI) (17) や heavy chain-binding protein (BiP) (60) 等の小胞体分子シ ャペロンの過剰発現が試みられてきた。小胞体ストレスとは、内的あるいは外 的な環境変化によって、小胞体内で正常に折りたたまれていない異常なタンパ ク質 (unfolded protein) が蓄積する状態である。小胞体ストレスの低減を目指し て、成熟型 X-box binding protein 1 (XBP1s) や activating transcription factor 4 (ATF4) 等の unfolded protein response (UPR) 遺伝子の過剰発現が試みられ、生産 性の向上に成功したとの報告がなされている (61, 62)。 一方、動物細胞での目的タンパク質の発現において翻訳プロセスが重要な役 割を果たすという報告がなされている(63-65)。しかしながら、細胞の翻訳能 力を向上させることによって、抗体の生産性を工業レベルに増大させたという 報告はない。近年、上野らによって、小胞体膜タンパク質であるp180とスプラ イシング因子 SF3bの構成因子であり RNA 結合モチーフを有する SF3b4 が小胞 体での翻訳の活性化に重要な役割を果たしていること、そして、分泌型アルカ リホスファターゼをモデルタンパク質としたとき、その生産性が上記2因子の 過剰発現によってコントロールの CHO 細胞の約3倍に向上したことが報告さ れた (Figure 11)(58, 59, 66)。さらに、p180と SF3b4 の存在下で、コラーゲンあ るいはフィブロネクチンの5'非翻訳領域中の *cis*-エレメントを目的タンパク質 遺伝子の上流に付加することにより、目的タンパク質の発現量がさらに向上す ることも報告された。本技術では、翻訳装置の活性化により、目的とする分泌 タンパク質の生産性を向上させることが可能であり、spERt™ (Selective Polyribosome assembly on the Endoplasmic Reticulum with Three factors) 技術と命 名された (Figure 12)。

Figure 11 p180 と SF3b4 の過剰発現、及び *cis*-エレメントによる分泌型 アルカリホスファターゼの発現量増大 (Goto, K. 2019 (66) より引用)

Figure 12 spERt™技術によるポリリボソーム形成促進モデル (Goto, K. et al, 2019 (38) より引用)

分泌型アルカリホスファターゼをモデルタンパク質としたとき、生産性の向上が見られたものの、工業生産に用いられる抗体高発現細胞に spERt™技術を適用したとき、その生産性を増強することが可能か不明であった。そこで、本研究では、第2章で作製した抗体高発現株 L002 及び L003 に spERt™技術を適用し、その抗体発現能ならびに産生抗体に及ぼす影響を評価した (Figure 13)。さらに、得られた2因子発現株とその親株について、抗体遺伝子の mRNA 発現量の解析、2 因子のタンパク質発現量の解析、ポリリボソーム解析を実施し、抗体生産性増強メカニズムの解明を試みた。

培地開発は、細胞培養プロセス開発において抗体濃度を上昇させるために最 も重要なアプローチの一つである。培地の構成成分を最適化することによって、 積算生細胞密度の増大、細胞培養期間の長期化、培養後期での比生産速度の維 持が可能となり、その結果、最終抗体濃度を上昇させることができる。近年、 細胞の生育に必要な栄養成分に関する研究が大きく進展し、動物由来原料や加 水分解物を含まず、既知成分のみにより構成される培地 (chemically defined medium) が開発され、各社から販売されている。現在、抗体等のバイオロジク ス生産の多くは、アミノ酸、ビタミン、微量元素などの既知栄養成分から構成 される chemically defined 培地を用いた Fed-batch 培養により実施されている。 Fed-batch 培養とは、細胞培養液を基礎培地に播種して培養を開始し、栄養成分 をフィード培地として培養途中から添加する生産方法である。細胞培養中に、 細胞の生育に重要な栄養成分が枯渇すると、生細胞数及び細胞生存率が減少し、 その結果、目的とする抗体の生産性も低下する。一方、フィード培地には栄養 成分が高濃度で含まれていて、培養液中に栄養成分が過剰に蓄積した場合もま た、細胞の生育が阻害され、抗体生産性の低下につながる。それゆえ、培養最 終日まで栄養成分の枯渇ならびに過剰な蓄積が生じないよう、フィード培地の 組成とともに、フィード量を最適化する必要がある。そこで、本研究では、抗 体高発現株 L003 に p180 と SF3b4 を過剰発現して取得した 2 因子発現株 N5 を

用いて、新たなフィード培地の開発を行った。さらに、播種生細胞密度とフィード量の最適化を実施し、培養液中に分泌される抗体濃度の最大化を試みた。

А [2因子発現ベクター] [コントロールベクター] Marker SF3b4 p180 Marker pspERt-mock pspERt-dual 抗体発現株L002 抗体発現株L002 限界希釈による クローニング 2因子発現株 2因子発現ステ・ モック細胞 ブルプール細胞 M1-M12

В

Figure 13 抗体高発現株への翻訳装置活性化技術の適用検討のフロー 抗体高発現株として、L002(A) あるいはL003(B) を用いた。

3.3 実験材料及び実験方法

- 3.3.1 培地
- 3.3.1.1 C/E 培地

原材料名	メーカー	必要量	
CD CHO	Life Technologies	600 mL	
EX-CELL 325-PF	SAFC	400 mL	
CHO Feed Bioreactor Supplement	SAFC	20 mL	
200 mM Alanyl-glutamine	Sigma-Aldrich	20 mL	
100×HT supplement	Life Technologies	10 mL	
anti-clumping agent	Life Technologies	2 mL	

3.3.1.2 生産培地

以下の5種類の生産培地を用いた。いずれもカスタム培地である。

	培地名	基礎培地	フィード培地	メーカー	基礎培地への	
					添加物	
化支持地 1			L'és Technologies	20 mM HEPES		
	生產培地-I	DAI	DAFM3	Life Technologies	4 mM L-Gln	
	生素素素素	C12	F12	Fujifilm Wako Pure		
生産培地-2	G13	F13	Chemical	I mivi L-Gin		
	牛士古地。	JX	F1 (JX	Fujifilm Wako Pure	1 ML C1	
生產培地-3	G017-MAB01	F003-MAB24.1)	Chemical	I mivi L-Gin		
	生産培地-4	JX	F2 (JX	Fujifilm Wako Pure	1 mM L-Gln	
		G017-MAB01	F003-MAB31.3)	Chemical		
	生産培地-5	JX	F3 (JX	Fujifilm Wako Pure	1 mM L-Gln	
		G017-MAB01	F003-MAB35)	Chemical		

3.3.2 抗体発現細胞株 L002 及び L003

2 因子発現株の作製には、第2章で取得した抗体発現細胞株 L002 及び L003 を用いた。

3.3.3 2因子発現ベクター

ヒトp180 タンパク質 (GenBank Accession No. AB287347.2) とチャイニーズ ハムスターSF3b4 タンパク質 (GenBank Accession No. XP_003498680.1) を共発 現するための 2 因子発現ベクターpspERt-dual は以下の手順により構築した。す なわち、制限酵素で消化して取得したヒトp180 タンパク質をコードする cDNA (58) を、myc タグを付加したチャイニーズハムスターSF3b4 の発現カセットを 有する pEF-SF ベクター (67) に挿入して、2 因子発現ベクターpspERt-dual を得 た。また、pspERt-dual と同一のベクターバックボーンを有し、ヒトp180 及び チャイニーズハムスターSF3b4 タンパク質をコードする cDNA を含まないコン トロールベクターpspERt-mock も同様の手順で構築した。

3.3.4 2因子発現株の作製

Amaxa Nucleofector transfection system (Lonza) を用いて取扱説明書記載の手順に従い、抗体発現細胞株 L002 及び L003 へ 2 因子発現ベクターpspERt-dual あるいはコントロールベクターpspERt-mock を遺伝子導入した。形質転換した CHO 細胞は、C/E 培地中にて 400 µg/mL Hygromycin (Invivogen)、800 µg/mL Geneticin (Life Technologies) で選択し、2 因子発現ステーブルプール細胞を得た。 得られたステーブルプール細胞を限界希釈して、2 因子発現株を作製した。拡 大あるいは継代培養中、Protein A-HPLC により抗体濃度を測定し、播種生細胞 密度と到達生細胞密度から求めた積算生細胞密度を用いて比生産速度を算出し た。

3.3.5 Fed-batch 培養

125 mL 容量のフラスコを用いた Fed-batch 培養によって、2 因子発現ステー ブルプール細胞及び2 因子発現株の評価、フィード培地の最適化、培養プロセ スの開発、継代安定性の評価、を実施した。本 Fed-batch 培養は、37℃、5% CO₂、 120 rpm の条件で、14 あるいは 17 日間実施した。特段の言及がない限り、播種 生細胞密度は 3 × 10⁵ cells/mL とした。細胞数と生存率の測定は Guava PCA (EMD Millipore Corporation) あるいは Vi-CELL XR (Beckman Coulter) にて実施 し、抗体濃度は Protein A-HPLC で測定した。グルコース濃度と乳酸濃度は BF-7MX (王子計測機器) を用いて測定し、グルコースは枯渇を避けるためにフ ィード培地とは別に添加した。

抗体発現株 L002 を宿主細胞に用いた 2 因子発現ステーブルプール細胞及び 2 因子発現株の評価には、生産培地-1 及び生産培地-2 を用いた。フィード培地と して、DAFM3 を使用した場合は 4、6、8、10 日目にそれぞれ初発液量の 10 % 分を、F13 を使用した場合は 3 日目から 13 日目にかけて初発液量の 33%を添加 した。

抗体発現株 L003 を宿主細胞に用いた 2 因子発現株の評価及び継代安定性の 評価には、生産培地-3 を用いた。フィード培地 F1 (JX F003-MAB24.1) は 5 日 目から 13 日目にかけて初発液量の 28.5%を添加した。

フィード培地の最適化には、生産培地-3,生産培地-4,生産培地-5 を用いた。 基礎培地に JX G017-MAB01、フィード培地に F1、F2 (JX F003-MAB31.3)、F3 (JX F003-MAB35) の3種類を使用し、5日目から13日目にかけて初発液量の28.5% を添加した。

培養プロセスの開発には、生産培地-4を用いた。播種生細胞密度は3×10⁵あるいは9×10⁵ cells/mLとし、フィード培地F2は5日目から16日目にかけて初発液量の40%、42.5%、45%、47.5%、50%、52.5%、55%、あるいは60%を添加した。

3.3.6 産生抗体の品質評価

以下の方法によって、2 因子発現株により産生された抗体の品質を評価した。 Fed-batch 培養終了液に含まれる抗体を Protein A カラムにて精製し、BlotGlyco (住友ベークライト)を用いて HPLC による糖鎖プロファイルの測定を行った。 また、電荷異性体の割合を算出するために、陽イオン交換クロマトグラフィー を実施した。さらに、凝集体と断片体の割合を算出するために、サイズ排除ク ロマトグラフィーを実施した。

3.3.7 継代安定性試験

2因子発現株を、Hygromycin 及び Geneticin を含まない培地で1回あるいは 16回継代培養して得られた細胞培養液を用いて Fed-batch 培養を実施し、抗体 生産性を比較した。継代培養には C/E 培地を用い、播種生細胞密度は、継代間 隔が3日の場合は2×10⁵ cells/mL、継代間隔が4日の場合は1×10⁵ cells/mL と した。

3.3.8 リアルタイム PCR による mRNA 発現量の評価

2 因子発現株での抗体遺伝子あるいは p180 遺伝子の mRNA 発現量をリアル タイム PCR によって評価した。拡大培養あるいは Fed-batch 培養 7 日目の培養 液をサンプリングして得た細胞から TRIzol reagent (Life Technologies) を用いて total RNA を抽出した。total RNA から PrimeScript RT Master Mix (タカラバイオ) を用いて合成した cDNA を鋳型に、抗体 H 鎖遺伝子、p180 遺伝子あるいは GAPDH 遺伝子に特異的なプライマーと、SYBR Premix Ex Taq II (タカラバイオ) を用いて、リアルタイム PCR を実施した。反応は、Applied Biosystems 7300 Real-Time PCR System (Life Technologies) にて、以下の条件で行った。95°C 30 秒で開始し、95°C 5 秒、60°C 34 秒を 40 サイクル行い、PCR 反応を実施し、 その後、95℃ 15 秒で加熱、60℃ 60 秒で急冷し、60℃から 95℃まで上昇させて 95℃ 15 秒で終了し、融解曲線解析を実施した。

3.3.9 ウエスタンブロット法による2因子発現量の解析

ウエスタンブロット法により 2 因子 (p180 及び SF3b4) のタンパク質発現量 を解析した。2 因子発現株及びその親株 (2 × 10⁶ cells) を SDS バッファー (0.1 M Tris-HCl pH 6.8、1% SDS) で溶解し、10,000 × g で 15 分間遠心した。得られ た上清のタンパク質濃度を BCA Protein Assay Kit (Pierce) で測定した。タンパク 質 20 μ g 相当量の上清を SDS-PAGE によって分離した後、タンパク質を PVDF 膜に転写した。一次抗体に、ラビット抗ヒト p180 抗体 (58)、マウス抗 SF3b4 抗体 (Santa Cruz Biotechnology) 及びマウス抗 GAPDH 抗体 (MBL) を用い、 ECL システムによって目的タンパク質の検出を行った。

3.3.10 膜画分の調製

膜画分は、既報告 (68) に修正を加えた方法にて (58)、ジギトニンを用いた 連続界面活性剤抽出法により調製した。すなわち、2因子発現株及びその親株 (1 ×10⁶ cells) を 200 μ M シクロヘキシミドで 15 分間インキュベートした後、PBS 10 mL で洗浄した。膜画分の抽出は 200 μ M シクロヘキシミド、80 U/mL RNase inhibitor (東洋紡)、cOmplete protease inhibitor cocktail (Roche)、及び 1 mM DTT (Fujifilm Wako Pure Chemical) 存在下で実施した。洗浄後、細胞を膜透過バッフ アー [110 mM KOAc、25 mM HEPES pH 7.5、2.5 mM Mg(OAc)₂、1 mM EGTA、 0.015% digitonin] に再懸濁し、氷上で 5 分間インキュベートした。上清を回収 した後、細胞を洗浄バッファー [110 mM KOAc、25 mM HEPES pH 7.5、2.5 mM Mg(OAc)₂、1 mM EGTA、0.004% digitonin] で 2 回洗浄した。続いて、0.2 mL の 溶解バッファー [25 mM HEPES pH 7.5、400 mM KOAc、15 mM Mg(OAc)₂、1 mM EGTA、2% digitonin] にて氷上で 30 分間インキュベートした。その後、溶液を 回収し、7,500×g、4℃で10分間遠心してデブリスを除去し、清浄化した。本 論文では、上記方法にて、細胞からジギトニンを用いて抽出した溶解物を含む 上清を膜画分と定義した。

3.3.11 ポリリボソーム解析

3.3.10 で調製した膜画分を、25 mM HEPES pH 7.5、400 mM KOAc、15 mM Mg(OAc)₂、1 mM EGTA を含むバッファー中、15%から 60%のショ糖密度勾配 上にロードした。勾配溶液は MLS-50 rotor (Beckman Coulter) を用いて 150,000 × g、4°Cで 70 分間遠心した。その後、Piston Gradient Fractionator System (Biocomp) を用いて、得られたサンプルの解析を行った。

3.4 結果

3.4.1 抗体高発現株 L002 での 2 因子 (p180 と SF3b4) 過剰発現の検討

3.4.1.1 2因子発現株の作製と Fed-batch 培養による評価

抗体発現株 L002 ~ 2 因子発現ベクターpspERt-dual あるいはコントロールベ クターpspERt-mock を遺伝子導入し、Geneticin 存在下、Hygromycin で薬剤選択 し、2 因子発現ステーブルプール細胞あるいはモック細胞を構築した。得られ たステーブルプール細胞とその親株 L002 は、生産培地-2 を用いた 14 日間の Fed-batch 培養を実施して、その抗体生産性を比較した。2 因子発現ステーブル プール細胞の 7 日目の抗体濃度は、モック細胞、親株 L002 と比較してそれぞ れ 1.5 倍、1.4 倍の値を示した (Figure 14 C)。一方、2 因子発現ステーブルプー ル細胞の 14 日目の抗体濃度は、モック細胞と比較して 1.5 倍の値を示したのに 対し、親株 L002 の 0.9 倍の値にとどまった。生産培地-2 は抗体発現株 L002 を 用いて開発したカスタム培地であり、本株を培養したとき、培養後期にその抗 体生産性が向上するためと推察された。2 因子発現ステーブルプール細胞の抗 体濃度は、モック細胞と比較して 1.5 倍に向上していたこと、また 7 日目時点 では親株 L002 を上回っていたことから、2 因子発現ステーブルプール細胞をモ ノクローン化して、2 因子発現株の生産性を評価することとした。

Figure 14 L002 を宿主として作製した 2 因子発現ステーブルプール細胞

の Fed-batch 培養による生産性評価

dual、mock はそれぞれ 2 因子発現ベクターpspERt-dual、コントロールベク
ターpspERt-mock を L002 に遺伝導入して作製したステーブルプール細胞の
結果を示す。生細胞密度 (A)、細胞生存率 (B)、抗体濃度 (C) は、7 日目 (黒の縦棒)、10 日目 (グレーの縦棒)、14 日目 (白色の縦棒) に測定した。

2因子発現ステーブルプール細胞から限界希釈を実施して、66株を取得した。 そして、抗体生産量を指標に12株を選択し、M1-M12と命名した。さらに、 継代培養中に抗体濃度を測定し、播種生細胞密度と到達生細胞密度から求めた 積算生細胞密度を用いて比生産速度を算出し、2因子発現ステーブルプール細 胞及び親株L002と比較した (Figure 15)。その結果、2因子発現株 M1-M3では、 2因子発現ステーブルプール細胞及び親株L002と比較して比生産速度が上昇し ていた。一方、2因子発現株 M4-M12の9株の比生産速度は、2因子発現ステ ーブルプール細胞よりも低い値であった。

Figure 15 L002 を宿主として作製した 2 因子発現株の継代培養中の比生 産速度の比較

そこで、高い比生産速度を示した2因子発現株 M1-M3の3株を用いて14日間のFed-batch 培養を実施し、抗体生産性を親株 L002と比較した。Figure 16及び Figure 17に、それぞれ生産培地-1、生産培地-2を用いた Fed-batch 培養の結果を示す。

生産培地-1を用いたとき、2因子発現株 M1-M3の7、14日目の抗体濃度は、 それぞれ 1.0-1.1 g/L、2.4-2.6 g/L との結果で、親株 L002 と比較してそれぞれ 3.0-3.2 倍、2.5-2.7 倍の値を示した (Figure 16 C)。また、生産培地-2を用いた とき、2因子発現株 M1-M3の7、14日目の抗体濃度は、それぞれ 1.2 g/L、2.9-3.0 g/L との結果で、親株 L002 と比較してそれぞれ 2.5 倍、1.4-1.5 倍の値を示した (Figure 17 C)。以上の結果から、生産培地-1、生産培地-2 のどちらを用いた場合 でも、抗体発現量上位3株全てで、親株 L002 と比較して抗体濃度が上昇して いた。2因子発現株の抗体濃度は、親株 L002 と比較して生産培地-2 よりも生産 培地-1 で顕著に増加していて、14日目では7日目と比較して親株 L002 との差 が減少していた。また、生産培地-2 を用いた Fed-batch 培養において、2因子発 現株では、親株の L002 と比較して培養後期の抗体生産性が低下していたこと から、フィード培地 F13 の最適化によって培養終了時の抗体濃度をさらに上昇 させることが可能と期待された。

С

Figure 16 L002 を宿主として作製した 2 因子発現株 M1-M3 の生産培地-1

を用いた Fed-batch 培養による生産性評価

生細胞密度 (A)、細胞生存率 (B)、抗体濃度 (C) は、7 日目 (黒の縦棒)、 11 日目 (グレーの縦棒)、14 日目 (白色の縦棒) に測定した。

生細胞密度 (A)、細胞生存率 (B)、抗体濃度 (C) は、7 日目 (黒の縦棒)、 11 日目 (グレーの縦棒)、14 日目 (白色の縦棒) に測定した。

Figure 17
 L002 を宿主として作製した2因子発現株 M1–M3の生産培地-2

 を用いた Fed-batch 培養による生産性評価

3.4.1.2 2 因子発現株 M1-M6 のウエスタンブロット法による 2 因子発現量の解析

2 因子発現株 M1-M6、その親株 L002、及びモック細胞について、ウエスタ ンブロット法によって 2 因子 (p180 及び SF3b4)のタンパク質発現量を解析し た (Figure 18)。p180 は 2 因子発現株 M1-M6 でのみ検出され、その発現量は M1-M3 で M4-M6 よりも高かった。一方、内在性の SF3b4 のバンドは 2 因子発 現株 M1-M6、その親株 L002、及びモック細胞の全てで見られたものの、過剰 発現した myc タグを付加した SF3b4 は 2 因子発現株 M1-M6 でのみ検出された。

Figure 18 ウエスタンブロット法による2因子発現量の解析

矢印、矢じりはそれぞれ内在性の SF3b4、過剰発現した myc タグを付加した SF3b4 の位置を示す

3.4.1.3 2 因子発現株 M1-M6 のポリリボソーム解析

小胞体でのリボソームの分布を解析するため、ショ糖密度勾配遠心法によっ て、膜画分のポリリボソーム解析を実施した。調製した膜画分をショ糖密度勾 配上にロード、遠心した後、フラクションコレクターを用いて分取した。分取 にあたっては、254 nm での吸光度を連続的に測定した。40S 小サブユニット、 60S 大サブユニット、2つのサブユニットが会合した 80S モノソーム、一つの mRNA 分子に複数のリボソームが数珠状に結合したリボソームの集団である ポリリボソームの割合を算出した。その結果、ポリリボソームの割合は、2 因 子発現株 M4-M6 では親株 L002 及びモック細胞と比較して増加していて、2 因 子発現株 M1-M3 ではさらに大きく増加していた (Figure 19)。以上の結果から、 2 因子発現株 M1-M3 では、過剰発現させた 2 因子の発現量が高いため、ポリ リボソームの量が大きく増加、翻訳装置が強く活性化され、その結果、目的の 抗体発現量が大きく上昇したのであることが示唆された。

Figure 19 2因子発現株 M1-M6のポリリボソーム解析

3.4.2 抗体高発現株 L003 での 2 因子 (p180 と SF3b4) 過剰発現の検討

3.4.2.1 2 因子発現株の作製と Fed-batch 培養による評価

抗体発現株 L002 を宿主に用いて検討した結果、2 因子 (p180 と SF3b4)の過 剰発現により目的とする抗体の発現量が上昇していた。また、2 因子の発現量 が高い発現株では、抗体発現量が大幅に上昇する傾向が見られた。そこで、よ り高い抗体生産性を示した抗体発現株 L003 へ 2 因子を遺伝子導入、過剰発現 を行い、抗体生産能に及ぼす影響を検討した。

抗体発現株 L003 ~2 因子発現ベクターpspERt-dual を遺伝子導入し、Geneticin 存在下、Hygromycin で薬剤選択し、2 因子発現ステーブルプール細胞を構築し た。得られた 2 因子発現ステーブルプール細胞から限界希釈を実施して、77 株 を取得した。得られた 2 因子発現株を拡大培養し、125 mL フラスコでの振とう 培養 3 日目に抗体濃度を測定した。そして、播種生細胞密度と到達生細胞密度 から求めた積算生細胞密度を用いて、比生産速度を算出した。同時に、培養 3 日目に回収した細胞を用いてリアルタイム PCR を行い、p180 の mRNA 発現量 を測定した。拡大培養した各 2 因子発現株について、3.4.1.1 で構築した 2 因子 発現株 M2 の値を 1 としたときの p180 mRNA の相対発現量を横軸に、抗体の 比生産速度を縦軸にプロットしたグラフを Figure 20 に示す。p180 の mRNA 発 現量と比生産速度の間に緩やかな相関が見られ、p180 の mRNA 発現量が低い 株は、抗体の比生産速度も低いとの結果であった。p180 の mRNA 発現量及び 比生産速度が低い株を除いて 30 株を選択し、さらに抗体生産性と p180 の発現 量を指標にスクリーニングを実施した。

Figure 20 各 2 因子発現株の p180 mRNA 発現量と比生産速度の関係

選択した2因子発現株は、14日間のFed-batch 培養を実施して、抗体生産性 を親株のL003と比較した。Figure 21 に、生産培地-3 を用いた Fed-batch 培養の 抗体生産量上位5株 (N1-N5と命名)の結果を示す。2因子発現株は5株全て で、Fed-batch 培養の初期および中期では、親株 L003 と比較して生細胞密度が 低く、増殖が遅かった。L003 は 8 日目に最高生細胞密度 2.5 × 10⁷ cells/mL に達 し、その後、徐々に低下し、14日目に 1.5×10⁷ cells/mL に低下したのに対し、 2因子発現株の生細胞密度は10日目に1.4-2.2×10⁷ cells/mL に達し、14日目ま で生細胞密度の低下はほとんど見られなかった (Figure 21 A)。細胞生存率につ いては、L003 が培養後期に徐々に低下し、10 日目で 86%、14 日目で 78%に低 下したのに対し、2因子発現株では5株全てで14日目の時点で92%以上を維持 していた (Figure 21 A)。また、2 因子発現株の 14 日目の抗体濃度は 3.5-4.7 g/L との結果で、親株 L003 と比較して 1.17-1.58 倍の値を示した (Figure 21 B)。さ らに、2因子発現株とL003について、積算生細胞密度と抗体濃度のプロファイ ルの傾きから各培養フェーズでの比生産速度を算出した (Figure 21 C、D)。0 日目から5日目までの培養初期では、2因子発現株の比生産速度は21-26 pg/(cell day) であり、L003 [8 pg/(cell day)] の 2.5-3.1 倍の値を示した。5 日目から 10

日目までの培養中期では、2因子発現株、L003の比生産速度は、それぞれ 22-34 pg/(cell day)、14 pg/(cell day) に上昇した。その後、10日目から 14日目までの 培養後期では、2因子発現株の比生産速度が 16-31 pg/(cell day) に低下したのに 対し、L003の比生産速度は 19 pg/(cell day) へと上昇していた。

グルコース消費プロファイルは2因子発現株とL003 で似通っていた (Figure 21 E)。さらに、培養後期での乳酸濃度の推移については、生細胞密度の最高到 達点が低かった2因子発現株N3を除いて、2因子発現株とL003の間で顕著な 差は見られなかった (Figure 21 F)。これらの結果から、p180とSF3b4の2因子 の過剰発現によって代謝プロファイルは大きく変化していないことが示唆され た。

生産培地-3 を用いた Fed-batch 培養により、2 因子発現株の生産性評価を再度 実施したところ、2 因子発現株 N1、N2、N3、N4、N5、及び親株 L003 の 14 日 目の抗体濃度は、それぞれ 3.5、3.1、3.6、3.1、4.2、2.5 g/L との結果であった (data not shown)。抗体濃度が低い傾向が見られたものの、2 因子発現株 N1–N5 の抗 体濃度は親株 L003 の 1.22–1.66 倍との結果で、2 因子の過剰発現によって抗体 生産量が上昇していて、再現性が確認できた。

た Fed-batch 培養による生産性評価

2 因子発現株 N1 (closed triangles)、N2 (closed circles)、N3 (closed squares)、 N4 (open triangles)、N5 (open circles) 及び、その親株 L003 (open squares)の 結果を示す。(A) 生細胞密度 (solid line) と細胞生存率 (dotted line)、(B) 抗 体濃度、(C) 積算生細胞密度と抗体濃度のプロファイル、(D) 各細胞培養 フェーズでの比生産速度:0日目から5日目までの培養初期、5日目から 10日目までの培養中期、10日目から14日目までの培養後期、(E) グルコ ース濃度、(F) 乳酸濃度 さらに、p180 と SF3b4 の過剰発現による産生抗体の品質への影響を評価する ため、培養 14 日目にサンプリングして得られた抗体を用いて、糖鎖プロファイ ルを解析した。また、陽イオン交換クロマトグラフィーによって電荷異性体を、 サイズ排除クロマトグラフィーによって凝集体及び断片体の割合を算出した。2 因子発現株では、親株 L003 と比較してガラクトースが付加した糖鎖の割合が 多い傾向が見られたものの、2 因子発現株、L003 共に、典型的な糖鎖プロファ イルを示すことがわかった (Figure 22 A)。また、いくつかの2 因子発現株では、 L003 と比較して酸性異性体や凝集体がやや多い傾向が見られたものの、2 因子 発現株と L003 の間で酸性異性体、塩基性異性体、凝集体、断片体の割合に大 きな差は見られなかった (Figure 22 B、C)。

た抗体の品質評価

(A) HPLC により算出した抗体の N 型糖鎖のプロファイル。N 型糖鎖の構造を図に示す。フコース (closed triangles)、N-アセチルグルコサミン (closed squares)、マンノース (open circles)、ガラクトース (closed circles)。(B) 陽 イオン交換クロマトグラフィーにより算出した電荷異性体の割合。(C) サイズ排除クロマトグラフィーにより算出した凝集体、モノマー、断片体の割合。HMWS、LMWS はそれぞれ凝集体、断片体を示す。

3.4.2.2 2 因子発現株 N5 を用いたフィード培地の最適化

次に、フィード培地 F1 (JX F003-MAB24.1)を元に、数回の実験を行ってフィ ード培地の最適化を実施した。フィード培地 F1 は、2.4.2 で抗体発現株 L003 を用いてスペントメディアアナリシスを行って開発した JX F003-MAB24 に軽 微な改良を加えた培地であり、アミノ酸、ビタミン、微量元素等の栄養成分を 高濃度に含む。フィード培地の開発には、3.4.2.1 で最も高い抗体生産性を示し た 2 因子発現株 N5 を用いた。2 因子発現株 N5 を用いた Fed-batch 培養におい て、経時的にサンプリングを行い、培養上清中のアミノ酸、ビタミン等の鍵と なる栄養成分の濃度を測定した。そして、培養中に枯渇していたアミノ酸を増 強、過剰に蓄積していたアミノ酸を低減することで、フィード培地中のアミノ 酸濃度を調整し、新たなフィード培地 F2 及び F3 を開発した。Figure 23 に F1、 F2及びF3をフィード培地に用いたFed-batch 培養において、総フィード量が初 発液量の 28.5%となるように、5 日目から 13 日目にかけて毎日フィード培地を 添加した結果を示す。生細胞密度と細胞生存率は3種類のフィード培地間で類 似していた。また、3 種類のフィード培地の間で、7 日目及び 10 日目の抗体濃 度に明確な差は見られなかった。一方、改良フィード培地では、14日目の抗体 濃度が上昇していて、フィード培地 F2 を用いた場合 5.7 g/L に達し、フィード 培地 F1 での抗体濃度から 25%高い値を示した (Figure 23 C)。しかしながら、 フィード培地 F3 への更なる最適化は、14 日目の抗体濃度の増加にはつながら ず、フィード培地 F2 での抗体濃度から 4%低下した。

また、フィード培地を 5、7、10、12 日目にそれぞれ初発液量の約 7.1%を添加して Fed-batch 培養を実施した条件では、フィード培地 F1、F2、F3 を用いた ときの 14 日目の抗体濃度は、それぞれ 4.7 g/L、5.5 g/L、5.4 g/L との結果で (data not shown)、毎日フィード培地を添加した場合と同傾向の結果が得られた。

Figure 23 2 因子発現株 N5 を用いた Fed-batch 培養による 3 種類のフィ ード培地の評価

生細胞密度 (A)、細胞生存率 (B)、抗体濃度 (C) は、7 日目 (黒の縦棒)、 10 日目 (グレーの縦棒)、14 日目 (白色の縦棒) に測定した。

3.4.2.3 2 因子発現株 N5 を用いた培養プロセスの開発

更なる抗体濃度の上昇を目指して、2 因子発現株 N5 とフィード培地 F2 を用 いて、播種生細胞密度とフィード量の最適化を実施した。Fed-batch 培養の代表 的な結果を Figure 24 に示す。播種生細胞密度とフィード量を、3.4.2.2 と同一の 条件 (播種生細胞密度を 3 × 10⁵ cells/mL、総フィード量を初発液量の 40%に設 定) で実施した Condition 1 では、17 日目の生細胞密度、細胞生存率はそれぞれ 1.5 × 10⁷ cells/mL、91%を維持し、最終抗体濃度は 8.6 g/L に達した。播種生細 胞密度を 9 × 10⁵ cells/mL に上昇させた Condition 2 では、17 日目の生細胞密度 と細胞生存率はそれぞれ 1.1 × 10⁷ cells/mL、77%に低下した。本条件では、14 日目から 17 日目にかけて抗体生産性の低下が見られ、その結果、Condition 2 の最終抗体濃度は Condition 1 と同程度の値にとどまった。一方、播種生細胞密 度を 9 × 10⁵ cells/mL、総フィード量を初発液量の 50%に増加させた Condition 3 では、17 日目でも細胞生存率は 89%に維持されていた。抗体生産性もまた培養 の全期間を通して維持され、その結果、最終抗体濃度は 9.5 g/L に達した。

また、播種生細胞密度を9×10⁵ cells/mL とし、総フィード量を初発液量の42.5、 45、47.5、52.5、55、60%の条件で Fed-batch 培養を実施したとき、最終抗体濃 度は、それぞれ 9.0、9.3、9.5、9.5、9.4、9.3 g/L との結果であった (data not shown)。 総フィード量を初発液量の47.5%から 52.5%の範囲で Fed-batch 培養を実施した とき、最終抗体濃度が最大となった。

Figure 24 2因子発現株 N5 を用いた播種細胞密度とフィード量の検討に

よる培養プロセスの開発

播種生細胞密度は、3×10⁵ cells/mL (Condition 1) あるいは、9×10⁵ cells/mL (Condition 2 及び Condition 3) にて実施した。フィード培地は、5、7、10、12 日目にそれぞれ初発液量の 7.5%、14 日目に初発液量の 10% (Condition 1 及び Condition 2) あるいは、5、7、10、12、14 日目にそれぞれ初発液量の 10% (Condition 3) を添加した。

3.4.2.4 2 因子発現株の継代安定性の評価

2因子発現株の継代安定性を評価するため、Hygromycin 及び Geneticin を含ま ない C/E 培地で 16 回 (P16) 継代培養して得られた細胞培養液を用いて Fed-batch 培養を実施した。コントロールとして、上記培地で1回 (P1) 継代培 養して得られた細胞培養液を用いて Fed-batch 培養を実施した。2 因子発現株 N3 及び N5 では、P16 細胞を用いた Fed-batch 培養の 14 日目の抗体濃度は、そ れぞれ P1 細胞の 92%、94%の値を示し、16 回の継代培養後でも抗体生産性の 低下は見られなかった (Figure 25 C)。また、これらの発現株では、P1 細胞と P16 細胞の間で、生細胞密度、細胞生存率にも明確な差は見られなかった (Figure 25 A、B)。2因子発現株 N3 及び N5 では、2因子発現カセットが活性ク ロマチンに挿入されたため、導入された2因子の発現が安定しており、薬剤を 含まない培地で継代培養を行っても翻訳装置が活性化した状態に保たれ、その 結果、抗体生産性が低下しなかったものと推測された。一方、2 因子発現細胞 株 N1 及び N4 では、P16 細胞を用いた Fed-batch 培養の 14 日目の抗体濃度は、 それぞれ P1 細胞の 58%、63%の値を示し、抗体生産性が低下していた。また、 これらの発現株では、P16 細胞において、P1 細胞と比較して Fed-batch 培養後 期に生細胞密度及び細胞生存率の低下が見られ、培養後期に P1 細胞との抗体 濃度の差が拡大していた。

Figure 25 継代前後の2因子発現株を用いた Fed-batch 培養による抗体生 産性の比較

生細胞密度 (A)、細胞生存率 (B)、抗体濃度 (C) は、7 日目 (黒の縦棒)、 10 日目 (グレーの縦棒)、14 日目 (白色の縦棒) に測定した。

3.4.2.5 2 因子発現株 N5 の抗体 H 鎖遺伝子 mRNA 発現量の評価

Fed-batch 培養 7 日目の細胞から調製した cDNA を用いてリアルタイム PCR を実施し、2 因子発現株 N5 とその親株 L003 間での抗体 H 鎖遺伝子の mRNA 発現量を比較した。抗体 H 鎖遺伝子あるいは GAPDH 遺伝子を対象にリアルタ イム PCR を実施して、それぞれの遺伝子の増幅領域をクローニングしたプラス ミド DNA を用いて検量線を作製し、コピー数を算出した。抗体 H 鎖遺伝子の コピー数を GAPDH 遺伝子のコピー数で標準化し、2 因子発現株 N5 とその親株 L003 で比較した。その結果、2 因子発現株 N5 での抗体 H 鎖遺伝子の mRNA 発現量は親株 L003 の 1.15 倍との結果で、顕著な差は見られなかった (Figure 26)。

Figure 26 2因子発現株 N5 とその親株 L003 間での抗体 H 鎖遺伝子 mRNA 発現量の比較

リアルタイム PCR は N=3 で実施し、増幅領域の遺伝子をクローニングし たプラスミド DNA を用いて、抗体 H 鎖遺伝子及び GAPDH 遺伝子のコピ ー数を算出した。抗体 H 鎖遺伝子のコピー数を GAPDH 遺伝子のコピー数 で標準化し、平均値±標準偏差を示した。

3.4.2.6 2 因子発現株 N5 のウエスタンブロット法による 2 因子発現量の解析

2 因子発現株 N5 及びその親株 L003 について、ウエスタンブロット法によっ て 2 因子 (p180 及び SF3b4) のタンパク質発現量を解析した (Figure 27)。p180 は 2 因子発現株 N5 でのみ検出された。一方、内在性の SF3b4 のバンドは 2 因 子発現株 N5 及びその親株 L003 の両者で見られたものの、過剰発現した myc タグを付加した SF3b4 は 2 因子発現株 N5 でのみ検出された。以上の結果から、 2 因子発現株 N5 では、目的とする 2 因子が発現していることをタンパク質レベ ルで確認できた。

Figure 27 ウエスタンブロット法による2因子発現量の解析

矢印、矢じりはそれぞれ内在性の SF3b4、過剰発現した myc タグを付加した SF3b4 の位置を示す

3.4.2.7 2因子発現株 N5 のポリリボソーム解析

小胞体でのリボソームの分布を解析するため、ショ糖密度勾配遠心法によっ て、膜画分のポリリボソーム解析を実施した。調製した膜画分をショ糖密度勾 配上にロード、遠心した後、フラクションコレクターを用いて分取した。分取 にあたっては、254 nm での吸光度を連続的に測定した。40S 小サブユニット、 60S 大サブユニット、2 つのサブユニットが会合した 80S モノソーム、一つの mRNA 分子に複数のリボソームが数珠状に結合したリボソームの集団である ポリリボソームの割合を算出した。その結果、2 因子発現株 N5 では、親株の L003 と比較して、ポリリボソームの割合が大幅に増加していた (Figure 28)。

Figure 28 2 因子発現株 N5 のポリリボソーム解析

3.5 まとめ

本研究の第一の目的は、Fed-batch 培養で1g/L以上の抗体濃度を示す高発現 株に spERt™技術の 2 因子 (p180 と SF3b4) を導入し、その効果を検討すること である。抗体高発現株として、抗体発現ステーブルプール細胞からモノクロー ン化を行って取得した L002、FCM によって高発現細胞を濃縮した後にモノク ローン化を行って取得した L003 を使用した。L002、L003 は、組成を最適化し た培地を用いた 14 日間の Fed-batch 培養での最終抗体濃度はそれぞれ 1.5-2.0 g/L、3.0 g/L 以上であり、工業生産に使用される生産性を示す抗体高発現株で ある。宿主細胞に L002 を用いた場合、作製した 2 因子発現株 M1–M3 は、生産 培地に関わらず、Fed-batch 培養7日目の抗体濃度が L002 と比較して 2.5 倍以 上の値を示し、2 因子の過剰発現によって抗体生産性を上昇させることが可能 であった (Figure 16、17)。そこで、より高い生産性を示した抗体発現株 L003 を用いて詳細に検討を実施した。Figure 21 に示すように、宿主細胞に L003 を 用いた場合もまた、p180 と SF3b4 の 2 因子を過剰発現することによって、親株 のL003と比較してFed-batch培養初期の抗体生産性が~3.1倍に上昇していた。 また、2因子発現株と親株のL003間で、産生抗体の品質に顕著な差は見られな かった (Figure 22 A–C)。これらの結果は、spERt™技術が産生抗体の品質を大 きく変化させることなく、抗体高発現株の生産性を向上可能であることを示す ものである。加えて、Fed-batch 培養後期において、2因子発現株では親株のL003 と比較して細胞生存率を高く維持することができた。spERt™技術のこれらの特 徴は、Fed-batch 培養にて抗体を製造する上で大きな利点となりうる。本研究で は、1 g/L 以上の生産性を示す 2 つの抗体発現株を用いて検討を行い、どちらの 発現株を用いた場合でも2因子の過剰発現によって抗体生産性を上昇させるこ とが可能であった。また、我々は、FSC 及び SSC 分割を利用した FCM による 抗体高発現細胞のスクリーニング法が宿主細胞や発現ベクターによらず適用可 能であると報告している (37)。それゆえ、高発現細胞の濃縮と2因子の過剰

発現を組み合わせた新規細胞構築ストラテジーは、工業生産に適用される抗体 高発現細胞を作製するための一般的な方法として有用と考えられる。

本研究の第二の目的は、2 因子発現株 N5 を用いた Fed-batch 培養での産生抗 体の濃度を最大化することである。フィード培地 F1 を用いた Fed-batch 培養に て 2 因子発現株 N1–N5 の生産性評価を実施したところ、Fed-batch 培養後期に 抗体生産性の低下が見られていた。培養後期の抗体生産性を維持するために、 スペントメディアアナリシスによってフィード培地組成の最適化を実施し、新 規フィード培地 F2 及び F3 を開発した。播種生細胞密度及びフィード量の増強 と組み合わせることによって、最終抗体濃度は 9.5 g/L に到達し、元のプロセス の約 2 倍に上昇させることができた (Figure 24 C)。本研究での最終抗体濃度は、 これまで報告された chemically defined 培地を用いた Fed-batch 培養で達成され た抗体濃度 (69–72) と同程度の結果であった。

p180 は、様々な分泌細胞で高度に発現している小胞体膜タンパク質である (73,74)。p180 は、当初、リボソームが付着した小胞体である粗面小胞体の膜上 でリボソーム受容体として同定されたが (75)、微小管形成及び束形成 (76)、リ ボソームサブユニットあるいはトランスロコンとの結合 (58,77,78) など、さ まざまな機能に関与する複数のドメインから構成されていることが報告されて いる。また、上野らは、ヒト線維芽細胞において p180 が小胞体でのポリリボソ ーム形成ならびに小胞体上でのコラーゲンの効率的な合成に必須の因子である ことを報告している (58,77)。一方、SF3b4 は、スプライソソーム中の U2 核内 低分子リボ核タンパク質複合体 (small nuclear ribonucleoprotein: snRNP) に含ま れる SF3b の成分であり、2 つの RNA 認識モチーフを有する。SF3b4 は核内で 恒常的に発現していて、通常、スプライシング因子の一つとして機能している。 近年、上野らは、SF3b4 がコラーゲンを活発に分泌しているヒト線維芽細胞に て小胞体を含む膜面分で有意に増加していて、mRNA と結合した SF3b4 が p180 と特異的に相互作用していること、そして、分泌型アルカリホスファターゼを
モデルタンパク質としたとき、p180とSF3b4の過剰発現によって目的タンパク 質の生産性が向上したことを報告した(59)。本研究では、上述した翻訳装置増 強技術の抗体高発現株への適用を検討し、2因子の過剰発現によって抗体の生 産性を上昇させることができた。それゆえ、spERtTM技術は、分泌型アルカリホ スファターゼ、抗体だけでなく、他の分泌タンパク質の生産性向上にも応用で きる可能性がある。また、2因子の過剰発現は、小胞体上でのポリリボソーム の形成を促進し、mRNAの翻訳効率を上昇させ、目的タンパク質の生産性向上 に寄与することが示唆されている。本研究にてL002を宿主として作製した 2 因子発現株 M1-M6の間には、2因子のタンパク質発現量(Figure 18)、ポリリ ボソームの割合(Figure 19)、抗体生産性(Figure 15)に相関が見られた。また、 本研究でL003を宿主として作製した 2因子発現株 N5 は、抗体 H 鎖遺伝子の mRNA 発現量が親株 L003とほぼ同程度であった一方(Figure 26)、小胞体のポ リリボソームの量が大きく増加しており(Figure 28)、小胞体の翻訳装置の活性 化により、抗体生産性が増大した(Figure 21 B-D)ものと推察された。

本研究では、2 因子の効果を簡便に評価するとともに、抗体の生産量に基づ いて 2 因子発現株を容易にスクリーニングするために、spERtTM技術のうち、 p180 と SF3b4 の 2 因子を抗体高発現株に導入した。今後、spERtTM技術を迅速 かつ再現性の高い細胞構築手法として確立するために、p180 と SF3b4 を過剰発 現する宿主細胞を構築する予定である。本研究で L003 を宿主に用いて作製し た 2 因子発現株のうち 2 株では、薬剤を含まない培地で 16 回の継代培養を実施 した後でも、抗体生産性の低下は見られなかった。上述した p180 と SF3b4 の 2 因子発現宿主細胞の構築にあたっては、2 因子の発現量ならびに継代安定性の 評価によって候補株のスクリーニングを行った後、モデル抗体を用いた生産性 増強能及び産生抗体の品質評価を行い、宿主細胞株を決定する必要があると考 えられる。分泌型アルカリホスファターゼをモデルタンパク質とした場合と同 様に、宿主細胞の改変に加えて、抗体 H 鎖及び L 鎖遺伝子上流へコラーゲンあ

72

るいはフィブロネクチンの 5'非翻訳領域中の cis-エレメントを挿入することに よって、さらに抗体生産性を向上できる可能性がある。

以上の結果から、spERt™技術の2因子 (p180とSF3b4)の過剰発現によって、 モデル抗体高発現細胞の生産性を向上できることを見出し、フィード培地と細 胞培養プロセスの最適化によって、17日間のFed-batch培養での抗体濃度を9.5 g/L に上昇させることができた。本結果は、翻訳プロセスの増強技術を細胞構 築プロセスに適用し、抗体生産性を工業生産レベルに向上させた初めての報告 である。

4. 総括

抗体医薬品は、CHO 細胞発現系により樹立された細胞株を出発材料とした製造プロセスが確立されている。抗体の製造コストを低減するためには、効率的な製造プロセスを開発するとともに、抗体の高発現、高安定細胞を構築することが求められている。細胞構築プロセスは、宿主細胞、発現ベクター、遺伝子導入方法ならびにスクリーニング方法から構成されていて、高発現・高安定細胞を簡便に取得するためには、開発・選択した各々の要素技術を統合し、プロセスとして完成させる必要がある。また、構築した高発現・高安定細胞がその生産能力を最大限発揮するためには、細胞培養プロセスで使用する培地を最適化する必要がある。

これまでに、我々は、目的遺伝子の高発現を実現するために、新規プロモー ター及び新規 DNA エレメントを開発し、これら構成要素を含む抗体発現ベク ターpDSLH4.1 を構築してきた。そして、CHO-K1 細胞を無血清・浮遊化した 宿主細胞に pDSLH4.1 を遺伝子導入して作製した抗体発現ステーブルプール細 胞に対して、FSC 及び SSC 分割を利用した FCM によるスクリーニングを行う ことで、高発現細胞を効率よく濃縮できることを報告している。

本研究の第2章「抗体高発現株のモノクローン化検討」では、FSCとSSCを 指標に FCM によって分画した P15 画分の細胞、あるいは、ステーブルプール 細胞から ClonePix システムを用いてモノクローン化を行い、得られた発現株の 生産性を評価した。その結果、Fed-batch 培養の最終抗体濃度は、ステーブルプ ール細胞由来の発現株では最大でも 0.9 g/L であったのに対し、P15 画分の細胞 に由来する生産量上位4株では 0.9–2.4 g/L との結果で、ClonePix によるモノク ローン化によって P15 画分の細胞から高発現株を取得することができた。すな わち、本検討によって、高発現株のスクリーニング以降のモノクローン化工程 を確定させることができた。

74

第3章「抗体高発現株への翻訳装置活性化技術の適用検討」では、株式会社 ニッピにて開発された spERt™技術を第2章で取得した抗体高発現細胞に適用 し、抗体生産性、産生抗体の品質ならびに継代安定性に及ぼす影響を評価した。 抗体発現株 L002 及び L003 へ、p180 と SF3b4 を過剰発現させて構築した 2 因 子発現株は、どちらを宿主とした場合でも抗体生産性が2倍以上に上昇してい た。また、2 因子発現株により産生された抗体の品質は、その親株と比較して 顕著な差は見られなかった。2因子発現株4株を用いて継代安定性の評価を行 ったところ、2株では16回の継代培養後でも抗体生産性の低下は見られなかっ た。2因子発現株では、抗体遺伝子の mRNA 発現量が親株とほぼ同程度であっ た一方、小胞体のポリリボソームの割合が親株と比較して大きく増加していた ことから、小胞体の翻訳装置活性化によって抗体生産性が上昇したと示唆され た。そして、スペントメディアアナリシスによってフィード培地組成の最適化 を実施し、さらに播種生細胞密度とフィード量の増強と組み合わせることによ って、17日間の Fed-batch 培養での最終抗体濃度を 9.5 g/L に上昇させることが できた。本研究において p180 と SF3b4 の 2 因子の過剰発現によって抗体発現 株の目的抗体発現量が大幅に増大したことから、上述した2因子の過剰発現に よって宿主細胞の改良が可能であることが示唆された。また、FCM による高発 現細胞の濃縮と2因子の過剰発現を組み合わせた新規細胞構築ストラテジーが 工業生産に用いられる抗体高発現細胞の構築に有用であることを明らかにする ことができた。さらに、高発現株を用いたスペントメディアアナリシスによる 組成の最適化により、培地の開発に成功した。以上の結果から、本研究では、 CHO-K1 細胞を宿主とした発現系において、改良宿主細胞、発現ベクター、抗 体高発現細胞の取得技術ならびに培地から成る一連の細胞構築関連技術のパッ ケージ化に向けて、大きく前進することができた。

75

5. 参考文献

- Walsh, G.: Biopharmaceutical benchmarks 2018, Nat. Biotechnol., 36, 1136–1145 (2018).
- 2. Kaplon, H. and Reichert, J. M.: Antibodies to watch in 2021, MAbs, 13, e1860476 (2021).
- 国際医薬品情報 Vol.1176
 https://www.kokusaishogyo.co.jp/kokusaiiyakuhinjoho/2021261176.html
- 4. 金光修. 抗体工学入門 (地人書館 1994 年)
- Chu, L. and Robinson, D. K.: Industrial choices for protein production by large-scale cell culture, Curr. Opin. Biotechnol., 12, 180–187 (2001).
- De Jesus, M. and Wurm, F. M.: Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors, Eur. J. Pharm. Biopharm., 78, 184–188 (2011).
- Fischer, S., Handrick, R., and Otte, K.: The art of CHO cell engineering: A comprehensive retrospect and future perspectives, Biotechnol. Adv., 33, 1878–1896 (2015).
- Wurm, F. M.: Production of recombinant protein therapeutics in cultivated mammalian cells, Nat. Biotechnol., 22, 1393–1398 (2004).
- Kunert, R. and Reinhart, D.: Advances in recombinant antibody manufacturing, Appl. Microbiol. Biotechnol., 100, 3451–3461 (2016).
- 10. Puck, T. T., Cieciura, S. J., and Robinson, A.: The genetics of somatic mammalian cells, Adv. Biol. Med. Phys., 5, 75-101 (1957)
- Kao, F. T. and Puck, T. T.: Genetics of somatic mammalian cells. IV. Properties of Chinese hamster cell mutants with respect to the requirement for proline, Genetics, 55, 513-524 (1967)

- Kao, F. T. and Puck, T. T.: Genetics of somatic mammalian cells, VII. Induction and isolation of nutritional mutants in Chinese hamster cells, Proc. Natl. Acad. Sci. USA, 60, 1275–1281 (1968).
- Urlaub, G. and Chasin, L. A.: Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity, Proc. Natl. Acad. Sci. USA, 77, 4216–4220 (1980).
- Urlaub, G., Käs, E., Carothers, A. M., and Chasin, L. A.: Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells, Cell, 33, 405-412 (1983).
- Chen, K., Liu, Q., Xie, L., Sharp, P. A., and Wang, D. I. C.: Engineering of a mammalian cell line for reduction of lactate formation and high monoclonal antibody production, Biotechnol. Bioeng., 72, 55–61 (2001).
- Crea, F., Sarti, D., Falciani, F., and Al-Rubeai, M.: Over-expression of hTERT in CHO K1 results in decreased apoptosis and reduced serum dependency, J. Biotechnol., 121, 109–123 (2006).
- Davis, R., Schooley, K., Rasmussen, B., Thomas, J., and Reddy, P.: Effect of PDI overexpression on recombinant protein secretion in CHO cells, Biotechnol. Prog., 16, 736–743 (2000).
- Davies, S. L., Lovelady, C. S., Grainger, R. K., Racher, A. J., Young, R. J., and James, D. C.: Functional heterogeneity and heritability in CHO cell populations, Biotechnol. Bioeng., 110, 260–274 (2013).
- O'Callaghan, P. M., Berthelot, M. E., Young, R. J., Graham, J. W. A., Racher,
 A. J., and Aldana, D.: Diversity in host clone performance within a Chinese hamster ovary cell line, Biotechnol. Prog., 31, 1187–1200 (2015).
- 20. Lewis, N. E., Liu, X., Li, Y., Nagarajan, H., Yerganian, G., O'Brien, E., Bordbar, A., Roth, A. M., Rosenbloom, J., Bian, C., Xie, M., and other 10

authors: Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome, Nat. Biotechnol., **31**, 759–765 (2013).

- Boshart, M., Weber, F., Jahn, G., Dorsch-Häsler, K., Fleckenstein, B., and Schaffner, W.: A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus, Cell, 41, 521–530 (1985).
- 22. 長田重一, 菅野純夫, キムドンワン, 植月太一, 上代淑人.: 新規 DNA なら びにそれを含有する発現プラスミド, 特許第 3051411 号 (2000)
- Deer, J. R. and Allison, D. S.: High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1alpha gene, Biotechnol. Prog., 20, 880–889 (2004).
- Benton, T., Chen, T., McEntee, M., Fox, B., King, D., Crombie, R., Thomas, T. C., and Bebbington, C.: The use of UCOE vectors in combination with a preadapted serum free, suspension cell line allows for rapid production of large quantities of protein, Cytotechnology, 38, 43–46 (2002).
- 25. Girod, P. A., Nguyen, D. Q., Calabrese, D., Puttini, S., Grandjean, M., Martinet, D., Regamey, A., Saugy, D., Beckmann, J. S., Bucher, P., and Mermod. N.: Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells, Nat. Methods, 4, 747–753 (2007).
- Kwaks, T. H. J., Barnett, P., Hemrika, W., Siersma, T., Sewalt, R. G. A. B., Satijn, D. P. E., Brons, J. F., Blokland, R. van., Kwakman, P., Kruckeberg, A. L., Kelder, A., and Otte, A. P.: Identification of anti-repressor elements that confer high and stable protein production in mammalian cells, Nat. Biotechnol., 21, 553–558 (2003).
- 27. Takagi, Y., Yamazaki, T., Masuda, K., Nishii, S., Kawakami, B., and Omasa,
 T.: Identification of regulatory motifs in the CHO genome for stable monoclonal antibody production, Cytotechnology, 69, 451–460 (2017).

- Kaufman, R. J. and Sharp, P. A.: Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary DNA gene, J. Mol. Biol., 159, 601–621 (1982).
- 29. Sanders, P. G. and Wilson, R. H.: Amplification and cloning of the Chinese hamster glutamine synthetase gene, EMBO J., 3, 65–71 (1984).
- Gross, A., Schoendube, J., Zimmermann, S., Steeb, M., Zengerle, R., and Koltay, P.: Technologies for single-cell isolation, Int. J. Mol. Sci., 16, 16897–16919 (2015).
- Priola, J. J., Calzadilla, N., Baumann, M., Borth, N., Tate, C. G., and Betenbaugh, M. J.: High-throughput screening and selection of mammalian cells for enhanced protein production, Biotechnol. J., 11, 853–865 (2016).
- Feng, Y. Q., Seibler, J., Alami, R., Eisen, A., Westerman, K. A., Leboulch, P., Fiering, S., and Bouhassira, E. E.: Site-specific chromosomal integration in mammalian cells: Highly efficient CRE recombinase-mediated cassette exchange, J. Mol. Biol., 292, 779–785 (1999).
- 33. Zhou, H., Liu, Z. G., Sun, Z. W., Huang, Y., and Yu, W. Y.: Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system, J. Biotechnol., 147, 122–129 (2010).
- Kameyama, Y., Kawabe, Y., Ito, A., and Kamihira, M.: An accumulative site-specific gene integration system using Cre recombinase-mediated cassette exchange, Biotechnol. Bioeng., 105, 1106–1114 (2010).
- 35. Kawabe, Y., Makitsubo, H., Kameyama, Y., Huang, S., Ito, A., and Kamihira, M.: Repeated integration of antibody genes into a pre-selected chromosomal locus of CHO cells using an accumulative site-specific gene integration system, Cytotechnology, 64, 267–279 (2012).

- 36. Murakami, K.: Promoter derived from human gene, WO2013080934 (2013).
- Okumura, T., Masuda, K., Watanabe, K., Miyadai, K., Nonaka, K., Yabuta, M., and Omasa, T.: Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry, J. Biosci. Bioeng., 120, 340–346 (2015).
- 38. 後藤希代子,上野智規,野中浩一,増田兼治.: spERt™技術による翻訳装置 活性化とバイオロジクス製造への応用, 2017 年度日本動物細胞工学会技術 賞受賞講演 2019. 東京.
- Kwaks, T. H. J. and Otte, A. P.: Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells, Trenads. Biotechnol., 24, 137–142 (2006).
- Kennett, S.: Establishing clonal cell lines a regulatory perspective. Presentation, CASSS WCBP. 2014. Washington, D.C.
- Yenofsky, R. L., Fine, M., and Pellow, J. W.: A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure, Proc. Natl. Acad. Sci. USA, 87, 3435–3439 (1990).
- Sautter, K. and Enenkel, B.: Selection of high-producing CHO cells using NPT selection marker with reduced enzyme activity, Biotechnol. Bioeng., 89, 530–538 (2005).
- Niwa, H., Yamamura, K., and Miyazaki, J.: Efficient selection for high-expression transfectants with a novel eukaryotic vector, Gene, 108, 193–199 (1991).
- 44. Westwood, A. D., Rowe, D. A., and Clarke, H. R. G.: Improved recombinant protein yield using a codon deoptimized DHFR selectable marker in a CHEF1 expression plasmid, Biotechnol. Prog., 26, 1558–1566 (2010).

- 45. Blokland, H. J. M. van., Kwaks, T. H. J., Sewalt, R. G. A. B., Verhees, J. A., Klaren, V. N. A., Siersma, T. K., Korse, J. W. M., Teunissen, N. C., Botschuijver, S., Mer, C. van., Man, S. Y., and Otte, A. P.: A novel, high stringency selection system allows screening of few clones for high protein expression, J. Biotechnol., 128, 237–245 (2007).
- 46. Jun, S. C., Kim, M. S., Baik J. Y., Hwang, S. O., and Lee, G. M.: Selection strategies for the establishment of recombinant Chinese hamster ovary cell line with dihydrofolate reductase-mediated gene amplification, Appl. Microbiol. Biotechnol., 69, 162–169 (2005).
- 47. Trill, J. J., Shatzman, A. R., and Ganguly, S.: Production of monoclonal antibodies in COS and CHO cells, Curr. Opin. Biotechnol., 6, 553-560 (1995).
- Cockett, M. I., Bebbington, C. R., and Yarranton, G. T.: High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification, Biotechnology (NY), 8, 662-667 (1990).
- Brown, M. E., Renner, G., Field, R. P., and Hassell T.: Process development for the production of recombinant antibodies using the glutamine synthetase (GS) system, Cytotechnology, 9, 231–236 (1992).
- Fan, L., Kadura, I., Krebs, L. E., Hatfield, C. C., Shaw, M, M., Frye, C. C.: Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells, Biotechnol. Bioeng., 109, 1007–1015 (2012).
- Meng, Y. G., Liang, J., Wong, W. L., and Chisholm V.: Green fluorescent protein as a second selectable marker for selection of high producing clones from transfected CHO cells, Gene, 242, 201–207 (2000).
- 52. DeMaria, C. T., Cairns, V., Schwarz, C., Zhang, J., Guerin, M., Zuena, E., Estes, S., and Karey, K. P.: Accelerated clone selection for recombinant CHO

Cells using a FACS-based high-throughput screen, Biotechnol. Prog., **23**, 465–472 (2007).

- 53. Cairns, V. R., DeMaria, C. T., Poulin, F., Sancho, J., Liu, P., Zhang, J., Campos-Rivera, J., Karey, K. P., and Estes, S.: Utilization of non-AUG initiation codons in a flow cytometric method for efficient selection of recombinant cell lines, Biotechnol. Bioeng., 108, 2611–2622 (2011).
- 54. Brezinsky, S. C. G., Chiang, G. G., Szilvasi, A., Mohan, S., Shapiro, R. I., MacLean, A., Sisk, W., and Thill, G.: A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity, J. Immunol. Methods., 277, 141–155 (2003).
- 55. Hammill, L., Welles, J., and Carson, G. R.: The gel microdrop secretion assay: Identification of a low productivity subpopulation arising during the production of human antibody in CHO cells, Cytotechnology, 34, 27–37 (2000).
- 56. Holmes, P. and Al-Rubeai, M.: Improved cell line development by a high throughput affinity capture surface display technique to select for high secretors, J. Immunol. Methods., 230, 141–147 (1999).
- 57. Masuda, K., Nonaka, K., and Tanemura, H.: Promoter of Hspa5 Gene, WO2018066492 (2018).
- Ueno, T., Kaneko, K., Sata, T., Hattori, S., and Ogawa-Goto, K.: Regulation of polysome assembly on the endoplasmic reticulum by a coiled-coil protein, p180, Nucleic Acids Res., 40, 3006–3017 (2012).
- Ueno, T., Taga, Y., Yoshimoto, R., Mayeda, A., Hattori, S., and Ogawa-Goto, K.: Component of splicing factor SF3b plays a key role in translational control of polyribosomes on the endoplasmic reticulum, Proc. Natl. Acad. Sci. USA, 116, 9340–9349 (2019).

- Borth, N., Mattanovich, D., Kunert, R., and Katinger, H.: Effect of increased expression of protein disulfide isomerase and heavy chain binding protein on antibody secretion in a recombinant CHO cell line, Biotechnol. Prog., 21, 106–111 (2005).
- Tigges, M. and Fussenegger, M.: Xbp1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells, Metab. Eng., 8, 264–272 (2006).
- Ohya, T., Hayashi, T., Kiyama, E., Nishii, H., Miki, H., Kobayashi, K., Honda, K., Omasa, T., and Ohtake, H.: Improved production of recombinant human antithrombin III in Chinese hamster ovary cells by ATF4 overexpression, Biotechnol. Bioeng., 100, 317–324 (2008).
- 63. McLeod, J., O'Callaghan, P. M., Pybus, L. P., Wilkinson, S. J., Root, T., Racher, A. J., and James, D. C.: An empirical modeling platform to evaluate the relative control discrete CHO cell synthetic processes exert over recombinant monoclonal antibody production process titer, Biotechnol. Bioeng., 108, 2193–2204 (2011).
- Mead, E. J., Masterton, R. J., Feary, M., Obrezanova, O., Zhang, L., Young, R., and Smales, C. M.: Biological insights into the expression of translation initiation factors from recombinant CHOK1SV cell lines and their relationship to enhanced productivity, Biochem. J., 472, 261–273 (2015).
- 65. Jossé, L., Xie, J., Proud, C. G., and Smales, C. M.: mTORC1 signalling and eIF4E/4E-BP1 translation initiation factor stoichiometry influence recombinant protein productivity from GS-CHOK1 cells, Biochem. J., 473, 4651–4664 (2016).
- 66. 後藤希代子.: spERt™技術による翻訳装置の高機能化とその応用, 生物工学 会誌, 97, 335–337 (2019).

- 67. Ueno, T., Taga, Y., Ogawa-Goto, K., Kaku, Y., Sasaki, J., and Fujita, K.: Method for producing protein, WO2014157429 (2014).
- Lerner, R. S., Seiser, R. M., Zheng, T., Lager, P, J., Reedy, M. C., Keene, J. D., and Nicchitta. C. V.: Partitioning and translation of mRNAs encoding soluble proteins on membrane-bound ribosomes, RNA, 9, 1123–1137 (2003).
- Huang, Y. M., Hu, W. W., Rustandi, E., Chang, K., Yusuf-Makagiansar, H., and Ryll, T.: Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment, Biotechnol. Prog., 26, 1400–1410 (2010).
- 70. Yu, M., Hu, Z., Pacis, E., Vijayasankaran, N., Shen, A., and Li. F.: Understanding the intracellular effect of enhanced nutrient feeding toward high titer antibody production process, Biotechnol. Bioeng., 108, 1078–1088 (2011).
- Lu, F., Toh, P. C., Burnett, I., Li, F., Hudson, T., Amanullah, A., and Li. J.: Automated dynamic fed-batch process and media optimization for high productivity cell culture process development, Biotechnol. Bioeng., 110, 191–205 (2013).
- Takagi, Y., Kikuchi, T., Wada, R., and Omasa, T.: The enhancement of antibody concentration and achievement of high cell density CHO cell cultivation by adding nucleoside, Cytotechnology, 69, 511–521 (2017).
- 73. Ueno, T., Kaneko, K., Katano, H., Sato, Y., Mazitschek, R., Tanaka, K., Hattori, S., Irie, S., Sata, T., and Ogawa-Goto, K.: Expansion of the trans-Golgi network following activated collagen secretion is supported by a coiled-coil microtubule-bundling protein, p180, on the ER, Exp. Cell Res., 316, 329–340 (2010).
- 74. Langley, R., Leung, E., Morris, C., Berg, R., McDonald, M., Weaver, A., Parry,
 D. A., Ni, J., Su, J., Gentz, R., Spurr, N., and Krissansen, G. W.: Identification

of multiple forms of 180-kDa ribosome receptor in human cells, DNA Cell Biol., **17**, 449–460 (1998).

- 75. Savitz A. J. and Meyer. D. I.: Identification of a ribosome receptor in the rough endoplasmic reticulum, Nature, 346, 540–544 (1990).
- 76. Ogawa-Goto, K., Tanaka, K., Ueno, T., Tanaka, K., Kurata, T., Sata, T., and Irie. S.: p180 is involved in the interaction between the endoplasmic reticulum and microtubules through a novel microtubule-binding and bundling domain, Mol. Biol. Cell, 18, 3741–3751 (2007).
- 77. Ueno, T., Tanaka, K., Kaneko, K., Taga, Y., Sata, T., Irie, S., Hattori, S., and Ogawa-Goto, K.: Enhancement of procollagen biosynthesis by p180 through augmented ribosome association on the endoplasmic reticulum in response to stimulated secretion, J. Biol. Chem., 285, 29941–29950 (2010).
- Becker, F., Block-Alper, L., Nakamura, G., Harada, J., Wittrup, K. D., and Meyer, D. I.: Expression of the 180-kD ribosome receptor induces membrane proliferation and increased secretory activity in yeast, J. Cell Biol., 146, 273–284 (1999).

6. 謝辞

本研究を遂行し、本論文をまとめるにあたり、多大なるご指導、ご鞭撻を賜 りました九州大学大学院工学府化学システム工学専攻 上平正道教授に心より 感謝致します。

学位論文審査におきまして、貴重なご意見、ご指導を頂きました九州大学大 学院工学府物質プロセス工学専攻 井嶋博之教授、九州大学大学院工学府化学 システム工学専攻 三浦佳子教授に深く感謝致します。

「抗体高発現株への翻訳装置活性化技術の適用検討」は、株式会社ニッピ、 富士フイルム和光純薬株式会社との共同研究の成果になります。本共同研究を 形にするべく、spERtTM技術の抗体高発現株への適用検討に一丸となって粘り強 く取り組み、多くのご支援を頂きました株式会社ニッピ 後藤希代子博士、上 野智規氏、加来祐子氏に心から感謝致します。

培地の開発・評価ならびに細胞培養プロセスの開発にあたりまして、多くの ご協力、ご支援をいただきました富士フイルム和光純薬株式会社 佐伯尚史博 士、江原幸和博士に深く感謝致します。

本研究を実施するにあたり、社会人課程での大学院入学許可をいただき、多 大なご支援をいただきました第一三共株式会社 バイオロジクス本部長 籔田 雅之博士に心より感謝致します。

本研究の機会を与えてくださりました、第一三共株式会社 バイオロジクス 本部 バイオ医薬研究所長 野中浩一博士には、共同研究をオーガナイズいた だき、さらには進学先についてのご助言もいただきまして、深く感謝致します。

本研究にあたり、ご自身の学位取得時の経験も踏まえた適切な助言と激励を いただきました第一三共株式会社 バイオロジクス本部 バイオ医薬研究所 第一グループ長 奥村武博士に深く感謝致します。 研究を一緒に行った、第一三共株式会社 バイオロジクス本部 バイオ医薬 研究所 第一グループ 渡辺和彦氏をはじめとする第一グループの皆様に深く 感謝致します。

最後に、これまでに私と関わり、成長するきっかけを与えてくださった全て の方に深く感謝し、お礼を申し上げます。