
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Development and Numerical Experiments of
Massively Parallel Framework and Software for
Shortest Vector Problem

立岩, 斉明

https://hdl.handle.net/2324/4784418

出版情報：Kyushu University, 2021, 博士（数理学）, 課程博士
バージョン：
権利関係：

KYUSHU UNIVERSITY

DOCTORAL THESIS

Development and Numerical Experiments
of Massively Parallel Framework and
Software for Shortest Vector Problem

Author:
Nariaki TATEIWA

Supervisor:
Prof. Katsuki FUJISAWA

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Mathematics

in the

Graduate School of Mathematics

January 17, 2022

iii

KYUSHU UNIVERSITY

Abstract
Graduate School of Mathematics

Doctor of Mathematics

Development and Numerical Experiments of Massively Parallel Framework and
Software for Shortest Vector Problem

by Nariaki TATEIWA

Lattice-based cryptography has received attention as next-generation encryption because
it is believed to be secure against attacks by classical and quantum computers. Its essential
security depends on the hardness of solving the shortest vector problem (SVP), the primitive
lattice problems. In cryptography, to determine security levels, it is becoming significantly
essential to estimate the hardness of the SVP by high-performance parallel computing.

Several algorithms have been developed for SVP, however there is no single definite
algorithm. They has different computational profiles; some suffer from super-exponential
time, and others require exponential space. This motivated us to develop a novel frame-
work for the parallelization of SVP solvers for the clever coordination of different algorithms
that run massively in parallel. With our flexible framework, heterogeneous modules run
asynchronously parallel on a large-scale distributed system while exchanging information,
drastically boosting overall performance. We also implement full checkpoint-and-restart
functionality, which is vital to high-dimensional SVP. The parallel scheme in our framework
was designed to facilitate the implementation of past and future parallelization methods.
Through numerical experiments with up to 103,680 cores, we evaluated the performance
and stability of our framework and demonstrated its high capability for future massive-scale
experiments.

In addition, by taking full advantage of the features of our framework, we also devel-
oped the software for SVP. We have implemented our proposed a new distributed and asyn-
chronous parallel reduction algorithm, DeepBKZ, which is an enhancement of the block
Korkine-Zolotarev (BKZ) reduction algorithm. Randomized copies of a basis are distributed
to massively cores and reduced independently in parallel, while some basis vectors are
shared asynchronously among all processes. There is a trade-off between randomization
and information sharing; if too much information was shared, all processes would work on
the same problem and the benefit of parallelization would be lost. To monitor the balance
between randomness and sharing, we propose a metric to quantify the variety of bases. We
demonstrate by experiments the efficacy of our proposed parallel algorithm and our imple-
mentation in both performance and scalability.

Keywords: Shortest vector problem, Parallel computing, Lattice basis reduction, General-
ized UG framework.

v

Contents

Abstract iii

1 Introduction 1
1.1 Background . 1
1.2 Contribution to parallelization of SVP . 2

1.2.1 CMAP-LAP: Framework for lattice problems with massively paral-
lelization . 2

1.2.2 CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization 3
1.3 Related work . 4
1.4 Structure of this thesis . 5

2 Preliminaries 7
2.1 Lattices and their bases . 7
2.2 Lattices Problems . 9

3 Algorithms for Shortest Vector Problem 11
3.1 Enumeration . 11
3.2 Sieve . 13
3.3 Lattice basis reduction . 14

3.3.1 LLL reduction . 14
3.3.2 HKZ reduction . 16
3.3.3 BKZ reduction . 17

3.4 Project-and-lift . 17

4 CMAP-LAP: Framework for solving lattice problems with massively paralleliza-
tion 21
4.1 Design of framework . 21

4.1.1 Architecture . 22
4.1.2 Parallel dispatch . 25

4.2 Implementation . 27
4.3 Performances of Framework with Testing Configure 29

4.3.1 Information sharing . 30
4.3.2 Coordination of heterogeneous algorithms 30
4.3.3 Scalability . 31
4.3.4 Stability with massive parallelization 32

5 CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization 35
5.1 Parallel strategy . 35

5.1.1 Ordering of lattice bases for reduction 35
5.1.2 Strategy of parallel sharing in DeepBKZ 36
5.1.3 Implementation . 36

Parallel framework . 37
Processing flow of the supervisor and solver 38
Checkpoint and Restart . 39

5.2 Similarity of lattice bases . 40
5.2.1 Grassmann metrics . 40
5.2.2 Diversity of bases . 41
5.2.3 Effect of sharing short vectors on the diversity of bases 41

5.3 Numerical experiments . 44

vi

5.3.1 Metrics to measure the output quality of reduction algorithms 45
5.3.2 Efficacy when sharing short lattice vectors 46

Analysis using deterministic parallel execution 46
Analysis of MPI parallelization using CMAP-DeepBKZ 46

5.3.3 Scalability of the number of processes 50
5.3.4 Transition of diversity on large-scale execution 51
5.3.5 Massive parallelization experiments with checkpoints and restarts . . 53

6 Conclusion 59

Acknowledgements 61

A Solutions of SVP Challenge 63
A.1 New records in the hall of frame of SVP challenge 63
A.2 Solutions closed to record in the hall of frame of SVP challenge 63

B Lattice basis of numerical experiments 71
B.1 Well-reduced lattice basis in Figure 5.17 . 71

Bibliography 75

vii

List of Symbols

N, Z, R sets of natural, integer, real numbers
Zn, Rn vector-space of dimension n
x row vector
∥x∥ Euclidean norm of vector x
B matrix (composed from vectors, row-wise)
bi ith row of matrix A
diag(b1, ..., bn) diagonal matrix B
0 all-zeros vector
In n× n identity matrix
log x ln x, the natural logarithm with base e
Span(W) span of row vectors of W
W⊥ orthogonal complement of Span(W)
|S| cardinality of set S
γm m-dimensional Hermite constant

1

Chapter 1

Introduction

1.1 Background

A lattice L is the set of all integral combinations of linearly independent vectors in the Eu-
clidean space Rn. In the past few years, lattices have attracted considerable interest in cryp-
tography. In particular, with the recent development of quantum computers, since 2015, the
US National Institute of Standards and Technology (NIST) started developing new standards
for post-quantum cryptography (PQC) and called for proposals to prepare information security
systems that can resist quantum computers [SN]. (cf., The most popular cryptographic sys-
tems, such as RSA, DSA, and ECDSA, could be broken by Shor’s algorithms [Sho94] with
the use of large-scale quantum computers.) In 2021, NIST allowed 7 finalists and 8 alternates
for the third round of the NIST PQC Standardization Process, among which 7 were based on
lattices.

Lattice problems are a class of discrete optimization problems whose objective functions
are defined on the set of lattice points or the set of lattice bases. The most fundamental in-
stances of the lattice problems are the Shortest Vector Problem (SVP) and Closest Vector Problem
(CVP). SVP asks to find the shortest non-zero vector in a given lattice, and CVP asks to find
the closest vector in a given lattice to a given vector. Lattice problems are believed to be
computationally hard with both classical and quantum algorithms [Cai00] and have been
used to construct various cryptosystems [Pei16], including PQC. More specifically, the secu-
rity of many cryptosystems, such as Goldreich-Goldwasser-Halevi (GGH) cryptosystem and
NTRU encryption schemes, is based on the hardness of an approximate variant of SVP and
CVP. Therefore, it is important for cryptanalysis to know the limits of solving these lattice
problems (see [Jou12] for cryptanalysis using high-performance computing). However, in a
distributed computing platform, efficient use of a large number of MPI processes requires
appropriate control of the behavior of many processes, memory usage, and communication,
and this is very costly for implementation, testing and debugging. In fact, there are only a
few software fore SVP that can work in distributed computing platform. It is also impor-
tant to use parallel strategies that take advantage of properties of lattice algorithms, which
is suitable for distributed computing platform.

There are three basic families of lattice algorithms that have been developed to solve
practical lattice problems: lattice basis reduction, enumeration (ENUM), and sieve. These
algorithms have advantages and disadvantages, and there is no single definite algorithm
for lattice problems. Sieve and ENUM are the algorithms perform an exhaustive search of
all the short lattice vectors, whose number is exponential in the lattice dimension. Sieve
algorithm searches for the shortest vector by repeatedly storing short differences between
the short lattice vectors. A high-dimensional SVP instance requires numerous vectors to be
stocked. Specifically, it requires a memory that is exponential in the dimension of the input
lattice. According to [Alb+19, Table 2], G6K, implements a variety of basis reduction and
sieve algorithms, uses approximately 246 GB of memory for solving 127-dimensional SVP
instances. In contrast, ENUM has space-complexity is polynomial in the lattice dimension,
but it is asymptotically slower than the sieve algorithm. Lattice basis reduction aim to con-
vert lattice basis whose vectors are nearly-orthogonal. This process can find short vectors
quickly, but it cannot guarantee to output the shortest lattice vectors.

2 Chapter 1. Introduction

Framework

Software

Test Configure of CMAP-LAP

Dynamic task generation Checkpoint Mechanism

Data-pooling and distribution Communicator API

• Algorithms
• DeepBKZ (Reduction)
• Sub-ENUM (Enumeration)
• GaussSieve (Sieve)

• Data-sharing strategy
• Lattice vector sharing

provided by CMAP-LAP

CMAP-LAP

CMAP-DeepBKZ
• Algorithms

• DeepBKZ (Reduction)
• Data-sharing strategy

• Block-wise lattice
basis vector sharing

FIGURE 1.1: Relationship of CMAP-LAP and CMAP-DeepBKZ

1.2 Contribution to parallelization of SVP

Existing solvers for lattice problem are limited to a fixed set of algorithms and lack in flex-
ibility. There are two main obstacles in developing a large-scale multi-paradigm solver for
suitable in distributed computing platform: the need for an efficient high-level information-
sharing scheme across different algorithms, and an adaptive task selection and distribution
strategy for hundreds of thousands of processes.

The main contribution of this thesis is to provide solutions to overcome these obstacles
and develop a flexible framework to make various algorithms work cooperatively on a large-
scale distributed computing platform. By exploiting the mathematical properties of lattice,
a clever vector pooling scheme is introduced to minimize the amount of information com-
municated among processes. To implement our parallel strategy, we used Generalized UG
(UG version 1.0 RC) that is extended the well-recognized Ubiquity Generator (UG) frame-
work [Ug] for Branch-and-Bound (B&B) algorithms. Based on Generalized UG, we have built
a solid backbone to manage hundreds of thousands of processes running heterogeneous al-
gorithms in parallel, where the assignment of algorithms and their parameters can be adap-
tively tuned according to the available resources and the progress of the whole system. Con-
figurable Massively Parallel Solver for Lattice Problems (CMAP-LAP) is the framework for mas-
sively parallel strategies for lattice problems. It is designed to facilitate the implementation
of new parallel strategy ideas based on this framework. We have built a solid backbone to
manage hundreds of thousands of processes running heterogeneous algorithms in parallel,
where the assignment of algorithms and their parameters can be adaptively tuned according
to the available resources and the progress of the whole system.

Using CMAP-LAP framework, we also developed the new parallel software Configurable
Massively Parallel Solver for DeepBKZ (CMAP-DeepBKZ) specialized for the lattice reduction
algorithm, this is also the main our contribution. CMAP-DeepBKZ uses a new parallel strat-
egy of DeepBKZ, a variant of lattice basis reduction, to share a part of the lattice basis by
taking advantage of parallel computing and the information sharing feature of CMAP-LAP.
We have analyzed the performance of this software in detail by experiments on a large num-
ber of cores.

We show the relationship between CMAP-LAP framework and CMAP-DeepBKZ software
in Figure 1.1.

1.2.1 CMAP-LAP: Framework for lattice problems with massively paral-
lelization

CMAP-LAP [Tat+21] is a generic framework of parallelization for lattice algorithms, includ-
ing SVP. It covers parallelization of reduction, enumeration and sieve algorithms, and can

1.2. Contribution to parallelization of SVP 3

run them cooperatively on a large-scale computational platform by supervisor-worker par-
allel style. Given an input instance, a supervisor distributes randomized instances to all
solvers, and all worker processes can execute multiple kinds of solvers and multi-parallel
solvers in a heterogeneous. In addition, the supervisor stores lattice bases and vectors in
data containers. Using those data containers, each solver can send and receive a lattice basis
and vectors asynchronously with small communication overhead.

The features of CMAP-LAP are summarized as follows:

• We propose a novel parallel and multi-algorithm scheme for lattice problems, in which
several different single- or multi-rank solvers work cooperatively while sharing infor-
mation efficiently with other solvers even on a large-scale computing platform. To
realize the scheme, CMAP-LAP is developed entirely from scratch by fully utilizing the
features of the Generalized UG.

• The testing software using CMAP-LAP with 103, 680 cores stably and continuously ran
for more than 42 hours. We tested features of CMAP-LAP in several environments with
different scales and configurations.

• Each process asynchronously performs various lattice algorithms in coordination while
sharing information. Processes for different algorithms are adaptively allocated, and
their parameters are tuned according to the available resources, current progress, and
estimated time for finding a solution. In particular, our accurate estimation of memory
usage has drastically improved the stability and scalability.

• The high-level checkpoint-and-restart functionality is implemented to make it possible
to save and resume even on different architectures and platforms of various sizes.

• The efficient information-sharing scheme is developed based on the properties of lat-
tice problems, and is backed with blocking and non-blocking communication mecha-
nisms.

• Highly modular architecture allows one to incorporate new algorithms easily into the
system. Existing implementations that work only in a shared-memory environment
can work as modules of CMAP-LAP, which run massively in parallel.

1.2.2 CMAP-DeepBKZ: Software for DeepBKZ with massively paralleliza-
tion

We developed software specialized for massive parallelization of lattice basis reduction.
Specifically, we parallelize DeepBKZ [YY17] in the CMAP-LAP framework, and call our soft-
ware CMAP-DeepBKZ. (Note that BKZ can also be adopted in the same way.)

Below we summarize CMAP-DeepBKZ’s contribution:

• CMAP-DeepBKZ can share multiple short vectors as block to accelerate the reduction
process in every solver. In CMAP-DeepBKZ, each solver periodically sends its short
basis vectors to a container of a supervisor. In contrast, the supervisor distributes short
lattice vectors stored in its container to all solvers. Thus every solver can share short
lattice vectors with the other solvers by communicating only with the supervisor.

• As the number of shared vectors increases, the reduction process can accelerate in ev-
ery solver, but the randomness of the solver’s bases might be lost. Therefore we pro-
pose a method to quantify the similarity of lattice bases using metrics for Grassmann
manifolds (e.g., see [BG73; GVL96] for Grassmann metrics). Using the method, we ver-
ify by experiments the randomness of output bases of our parallel reduction algorithm
in CMAP-DeepBKZ.

• We demonstrate the performance and the scalability of CMAP-DeepBKZ by large-scale
experiments using up to 103, 680 cores. Specifically, we evaluate how the quality
of an output basis of our parallel algorithm changes, depending on the numbers of
shared vectors and CPU cores. We also evaluate the application performance of CMAP-
DeepBKZ such as the CPU utilization in a large-scale computing environment. For our
experiments, we use instances of the Darmstadt SVP challenge [Sch+10] in dimensions
up to around 130.

4 Chapter 1. Introduction

1.3 Related work

We summarize studies and software for the parallelization of lattice algorithms. Applica-
tions of high-performance computing to cryptanalysis for RSA and ECDSA are summarized
[Jou12].

Divide and conquer Since the ENUM algorithm represents a search space as a depth-first
tree structure, it is easy to divide the search space completely. This divide-and-conquer
method divides the enumeration tree into sub-trees, and each search process is performed
on different sub-trees and collects the results [DS10; Her+10; Kuo+11]. It has also been
proposed to perform depth-first search in parallel on GPUs [Her+10] or FPGAs [Det+10].
Equalizing the size of the tasks in each search process can be achieved by creating a large
number of tasks consisting of small sub-trees, but this rapidly increases the communication
cost.

Task parallelization Another parallelization approach has been pursued by randomiza-
tion [Kuo+11; BBK19]. Applying unimodular transformation to the basis vectors does not
change the lattice but alters the enumeration tree. Hence, a parallel search can be conducted
on the bases obtained by applying randomly generated unimodular matrices to the basis.
In other words, while the divide-and-conquer parallel strategy targets a single enumeration
tree, this randomization strategy searches multiple enumeration trees in parallel. Also, the
pruning technique of the search tree [GNR10] can be effectively used for this parallel strat-
egy. Instead of losing the guarantee that the shortest vector will be found, the number of
nodes in the tree can be significantly reduced by the pruning technique. This property also
serves to reduce the duplication of search in the randomized search tree. Before searching
pruned enumeration trees, lattice basis reduction algorithms are performed to reduce the
size of enumeration trees. [Kuo+11] creates SVP instances by randomization and performs
lattice basis reduction and parallel ENUM independently on CPU or GPU using cloud com-
puting. [BBK19] presented a shared-memory parallelized system based on randomization
and extreme pruning of [GNR10]. However, it reports the runtime of solving exact-SVP for
dimensions up to at most 100 over quad-socket Intel E7-4890 v2 CPUs (60 cores).

Data centralized parallelization Sieve-based algorithms utilize the large number of lattice
vectors collected in a centralized place for the dominant part of the computation. Search
processes perform nearly (if not completely) independent calculations to take advantage of
the randomness in sampling. This scheme is suitable for shared memory systems where the
memory is acceptable by all running threads, and concurrent accesses are handled explicitly.
In 2019, Albrecht et al. [Alb+19] provided the General Sieve Kernel, abbreviated as G6K,
that supports a variety of lattice basis reduction using advanced sieve algorithms. For BKZ
with G6K, we can select a sieve algorithm to run as a core exact-SVP oracle in local block
lattices. G6K adopts a multi-thread parallelization with highly optimized implementation
for core sieve algorithms in high-dimensional lattices. In 2021, a GPU implementation was
provided in [DSW21] for advanced sieve algorithms inside G6K to break high-dimensional
instances in the Darmstadt SVP challenge (cf., see [PSZ21] for a GPU implementation of
enumeration). In 2018, Teruya et al. [TKH18] proposed a massive parallelization for random
sampling. In their system, basis vectors except the last few vectors are stored in global
storage and shared with all processes in distributed computing platforms. Each process
performs random sampling independently on its basis and competes to reduce the basis
using vectors in the global storage. A synchronization processing is required only for storing
and loading basis vectors between each process and the global storage.

Task parallelization with small data communication In 2020, a distributed and asyn-
chronous parallel reduction algorithm was first developed in [Tat+20], which is called MAP-
SVP (MAssively Parallel solver for SVP). It was built on the Ubiquity Generator (UG) frame-
work [Ug], a generic framework for branch-and-band algorithms, to parallelize a reduction
algorithm based on randomization that generates different bases of the same lattice by a uni-
modular transformation of an input basis. Specifically, MAP-SVP runs a reduction algorithm

1.4. Structure of this thesis 5

(e.g., BKZ or DeepBKZ) on each solver independently for a randomized basis, but it enables
to share a shortest basis vector with all solvers to accelerate the reduction process of every
solver. Above other parallelization methods have been implemented in single-program and
multiple-data (SPMD) style. Besides, this parallelization is multi-program and multiple-data
(MPMD) style, and the data, lattice vectors, are aggregated into a single control process. The
performance and scalability of MAP-SVP were reported in [Tat+20, Section V] by using up
to 100,032 cores for solving several instances of the Darmstadt SVP challenge [Sch+10].

1.4 Structure of this thesis

In Chapter 2, we introduce some definitions of lattice that are used throughout this the-
sis. These include representative lattice problems and their relationships. Chapter 3 de-
scribes basic algorithms for solving SVP that has various motivations and principles. We
also explain the properties of each algorithm and how to use them to benefit from paral-
lel computing. These algorithms were used to test the performance and flexibility of our
framework. In Chapter 4, we introduce our framework for the massive parallelization of
SVP algorithms. Our framework includes a new parallel scheme for lattice problems, where
different algorithms are heterogeneously executed in parallel with information sharing. A
design of our framework and some implementation techniques are also presented in this
chapter. We demonstrate the performance using the basic algorithm on up to 103,680 cores
in large-scale experiments. In Chapter 5, we present the first parallel solver using our frame-
work, which parallelizes the lattice basis reduction by fully exploiting the features of our
framework. The lattice basis reductions are accelerated by sharing short lattice vectors in
the basis as a block. However, there is a trade-off between randomness and the amount of
shared information. To quantify the randomness of lattice basis reduction, we also propose
a novel metric using the Grassmann manifold. This metric is used for parameter tuning
to benefit from the parallelization fully. In addition, we provide in-depth analyses of our
solver’s quality of output by sharing information and using large-scale computer platforms
up to 103,680 cores.

In Appendix A, we give solutions of the SVP challenge found by our solver, including
new records of the hall of frame of the SVP challenge. In Appendix B, we give a well-reduced
lattice basis of the SVP challenge found by our solver.

7

Chapter 2

Preliminaries

In this chapter, we will introduce the background of lattices. We begin with the basic defini-
tions of lattices, their properties, and the main lattice problems.

2.1 Lattices and their bases

Definition 2.1.1 (Lattice and lattice basis) For integers n ≥ m ≥ 1, let b1, . . . , bm be m linearly
independent vectors in Rn. A lattice L is the set of all integral linear combinations of the bi’s. In
other words, we have,

L = L(b1, . . . , bm) :=

{
m

∑
i=1

vibi : vi ∈ Z (1 ≤ ∀i ≤ n)

}
. (2.1)

Besides, we call B a basis of lattice L when B consists of b1, . . . , bm vectors span the lattice L =
L(b1, . . . , bm).

!

FIGURE 2.1: A lattice in R2 and their basis vectors

In this thesis, we denote lattice basis B as a matrix consists of b1, . . . , bm as column vectors
in as follows

B =

←− b1 −→
←− b2 −→

...
←− bm −→

 .

Every lattice has infinitely many bases when n, m ≥ 2; if two bases B1 and B2 span the same
lattice, then there exists an n × n unimodular matrix U satisfying B1 = B2U (An integral
square matrix with determinant ±1 is called unimodular). Any elementary row operation
of matrix is represented unimodular matrix, therefore for any basis B of a lattice, elementary
row operations for basis B can not change the lattice L(B).

Definition 2.1.2 (Volume) The volume of lattice L = L(B) is defined as

vol(L) =
√

det(BBT).

8 Chapter 2. Preliminaries

Especially, when n = m for a lattice basis B ∈ Rn×m, we have vol(L) = det(B). The volume
of lattice L is independent of the choice of bases of L. It is the volume of the parallelepiped
spanned by the vectors B = (b1, . . . , bm) in geometrically.

Definition 2.1.3 (Gram-Schmidt orthogonalization) The Gram-Schmidt orthogonalization for
a basis B is the orthogonal family B∗ = (b∗1 , . . . , b∗m), recursively defined by b∗1 = b1 and for
2 ≤ i ≤ m

b∗i = bi −
i−1

∑
j=1

µijb∗j with µij =
⟨bi, b∗j ⟩
∥b∗j ∥2 (j < i). (2.2)

We call µ = (µij) the Gram-Schmidt orthogonalization coefficient matrix, where µij = 0 for
all i < j and µkk = 1 for all 1 ≤ k ≤ m. Then we have B = B∗µ, and thus

vol(L) =
m

∏
i=1
∥b∗i ∥.

The Gram-Schmidt orthogonalization B∗ is not unique of lattice L and this depends on the
basis B and the order of the vectors of it.

Definition 2.1.4 (Orthogonal projection) Let πℓ denote the orthogonal projection onto the or-
thogonal complement of the R-vector space ⟨b1, . . . , bℓ−1⟩R defined by

πℓ : Rn −→ ⟨b1, . . . , bℓ−1⟩⊥R = ⟨b∗ℓ , . . . , b∗m⟩R,

πℓ(x) =
m

∑
i=ℓ

⟨x, b∗i ⟩
∥b∗i ∥2 b∗i for x ∈ Rn.

Note that this projection map πℓ depends on the basis. We set π1 = id (the identity map) for
convenience. If i ≥ ℓ then we have πℓ(bi) = ∑i

j=l µijb∗j else πℓ(bi) = 0.

Definition 2.1.5 (Projected lattice) The lattice in Rn spanned by πk(bk), . . . , πk(bd) is called a
projected lattice of L, denoted by πk(L).

For the convenience of notation, we use B[i,j] to mean the basis consisting of projected lattice
vectors,

B[i,j] :=
(
πi (bi) , . . . , πi

(
bj
))

,

and we use L[i,j] a lattice generated from B[i,j],

L[i,j] := L
(

B[i,j]

)
.

The projected lattice L[i,j] has dimension j− i + 1 and

vol
(

L[i,j]

)
=

j

∏
k=i
∥b∗k∥

since the Gram-Schmidt orthogonalization of (πi(bi), . . . , πi(bj)) is given by b∗i , . . . , b∗j . Note
that any projected lattice depends on a basis B of L.

Definition 2.1.6 (Successive minima) For 1 ≤ k ≤ n, the k-th successive minimum of a m-
dimensional lattice L, denoted by λk(L), is the smallest radius of a ball centered at the origin 0
containing k linearly independent vectors in L.

In particular, the first minimum λ1(L) is equal to the length of a non-zero shortest vector in
lattice L.

Definition 2.1.7 (Hermite Constant) Let Lm be the set of m-dimensional lattice. Then, the m-
dimensional Hermite constant γm is defined as

γm := max
L∈Lm

λ1(L)2

vol(L)2/m (2.3)

2.2. Lattices Problems 9

This is also used for the upper bound analysis of the shortest vector norm in output basis by
lattice basis reduction algorithm.

Gaussian Heuristic Given a lattice L of dimension n and a measurable set S in Rn, the
Gaussian Heuristic predicts that the number of vectors in L∩S is roughly equal to vol(S)/vol(L).
By applying to the ball C centered at the origin in Rn with radius λ1(L), it leads to

vol(C)
vol(L)

≈ #(L ∩ C) ≈ 1.

Using vol(C) = ωnλ1(L)n, where ωn denotes the volume of the unit ball in Rn, then we
have

λ1(L) ≈ ω
− 1

n
n vol(L)

1
n .

We denote this heuristic estimation of λ1(L) as follows.

GH(L) := ω
− 1

n
n vol(L)

1
n ∼

√
n

2πe
vol(L)

1
n . (2.4)

Approximation ω
− 1

n
n ∼

√
n

2πe is derived from Stirling’s approximation. GH(L) is only a
heuristic, but it roughly holds for random lattices [GM03] in high dimensions such as n ≥ 50.

2.2 Lattices Problems

Lattice problems are algorithmic problems that involve lattices. Among lattice problems, the
SVP, CVP and their variants are fundamental importance.

! "

FIGURE 2.2: Example of solutions of SVP (in Definition 2.2.1) and CVP (in
Definition 2.2.6) for 2-dimensional lattice L; a solid vector represents a short-
est vector in L , and break vector represents a closest vector in L for a vector

t

Definition 2.2.1 (Shortest Vector Problem (SVP)) Find the shortest non-zero vector with respect
to the ℓ2-norm in the lattice L. In the form of optimization,

min
v
∥v∥ such that v ∈ L \ {0}.

SVP is a discrete combination optimization problem for finding xi’s in (2.1) and is shown to
be NP-hard under randomized reductions [Ajt96]. (That is, a probabilistic Turing-machine
exists that reduces any problem in NP to SVP instances in polynomial-time.)

The followings are evaluation metrics for the found lattice vector and basis.

Definition 2.2.2 (Approximation Factor) For a vector v ∈ L, the value ∥v∥/GH(L) is called the
approximation factor of v. Similarly, for a basis matrix B, the value min1≤i≤n ∥bi∥/GH(L(B))
is called the approximation factor of B.

10 Chapter 2. Preliminaries

Definition 2.2.3 (Hermite Factor) For a vector v ∈ L, the value ∥v∥/vol(L)1/n is called the
Hermite factor of v. Similarly, for a basis matrix B, the value min1≤i≤n ∥bi∥/vol(L(B))1/n is
called the Hermite factor of B.

Based on these metrics, an approximate variant of SVP is defined:

Definition 2.2.4 (Approximate Shortest Vector Problem (ASVP)) Given a lattice L and an ap-
proximation factor γ > 0,

find v ∈ L \ {0} such that ∥v∥ ≤ γ · λ1(L).

ASVP is exactly SVP when γ = 1. If γ <
√

2, ASVP becomes NP-hard [Mic01].

Definition 2.2.5 (Hermite Shortest Vector Problem (HSVP)) Given a lattice L and an approx-
imation factor γ > 0,

find v ∈ L \ {0} such that ∥v∥ ≤ γ · vol(L(B))1/n.

Another important lattice problem is:

Definition 2.2.6 (Closest Vector Problem (CVP)) Given a a lattice L and a target vector t, find a
vector in L that is closest to t. In the form of optimization,

min
v
∥v− t∥ such that v ∈ L

From a practical point of view, however, both problems are considered equally hard due to
Kannan’s embedding technique [Kan87] that can transform CVP into SVP. The main idea of
Kannan’s embedding technique is to define a lattice L̃ containing a short vector e = t− s,
where s is the optimal solution of CVP. We define a lattice L̃ as L((b1, 0), . . . , (bm, 0), (t, M))
where 0 < M ∈ R. Then, by solving SVP on L̃, we can obtain vector e and s as t− e.

A particular case of CVP that we will use later in this thesis is

Definition 2.2.7 (Bounded Distance Decoding (BDD)) Given a lattice L and a target vector t
within distance αλ1(L) of L = L(B) for a constant 0 < α ≤ 1

2 , find a vector in L closest to t.

There are other essential lattice problems related to the security of modern lattice-based
cryptosystems, such as the learning with errors and NTRU problems (e.g., see [Pei16]). Most
lattice problems can be reduced to SVP or CVP, so SVP and CVP are fundamental. As Kan-
nan’s embedding transforms CVP into SVP, We focus on SVP in this thesis to simplify the
narrative. However, the proposed framework in Chapter 4 apply to other lattice problems.

11

Chapter 3

Algorithms for Shortest Vector
Problem

This chapter introduces primary families of lattice algorithms for solving the shortest vec-
tor problem (SVP). We can categorize these algorithms into two types. One is an exact-SVP
algorithm, and the other is an approximate-SVP algorithm. These algorithms are not in-
dependent but are closely related. For example, the approximate-SVP algorithm uses the
exact-SVP algorithm internally, and the output of the approximate-SVP algorithm can be
used for the exact SVP algorithm. We introduce Enumeration and sieve as the exact-SVP
algorithm and lattice basis reduction as the approximate-SVP algorithm. These algorithms
are used in our parallel frameworks and software that will be introduced in later chapters.

3.1 Enumeration

Enumeration (ENUM) algorithm is a deterministic algorithm solving SVP exactly. For an
SVP instance of dimension m, the time complexity is 2O(m2), but the space complexity is a
polynomial in m. Given a basis {b1, . . . , bm} of a lattice L, ENUM is based on a depth-first
tree search for an integer combination (v1, . . . , vm) such that v = v1b1 + · · ·+ vmbm has the
shortest norm in L \ {0}.

With the Gram-Schmidt information (2.2), the target vector can be written as

v =
m

∑
i=1

vi

(
b∗i +

i−1

∑
j=1

µijb∗j

)
=

m

∑
j=1

(
vj +

m

∑
i=j+1

µijvi

)
b∗j

By the orthogonality of b∗i ’s, the projected vector πk(v) has length

ρk = ∥πk(v)∥2 =
m

∑
j=k

(
vj +

m

∑
i=j+1

µijvi

)2

∥b∗j ∥2 (1 ≤ k ≤ m).

Given a search radius R > 0, ENUM constructs an enumeration tree of depth m, whose
nodes at depth m− k + 1 correspond to the set of all vectors in projected lattices πk(L) with
a maximum length of R. The key observation is that if a shortest vector satisfies ∥v∥ < R, its
projections satisfy ∥πk(v)∥2 ≤ R2 for all 1 ≤ k ≤ m since ∥πk(v)∥2 ≤ ∥v∥2; hence, it appears
as a leaf of the tree. These m inequalities provide an efficient enumeration of the tree. The
total number of nodes to be searched can be estimated using the Gaussian Heuristic for each
projected lattice as ∑m

ℓ=1 Hℓ, where

Hℓ :=
Rℓωℓ

vol(πm+1−ℓ(L))
=

Rℓωℓ

∏m
i=m+1−ℓ ∥b∗i ∥

(1 ≤ ℓ ≤ m), (3.1)

and ωl denotes the volume of the unit ball in Rl . Therefore, it is crucial to choose a good
R, which is sufficiently small but larger than he shortest norm. One useful strategy is prun-
ing [GNR10] where a smaller tree is built by replacing the inequalities ∥πk(v)∥2 ≤ R2 by
∥πk(v)∥2 ≤ R2

m+1−k with a shorter radii R1 ≤ · · · ≤ Rm = R at each depth defined by a

12 Chapter 3. Algorithms for Shortest Vector Problem

Algorithm 1 ENUM [GNR10]

1: procedure ENUM(B, R)
2: ▷ B = (b1, . . . , bm): basis of a lattice L, R = (R1, . . . , Rm): Rk is a radius of depth-k

projected lattice πn−k+1(L(B))
3: Set ρ, r, v, c and w to zero array, whose size is m + 1, m + 1, m, m and m, respectively;
4: Set σ to zero matrix, whose size is (m + 1)×m;
5: r2 ← 1; v1 ← 1; ℓ← 1;
6: while true do
7: ρk ← ρk+1 + (vk − ck)

2∥b∗k∥
2; ▷ ρk = ∥πk(v)∥2

8: if ρk ≤ R2
m+1−k then

9: if k = 1 then return v = ∑m
k=1 vkbk;

10: ▷ Find v such that ∥πk(v)∥2 ≤ R2
m+1−k for all k

11: end if
12: k← k− 1; rk ← max(rk, rk+1);
13: for i = rk+1 down to k + 1 do
14: σi,k ← σi+1,k + µikvi;
15: end for
16: ck ← −σk+1,k; vk ← ⌊ck⌉; wk ← 1;
17: else
18: k← k + 1;
19: if k = m + 1 then return 0; ▷ Finish search
20: else ▷ Go to the successor
21: rk−1 ← k;
22: if k ≥ ℓ then
23: ℓ← k; vk ← vk + 1;
24: else
25: if vk > ck then
26: vk ← vk − wk;
27: else
28: vk ← vk + wk;
29: end if
30: end if
31: wk ← wk + 1;
32: end if
33: end if
34: end while
35: end procedure

pruning strategy. This is a probabilistic method because it is not certain that v can be found
in this pruned tree.

The description in pseudo-code of ENUM is given in Algorithm 1. In this algorithm,
there is no element of randomness, and the nodes are traversed deterministically. ENUM
can obtain the shortest vector by setting radius R1 = · · · = Rm = R to the norm of the
vector currently known and continuing the search without returning in line 9. In addition,
since this algorithm works well even if the parameter Ri are updated while the algorithm
is running, we can reduce the number of nodes of the enumeration tree without losing the
ability to find the shortest vector by updating the parameters Ri with the norm of v in line
9. The size of the enumeration tree is determined by the input lattice basis and the radius
parameters Ri.

Using a basis which is an output of lattice reduction algorithm (described in Section 3.3),
the number of nodes in enumeration tree becomes generally smaller. It was pointed out in
[GN08] that the approximation

∥b∗i ∥/∥b∗i+1∥ ≈ q (1 ≤ i ≤ m− 1)

holds for the Gram-Schmidt coefficients b∗1 , . . . , b∗m of the lattice basis output by the lattice

3.2. Sieve 13

reduction algorithm. In addition, from definition of Hermite constant (2.3), the upper bound
on the shortest vector norm of m-dimensional lattice is given by

√
γmvol(L)

1
m . From Gram-

Schmidt coefficient’s property and setting the radius R to
√

γmvol(L)
1
m which is optimal in

the worst case, then Hℓ in (3.1) are approximated as follows [GNR10];

Hℓ ≈ q(m−ℓ)ℓ/2Vℓ(
√

γm).

γm is Hermite constant in (2.3), and from this definitions, the upper bound shortest vector
of lattice Therefore, if as q becomes smaller, the number of nodes in the enumeration tree
becomes smaller. It is known that q can be reduced by transforming the lattice basis with
a stronger reduction algorithm. In other words, we can make the ENUM algorithm work
under better conditions by preprocessing of reduction algorithms.

Using as a sampler of short lattice vector In Algorithm 1, we can search all the lattice
vectors v satisfying ∥πk(v)∥2 ≤ R2

m−k+1, especially ∥v∥ = ∥π1(v)∥ < Rm, by continuing
the search without returning in line 9. The number of vectors satisfying the condition can be
estimated from basis B and radius R. Since an enumeration tree depends on the input basis,
it is not easy to switch the basis in the middle of the algorithm. If we want to perform ENUM
from another basis, we must terminate the search and start ENUM using another basis. The
memory usage of this algorithm is minimal and does not increase during the search.

3.2 Sieve

Sieve algorithm has a better asymptotic runtime than enumeration, but it requires exponen-
tial space 2Θ(n). The first algorithm of this kind is the randomized sieve algorithm proposed
by Ajtai, Kumar and Sivakumar (AKS) [AKS01]. It outputs a shortest lattice vector with over-
whelming probability, and its asymptotic complexity is much better than deterministic enu-
meration algorithms with 2O(n2) time complexity. The idea is that given a lattice L of dimen-
sion n, consider a ball S centered at the origin and of radius r with λ1(L) ≤ r ≤ O(λ1(L)).
Then #(L ∩ S) = 2O(n) according to the Gaussian Heuristic. If we could perform an ex-
haustive search for all vectors in L ∩ S, we could find a shortest lattice vector within 2O(n)

polynomial-time operations. In contrast, the AKS algorithm performs a randomized sam-
pling of L ∩ S. If it was uniformly sampled over L ∩ S, a short lattice vector would be in-
cluded in N samples with probability close to 1 for N ≫ #(L ∩ S). It can be also shown
that there exists a vector w ∈ L ∩ S such that w and w + s can be sampled with non-zero
probability for some shortest lattice vector s. Thus a shortest lattice vector is obtained by
computing a shortest difference of any pairs of the N sampled vectors in L ∩ S. There are
various implementations of sieve algorithms that differ mainly in how to sample lattice vec-
tors, such as ListSieve and GaussSieve [MV10]. Similarly to ENUM, the choice of R is crucial
to the sieve.

GaussSieve Here we describe the GaussSieve algorithm, which is incorporated into our
framework for testing, and a pseudo-code is shown in Algorithm 2. In GaussSieve, vectors
are sampled sequentially and stored in a List. Then, to keep that any vector pair of (v, p)
in the list are satisfied the pairwise reduced condition, min(∥v± p∥) ≥ max(∥v∥, ∥p∥), we
reduce the sampled vector using vectors in the list. Simultaneously, the vectors in the List
are also reduced by the reduced sampled vector. As a result, vectors that do not satisfy the
pairwise reduced condition are moved to a Stack and them will use instead of sampling. If
the reduced vectors collide with the vectors in List c times, algorithm terminates. We use
a priority queue data container to List and Stack. Its norm sorts the vectors in the priority
queue. Sampling is executed by Klein’s randomized rounding algorithm [Kle00].

Using as a sampler of short lattice vector The norm of the lattice vectors output by a
Klein sampler is generally long, and at the beginning of the algorithm, when the number of
vectors in a List is small, lattice vectors in a List are long. As the number of vectors in a List

14 Chapter 3. Algorithms for Shortest Vector Problem

Algorithm 2 GaussSieve [MV10]

1: procedure GaussSieve(B, c)
2: ▷ B = (b1, . . . , bm): basis of a lattice L, c: the maximum number of collision
3: List← {0}; Stack← {}; K ← 0;
4: while K < c do
5: if Stack is empty then
6: Sample v using klein sampler with B;
7: else
8: Pop v from Stack;
9: end if

10: v← GaussReduce(v, List, Stack);
11: if v = 0 then
12: K ← K + 1;
13: else
14: Push v into List;
15: end if
16: end while
17: end procedure
18: procedure GaussReduce(v, List, Stack)
19: while ∃p ∈ L such that ∥p∥ ≤ ∥v∥ ∧ ∥v− p∥ ≤ ∥v∥ do
20: v← v− p; ▷ Reduce v using p
21: end while
22: while ∃p ∈ L such that ∥p∥ > ∥v∥ ∧ ∥p− v∥ ≤ ∥p∥ do
23: Pop p from List;
24: Push p into Stack;
25: end while
26: end procedure

increases, the sampled vectors become strongly reduced, and the number of short vectors
in a List increases. In other words, the algorithm generates shorter vectors as the algorithm
proceeds, and the sampler’s performance improves. We also can interfere from the outside
of the algorithm by adding lattice vectors to Stack because Stack is managed independently
from the pairwise reduction condition in List.

3.3 Lattice basis reduction

Reduction algorithms find not necessarily shortest lattice vectors, but they are much faster
than exact-SVP algorithms such as enumeration and sieve (see [Ngu09; Yas21] for a survey).
Given a basis of a lattice, the goal of lattice basis reduction is to find a new basis of the same
lattice consisting of nearly orthogonal and relatively short vectors (See Figure. 3.1). Most lat-
tice problems become easier to solve with such a reduced basis. The Lenstra-Lenstra-Lovász
(LLL) algorithm [LLL82] is the most celebrated algorithm, and its blockwise generalization
is the block Korkine-Zolotarev (BKZ) algorithm [SE94]. Recently, efficient variants of BKZ
such as BKZ 2.0 [CN11] are implemented in software libraries (e.g., fplll library [The16]),
and they are used to estimate the security level of lattice-based schemes (e.g., see [AD21;
Alb+18]).

3.3.1 LLL reduction

Here, we first introduce the size-reduction algorithm [Her50], which is the basic component
of various lattice basis reduction algorithms.

Definition 3.3.1 (Size-reduction) a matrix B ∈ Rm×n is called size-reduced, if its satisfies:

|µij| ≤
1
2

(1 ≤ j ≤ i ≤ m).

3.3. Lattice basis reduction 15

! !!

FIGURE 3.1: An example of lattice reduction: Left is lattice basis before lattice
reduction, right is that after lattice reduction.

Algorithm 3 Size-reduction algorithm [Her50]

1: procedure SizeReduction(B) ▷ B = (b1, . . . , bm): basis of a lattice L
2: for i = 2 to m do
3: for j = i− 1 down to 1 do
4: SizeReduce(B, i, j);
5: end for
6: end for
7: end procedure
8: procedure SizeReduce(B, i, j)
9: if |µij| > 1

2 then
10: q← ⌊µij⌉;
11: bi ← bi − qbj;
12: for ℓ = 1 to j do
13: µiℓ ← µiℓ − qµjℓ;
14: end for
15: end if
16: end procedure

We can obtain the size-reduced basis by Algorithm 3. Since ∥µij∥ is calculated from the inner
product of b∗i and b∗j , a smaller value indicates that b∗i and b∗j are closer to orthogonal.

Definition 3.3.2 (δ-LLL-reduction) For 1
4 < δ < 1, a matrix B = (b1, . . . , bm) ∈ Rm×n is

called δ-LLL reduced, if it is size-reduced and satisfies the Lovász condition:

δ∥πi−1(bi−1)∥ ≤ ∥πi−1(bi)∥2 (1 ≤ i < n).

This Lovász condition is equal to the following condition.

∥b∗i ∥ ≥
(

δ− µ2
i,i−1

)
∥b∗i−1∥.

For a δ-LLL-reduced basis B, it holds both

∥b1∥ ≤ α
m−1

2 λ1(L), and

∥b1∥ ≤ α
m−1

4 vol(L)
1
m

for L = L(B) and α = 4/(4δ− 1) (see [Bre11; Ngu09]). To find an LLL-reduced basis, the
LLL algorithm [LLL82] calls size-reduction as a subroutine, and it also swaps adjacent basis
vectors that do not satisfy Lovász’ condition. The LLL algorithm has a complexity polyno-
mial in m. In practice, the average approximation factor is smaller than this upper bound
when using random lattices. Experiments conducted in [GN08] with a large number of ran-
dom lattice bases show that in higher dimensions, on average, ∥b1∥ ≈ 1.021mvol(L)1/m.

In addition, MLLL algorithm [Poh87], which is a variant of LLL, can be get rid of the
linear dependency of vectors. MLLL is used in the BKZ algorithm described below. Since

16 Chapter 3. Algorithms for Shortest Vector Problem

Algorithm 4 LLL algorithm [LLL82]

1: procedure LLL(B, δ)
2: ▷ B = (b1, . . . , bd): basis of a lattice L, δ: parameter of the Lovász condition
3: Bi ← ∥b∗i ∥2(1 ≤ i ≤ n);
4: k← 2;
5: while k ≤ n do
6: for j = k− 1 down to 1 do
7: SizeReduce(B, k, j);
8: end for
9: end while

10: if Bk ≤
(

δ− µ2
k,k−1

)
Bk−1 then

11: k← k + 1;
12: else
13: swap(B, k, k− 1); ▷ Swap bk and bk−1
14: k← max{k− 1, 2};
15: end if
16: end procedure

the MLLL algorithm is a generalization of the LLL algorithm, we will refer to MLLL as LLL
in the following description. In other words, we assume that the MLLL algorithm works
when a matrix that is not full rank is given as input to LLL.

As a generalization of LLL, non-adjacent basis vectors can be changed in LLL with deep
insertions (DeepLLL) [SE94]; Given a basis B = (b1, . . . , bn) and a reduction parameter
1
4 < δ < 1, we insert the k-th basis vector bk before bi as

B←− (b1, . . . , bi−1, bk, bi, . . . , bk−1, bk+1, . . . , bn) (3.2)

for indexes i < k such that ∥πi(bk)∥2 < δ∥b∗i ∥2, instead of swapping the neighboring basis
vectors (at line 13 in Algorithm 4). This basis permutation is called a deep insertion. The i-th
new Gram-Schmidt vector is given by πi(bk), whose length is shorter than the old one.

Definition 3.3.3 (δ-DeepLLL-reduced) We say a basis B = (b1, . . . , bm) δ-DeepLLL-reduced
if it is size-reduced and δ∥b∗i ∥2 ≤ ∥πi(bk)∥2 for all i < k.

For a δ-DeepLLL-reduced basis B, it holds both

∥b1∥ ≤
√

α
(

1 +
α

4

)m−2
2

λ1(L), and

∥b1∥ ≤ α
m−1
2m

(
1 +

α

4

) (m−1)(m−2)
4m vol(L)

1
m

for L = L(B) and α = 4
4α−1 (see [YY19]). These properties are better than LLL, but the

complexity is no longer polynomial.

3.3.2 HKZ reduction

Hermite-Korkine-Zolotarev (HKZ) reduction has a more (ideal) strong reduction for lattice ba-
sis than LLL.

Definition 3.3.4 (HKZ-reduction) A matrix B ∈ Rn×n is called HKZ-reduced, if it is size-reduced
and satisfies:

∥b∗i ∥ = λ1

(
L[i,n]

)
(1 ≤ i ≤ n).

The HKZ-reduced basis has a smaller upper bound than LLL for the norm of b1.

Lemma 3.3.1 ([LLS90, Theorem 2.1]) Let B = (b1, . . . , bm) be an HKZ-reduced basis of a lattice
L. We have

4
i + 3

λi(L)2 ≤ ∥bi∥ ≤
i + 3

4
λi(L)2 (1 ≤ i ≤ m).

3.4. Project-and-lift 17

To obtain the HKZ-reduced basis, we need to solve the SVP on the projected lattice sequen-
tially while incrementing i for L[i,m] from i = 0. However, since the cost of SVP increases
exponentially with the dimension of lattice, it is tough to find the HKZ-reduced basis in
practice.

3.3.3 BKZ reduction

The Blockwise Korkine-Zolotarev (BKZ) lattice reduction algorithm of Schnorr-Euchner [Sch87;
SE94]. It generalizes the HKZ algorithm by introducing a blocksize β > 2. On the other
hand, if β = 1, then BKZ reduction is equal to LLL reduction, and BKZ reduction can be said
to be a generalization of LLL.

Definition 3.3.5 (β-BKZ reduced basis) A matrix B ∈ Rn×n is called β-BKZ-reduced, if it is
LLL-reduced and satisfies:

∥b∗j ∥ = λ1(L[j,k]) (1 ≤ j ≤ n),

where k = min(j + β− 1, d).

Note that L[j,k] is the projected lattice as L(B[j,k]), and B[j,k] = (πj(bj), . . . , πj(bk)).
For a β-BKZ-reduced basis B, it holds

∥b1∥ ≤ γ
d−1
β−1
β λ1(L),

where γβ denotes Hermite’s constant of dimension β [Sch92] (see [Ngu09] for Hermite’s
constants). A β-BKZ-reduced basis can be found by the BKZ algorithm [SE94], in which
LLL is called to reduce B[j,k] before calling an exact-SVP algorithm (e.g., an enumeration

algorithm) over L[j,k]. Since larger β decreases γ
1/(β−1)
β from Mordell’s inequality, BKZ finds

short lattice vectors, but its computational cost is much more expensive. The complexity
of BKZ depends on that of an exact-SVP algorithm over L[j,k]. Experimentally results in
[GN08] shows ∥b1∥ ≈ 1.0128mvol(L)1/m and 1.0109mvol(L)1/m for blocksize β = 20 and 28,
respectively, for high-dimensional lattice.

DeepBKZ It is an enhancement of BKZ proposed in [YY17] that uses DeepLLL as a sub-
routine in a BKZ framework (instead of LLL). We show a basic procedure of DeepBKZ in Al-
gorithm 5 that calls enumeration as an exact-SVP algorithm in line 7. In practice, DeepBKZ
can find shorter lattice vectors than BKZ in using the same blocksize β (see [YY17; YNY20]
for their experimental results). Similarly to BKZ, the complexity of DeepBKZ depends on
that of an exact-SVP algorithm (e.g., enumeration) in dimension β.

Using lattice basis reduction as a sampler of shortest lattice vector Although basis re-
duction does not aim to obtain the shortest lattice vector, it is experimentally known that it
can find small lattice vectors whose norm is less than the theoretical upper bound ([BSW18]
calls this phenomenon “head concave”). Also, the vectors in the lattice basis are frequently
replaced during the processing of the algorithm. Therefore, we can sample short lattice vec-
tors by fetching the vectors in the basis of the algorithm running at any timing. In addition,
since the behavior of the basis reduction changes by randomization with unimodular matri-
ces, it is also possible to sample short lattice vectors by repeating the basis randomization
and the execution of (light) basis reduction.

3.4 Project-and-lift

The computational complexity of every known algorithm for SVP is exponential. A workaround
is to work with a smaller dimensional lattice and lift its shortest vector to find a short vector
in the original lattice. A straightforward but effective approach is to project the original basis
vectors by πk for some 1 ≤ k < m. First, find shortest vectors in the projected (m− k + 1)-
dimensional lattice by, for example, ENUM or sieve, and lift them to the original lattice so

18 Chapter 3. Algorithms for Shortest Vector Problem

Algorithm 5 DeepBKZ [YY17]

1: procedure DeepBKZ(B, δ, β)
2: ▷ B = (b1, . . . , bm): basis of a lattice L, δ: reduction parameter, β: blocksize
3: B← DeepLLL(B, δ) ▷ DeepLLL-reduction for the input basis B;
4: z← 0, j← 0;
5: while z < m− 1 do
6: j← (j (mod m− 1)) + 1, k← min(j + β− 1, m), h← min(k + 1, m)
7: v← ENUM(L[j,k]);
8: ▷ Enumeration over L[j,k] to find v ∈ L satisfying ∥πj(v)∥ = λ1(L[j,k])

9: if ∥πj(v)∥ < ∥b∗j ∥ then
10: z← 0, (b1, . . . , bh)← LLL((b1, . . . , bj−1, v, bj, . . . , bh))
11: ▷ Remove the lsinear dependency by LLL after insertion of v at position j
12: else
13: z← z + 1;
14: end if
15: DeepLLL((b1, . . . , bh), δ);
16: ▷ DeepLLL-reduction for the sub-basis (b1, . . . , bh) of the current basis B
17: end while
18: end procedure

that their projections by πk coincides with the shortest vectors in the projected lattice. The
latter lifting process is equivalent to BDD. In this manner, however, it is not guaranteed that
a shortest vector will be found.

Sub-sieve Sub-sieve is proposed in [Duc18] which implements this idea using a sieve.
Specifically, a sieve algorithm is performed in a projected lattice πk(L) to obtain a list of
short lattice vectors:

Dk,τ := {0 ̸= v ∈ πk(L) : ∥v∥ ≤ τ ·GH(πk(L))}

for a constant τ such as τ =
√

4
3 . In practice, k is chosen to be around m − 30 for high-

dimensional lattices [Alb+19; DSW21]. Then, by Babai’s algorithms [Bab86], the short vec-
tors in the inverse image π−1

k (Dk,τ) ⊂ L are enumerated. For a shortest non-zero vector
s in L, we set d and τ so that the projected vector sk := πk(s) is included in the list Dk,τ .
By an exhaustive search over Dk,τ , assume that sk is known. Let B denote the basis matrix
corresponding to {b1, . . . , bm}. Write s = xB for some x ∈ Zn, and split x as (x1|x2) with
x1 ∈ Zk−1 and x2 ∈ Zn−k+1. Since sk = πk(xB) = x2Bk, we know x2. Here Bk denotes the
matrix whose rows are bk, . . . , bn. We need to recover x1 so that the vector s = x1B1 + x2B2 is
the shortest in L \ {0}, where we split B into two matrices B1 and B2. This is a BDD instance
over the lattice spanned by the rows of B1 for the target vector x2B2.

Sub-ENUM We introduce sub-ENUM algorithm [Tat+21]. The first part is very similar
to sub-sieve. An ENUM algorithm is performed in a projected lattice πk(L) to collect a
lot of very short lattice vectors in Dk,τ . We call this strategy child-ENUM. Then, instead
of Babai’s algorithms, an ENUM algorithm is again used to find a shortest vector for a k-
dimensional lattice spanned by {b1, . . . , bk−1, v} We call this root-ENUM. As described in
Section 3.1, ENUM has complexity worse than sieve in high dimensions, but it requires much
less space, and thus it is more suitable for massive parallelization with small memory. The
basic procedure is as follows:

(i) We first execute ENUM on the sub-lattice L({b1, . . . , bk−1}).

(ii) Then we find a short lattice vector v by performing child-ENUM over the projected
lattice πk(L) such that v ∈ Dk,τ . If we finish searching all nodes of the enumeration
tree of πk(L), we output the shortest vector found and finish the Sub-ENUM.

3.4. Project-and-lift 19

(iii) We then run root-ENUM on the sub-lattice L({b1, . . . , bk−1, v}). If πk(s) = πk(v) is
satisfied, then we can obtain the shortest vector s ∈ L by root-ENUM, else we back to
step (ii).

21

Chapter 4

CMAP-LAP: Framework for
solving lattice problems with
massively parallelization

In this chapter, we propose a framework CMAP-LAP that implements a new parallel, multi-
algorithm scheme for lattice problems based on a supervisor-worker parallel system. Our
framework allows several different single-rank or multi-rank solvers to work cooperatively
while efficiently sharing information with other solvers, even in a large-scale computational
environment. This framework is based on the Generalized UG framework (described de-
tail in Section 4.2), but the information managed by the supervisor and the data structure
communicated are customized for the lattice problem and it was created from scratch. In
Section 4.1, we show the motivation and overall design of our framework and expanded
data pool for lattice problems. In addition, we describe some implementation techniques,
checkpoint-and-restart functionally, hybrid parallelization, non-blocking communication. In
Section 4.3, we show the performance of CMAP-LAP, such as sharing efficiency, scalability
and checkpoint-and-restart functionally.

4.1 Design of framework

It is essential for a practical solver to utilize the multiple lattice algorithms introduced in
Chapter 3. Most of the existing solvers discussed in Section 1.3 rely on either the combina-
tion of lattice reduction and sieve or the combination of lattice reduction and ENUM. These
algorithms are inter-dependent and executed sequentially. In contrast, CMAP-LAP is built
on a new multi-algorithm paradigm in which multiple lattice algorithms are executed co-
operatively and yet asynchronously in parallel. The key idea is that each lattice algorithm
described in Chapter 3 can be considered a sampler of short lattice vectors. Furthermore,
each algorithm benefits from the knowledge of short vectors; for example, the enumeration
tree of ENUM shrinks according to the upper bound R of the shortest norm. Using differ-
ent algorithms and randomly transformed bases, we can increase the number of samplers,

Reduction

Enumeration Sieve

reduced basis short vectors current shortest
vector found

FIGURE 4.1: Interaction among SVP algorithms

22 Chapter 4. CMAP-LAP: Framework for solving lattice problems with massively
parallelization

Local Solver

Local Solver

LoadCoordinator (LC)

rank 2

List
Solver:
(thread = 0)
ENUM

Solver: (thread = 0) Sieve

rank 1 rank N

⋯

Solver:
(thread = 0)
DeepBKZ sampler

Solver Pool

sieve
DeepBKZ ⋯

Task Pool

ENUM
DeepBKZ ⋯ Checkpoint

Writer

Basis
⋯

Basis

Solver:
(thread = 1)
DeepBKZ

Basis
⋯

rank 3

⋯

Solver:
(thread = 0)
DeepBKZ

Basis

Solver:
(thread = 1)
ENUM

Instance Pool

Basis Basis ⋯

⋯

Share-data Pool
vec
vec ⋯vec

vec
vec
vec

vec
vec

vec
vec

rank 0

FIGURE 4.2: System overview of CMAP-LAP for lattice problems

which mutually boosts the sampling performance by sharing the information of short vec-
tors found (see Figure 4.1). To realize the novel multi-algorithm paradigm, CMAP-LAP was
developed entirely from scratch utilizing the full power of the Generalized UG, which is a
generic high-level task parallelization framework.

4.1.1 Architecture

We describe the architecture of CMAP-LAP. The Generalized UG consists of a controller pro-
cess, LoadCoordinator (LC), and multiple Solvers. Each Solver communicates with LC asyn-
chronously. This system is suitable for multiple processes that run different algorithms and
share information as needed. CMAP-LAP adopts the Supervisor-Worker load coordination
paradigm (see [Ral+18]), where LC is supervisor and Solvers are workers. The main dif-
ference to the typical master-worker paradigm is that the supervisor’s task is limited and
workers act more independently by exchanging small messages with supervisors as needed,
avoiding unnecessary overhead to manage workers. The LC has the following data pools: (i)
Instance Pool, (ii) Solver Pool, (iii) Task Pool, and (iv) Share-Data Pool. (See Figure 4.2). The
LC creates particular purpose local threads as needed: (i) Checkpoint Writer thread (ii) Local
solver threads.

Each Solver carries a Task, which is a triple of:

• Instance is the data that represents the problem to solve, which in the case of SVP is a
lattice basis, and in the case of CVP is a lattice basis and a target vector.

• Parameters describe the type of algorithm and the parameters of the algorithm―for
example, an ENUM algorithm with a pruning strategy from Parameters.

• Status represents the algorithm’s progress, e.g., for the depth-first search of the enu-
meration algorithm, it is the node currently being searched.

Given a lattice problem, each Solver is created in one core and assigned a Task by LC. The
basic flow of CMAP-LAP is as follows (see Figure 4.3):

(1) LC stores given Instance in the instance pool.

(2) LC pops an Instance from the instance pool, sets Parameters for Instance, and initializes
Status. The created Task = (Instance, Parameters, Status) is stored in the task pool.

(3) If there exists an idle Solver, LC pops a Task in the task pool and sends it to the idle
Solver, and stores it to the solver pool.

(4) Each Solver takes the algorithm and its input from the received Task, and occasionally
shares information to LC, such as Instance, Data, Status. The information sent depends
on the algorithm, as shown in Figure 4.1. LC stores the information in the pool according
to this type. In addition, Solver sends its Status to LC, and LC updates Task in the solver
pool for the checkpoints.

4.1. Design of framework 23

(3) Send

task

(3) Pop

task

(4) Take

algorithm

(4) Receive

task

(2) Pop

instance

Instance Pool

Instance

⋯Instance ⋯

Solver Pool

Task Pool

Task
Task ⋯+・Parameters

・Initial StatusInstance

Message Handler

Solver

Task

(2) Create and

store task

(5) Share

Data

(4) Store

Instance

Data
Data

Data
Data

(4) Store

Data

TaskTask

⋯Task
Solver

Solver

⋯

Message Handler ParaSolver

Algorithms

Algorithm

(4) Run algorithm from Status

(4) Share Instance,

Data and Status, periodically

(4) Update

Status of Task

Status

DataInstance +・Parameters

・Initial StatusInstance
Task

Data

(4) (5)

Share-data Pool
(1) Store

instance

LoadCoordinator (LC)

FIGURE 4.3: Execution flow of CMAP-LAP

(5) Information in the share-data pool is occasionally retrieved from LC, and shared among
Solvers. Each Solver updates its Parameters according to the shared information. See
Chapter 3 for how the shared information is utilized by each algorithm run by the
Solver.

(6) When a Solver finishes the assigned Task, it sends its final Status to LC and becomes idle.

LC always checks for messages from Solver. Messages received by the LC are processed
through the message handler according to the type of message. As described above, Solver
only communicates with LC, and Solver does not share information with other Solvers
directly. This communication via the share-data pool is an effective solution for massive
parallelization to achieve (i) the reduction in the number of communication paths, (ii) the
management of the total amount of communication, (iii) the control over the memory usage,
and (iv) I/O for checkpoint and progress takes place solely within LC.

The detail of the components of CMAP-LAP is given as follows.

Instance Pool Instance pool stores instances of the problem together with their priorities.
For example, bases transformed by unimodular matrices give the same lattice and represent
different instances of the same lattice problem. The instance pool is initialized with the
single basis provided a lattice basis that specifies the lattice problem. LC stores bases sent
from Solvers, which run a lattice reduction algorithm. In the case of SVP, the priority can
be computed by the estimated total number of nodes in the enumeration tree described in
Section 3.1 such that the shortest vector will be found more efficiently with an instance of

24 Chapter 4. CMAP-LAP: Framework for solving lattice problems with massively
parallelization

higher priority. LC pops an instance with the highest priority from the instance pool and
creates a Task from it.

Task Pool Task pool stores Tasks, which are triples of (Instance, Parameters, Status). It man-
ages the Tasks waiting to be executed. LC assigns the Task with the highest priority to a
Solver. In this way, the Tasks, which would lead to better solutions quickly, are prioritized.
Multiple Tasks may be generated from a single instance using different algorithms and pa-
rameters.

Solver Pool Solver pool stores information of the running Solvers. Each Solver is man-
aged by (Solver Id, Task). The Status of Task is periodically updated by the Status message
sent from Solver. This mechanism allows LC to grasp the status of all Solvers. When Solver

finishes the assigned Task, it is registered as idle. In addition, when LC wants to assign a new
Task of high priority immediately, LC chooses a running Solver to interrupt the current Task.

The number of active Solvers that runs on a single machine node is determined by LC

according to the computational cost of Task. For example, sieve algorithms have a large
memory footprint to maintain a large number of lattice vectors; a single Solver becomes
active and runs on a single machine node. Meanwhile, ENUM and reduction algorithms use
little memory, and the same number of Solvers as that of the cores run on a single node.

Share-Data Pool Share-data pool stores information that is shared across multiple Solvers.
In the case of CMAP-LAP, a typical type of information sent from Solvers is a lattice vector
of the small norm. The size of the message is equal to the product of the dimension (e.g.,
130) and the size of the scalar (e.g., long integer). LC checks if the sent vector is already in
the pool. If it is not in the pool, an entry (Data, Sent-Solvers, priority) is created and added
to the pool, where Data is the sent vector. Sent-Solvers is a set that records the Solver Ids
to which Data has been sent. The priority is computed by its norm. When the pool size
gets bigger, LC decides which entries remain stored in the pool according to their priorities.
At an interval, LC selects an entry according to the priority and pushes it to those Solvers
whose Solver Ids are not in Sent-Solvers and adds their Solver Id to Sent-Solvers. In this
way, information is shared among all Solvers efficiently while controlling the total amount
of communication. The interval at which Solvers and LC push information can be tuned
depending on the configuration of the machine. There is no danger of locking regarding the
order of messages in our scheme.

The share-data pool is the most memory-consuming part of the LC. The size of the share-
data pool increases over time, and the limit of the pool size must be set appropriately ac-
cording to the available memory. In particular, the size of the Sent-Solvers is dominant and
should be estimated carefully in case of massive parallelization. Moreover, the cost of Data
retrieval increases when the pool size and the number of Solvers are large. In this case, the
limit of the pool size and the frequency of data sharing are suppressed.

Fully Checkpoint Functionality with Checkpoint Writer thread One of the most powerful
features of CMAP-LAP is the checkpoint mechanism for storing high-level information of the
whole system. Lattice problems are hard and often require millions of core hours. Thus,
it is critical to have the functionality to record the progress and resume after interruption.
Our checkpoint functionality is carefully designed to store high-level, platform-independent
information to enable restart even on different platforms.

When a checkpoint is requested, the data in the pools in LC are serialized and stored in
checkpoint files using zlib [DG96], a portable compression library. At the time of restart,
CMAP-LAP reads the checkpoint files to restore pools. The task pool contains Tasks, includ-
ing the progress information Status, which can be assigned to Solvers to resume. When the
checkpoint files are loaded in a different environment from the one that has saved them, the
number of cores and the available memory may differ. In this case, LC distributes the Tasks
in the task pool to Solvers as much as possible, leaving the other Tasks in the task pool. At
the same time, LC creates new Tasks when a large number of Solvers are available.

The technically important point is that the message processing from Solvers to LC is
blocked when LC writes checkpoint files. With many MPI packages, this is problematic

4.1. Design of framework 25

LC

create
instances

status: idle
Solver
status: idle
Solver
status: idle
Solversend

instances

4) Ramp-Down

2) Ramp-Up

3) Primary

status: busy
Solver

status: busy
Solver

status: busy
Solversend / receive

vector
LC
Vector pool

vector A
vector B
vector C⋯

status: idle
Solver
status: idle
Solver

status: busy
Solverstop request

run
process

status: idle
Solver
status: idle
Solver
status: idle
Solver

1) main process
LC

LC
Vector pool

vector A
vector B
vector C⋯

FIGURE 4.4: Basic phases of the parallel dispatch

because the size of the queue of MPI messages waiting to be received becomes large and
eventually leads to an error when the upper limit is reached. This problem becomes more
pronounced as the scale of execution increases. To avoid this problem, LC temporarily cre-
ates a copy of the pools on memory, and a dedicated thread in LC, called Checkpoint Writer,
is created to write the copy in the checkpoint files. Using the Checkpoint Writer thread has
significantly reduced the block time for checkpoints and enabled CMAP-LAP to run stably
on large-scale platforms.

Local Solver threads Some solvers can be created as a thread in LC. These Local Solvers
work on lightweight tasks requiring access to the entire pools. For example, Local Solvers
list the projected vectors in the share-data pool, which are found by Solvers performing
sub-ENUM and sub-sieve introduced in Section 3.4. Because Local Solvers have access to
the share-data pool without communication, the total amount of communication is reduced
in this way.

4.1.2 Parallel dispatch

Here, we describe parallel dispatch, which is a comprehensive execution flow in CMAP-LAP.
The parallel dispatch executes one parallel computing of one (sub-) problem as one cycle.
This parallel dispatch is essential to parallel for solving exact SVP in BKZ algorithm. The
parallel dispatch consists of four execution phases: main process, Ramp-Up, Primary, and
Ranp-Down, as shown in Figure 4.4. With these four phases as one cycle, parallel dispatch
executes the cycle multiple times.

Main process phase Herein, only the LC runs the process, and all Solvers are idle. LC

obtains the results of the parallel computation, prepares for the next parallel computation,
and performs other operations.

Ramp-Up phase (pseudocode is Algorithm 6) This is the period from when all Solvers
are idle until when all Solvers start processing after receiving the instance. LC creates an in-
stance and sends it to the Solvers in turn. Therefore, some Solvers are delayed in receiving
instances. We call the waiting time until these Solvers start processing start idle time.

26 Chapter 4. CMAP-LAP: Framework for solving lattice problems with massively
parallelization

Algorithm 6 Ramp-Up Phase

1: while LC should create and assign Task do
2: LC send Task to an idle Solver;
3: end while

Primary phase (pseudocode is Algorithm 7) All Solvers are processing the given instance.
During this and the Ramp-Down phase, the Solvers send or receive vectors objects to and
from the LC asynchronously. It allows all Solvers to share information through LC. LC has a
priority queue called the vector pool, which stores vector objects. When a Solver sends the
vector objects to the LC, the LC stores them in the vector pool if necessary. Conversely, if a
Solver sends a receive request to the LC, the LC sends the appropriate vector objects from
the vector pool to the Solver. Each Solver can send and receive the vector objects at its own
convenient timing. The vector pool is managed with customized priorities, and when the
pool is full, the vectors with lower priorities are removed. Because the LC receives send and
receive requests from multiple Solvers, a time lag occurs during sending and receiving. We
call it wait idle time.

Algorithm 7 Primary Phase

1: while True do
2: while LC should create and assign Task do
3: LC sends Task to an idle Solver;
4: end while
5: LC checks to have received any messages from Solvers;
6: ▷ LC calls handlers according to type of received messages;
7: if LC should create checkpoint then
8: LC creates checkpoint;
9: end if

10: while LC should create and assign Task for LocalSolver do
11: LC sends Task for LocalSolver to an idle LocalSolver;
12: end while
13: if There is no active Solver then
14: break;
15: end if
16: end while

Ramp-Down phase (pseudocode is Algorithm 8) This is the period when at least one
Solver is in an idle state. Information is shared between busy Solvers through LC. The
end time of a Solver depends on the instance given, or the vector received from the LC. If
there are many Solvers, the end time variance generally becomes large. Therefore, LC has a
function that can send a stop request to a Solver. When a Solver receives a stop request, it
ends the process immediately.

Algorithm 8 Ramp-Down Phase

1: LC send TerminateTag to all active Solvers;
2: while There are active Solvers do
3: LC wait TerminateTag from Solvers;
4: end while

Solver process (pseudocode is Algorithm 9) Finally, we show a brief pseudo-code for the
solver process. Idle Solvers wait for a Taskfrom LC, and when Solver receives the Task
from LC, Solver executes the algorithm according to the received Task, information of the
algorithm and its arguments. By passing the ParaSolver communication API of CMAP-LAP
to the algorithm, we can share the information of lattice basis and lattice vectors and receive

4.2. Implementation 27

Algorithm 9 Solver Process

1: while True do
2: Solver wait a message from LC;
3: if Solver receives new Task then
4: break;
5: else if Solver receives TagTerminate then
6: Solver send statistics data to LC, and send TagTerminate;
7: return;
8: end if
9: Solver run algorithm according to received Task;

10: end while

the termination notification through the communication API. When the Solver receives a
TagTerminate from LC, it sends the statistics of the executed Tasks to LC and send-backs the
TagTerminate to LC. By keeping a count of the number of TagTerminates LC has received, LC
can terminate after all Solver processes have been finished. This is the safest termination.

4.2 Implementation

Generalized UG: A framework to construct CMAP-LAP We have built a solid backbone
to manage hundreds of thousands of processes running heterogeneous algorithms in parallel
by specializing Generalized UG framework (UG version 1.0 RC). The Generalized UG frame-
work is extending the well-recognized Ubiquity Generator (UG) framework [Ug] for Branch-
and-Bound (B&B) algorithms. UG framework is a generic software framework to parallelize
an existing state-of-the-art B&B based solver, which is referred to as the base solver, from
“outside”. UG is composed of a collection of base C++ classes, which define customizable
interfaces to base solvers and translate solutions and subproblems into a solver independent
form. Additionally, a base class defines interfaces for different message-passing protocols
corresponding to the parallelization library used. UG has been developed primarily in con-
cert with a state-of-the-art mixed integer programming solver called SCIP [Sci]. As such,
ParaSCIP [Shi+11], and FiberSCIP [Shi+18a], which run on a distributed computing envi-
ronment and shared memory computing environment, respectively, are the most mature.
Notably, the distributed memory and shared memory solvers execute the same algorithm
in general for the instantiations. UG has been successfully utilized for mixed-integer linear
programming problems [Shi+18b; Shi+16; SBH18], Steiner tree problems [Gam+17; SRK19;
SRG19; RSK21], and quadratic assignment problems [Fuj+21] on supercomputers.

UG has shown flexibility and scalability for solving optimization problems. The ability
of UG motivated the development of a parallel solver using a non-B&B based solver. Gen-
eralized UG has been developed to enable parallelization of such a non-B&B based solver.
Generalized UG consists of several abstract classes which can be customized according to
the target problem. This customization flexibility is suitable for the realization of various
parallel strategies.

Extendability There are many lattice problem solvers, including the state-of-the-art sieve
solver G6K, which is available as open-source software. CMAP-LAP’s flexible and highly
modular design allows solvers to be incorporated as a part of the system. For the ease of
incorporation, an interface class ParaSolver is provided, with which existing solvers can be
turned into Solvers with minimum effort. Each Solver has a ParaSolver object that takes
care of all the communication, and existing solvers only have to receive input data and
send the results via ParaSolver’s API (see bottom of Figure 4.3). The solvers are not lim-
ited to single-rank applications. The UG has a feature to parallelize multi-rank applications.
See [Mun+19] as an example.

28 Chapter 4. CMAP-LAP: Framework for solving lattice problems with massively
parallelization

LoadCoordinator (LC)

Thread 1
Solver

Thread T
Solver⋯

⋯
Local

Thread T
Solver

⋯

Rank = 0

Rank = 1 Rank = N

ISendQueue ISendQueue

LocalComm

ParaComm

LC Solver Solver ⇆ Solver Solver LC
Flow of communication

Thread 0
rootSolver

Thread 0
rootSolver

Comm

FIGURE 4.5: Communicators between and within MPI processes: ParaComm
and LocalComm

Hybrid parallelization CMAP-LAP uses hybrid parallelization that combines MPI com-
munication with C++11 thread communication. LC and Solver have two kinds of commu-
nicators: one is ParaComm, which wraps MPI communication functions, and the other is
LocalComm, which wraps C++11 communication functions. ParaComm is used for inter-
process communication, and LocalComm is used for inter-thread communication within a
process (see Figure 4.5). Because all Solvers know the MPI rank of LC, Solvers send mes-
sages directly to LC using ParaComm and ISendQueue, which is described in the following
section. In contrast, when LC sends a message to Solver, LC first sends a message via Para-
Comm to the MPI rank where the Solver resides. The solver with 0 thread-Id receives the
message; we call this the rootSolver. Then, the rootSolver sends the message to the Solver us-
ing LocalComm. Therefore, the rootSolver receives more messages than the other Solvers,
the received messages must be checked frequently, even during the execution of the algo-
rithm. However, the idle time for message processing can be reduced by using non-blocking
communication, as described below.

MPI_ISend communication Because LC receives messages from all busy Solvers, the LC’s
load is the highest of all the processes in the case of large-scale computation. In addition, de-
pending on the type of messages received, processing such as inserting Data into the share-
data pool occurs in LC. This blocks the LC message processing and delays the receiving of
the messages. Note that the load coordination paradigm used in CMAP-LAP is Supervisor-
Worker [Ral+18] and then small message communications are performed between LC and
Solvers for load balancing. Although the frequency for the small message communications
can be controlled by run-time parameters, they are crucial in large-scale computations such
as over 100, 000 Solvers used. Therefore, in CMAP-LAP, to reduce the idle time of com-
munication in Solver, we send all messages from Solver to LC by using MPI_ISend, the
non-blocking communication. This leads Solver to resume the algorithm without waiting
for the check that LC receives the message. To prevent the objects deleted before they are
sent, we copy the objects sent by MPI_ISend to a queue called ISendQueue in the memory of
that process. We remove them from ISendQueue as soon as the transmission is confirmed
by MPI_Test (see Figure 4.6). By examining the size of each ISendQueue, we can determine
the number of unreceived messages of LC. Therefore, we set an upper limit on the size of
ISendQueue and do not send messages exceeding the limit, thereby preventing many mes-
sages from accumulating in LC.

4.3. Performances of Framework with Testing Configure 29

Rank 0 (LC)

Rank r (Solvers)

ISendQueue
A
B

MPI_ISend (A & B)

receive
message A

B

receive
message B

execute MPI_Test and remove
messages that has been sent

push
messages

time

FIGURE 4.6: MPI_ISend Communication between Solver and LC

4.3 Performances of Framework with Testing Configure

In this section, we evaluate the performance of CMAP-LAP with the SVP challenge. The com-
puting platform used in the following numerical experiments includes the Lisa and Emmy
at Zuse Institute Berlin, and ITO at Kyushu University. These specifications are summarized
in Table 4.1.

TABLE 4.1: Computing platforms used

Machine Memory
/ node CPU CPU

frequency # nodes # cores

Lisa 384 GB Xeon Platinum 9242 2.30 GHz 1,080 103,680 (96 × 1,080)
Emmy 384 GB Xeon Platinum 9242 2.30 GHz 128 12,288 (96 × 128)

ITO 192 GB Xeon Gold 6154 3.00 GHz 128 4,608 (36 × 128)
CAL A 256 GB Xeon E5-2640 v3 2.60 GHz 4 64 (16 × 4)
CAL B 256 GB Xeon E5-2650 v3 2.30 GHz 4 80 (20 × 4)

Operating systems and versions: Lisa and Emmy [CentOS Linux release 7.7.1908], ITO [Red Hat Enterprise Linux
Server release 7.3.1611], CAL A and CAL C [CentOS Linux release 7.9.2009]. Compilers and versions: Lisa and
Emmy [intel19.0.5, impi2019.5], ITO [icc 19.1.1.217, impi2019.4], CAL A [icc 19.1.3.304, openmpi4.0.5], CAL C
[icc19.1.3.304, impi2020.4.304]. Libraries and versions: NTL v11.3.3, Eigen v3.3.7, gsl v2.6, OpenBLAS v0.3.7, fplll
v5.2.1.

Setting up CMAP-LAP for testing to solve SVP We briefly describe the overall behavior
of CMAP-LAP for solving SVP. Recall that an SVP is specified by a lattice basis matrix. At
the beginning of the execution, the LC reads the basis matrix from a file and stores it in the
instance pool. LC creates a Local Solver to transform the basis with random unimodular
matrices and stores the resulting bases in the instance pool. Then, LC generates DeepBKZ
Tasks for the bases in the instance pool. The reduced bases are sent from Solvers performing
DeepBKZ Tasks to LC, and LC stores them in the instance pool. LC also generates ENUM
and sieve Tasks using the bases in the instance pool. Short lattice vectors are occasionally
sent from Solvers to LC, which are inserted into the share-data pool. At regular intervals,
Solvers request LC to send short vectors from the share-data pool. DeepBKZ Tasks insert the
received short vectors into the basis, sieve Tasks use the received short vectors as sampling
seeds, while ENUM adjusts the search radius according to the norm of the shortest vector
ever found. Some of the contents of the pools in LC are written to checkpoint files at regular
intervals: vectors in the data-share pool, basis matrices in the instance pool, and Tasks in
the solver pool. The Task mainly contains the basis matrix and the vector and parameters
needed to run the algorithm. When restarting, as described in Section 4.1.1, there are few
processes other than reading checkpoint files. We calculate the communication interval and
the number of vectors shared from the number of cores, and the maximum MPI buffer size
to relax the communication delay.

Since computing the exact norm of a shortest vector of a given lattice is as hard as com-
puting a shortest vector, we evaluate the progress of solving an SVP instance by the approx-
imation factor defined in Chapter 3. A smaller value of the approximation factor indicates a

30 Chapter 4. CMAP-LAP: Framework for solving lattice problems with massively
parallelization

0 1 2 3 4 5
Time [h]

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 130
size of share-data pool = 100,000 (CMAP-LAP)
size of share-data pool = 1 (MAP-SVP)
size of share-data pool = 0

FIGURE 4.7: Transition of the approximation factors for different share-data
pool sizes; execution were done on the CAL A and CAL B with 144 cores. The
solid blue lines in Figure 4.7, 4.9 and 4.11 represent the same experimental

result.

better (temporary) solution. With the Gaussian Heuristics, the approximation factor should
be about 1.0 for a good candidate of a shortest vector. From a cryptanalysis viewpoint, an
approximate factor of 1.05 is often set as a goal as in the SVP challenge. The numbers of
lattice vectors having smaller approximation factors decrease quickly; for example, in di-
mension n = 130, the ratio of the numbers of lattice vectors having approximation factors
1.20 and 1.30 is approximately (1.20n/1.30n) ≈ 3.03 × 10−5. In other words, it is 33, 000
times harder to reach an approximate factor of 1.20 than of 1.30. It becomes increasingly
harder to find lattice vectors with smaller approximate factors; for example, the ratio of
the numbers of lattice vectors having approximation factors 1.10 and 1.20 is approximately
(1.10n/1.20n) ≈ 1.22× 10−5.

4.3.1 Information sharing

We evaluate the effect of our novel information-sharing scheme and the parallelization with
the lattice reduction algorithm. We performed experiments running DeepBKZ with β = 30
for five instances of the SVP challenge of dimension 130 with seeds from 0 to 4. We executed
all computations on the CAL A and CAL B with 144 cores.

We show the efficiency of the information sharing with CMAP-LAP. In CMAP-LAP, Solvers
share multiple short lattice vectors via the share-data pool in LC. The amount of information
shared among Solvers can be controlled by the size of the share-data pool. Figure 4.7 com-
pares the transition of the approximation factor (averaged over 5 instances) overtime with
the size of the share-data pool 0, 1, and 100, 000. When the size of the share-data pool is set
to zero, no information is shared and all the Solvers are executed independently. When the
size of the share-data pool is set to 1, only the current shortest lattice vector (the current so-
lution) is shared among Solvers. This is equivalent to the sharing scheme of MAP-SVP. We
observe that the approximation factor is drastically reduced when the size of the share-data
pool is set to 100, 000. This shows the effectiveness of our data sharing scheme.

4.3.2 Coordination of heterogeneous algorithms

We show the effectiveness of CMAP-LAP’s multi-algorithm paradigm, in which heteroge-
neous lattice algorithms are executed concurrently in coordination. In this experiment,
we fix the number of Solvers assigned to each Task, that is, DeepBKZ, sub-ENUM, and
GaussSieve. Each Solver is assigned the the same type Task when it completes the current
Task. Figure 4.8 and 4.9 shows the results for a 110- and 130-dimensional SVP with four dif-
ferent configurations of the Task assignment, respectively. We ran the experiment on the CAL
A and CAL B with 144 cores for an hour or five hours, and the 1 core was assigned to LC, and

4.3. Performances of Framework with Testing Configure 31

0.0 0.2 0.4 0.6 0.8 1.0
Time [h]

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

Ap
pr

ox
im

at
e

Fa
ct

or

Dimension 110
DeepBKZ 143 sub-ENUM 0 GaussSieve 0
DeepBKZ 126 sub-ENUM 16 GaussSieve 1
DeepBKZ 110 sub-ENUM 32 GaussSieve 1
DeepBKZ 78 sub-ENUM 64 GaussSieve 1

FIGURE 4.8: Same as Figure 4.7, but dimension is 110 and different allotment
of algorithms; execution were done on the CAL A and CAL B with 144 cores.

0 1 2 3 4 5
Time [h]

1.16

1.18

1.20

1.22

1.24

1.26

1.28

1.30

1.32

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 130
DeepBKZ 143 sub-ENUM 0 GaussSieve 0
DeepBKZ 126 sub-ENUM 16 GaussSieve 1
DeepBKZ 110 sub-ENUM 32 GaussSieve 1
DeepBKZ 78 sub-ENUM 64 GaussSieve 1

FIGURE 4.9: Same as Figure 4.7, but for different allotment of algorithms;
execution were done on the CAL A and CAL B with 144 cores.

the other 143 cores were assigned to three types of Tasks. We set the size of the share-data
pool to be infinity. The best result was obtained with the combination of (DeepBKZ, sub-
ENUM, GaussSieve) = (110, 32, 1). To investigate the reason, we examine the distribution of
vector norms in the share-data pool for two configurations of 130-dimensional experiments
(see Figure 4.10). The total number of vectors shared through the share-data pool for (Deep-
BKZ, sub-ENUM, GaussSieve) = (143, 0, 0) was 36, 055, and that for (DeepBKZ, sub-ENUM,
GaussSieve) = (110, 32, 1) was 101, 952. In both configurations, shorter vectors were found by
DeepBKZ Solver. However, a large number of relatively short vectors found by sub-ENUM
and GaussSieve helped DeepBKZ find shorter vectors.

4.3.3 Scalability

To see the scalability of CMAP-LAP, we experimented with the same 130-dimensional SVP
instances as in Section 4.3.1 on Lisa using 2,976, 6,048, 12,192, 24,480, and 49,056 Solvers
with DeepBKZ (β = 30). We measured the average number of the main iterations (called
the tour) performed by each Solver within six hours. The number of tours provides a good
estimation of the progress of the DeepBKZ algorithm. As we observe from Table 4.2, the av-
erage number of tours stay almost constant when the number of Solvers increases. There-
fore, even if the number of Solvers becomes large-scale, there is no significant change in the
performance of each Solver.

32 Chapter 4. CMAP-LAP: Framework for solving lattice problems with massively
parallelization

3000 3500 4000 4500 5000 5500 6000 6500 7000
0

50

100

150

200

250

300

350

Nu
m

be
r o

f v
ec

to
rs

(DeepBKZ, SubENUM, GaussSieve) = (143, 0, 0); (#data = 36055)
DeepBkz

3000 3500 4000 4500 5000 5500 6000 6500 7000
0

200

400

600

800

1000

Nu
m

be
r o

f v
ec

to
rs

(DeepBKZ, SubENUM, GaussSieve) = (112, 32, 1); (#data = 101952)
DeepBkz
SubEnumz
Sieve

3000 3500 4000 4500 5000 5500 6000 6500 7000
Norm of latice vector

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f v
ec

to
rs

(DeepBKZ, SubENUM, GaussSieve) = (80, 64, 1); (#data = 122527)
DeepBkz
SubEnumz
Sieve

FIGURE 4.10: Distribution of the norm of vectors in the share-data pool.

In addition, we evaluated the effect of parallelization on the transition of the approxi-
mation factor (see Figure 4.11). We experimented with the same SVP instances as in Section
4.3.1 using different numbers of Solvers. The size of the share-data pool was set to 100, 000.
We used the CAL A and CAL B with 144 cores and ITO with 2, 304 cores for this experiment.
The best (minimum) approximation factor obtained within 5 hours with 143 Solvers was
1.176 and 1.117 with 2, 303 Solvers. In terms of Gaussian Heuristics, the latter is considered
to be 1.176130/1.117130 ≈ 800 times better. It took 14, 844 seconds to reach the approximation
factor of 1.176 with 143 Solvers while it took 2, 965 seconds with 2, 303 Solvers, which is a
speed-up by a factor of 5.0 compared with 143 Solvers. Similarly, the time for the approxi-
mation factor to fall below 1.2 was 7, 319 seconds with 143 Solvers and 1, 360 seconds with
2, 303 Solvers, which is a speed-up by a factor of 5.3.

4.3.4 Stability with massive parallelization

We show the results of a long-time execution of CMAP-LAP.

TABLE 4.2: Iterations of DeepBKZ of each Solvers for 130-dimensional SVP

of Solvers 2,976 6,048 12,192 24,480 49,056

averaged 45.86 43.32 43.08 40.10 57.07# of iterations

4.3. Performances of Framework with Testing Configure 33

0 1 2 3 4 5
Time [h]

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 130
Number of Solver = 143
Number of Solver = 575
Number of Solver = 2303

FIGURE 4.11: Same as Figure 4.7, but for different number of Solvers; execu-
tion were done on the CAL A and CAL B with 144 cores, and ITO with 2,304

cores.

0 20 40 60 80 100
Time [h]

1.06

1.07

1.08

1.09

1.10

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 134 Seed 0

FIGURE 4.12: Transition of the approximation factor of a 134-dimensional
SVP for long-time execution on the Lisa with 103,680 cores. Each dot repre-

sents the beginning of restart from checkpoint.

Figure 4.12 shows the result of multiple executions of a 134 dimensional SVP instance.
We ran the experiment 13 times using our checkpoint-and-restart functionality on the Lisa
supercomputer with 103, 680 cores. The first few executions were performed for short peri-
ods to test the checkpoint functionality. During the test, we observed occasional aborts due
to an excessive number of MPI messages waiting to be received by the LC. As a workaround,
the Checkpoint Writer (described in Section 4.1.1) was developed, and the upper limit of the
size of ISendQueue was set based on the number of messages the Solver sends to the LC

(described in Section 4.2). This has improved the stability and enabled a longer execution
time. We have tested up to 42 hours of continuous execution. Together with checkpoint and
restart, the approximation factor was improved over time.

Figure 4.13 shows the result of multiple executions of a 130 dimensional SVP. This time,
we tested a restart from a checkpoint created on a different environment. The first 14 execu-
tions were performed on the Emmy with 12, 288 cores and the last 1 execution was restarted
on the Lisa with 103, 680 cores. Although the number of cores used in the Lisa is 8.44 times
more than that of the Emmy, the execution was carried over by the checkpoint functionality
without any problem. The Tasks running on the Emmy when the checkpoint was created
were executed on the Lisa immediately after the restart, and new Tasks were generated from
the instance pool and assigned to extra Solvers available on the Lisa. It should be noted that
the approximation factor was improved in the last execution after the final restart (see the
purple segment in Figure 4.13).

The interval of the creation of checkpoint files were set to an hour. It took an average of
1, 531.75 seconds per checkpoint for the Checkpoint Writer to compress and write the pool’s
information in files, whose size was approximately 7.09 GB on memory. In contrast, it took
only an average of 2.77 seconds for LC to copy the pools for the Checkpoint Writer. In this

34 Chapter 4. CMAP-LAP: Framework for solving lattice problems with massively
parallelization

0 50 100 150 200 250
Time [h]

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 130 Seed 0
12,288 Cores (Emmy)
103,680 Cores (Lisa)

FIGURE 4.13: Transition of the approximation factor of a 130-dimensional
SVP for long-time execution on the Emmy with 12,280 cores and Lisa with

103,680 cores.

manner, the blocking time of LC’s message processing was greatly improved by the Check-
point Writer. The averaged time required to read a checkpoint is only 64.75 seconds, and
since the checkpoint contains Task information, execution can be restarted without prepos-
sessing.

35

Chapter 5

CMAP-DeepBKZ: Software for
DeepBKZ with massively
parallelization

In this Chapter, we propose and implement a parallel strategy specialized for lattice basis
reduction based on the CMAP-LAP framework, one of the algorithms for SVP. By taking ad-
vantage of the information sharing feature of CMAP-LAP, the lattice basis reductions are ex-
ecuted concurrently in multiple processes with sharing a part of the basis among all worker
processes. There is a trade-off between this information sharing and the randomness among
the basis, and it is important to balance them. In order to obtain the full benefit of paralleliza-
tion, it is essential that, at least, different computations are performed by multiple processes.
However, to the best of our knowledge, no metric has been proposed to quantify the diver-
sity of basis sets. Therefore, we propose a metric to quantify the diversity of a set of bases
and verify its validity. Using this metric, we experimentally confirm that the independence
of parallel computation will be kept even after information sharing. Finally, we evaluate the
performance of the proposed software in detail by experiments using up to about 100,000
cores. As a result, we succeeded in improving the quality of the output basis and updating
the SVP challenge record of up to 128 dimensions.

5.1 Parallel strategy

In this Section, we introduce the massive parallelization system of DeepBKZ and its im-
plementation. Our parallelization is based on randomization, which enables task-parallel
reductions for multiple randomized bases. We also share short basis vectors of the ran-
domized bases among solvers to accelerate the reduction process in every solver through
CMAP-LAP featuress.

5.1.1 Ordering of lattice bases for reduction

We define an ordering of lattice bases for reduction. Let us recall the process of DeepBKZ:
given a basis of a lattice L and a blocksize β ≥ 2, DeepBKZ aims to find a new basis B =

(b1, . . . , bm) of L such that ∥b∗j ∥ = λ1

(
L[j,k]

)
for all indices j with k = min(j + β − 1, m),

by calling an SVP oracle (e.g., an enumeration algorithm in Algorithm 5) on the projected
lattice L[j,k] = L(B[j,k]) cyclically for j = 1, 2, . . . , m − 1. During DeepBKZ reduction, the
Gram-Schmidt norms

(
∥b∗1∥, . . . , ∥b∗m

∥∥) decrease monotonically in lexicographic order. As
β increases, the quality of an output basis improves in both theory and practice. Similar to
BKZ, when β = m, DeepBKZ outputs an HKZ-reduced basis that is the minimum among the
bases of L in the lexicographic order of the Gram-Schmidt norms.

For our parallelization of DeepBKZ, we consider the lexicographic order of the Gram-
Schmidt norms when comparing lattice bases. Precisely, for two sub-bases B = (b1, . . . , bm1)

36 Chapter 5. CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization

and C = (c1, . . . , cm2) of a lattice, we define an order as

B < C ⇐⇒
∃j ≤ min{m1, m2} s.t. (∥b∗i ∥ = ∥c∗i ∥) ∧ (∥b∗j ∥ < ∥c∗j ∥) for all i < j.

(5.1)

(Cf., for a parameter 0 < Θ < 1, the authors in [TKH18] considered ∑m
i=1 Θi∥b∗i ∥ as the score

of B for their random sampling reduction algorithm.)

5.1.2 Strategy of parallel sharing in DeepBKZ

Our aim of parallelization is to efficiently find a small lattice basis in the lexicographic order
(5.1) of the Gram-Schmidt norms. Our parallelization policy is a heuristic approach. Specifi-
cally, we generate a lot of different bases of a lattice through randomization. We then execute
DeepBKZ on the randomized bases in parallel by sharing short lattice vectors to find a small
basis in the order (5.1). We here denote a unit that executes DeepBKZ as a solver.

Given a lattice L, we state that a basis S of L is global if it satisfies S ≤ B in the order (5.1)
for all bases of the solver B of L. For a global basis S = (s1, . . . , sm) of L, we also call its
sub-basis of the form Sk = (s1, . . . , sk) a global sub-basis for each 1 ≤ k ≤ m. Any global
sub-basis Sk satisfies Sk ≤ B for all the bases of the solver B from (5.1). In our strategy, all
solvers share a common global sub-basis Sk while running DeepBKZ; in other words, all
solvers share the first k vectors of a global basis. One of the realizations of sharing the global
sub-basis is message passing of the whole and a part of the basis. For the case k = 1, when
the first basis vector b1 of a basis B is updated in a solver, the basis of that solver becomes a
global basis. Thus, we set s1 = b1 and send the vector is sent to all solvers. When a solver
receives s1, the solver adds it to the top of its basis C = (c1, . . . , cm) and performs LLL on
the m + 1 vectors (s1, c1, . . . , cm) to remove its linear dependency. The vector s1 remains as
the first basis vector in most cases; thus, we complete to share s1 with the solver. If the first
basis vector c1 of C after LLL is not equal to s1, then it must hold the ∥c1∥ ≤ ∥s1∥ and the
basis C of the solver becomes a new global basis, using the same procedure as above is used
to share c1 with the other solvers. To generalize, in the case where k ≥ 1, when a global
basis S is updated, its global sub-basis Sk = (s1, . . . , sk) is sent to the other solvers, which
can be merged by LLL on (s1, . . . , sk, c1, . . . , cm) and the re-sharing of a basis. In practice, it
is more stable to sequentially insert one vector at a time into its basis and remove the linear
dependency by LLL due to floating-point precision.

5.1.3 Implementation

We introduce new software to realize the strategy of parallel sharing DeepBKZ as described
in Subsection 5.1.2. Our software is based on CMAP-LAP [Tat+21], a generic framework
for the massive parallelization of lattice algorithms, including reduction, enumeration, and
sieve algorithms. We call our software “CMAP-DeepBKZ" because it is specialized for the
parallelization of DeepBKZ by using supervisor-worker style [Ral+18] functions in CMAP-
LAP. In our software, we denote each worker process as solver. We represent the progress
of a solver as the status, a pair consisting of a basis and a blocksize parameter for Deep-
BKZ. We also present a triple containing a lattice basis, algorithm parameters, and a status,
called a task. Given an input basis of a lattice L, the supervisor process generates tasks with
randomized bases of L and distributes them to solvers. The solver process executes Deep-
BKZ according to the received task and periodically communicates the current status to the
supervisor to update or fetch a global basis while executing the reduction algorithm.

In Figure 5.1, we show the overall process of parallel sharing DeepBKZ in CMAP-DeepBKZ.
We describe each process in Figure 5.1 below.

(i) Given an input basis B of a lattice L, the supervisor sets the global basis S of B and
creates initial tasks by randomizing the lattice bases B.

(ii) The supervisor sends the tasks to idle solvers and simultaneously stores them in a
solver pool.

(iii) Every solver executes DeepBKZ according to a received task.

5.1. Parallel strategy 37

Solver Pool

Solver A

Global
Basis

Task

⋯Task
Solver

Solver

⋯
(ⅲ) Run reduction algorithm from Task
(ⅳ) Send status, and receive

global sub-basisperiodically

(ⅵ) Update
Status of Task

Status
Basis Basis

Supervisor

(ⅱ) Send
task

⋯

Task

BasisBasis

(ⅴ) Update global basis or
send global basis

Solver Z

Basis
Task

Basis

(ⅰ) input basis and
set global basis

FIGURE 5.1: The overall process of parallel sharing DeepBKZ in CMAP-
DeepBKZ

(iv) Every solver sends its status (B, β) to the supervisor periodically, where B is the current
reduced basis and β is the current blocksize of DeepBKZ.

(v) When the supervisor receives a status (B, β) from a solver, it compares the basis B of
the status with a global sub-basis Sk.

• If B is smaller than the global sub-basis Sk in the lexicographical order of Gram-
Schmidt norms, the supervisor replaces the current global basis S with B.

• If not, the supervisor sends the global sub-basis Sk back to the solver.

(vi) The supervisor updates tasks in the solver pool according to received statuses.

Because the supervisor maintains a global basis, each solver can obtain the global basis
only by communicating solely with the supervisor, that is, without communicating with
other solvers. The solver pool maintained within the supervisor is the container of the tasks
executed by solvers, which are updated according to their respective statuses sent by the
solvers. The solver pool data is used to create a checkpoint file because this pool maintains
the latest progress of all solvers.

Parallel framework

We have implemented CMAP-DeepBKZ based on the CMAP-LAP framework, which applies
massively parallel strategies for lattice problems. The CMAP-LAP framework is designed to
facilitate the implementation of other parallel strategies based on this framework. CMAP-
LAP is created by inheriting from the Generalized UG framework (UG version 1.0 RC), a par-
allel framework implemented in C++11 which provides the infrastructure for supervisor-
worker parallelism. The concept of Generalized UG is to parallelize the state-of-the-art
solvers from the outside. Generalized UG provides several abstract classes which can be
customized according to the target problem and solvers. This customization flexibility is
suitable for the realization of our strategy.

The motivation of the CMAP-LAP framework is to utilize the interactions of typical SVP
algorithms such as the enumeration, sieve, and lattice reduction algorithms as samplers of
lattice basis and vectors. For example, the lattice basis output of the lattice reduction al-
gorithm can be used for the enumeration and sieve algorithm. Moreover, the short lattice

38 Chapter 5. CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization

Algorithm 10 Processing flow of the supervisor

1: procedure supervisor(B) ▷ B: instance basis
2: S← B; ▷ Set initial the global basis S
3: seed← 0;
4: for i = 1→ m do
5: C← randomize(B, seed); seed← seed + 1;
6: Send task (C, parameters) to i-rank solver; ▷ Send initial tasks to solvers
7: SolverPool[i]← (C, parameters);
8: end for
9: while iProbe(source, tag) do

10: if tag is SolverState then
11: Receive Status (B, β) from the source-rank solver;
12: ▷ B is basis and β is blocksize of DeepBKZ
13: Update task of source-rank solver in the solver pool using (B, β);
14: if B < Sk then
15: S← B; ▷ Update the global basis
16: else if B > Sk then
17: Send Sk to the source-rank solver;
18: end if
19: Send notification to the source-rank solver;
20: end if
21: if tag is Termination then
22: C← randomize(B, seed); seed← seed + 1;
23: Send task (C, parameters) to the source-rank solver;
24: SolverPool[source]← (C, parameters);
25: end if
26: if current time reaches the checkpoint time then
27: Serialize SolverPool, compress it, and write it to checkpoint file;
28: ▷ Create a checkpoint file
29: end if
30: if current time reaches the time limit then
31: break;
32: end if
33: end while
34: end procedure

vector found by each algorithm can accelerate the lattice basis reduction or sieve. There-
fore, CMAP-LAP is designed as a scheme that can heterogeneously parallel execute solvers
in parallel and share lattice vectors and bases among the solvers. It has a modular system
for the implementation of new strategies relating to large-scale parallelization. Developers
can customize task structures to execute multi-thread or multi-rank SVP solvers. In addi-
tion, CMAP-LAP’s communication API allows solvers to share information synchronously,
quickly, and safely with minimal changes. Furthermore, CMAP-LAP has a flexible and high-
level checkpointing function. Thereby, we can challenge to solve high-dimensional SVP
instances which require millions of core hours. In [Tat+21], the stability and future perfor-
mance of the framework are shown by the several experiments of heterogeneous and long-
running execution of the naive algorithms combinations in a large-scale environment using
up to 103, 680 cores.

Processing flow of the supervisor and solver

The pseudo processing flow in the supervisor of CMAP-DeepBKZ is shown in Algorithm 10.
The supervisor continuously checks whether it has received a message from the solvers us-
ing the MPI_iProbe function. If messages have been sent to the supervisor, it handles the re-
ceived message according to its tag, which represents the message type. In CMAP-DeepBKZ,
the most important and frequently exchanged message tag is TagSolverState, which indicates
the status of the algorithm. The status is a pair consisting of the basis and the blocksize of

5.1. Parallel strategy 39

Algorithm 11 Reduction algorithm in solver

1: procedure Reduction(B, β)
2:
3: Set ts to next status sending time;
4: while Reduction has not finished do
5: B← subroutine(B, β); ▷ Subroutine of reduction algorithm
6: if current time > ts then
7: Send a status (B, β) to supervisor with SolverState tag;
8: Wait a notification from supervisor;
9: if solver receives the global sub-basis Sk = (s1, . . . , sk) then;

10: if Sk < B then
11: for j = 1→ k do
12: l ←minimum index h satisfies ∥πh(sj)∥ < ∥b∗h∥;
13: B← LLL((b1, . . . , bl−1, sj, bl , . . . , bd));
14: ▷ Merge the global sub-basis into its own basis
15: end for
16: end if
17: end if
18: Update ts to next status sending time;
19: end if
20: end while
21: Send Termination tag to supervisor;
22: end procedure

DeepBKZ. In CMAP-LAP, the supervisor only uses the status to update the tasks in the solver
pool. In addition, the supervisor in CMAP-DeepBKZ updates and distributes the global basis
S using basis B of the status. If B < Sk, that is B satisfies the condition to be the global
basis, the supervisor then updates the global basis S to B. If Sk < B, the supervisor sends
the global sub-basis Sk back to the solver. Because the CMAP-DeepBKZ has this supervisor-
worker style, we can share the global-sub basis using this simple process.

The algorithmic function executed by the solver is shown in Algorithm 11. The solver
communicates using the communication API in CMAP-LAP. It periodically sends the basis
and the currently running blocksize as status until the algorithm terminates. If the solver’s
basis is smaller than the global sub-basis, the solver receives the global sub-basis from the
supervisor. As shown in Algorithm 11, almost any algorithm can be applied to our software
because we are only required to customize for the communication between subroutines. The
experiment of running several algorithms in parallel is described in [Tat+21].

Checkpoint and Restart

It is critical to save the progress of the solvers to resume the computation because it takes a
significantly large amount of core hours to solve the large-dimension SVPs. This is accom-
plished by powerful checkpointing functionality in CMAP-DeepBKZ that stores the complete
progress information of the SVP solvers. Because the supervisor periodically receives the al-
gorithm’s progress from these solvers, it tracks progress and writes it to the checkpoint file.
More specifically, whenever the supervisor receives a status from the solver, it updates the
task in the solver pool based on the received status. When a checkpoint is requested, the
supervisor serializes the tasks data in the solver pool, compresses and writes them by using
zlib [DG96], a portable compression library. When we resume the computation, the tasks are
loaded from the checkpoint file and stored in the task pool, a container of tasks waiting for
execution. Next, the supervisor distributes the tasks to solvers according to the priority as-
sociated with the tasks. The supervisor creates new tasks when many solvers are available.
In contrast, if the number of solvers is less than that when the checkpoint file was generated,
the tasks remain in the task pool and are given priority when the supervisor distributes the
next task.

40 Chapter 5. CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization

5.2 Similarity of lattice bases

The benefit of parallelization in our algorithm mainly depends on the randomization of
bases. Each solver works independently on a randomized copy of the input basis, and we
hope that the reduction algorithm works faster for a certain random copy. While this in-
dependence allows for asynchronous parallelization, the overall system would benefit from
collaboration among solvers. Therefore, we introduced a sharing scheme in the previous
section in which solvers indirectly exchange short lattice vectors with each other via the
supervisor. However, there is a trade-off between randomness and the amount of shared in-
formation. Let us think of the extreme case when all vectors are shared and all solvers work
on the same basis, the benefit of parallelization would be completely nullified. It is impor-
tant to ensure that the diversity of the bases is preserved by the sharing. In this section, we
introduce a novel metric to quantify the diversity of lattice bases. This metric will be used to
determine the value of the number of share vectors k for the optimal balance.

5.2.1 Grassmann metrics

Let B and C be two bases of a d-dimensional lattice in Rn. We define several similarity
metrics between B and C, and use them to quantify the diversity of a set of bases. Recall that
DeepBKZ with blocksize β is an algorithm to find a basis whose i-th basis vector bi which is
the shortest from the projected lattice L

(
B[i,min(i+β−1,d)]

)
for all i. It is natural to compare

the projected lattices B̃i := L
(

B[i,d]

)
and C̃i := L

(
C[i,d]

)
for each 1 ≤ i ≤ d. Each B̃i defines

an m-dimensional subspace in Rn, where m = d− i+ 1. The subspace corresponds to a point
in the Grassmannian manifold Gr(m, n) which consists of m-dimensional linear subspaces in
the Euclidean space Rn. The Grassmannian manifold comes equipped with several metrics
(distances), which we use as the similarity measures for B̃i and C̃i.

Let Yi (B) be the (m×n)-orthonormal matrix corresponding to B̃i whose rows are b∗k /∥b∗k∥
for i + 1 ≤ k ≤ d. The standard way to define metrics on the Grassmannian manifold is via
principal angles [BN02]. Denote the singular value decomposition (SVD) of Yi(B)Yi(C)T by

Yi(B)Yi(C)T = Udiag (cos θ1, . . . , cos θm)V, (5.2)

where U and V are orthonormal matrices and the singular values cos θk are sorted in de-
creasing order. The singular values cos θk are called canonical correlations and the angles
θ1, . . . , θm ∈ [0, π/2] are called the principal angles of Yi(B) and Yi(C) [BG73; GVL96]. The
first principal angle θ1 is the minimal angle between the two subspaces spanned by B̃i and
C̃i. If this minimal angle is achieved by u1 ∈ Span(B̃i) and v1 ∈ Span(C̃i), the second prin-
cipal angle θ2 is the minimal angle between their orthogonal complements. The third and
subsequent principal angles are defined in a similar manner.

The geodesic distance, which is induced by the canonical Riemannian metric on Gr(m, n)
as the homogeneous space of the orthogonal group O(n), is computed as d

(
Yi(B), Yi(C)

)
=√

∑i θ2
i . Although the geodesic distance is the most natural and “authentic” metric on

Gr(m, n), it is computationally expensive since we have to compute the SVD of a large ma-
trix. It is thus preferable to use metrics that can be computed efficiently without invoking
SVD. Such metrics include chordal metric dc and the projection 2-norm metric dp2. The chordal
metric is defined as the square root of the square sum of the sine of principal angles, but can
be computed efficiently by the Frobenius norm of the difference of the projectors:

dc

(
Yi(B), Yi(C)

)
:=
√

∑
k

sin2 θk =
1√
2
∥Yi(B)T Yi(B)−Yi(C)T Yi(C)∥F.

It is shown in [EAS98, Section 4.3] that the chordal metric provides a lower bound, and in
fact, a good approximation to the geodesic distance.

The maximum principal angle θm is a generalization of the dihedral angle between two
planes in R3, and hence, it is another natural metric to measure the diversity of bases. The

5.2. Similarity of lattice bases 41

projection 2-norm metric is defined as

dp2

(
Yi(B), Yi(C)

)
:= sin θm = ∥Yi(B)T Yi(B)−Yi(C)T Yi(C)∥2.

Note that the largest singular value can be efficiently computed by the power method. When
n is sufficiently large, the maximum principal angle for random B and C is close to π/2, and
the projection 2-norm metric is closed to one regardless of i.

5.2.2 Diversity of bases

Given a multiset B = (B1, . . . , Bm) of lattice bases, we define its diversity using the Grass-
mann metrics defined in the previous subsection.

Definition 5.2.1 (Diversity of projected lattices) Let P(B) be the set of all pairs of elements in
B. We define its i-th projected diversity associated to a Grassmann metric dg as the mean of the
pairwise distance:

Divi (B, dg
)

:=
1

|P(B)| ∑
(B,C)∈P(B)

dg

(
Yi(B), Yi(C)

)
.

The total projected diversity is defined by the mean of the i-th projected diversity for 1 ≤ i ≤ d:

Div(B, dg) :=
1
d

d

∑
i=1

Divi (B, dg
)

.

The higher value of Div(B, dg) indicates the greater diversity of the bases.

5.2.3 Effect of sharing short vectors on the diversity of bases

Here, we investigate how the diversity of the bases is affected by our sharing scheme. To
set up a controlled experiment, we run the parallel DeepBKZ in a synchronous manner.
Initially, each solver receives a randomized copy of the input lattice basis. Each iteration
starts by running a tour of DeepBKZ. The global basis is defined as the minimum among
all the bases of the solvers in terms of the order defined in (5.1). All solvers share the top-k
lattice vectors of the global basis as shown in lines 10–16 of Algorithm 11. The diversity
Div(B, dg) is computed at this point. We then repeat the iteration.

We set the number of solvers m = 100 and DeepBKZ blocksize β = 30, and perform
this experiment with various numbers of shared vectors k ∈ {0, 1, 8, 16, 32, 64, 80} for five
90-dimensional instances of the SVP challenge.

Snapshot of the diversity Figure 5.2 shows the snapshot of Divi(B, dg) averaged for the
five SVP instances after 100 tours of DeepBKZ. We observe that the shapes of Divi(B, dg) and
Divi(B, dc) are almost identical up to scaling, as dc gives a good approximation to dg. In the
following analysis, we will focus on dc and dp2 as they can be efficiently computed. Note
that Divi(B, dg) for i ≤ k are not necessarily 0 although we share the top-k vectors of the
global basis. This is because the top-k vectors of the basis of each solver are updated by the
insertion and LLL. We observe that the values Divi(B, dg) decrease as the number of shares
k increases. This is an expected result in agreement with our intuition, and it is implied
that the diversity of the projected lattice can be quantified by the proposed i-th projected
diversity metric. When k = 0 and there is no sharing, the shape for the chordal metric
shows a symmetry with respect to i = 45. This is due to the one-to-one correspondence
between Gr(m, n) and Gr(n−m, n) that maps an m-dimensional subspace to its orthogonal
complement. The deviation of the shape of Divi(B, dg) from that for the k = 0 case indicates
the decrease in the diversity of the bases due to the sharing. We indeed observe that the
shape is closer to that of k = 0 for smaller k’s.

For the projection 2-norm, Divi (B, dp2
)

is close to one for all i when k = 0, as expected.
This ensures that each solver works on a different search space. When k = 64 and 80,

42 Chapter 5. CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization

FIGURE 5.2: The average of the i-th projected diversity Divi (B, dg
)

computed
for 90-dimensional lattice bases with different numbers of shared vectors k

right after 100 DeepBKZ tours.)

the lower values of Divi (B, dp2
)

suggest that there is substantial overlap among the search
spaces of the solvers, which would affect the overall efficiency of the system. We will discuss
this point later in a large-scale experiment in Section 5.3.4.

Transition of the total diversity with tours Figure 5.3 shows the transition of the total
diversity Div(B, dg) with respect to the number of tours. We observe that when k = 0, the
total diversity stays constant, indicating that the DeepBKZ algorithm preserves the diversity
of bases and the lattice reduction itself does not reduce the diversity of bases. We observe
that when k > 0, the total diversity decreases at the early stage and then converges to a
certain value which depends on k. This experiment shows that the diversity of the bases
of the solvers is preserved to some extent during the execution of our shared DeepBKZ
algorithm, even though the randomization is performed only once before the first tour. We
confirm these observations through a large-scale experiment in Section 5.3.4.

Evaluation of different randomization Our novel diversity metric has the potential to be
applied for various analyses of a set of lattice bases. For example, we conduct an evaluation
of the effect of different randomization methods. In general, the quality of the random el-
ement generator has a large impact on the performance of a randomized algorithm. In our
case, the input basis is multiplied by randomly generated unimodular matrices to produce
different bases for the input lattice. We compare three popular ways to generate unimodular
matrices using our diversity metric.

• LU: A pair consisting of a lower and an upper integer triangular matrix with 1’s along
the diagonal is generated.．They are then multiplied after their rows are randomly
shuffled.

• Swap: A permutation matrix is generated uniformly randomly.

• Fplll: A permutation matrix is generated uniformly randomly. Then, row operations
are performed on it three times, picking a row to add to or subtract from another row.
This is used by the fplll library.

5.2. Similarity of lattice bases 43

FIGURE 5.3: Transition of the total diversity Div(B, dg) computed for 90-
dimensional lattice bases with different numbers of shared vectors k after

each tour of DeepBKZ.

First, we generate 100 bases from a single lattice basis by one of the above methods.
Then, we calculate Divi(B, dg) after (i) randomization, (ii) randomization and LLL, and (iii)
randomization and a tour of DeepBKZ without sharing. Figure. 5.4 shows the average of
Divi(B, dg) of five 90-dimensional instances of the SVP challenge. The three lines corre-
sponding to the three methods grow closer as one proceeds from (i) to (iii). This implies
that the three methods are all exhibit bias, but this bias is eliminated by LLL and DeepBKZ.
Therefore, in practice, it is not necessary to pay significant attention to the randomization
method. It is interesting that the reduction process itself contributes to the diversity of the
bases.

Distribution of reduced bases Some lattice algorithms assume the randomness of input
bases. For example, extreme pruning [GNR10], a pruning technique for enumeration, re-
lies on the heuristic of [GNR10, Heuristic 3] that the normalized Gram-Schmidt vectors
(b∗1/∥b∗1∥, . . . , b∗d/∥b∗d∥) of a basis is uniformly distributed. This heuristic allows us to es-
timate the probability that a vector of a given length is included in a pruned enumeration
tree. However, to our best knowledge, this heuristic has not yet been verified in detail for
reduced bases, or more precisely, bases obtained by a reduction algorithm. Below, we apply
our diversity metric to provide supportive evidence for [GNR10, Heuristic 3].

Note that we can sample uniformly from Gr(1, n) by sampling from the n-dimensional
normal distribution with the zero mean and the identity covariance. By sampling m elements
independently from Gr(1, n), we obtain an element of Gr(m, n) almost surely. Let Ci be a
multiset of elements in Gr(d− i + 1, n) sampled in this manner. The value

Divi(Ci, dg) :=
1

|P(Ci)| ∑
(B,C)∈P(Ci)

dg (B, C)

represents the diversity of randomly sampled subspaces. We compare this value with the
i-th projected diversity of the subspaces defined by the lattice bases derived from a single
lattice basis by the randomization and the DeepBKZ algorithm. If the distribution of the
reduced bases is similar to that of random bases, the diversity metrics of these two groups
should be similar. As in Section 5.2.3, we generate a multiset of the lattice bases B by running

44 Chapter 5. CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization

After Randomization

After LLL

After DeepBKZ 1 tour

FIGURE 5.4: The i-th projected diversity for the chordal (left) and the pro-
jection 2-norm (right) Grassmann metrics computed (top) immediately after
randomization, (middle) after LLL, and (bottom) after one tour of DeepBKZ
for 90-dimensional lattice bases with different random generation models of

unimodular matrices.

DeepBKZ for 100 tours with no sharing (k = 0) on 100 random copies (generated by the
LU method) of a single instance of 90-dimensional SVP challenge. Figure 5.5 shows the
difference between Divi(B, dg) and Divi(Ci, dg), where d = 90 and |Ci| = 100. In addition
to the difference of means, the difference between Divi(B, dg) and the quartiles, denoted
by Divi

25%(C, dg) and Divi
75%(C, dg), of C i

dg
:= {dg(Yi(B), Yi(C)); (B, C) ∈ P(C)} are shown.

We observe that the difference between Divi(B, dg) and Divi(Ci, dg) is close to zero. In fact,
Divi(B, dg) fall within the quartiles of the diversity of the random elements C i

dg
except for

i = 2. The same is observed for other four instances of 90-dimensional SVP challenge. Note
that when i = 2, the first basis vector b1 is likely to be the shortest vector, and hence, reduced
bases share the same first basis vector with a certain probability.

This result suggests that the assumption of [GNR10, Heuristic 3] holds for bases reduced
by DeepBKZ except for the first vector.

5.3 Numerical experiments

In this section, we show experimental results to demonstrate the performance of CMAP-
DeepBKZ in a large-scale computing environment. We used the computing platforms in
Table 5.1 and conducted experiments using up to 103, 680 cores. The supercomputers Lisa
and Emmy are in the HLRN IV system at Zuse Institute Berlin, and the ITO supercomputer
is at Kyushu University. The CPU cluster computers CAL A and CAL C possess a total of
144 and 180 cores, respectively. We used MPI processes without hyper-threading. For our

5.3. Numerical experiments 45

1 15 30 45 60 75 90
index

0.02

0.01

0.00

0.01

0.02

0.03
chordal

1 15 30 45 60 75 90
index

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

projecion 2-norm
25%
75%
mean

FIGURE 5.5: Comparison between the diversity metrics of C and that of
B. mean: (i,Divi(C, dg)− Divi(B, dg)), 25%: (i,Divi

25%(C, dg)− Divi(B, dg)),
75%: (i,Divi

75%(C, dg)−Divi(B, dg)) for (Left) dg = dc the chordal metric, and
(Right) dg = dp2 the projection 2-norm.

TABLE 5.1: Computing platforms, operating systems, compilers and libraries

Machine Memory
/ node CPU CPU

frequency # nodes # cores

Lisa 384 GB Xeon Platinum 9242 2.30 GHz 1,080 103,680
Emmy 384 GB Xeon Platinum 9242 2.30 GHz 128 12,288

ITO 192 GB Xeon Gold 6154 3.00 GHz 128 4,608

CAL A 256 GB Xeon E5-2640 v3 2.60 GHz 4 64
256 GB Xeon E5-2650 v3 2.30 GHz 4 80

CAL C 32 GB Xeon E3-1284L v3 1.80 GHz 45 180
Operating systems and versions: Lisa and Emmy [CentOS Linux release 7.7.1908], ITO [Red Hat
Enterprise Linux Server release 7.3.1611], CAL A and CAL C [CentOS Linux release 7.9.2009].
Compilers and versions: Lisa and Emmy [intel19.0.5, impi2019.5], ITO [icc 19.1.1.217, impi2019.4],
CAL A [icc 19.1.3.304, openmpi4.0.5], CAL C [icc19.1.3.304, impi2020.4.304]. Libraries and ver-
sions: NTL v11.3.3, Eigen v3.3.7, gsl v2.6, OpenBLAS v0.3.7, fplll v5.2.1.

experiments, we used instances in the Darmstadt SVP challenge [Sch+10], but we reduced
every instance in advance using LLL implemented in the fplll library [The16].

5.3.1 Metrics to measure the output quality of reduction algorithms

As described below, we present typical metrics to measure the output quality of reduction
algorithms to compare the experimental results later.

• Hermite factor: Let B = (b1, . . . , bd) be a basis of a lattice L output by a reduction algo-
rithm. Assume that b1 is the shortest among the vectors bi’s. Then, the Hermite factor
of the reduction algorithm is defined as γ = ∥b1∥

vol(L)1/d . As γ is smaller, a reduction al-
gorithm can find a shorter basis vector. Exhaustive experiments in [GN08] show that
for a practical reduction algorithm such as LLL and BKZ, the root Hermite factor γ1/d

converges to a constant value for high dimensions d ≥ 100. Therefore, the root Her-
mite factor γ1/d is a useful metric to compare the identical output quality of practical
reduction algorithms for lattice bases in high dimensions.

• Enumeration Cost: Given a basis B = (b1, . . . , bd) of a lattice L, we can estimate the
cost to find a shortest non-zero vector in L by enumeration using B. Given a search
radius R > 0, an enumeration tree of depth n is constructed whose nodes at depth
d − k + 1 correspond to the set of all vectors in πk(L) with a maximum length of R.
The key observation here is that if a shortest vector s satisfies ∥s∥ ≤ R, its projections
must also satisfy ∥πk(s)∥2 ≤ R2 for all 1 ≤ k ≤ d. Hence, it appears as a leaf of
the tree. These d inequalities provide an enumeration of the tree. The total number

46 Chapter 5. CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization

of nodes to be traversed is estimated using the Gaussian Heuristic as N = ∑d
k=1 Hk,

where Hk =
Rkωk

vol(πd+1−k(L))
for every 1 ≤ k ≤ d (see [GNR10] for details). As B is

reduced, the total number of nodes N decreases in practice.

• Geometric Series Assumption (GSA): Let B = (b1, . . . , bd) be a reduced basis, and b∗1 , . . . , b∗d
its Gram-Schmidt vectors. The GSA in [Sch03] states that the plots of log-norms log ∥b∗i ∥
of Gram-Schmidt vectors approximate a straight line. (For a β-BKZ-reduced basis, the
GSA does not hold for the last d − β plots because the last block B[d−β+1:d] is HKZ-
reduced. See [AD21, Figure 1] for an example of the GSA and its tail-adapted version.)
To measure the average quality of B, fpylll [The16] adopts a least squares fit of log ∥b∗i ∥2

for 1 ≤ i ≤ d is adopted in fpylll [The16] as a slope metric ρ. Under the GSA, the slope
relates to the root Hermite factor via γ1/d = exp

(
− ρ

4
)
.

5.3.2 Efficacy when sharing short lattice vectors

Here, we demonstrate the efficacy of CMAP-DeepBKZ when sharing short lattice vectors
among solvers.

Analysis using deterministic parallel execution

First, we conducted experiments to accurately evaluate the effect of sharing short lattice vec-
tors for 95, 100, and 105-dimensional SVP. We used the parallel DeepBKZ in the synchronous
manner described in Section 5.2.3. By repeatedly running a tour of DeepBKZ, sharing, and
distributing the global basis for each step, the behaviors of the solvers become deterministic.
By contrast, in CMAP-DeepBKZ, a global basis is updated and distributed asynchronously
through MPI communication. It is difficult to completely control the shared lattice vectors
using CMAP-DeepBKZ.

We executed the parallel DeepBKZ with the number of solvers set to m = 128, while
changing the number of short vectors shared among the solvers. In particular, we used
k = 0, 2, 4, 8, 16, 32, and 64 as the number of short lattice vectors shared among the solvers,
and we performed 10 runs for each value of k. (The case where k = 0 means that no vector is
shared among the solvers.) The initial blocksize of DeepBKZ is set as β = 30, and execution
times are adjusted according to the dimension of the SVP instances. In Figure 5.6, we show
the transition of the averages of minimum root Hermite factors, enumeration costs, and GSA
slopes when running our parallel DeepBKZ. (For the enumeration cost, we set R = GH(L)
as the search radius of enumeration.) Comparing the results for k = 0 and k > 0, we
see that enumeration costs and GSA slopes ρ decreased when sharing short lattice vectors.
This means that more reduced bases can be obtained through the sharing of short lattice
vectors. However, the root Hermite factor transitions in dimensions d = 95 and 100 were
not explicitly different for the various value of k, and variation appeared only in dimension
d = 105. This result shows that for 95-dimensional and 100-dimensional SVP, DeepBKZ with
a blocksize β = 30 could find shortest vectors by only utilizing the effect of parallel lattice
reductions through randomization. In contrast, for SVPs of dimensions d ≥ 105, parallel
lattice reduction by randomization was insufficient. This finding implies that the transition
of the root Hermite factor, enumeration costs, and GSA slopes can be reduced by speeding
up DeepBKZ through short vector sharing, in exchange for some loss of basis diversity in a
few dimensions.

Analysis of MPI parallelization using CMAP-DeepBKZ

In Figure 5.7 and Table 5.2, we display the experimental results of CMAP-DeepBKZ for the
instances of the Darmstadt SVP challenge in dimension d = 118 with seeds ranging from 2
to 6. Specifically, we used k = 0, 16, and 64 as the number of short lattice vectors shared
among the solvers. We ran CMAP-DeepBKZ for six hours for each SVP instance on the su-
percomputer system ITO using 2, 304 cores (see Table 5.1 for ITO). Each solver ran DeepBKZ
with a blocksize β = 30 and sent the current status to the supervisor at an interval of 120 sec-
onds. (In other words, each solver obtained a global sub-basis of size k every 120 seconds.)

5.3. Numerical experiments 47

FIGURE 5.6: Transition of metrics on the output quality of parallel sharing
DeepBKZ in dimension d = 95 (Top), 100 (Middle) and 105 (Bottom), by
using k = 0, 2, 4, 8, 16, 32 and 64 as the number of short vectors shared
among solvers using (Left: the average root Hermite factor γ1/d, Center: the
logarithm of the average enumeration cost log(N), Right: the minus of the

average GSA slope −ρ > 0)

In Figure 5.7, we show the transition of the averages of global basis’s root Hermite factors,
enumeration costs, and GSA slopes when running CMAP-DeepBKZ. In Table 5.2, we summa-
rize the experimental results of CMAP-DeepBKZ after six hours of execution. As illustrated
in Figure 5.7 and Table 5.2, it is effective to share short lattice vectors to decrease the metrics
of DeepBKZ for finding short lattice vectors. For example, the minimum of the logarithm
of the enumeration cost is 62.6578 (resp., 59.7701) for k = 0 (resp., k = 64) as shown in Fig-
ure 5.7, and we calculate e59.7701/e62.6578 ≈ 0.0557. This implies that enumeration costs can
be reduced by 5.57%, through sharing 64 short lattice vectors among the solvers.

Remark 5.3.1 (Comparison with BKZ) In cryptanalysis, BKZ and its variants such as BKZ 2.0 [CN11]
are de facto standard reduction algorithms utilized to evaluate the security of lattice-based cryptog-
raphy (see [Alb+18] for details). Under the GSA and the Gaussian Heuristic, a limiting value of the
root Hermite factor of BKZ with blocksize β for a d-dimensional lattice is predicted in [Che13] as

lim
d→∞

γ
1
d =

(
ω
− 1

β

β

) 1
β−1

∼
(

β

2πe
(πβ)

1
β

) 1
2(β−1)

(5.3)

for β > 50 and β≪ d (see [Che13; CN11; YD17] for experimental results supporting the prediction).
Table 5.2 shows that CMAP-DeepBKZ can achieve the root Hermite factor around γ1/d = 1.0085
with average by blocksize β = 30 in dimension d = 118. (See also Tables 5.3, 5.5 and 5.6 for root
Hermite factors of CMAP-DeepBKZ in other dimensions.) In contrast, the prediction (5.3) implies
that BKZ requires around β = 115 to achieve the same root Hermite factor. Recall that it is the

48 Chapter 5. CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization

0 2 4 6
Time [h]

1.0084

1.0086

1.0088

1.0090

1.0092

1.0094 Root Hermite factor

k = 0 k = 16 k = 64

0 2 4 6
Time [h]

60

61

62

63

64

65

66 log(enumeration cost)

0 2 4 6
Time [h]

0.060

0.062

0.064

0.066

0.068

0.070

0.072

0.074
- GSA slope

FIGURE 5.7: Same as Figure 5.6, but using CMAP-DeepBKZ and dimension
d = 118, by using k = 0, 16 and 64 as the number of short vectors shared

among solvers

0 1 2 3 4 5
Time [h]

2

4

6

8

10

12

14

16

Up
da

te
d

In
de

x

FIGURE 5.8: History of updating a global basis in an execution of CMAP-
DeepBKZ with the number of shares k = 16 in dimension d = 118 (Each plot

(x, y) indicates that a global basis at index y was updated at time x)

most dominant factor in both BKZ and DeepBKZ to run an exact-SVP algorithm over projected
lattices of dimension β, and the cost is 2O(β2) when using an enumeration algorithm for solving
exact-SVP in dimension β. Therefore, CMAP-DeepBKZ is significantly more efficient than BKZ
without parallelization.

History of updating global bases In Figure 5.8, we display the history of updating a global
basis when running CMAP-DeepBKZ with the number of shares k = 16 for the SVP instance
in dimension d = 118 with seed 5, which is the result of updating the shortest vector at the
latest time. Each plot (x, y) in the figure indicates that a global basis S = (s1, . . . , sd) at index
y was updated at time x. We can see from Figure 5.8 that a global basis is updated frequently,
and it is less frequent to update a global basis at a smaller index. Therefore, if the number of
shares k is small, for example k = 1, each solver will run with almost no information sharing.
To benefit from this sharing effect of CMAP-DeepBKZ, it is necessary to have a large number
of shares.

Approximation factors in projected lattices In Figure 5.9, we show the approximate fac-
tors in projected lattices for a global basis S = (s1, . . . , sd), output by CMAP-DeepBKZ after
six hours of execution for the SVP lattice L of dimension d = 118 with seed 2. Specifically, we

plot all (i, yi) for 1 ≤ i ≤ d, where yi =
∥s∗i ∥

GH(πi(L)) denotes the approximate factor in the pro-
jected lattice πi(L) of dimension n = d− i + 1. (Recall that GH(πi(L)) ≈ λ1(πi(L)) for large
n ≥ 50; however it does not hold for small n.) Therefore, we focus on indices 1 ≤ i ≤ 80.
We note from Figure 5.9 that approximate factors at indices 1 ≤ i ≤ 16 are extremely close
to 1.0 when the numbers of shares k = 16 and 64. This implies that the first 16 basis vectors

5.3. Numerical experiments 49

TABLE 5.2: Experimental results of CMAP-DeepBKZ after 6 hours execution
for instances of the Darmstadt SVP challenge in dimension d = 118 with
seeds 2–6 (k denotes the number of short vectors shared among solvers, and

b1 the shortest basis vector of all solver’s bases)

SVP Number Updated Norm Approx. Root Hermite Machine
instance of shares time [h] of b1 factor ∥b1∥

GH(L) factor γ1/d (Table 5.1)

seed2

k = 0

4.4354 2818.92 1.0272 1.00867

ITO

seed3 4.4358 2785.57 1.0117 1.00854
seed4 2.2824 2834.39 1.0308 1.00870
seed5 4.3073 2787.56 1.0153 1.00857
seed6 5.5766 2837.97 1.0303 1.00869

Average 1.0231 1.00863
seed2

k = 16

2.0172 2789.09 1.0163 1.00858

ITO

seed3 3.6039 2770.70 1.0063 1.00849
seed4 0.8736 2793.29 1.0159 1.00857
seed5 5.0591 2764.17 1.0068 1.00850
seed6 2.5595 2768.58 1.0051 1.00848

Average 1.0101 1.00852
seed2

k = 64

1.7197 2789.09 1.0163 1.00858

ITO

seed3 1.5907 2785.57 1.0117 1.00854
seed4 1.2151 2799.01 1.0179 1.00859
seed5 1.0780 2765.60 1.0073 1.00850
seed6 3.7370 2786.96 1.0118 1.00854

Average 1.0130 1.00855

of S are almost equal to those of an HKZ-reduced basis. (We also note from Figure 5.9 that
k = 16 seems sufficient for dimension d = 118.)

GSA shapes In Figure 5.10, we show the logarithms of the Gram-Schmidt squared norms
log ∥s∗i ∥2 of a global basis S = (s1, . . . , sd), output by CMAP-DeepBKZ with the number of
shares k after six hours execution for the SVP instance in dimension d = 118 with seed 2. We
can observe the “head concavity” as pointed out in [Che16] in both cases with and without
sharing (cf., see [AD21, Figure 1] for an image of the GSA shape by the BKZ reduction algo-
rithm.) Specifically, the log-norms log ∥s∗i ∥2 at the first 20 indices for the two cases k = 16
and 64 are more concave than for the case k = 0.

Remark 5.3.2 (Performance difference due to the number of shares) Through exhaustive ex-
perimentation considering different numbers of shares k for 95, 100, and 105-dimensional SVPs in
Subsection 5.3.2, the results showed little difference in the root Hermite factor when the number of

0 20 40 60 80 100 120

index i

1.0

1.2

1.4

1.6

1.8

2.0

‖s
∗ i‖
/G

H
(π
i
(L

))

k = 0

k = 16

k = 64

FIGURE 5.9: Plots of approximation factors in projected lattices
∥s∗i ∥/GH(πi(L)) for a global basis S = (s1, . . . , sd) of a lattice L of di-
mension d = 118, output by CMAP-DeepBKZ after 6 hours execution (We

used k = 0, 16 and 64 as the number of shares in CMAP-DeepBKZ)

50 Chapter 5. CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization

0 20 40 60 80 100 120

index i

8

9

10

11

lo
g

2
‖s
∗ i‖

k = 0

k = 16

k = 64

FIGURE 5.10: The logarithms of Gram-Schmidt squared norms log2 ∥s∗i ∥ of a
global basis S = (s1, . . . , sd) output by CMAP-DeepBKZ with the numbers of
shares k = 0, 16 and 64 after 6 hours execution for an SVP instance in d = 118

0.0 2.5 5.0 7.5 10.0
Time [h]

1.00800

1.00825

1.00850

1.00875

1.00900

1.00925

1.00950

1.00975

1.01000 Root Hermite factor

#procecses = 40
#procecses = 80

#procecses = 180
#procecses = 2304

#procecses = 24576

0.0 2.5 5.0 7.5 10.0
Time [h]

61.5
62.0
62.5
63.0
63.5
64.0
64.5
65.0
65.5
66.0 log(enumeration cost)

0.0 2.5 5.0 7.5 10.0
Time [h]

0.060

0.062

0.064

0.066

0.068

0.070 - GSA slope

FIGURE 5.11: Same as Figure 5.7, but the dimension is d = 120 and lines in
each metric represent difference by different numbers of processes (We used

k = 16 as the number of shares)

shares k > 0. In contrast, the value of the enumeration cost and the GSA slope tended to improve as
the number of shares k increased, but converged to similar values for k ≥ 16. The same tendency was
observed in the experiment using CMAP-DeepBKZ in 118-dimensional SVPs in Subsection 5.3.2. In
addition, as shown in Figure 5.14, when the number of shares k = 64, lattice bases update frequently
in each solver, and the number of substantial shares is up to 16. This result explains why there are no
significant differences between k = 16 and 64. In the following subsections, we mainly use k = 16 in
terms of both the output quality and the diversity of CMAP-DeepBKZ.

5.3.3 Scalability of the number of processes

In this subsection, we show the scalability of CMAP-DeepBKZ in large-scale computing
environments. Specifically, we used different computing platforms with a maximum of
p = 24, 576 cores (see Table 5.3 for details of computing platforms). We ran CMAP-DeepBKZ
for 11 hours for every instance of the Darmstadt SVP challenge [Sch+10] in two dimensions,
d = 120 and d = 124, with seeds 0–4. More specifically, each solver used an initial blocksize
β = 30 for DeepBKZ, increasing β by increments of five with the early termination strat-
egy of [CN11]. (The strategy is also implemented in fplll [The16] as an auto-abort option for
BKZ.) When a solver reached β = 50, the reduction process was terminated and the solver
received a new task (that is, a new basis) from the supervisor to run DeepBKZ again from
the beginning. We set k = 16 as the number of short basis vectors shared among solvers,
which is a low value that on average exhibited good performance in the experiments of the
previous section. In Tables 5.3 and 5.4, we show experimental results on the scalability of
CMAP-DeepBKZ in the dimensions d = 120 and d = 124, respectively. We assigned one

5.3. Numerical experiments 51

TABLE 5.3: Results of CMAP-DeepBKZ after 11 hours execution on platforms
with the number of processes p for SVP instances in dimension d = 120 (We
used k = 16 as the number of shares, and let b1 denote a shortest basis vector

of all solver’s bases)

SVP Number of Updated Norm Approx. Root Hermite Machine
instance processes time [h] of b1 factor ∥b1∥

GH(L) factor γ1/d (Table 5.1)

seed0

p = 180

6.2015 2848.69 1.0288 1.00860

CAL C

seed1 8.2300 2963.32 1.0669 1.00891
seed2 8.6904 2996.73 1.0785 1.00900
seed3 4.6942 2898.89 1.0424 1.00871
seed4 1.6277 2947.42 1.0618 1.00887

Average 1.0557 1.00882
seed0

p = 2, 304

1.1908 2804.94 1.0130 1.00847

ITO

seed1 2.8657 2844.46 1.0241 1.00856
seed2 1.5187 2896.61 1.0424 1.00871
seed3 1.4221 2897.27 1.0419 1.00871
seed4 3.6159 2729.25 0.9833 1.00822

Average 1.0209 1.00853
seed0

p = 24, 576

1.5810 2756.06 0.9954 1.00833

Emmy

seed1 7.0333 2792.47 1.0054 1.00841
seed2 3.1890 2778.82 1.0001 1.00836
seed3 0.6497 2842.70 1.0222 1.00855
seed4 0.6117 2729.25 0.9833 1.00822

Average 1.0013 1.00837

core to the supervisor except for Emmy and used p − 1 solvers for basis reduction. When
using p = 24, 576 cores for Emmy, we assigned one node to the supervisor with a sufficient
amount of memory, and used p − 96 = 24, 480 solvers for basis reduction. In Figure 5.11,
we also show the same as Figure 5.7, but the dimension is d = 120 and different lines in
each metric correspond to different numbers of cores. Because the computing platforms are
different, the comparison is not exact; however as shown in Tables 5.3, 5.4 and Figure 5.11,
the quality of a global basis improves in every metric as the number of cores is increased. In
particular, Table 5.3 shows that an extremely short lattice vector with an approximate factor
close to 1.0 in dimension d = 120 can be found within 11 hours when using p = 24, 576 cores
for CMAP-DeepBKZ. To evaluate the scalability, we recall from the Gaussian Heuristic that
there are roughly αd lattice vectors of norms less than αGH(L) in a d-dimensional lattice L
for a constant α ≥ 1. When we evaluate the hardness of an approximate SVP by the number
of solutions, the approximate factor α = 1.0013 achieved by using p = 24, 576 processes is
(1.0557/1.0013)120 ≈ 572 times harder than α = 1.0557, which was attained by p = 180 in
dimension d = 120 as shown in Table 5.3.

In Figure 5.12 (resp., Figure 5.13), similar to Figure 5.7 (resp., Figure 5.10), we show
approximate factors in projected lattices (resp., the logarithms of Gram-Schmidt squared
norms) of a global basis in d = 120 according to the different numbers of processes. Because
we shared the first 16 basis vectors among the solvers, the plots at the first 16 indices in Fig-
ure 5.12 become closer to 1.0 by increasing the number of processes. Similarly, we see from
Figure 5.13 that the logarithms of the Gram-Schmidt squared norms of a global basis in the
first 16 indices are reduced as the number of cores is increased.

5.3.4 Transition of diversity on large-scale execution

We measured the diversity of a set of bases of the solver during large-scale execution with
Div defined in Section 5.2.2. Figure 5.14 is created from five results of 118-dimensional in-
stances in Section 5.3.2, with six hours executions using 2,304 cores and 16 shared short vec-
tors. Figure 5.14 shows the three results with different numbers of shared vectors. The left
figure shows the transition of the number of overlapping basis vectors, excluding positive
and negative differences. Because the solver obtained the global basis from the supervisor
at relatively large intervals of 120 seconds, the situation where the top-16 vectors are aligned

52 Chapter 5. CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization

0 20 40 60 80 100 120

index i

1.0

1.2

1.4

1.6

1.8

2.0

‖s
∗ i‖
/G

H
(π
i
(L

))

#Processes = 180

#Processes = 2304

#Processes = 24576

FIGURE 5.12: Same as Figure 5.7, but the dimension is d = 120 and plots
represent difference by different numbers of cores (We used k = 16 as the

number of shares)

0 20 40 60 80 100 120

index i

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

lo
g

2
‖s
∗ i‖

#Processes = 180

#Processes = 2304

#Processes = 24576

FIGURE 5.13: Same as Figure 5.10, but the dimension is d = 120 and three
lines represent different GSA shapes by different numbers of processes (We

used k = 16 as the number of shares)

did not occur during the early calculation time, and the number of overlaps approaches 16
after one hour. The right figure shows the transition of the Div values using the chordal
metric. The diversity Div is defined as the average of the diversities for all pairs in the basis
set. However, because the size of the basis set is 2, 303 for these executions, which is equal
to the number of solvers, calculating the diversity for all pairs in this set requires high com-
putation time and is impractical. Therefore, we sampled 100 basis pairs from the basis set
and approximated Div by taking the average value of those pairs. This computation of Div
was performed every 10 minutes, and it was shown that Div grows smaller as the execution
progresses, that is, the diversity of the basis set tends to decrease. However, the transition of
Div did not continue to decrease and eventually plateaus, even though the actual number of
basis vectors received from the supervisor was larger than 16. This tendency for diversity to
plateau was also confirmed in a large-scale experiment using the 24, 576 cores. Figure 5.15
was created from the results of experiments utilizing up to 24, 576 cores in 11 hours execu-
tions on a 120-dimensional SVP in Section 5.3.3. The figures are the same as Figure 5.14 but
show the diversity transition for the different number of cores. The tendency for diversity
to plateau suggests that the diversity of the basis is preserved even in large-scale execution
owing to the one-time randomization performed before the lattice basis reduction. There-
fore, even in the large-scale computing platform where massive solvers execute the lattice
basis reduction in parallel, the computations of the subroutines of the lattice basis reduction
hardly overlapped. This result indicates that efficient use of computational resources was
achieved in our software.

5.3. Numerical experiments 53

TABLE 5.4: Same as Figure 5.3, but the dimension is d = 124

SVP Number of Updated Norm Approx. Root Hermite Machine
instance processes time [h] of b1 factor ∥b1∥

GH(L) factor γ1/d (Table 5.1)
seed0

p = 180

5.8853 3086.00 1.0930 1.00894

CAL C

seed1 4.1859 3082.17 1.0948 1.00896
seed2 7.8734 2879.06 1.0207 1.00839
seed3 4.3137 3101.22 1.0996 1.00899
seed4 2.9052 3045.08 1.0807 1.00885

Average 1.0778 1.00883
seed0

p = 2, 304

2.1351 2978.44 1.0549 1.00866

ITO

seed1 10.489 3015.78 1.0712 1.00878
seed2 3.0634 2885.80 1.0231 1.00841
seed3 2.7563 2742.98 0.9726 1.00800
seed4 1.3161 2921.65 1.0369 1.00852

Average 1.0317 1.00847
seed0

p = 24, 576

3.3615 2892.64 1.0245 1.00842

Emmy

seed1 1.6687 2920.47 1.0374 1.00852
seed2 3.1216 2854.12 1.0118 1.00832
seed3 0.7056 2886.65 1.0236 1.00841
seed4 4.3993 2873.73 1.0199 1.00838

Average 1.0234 1.00841

0 1 2 3 4 5 6
Time [h]

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Du

pl
ica

te

k = 0 k = 16 k = 64

0 1 2 3 4 5 6
Time [h]

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Di
v

us
in

g
ch

or
da

l m
et

ric

FIGURE 5.14: Transition of the diversity of 118-dimensional lattice basis with
different the number of shared vectors; left figure is the transition of the num-
ber of overlap of basis vectors, right figure is the transition of the Div with

Projection metric

5.3.5 Massive parallelization experiments with checkpoints and restarts

For CMAP-DeepBKZ, we conducted large-scale experiments on the supercomputer systems
Emmy and Lisa (Table 5.1) with multiple checkpoints and restarts for instances of the Darm-
stadt SVP challenges [Sch+10] in dimensions d = 128, 130 and 132. In Figure 5.16, we show
the transition of the approximation factor of a shortest basis vector in all bases of solver dur-
ing the execution of CMAP-DeepBKZ. We started with the numbers of shared vectors k = 16
and manually increased k to 32 when the global basis was no longer being significantly up-
dated. In Table 5.5, we summarize the final output results of Figure 5.16. In particular, we
succeeded in finding a new solution for the SVP challenge in the dimension d = 128 using
an instance with seed 1. It took approximately 57.5 hours to find the new solution, whose
norm (resp., approximation factor) is 2812.0 (resp., 0.98470) from Table 5.5. In contrast, it
was reported on the webpage of [Sch+10] that it took approximately five months on an iMac
core-i7 to find the previous record in the case of d = 128, the norm (resp., approximation fac-
tor) of which was about 2882 (resp., 1.00477). However, the norms of Table 5.5 in the other
dimensions d = 130 and 132 do not surpass the current records yet.

54 Chapter 5. CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization

0 2 4 6 8 10
Time [h]

0

5

10

15

Du
pl

ica
te

#cores = 80 #cores = 180 #cores = 2304 #cores = 24576

0 2 4 6 8 10
Time [h]

3.2

3.4

3.6

3.8

4.0

4.2

Di
v

us
in

g
ch

or
da

l m
et

ric

FIGURE 5.15: Same as Figure 5.14, but dimension is 120 and with different
the number of cores.

TABLE 5.5: Large-scale experimental results of CMAP-DeepBKZ for SVP in-
stances in dimensions d = 128, 130 and 132 (b1 denotes a shortest basis vector
of all solver’s bases, and “Updated time” is wall time to update final shortest

vectors found)

SVP Instance # of Updated Norm Approx. Root Hermite Machine∗

Dim. Seed　 cores∗ time [h] of b1 factor ∥b1∥
GH(L) factor γ1/d (Table 5.1)

128 1† 24,576 57.5 2812.00 0.98470 1.00796 Emmy
2 24,576 37.1 2947,45 1.02808 1.00830 Emmy

130 3 103,680 81.1 2968.73 1.03001 1.00825 Lisa
7 103,680 39.4 2914.22 1.01236 1.00811 Lisa

132 1 24,576 34.6 2968.05 1.02260 1.00812 Emmy
2 24,576 56.5 2899.90 0.99662 1.00818 Emmy

† a new solution for the Darmstadt SVP challenge [Sch+10] in dimension 128 (see also
Table 5.6 for other dimensions). ∗ We list the maximum number of cores and machines
used for executions, including restarts, and the wall time for the updated time.

Execution details on Lisa We describe execution details on Lisa when using 103, 680 cores,
which is the maximum number of cores used across all computers (Table 5.1 for comput-
ing platforms). We used Lisa for solving SVP instances in dimension 130 with seeds 3 and
7. In both executions, solutions were updated after more than 28 hours of execution (see
Table 5.16). In Figure 5.17 and 5.18, we show snapshots of a global basis S = (s1, . . . , sd)
in dimension 130 with seed 7 execution. Over the course of the execution, the values of
the approximation factor for each i-th projected lattice ∥s∗i ∥/GH(πi(L)) grew smaller for
indices i under 32, and approached 1.0 at 100 hours. This implies that a basis close to the
HKZ-reduced basis was obtained for the first indexes of the basis. This strict reduction is
also clearly shown for GSA shapes in Figure 5.18. We can see the step difference at the in-
dex with exactly i = 32, which corresponds to the final number of shares k. While the GSA
slope ρ of the entire basis is −0.05867, but the ρ of the sub-basis consisting of (s1, . . . , s32) is
−0.03685, indicating that the first indexes of the basis were more reduced.

Communication performance Here, we describe the memory usage and CPU utilization
on Lisa supercomputer using p = 103, 680 cores for a 130-dimensional instance with seed 7
instance. One node was allocated to a supervisor process, leaving p− 96 = 103, 524 solvers
to be created in the remaining nodes. The maximum memory usage in the supervisor (resp.,
the solver) process was 61.7172 GiB (resp., 0.2274 GiB). Both transitions of the memory us-
age during the runtime eventually plateaued, aligning with our expectations. Because the
amount of memory usage of DeepBKZ in Algorithm 5 does not change, we can maintain
low memory usage in the solver process. This implies that the solver process can execute
even in a low-memory computational environment. By contract, because the supervisor has
the lattice basis information of all solvers in the solver pool, it requires a sufficient amount
of memory.

5.3. Numerical experiments 55

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14
Ap

pr
ox

im
at

io
n

Fa
ct

or
Dimension 128 Seed 1

Emmy

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 128 Seed 2

Emmy

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 130 Seed 3

Emmy
Lisa

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 130 Seed 7

Emmy
Lisa

0 20 40 60 80 100
Time [h]

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 132 Seed 1

Emmy

0 20 40 60 80 100
Time [h]

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14
Ap

pr
ox

im
at

io
n

Fa
ct

or
Dimension 132 Seed 2

Emmy

FIGURE 5.16: Transition of the approximation factor ∥b1∥
GH(L) of a shortest ba-

sis vector b1 for SVP instances in dimensions d = 128, 130 and 132 (Each
dot show the timing of checkpoint-and-restart, and see also Table 5.5 for a

summary)

Next, we describe the CPU utilization of the supervisor and solver processes. The ratio
of idle time to the total execution time of the solver is 0.9059%, including the communication
latency for receiving tasks and lattice vectors from the supervisor process. The ratio of idle
time was extremely low, suggesting that the solver process has a high CPU utilization. In
the case of the supervisor, the ratio of idle time was 81.36%. This idle time corresponded to
the time spent by the supervisor when waiting for a message from the solver, and a large
idle rate is desirable because it allows the supervisor to process messages from the solver
without delay.

Next, to evaluate the stability of our software, we note the checkpointing times of these
executions. Specifically, the checkpoint creation times increase along with the number of
solvers because our software writes all task data to checkpoint files, including information
of all bases of the solvers. While the supervisor is copying the tasks, its message handling is
blocked. Therefore, if there is a significant delay when copying, MPI can run out of memory
buffers, causing an error. In an execution on Lisa by using 103, 584 solvers, it took an average
of 1.93 seconds for the supervisor to copy the tasks, and 468.01 seconds for the checkpointing
thread created in the supervisor to write the file. We can see that the blocking duration of the
supervisor handling was kept extremely short, suggesting that execution by more solvers is
possible.

New solutions for the Darmstadt SVP challenge In Table 5.6, we list new solutions pro-
posed by CMAP-DeepBKZ for the Darmstadt SVP challenge [Sch+10]. For each dimension
d = 103, 105, 107, 109, 113 and 114, we performed CMAP-DeepBKZ with the number of
shares k = 16 for 10 instances from seeds 0 to 9, and succeeded in finding new solutions for
dimensions 103, 109 and 113. For dimension 124 (resp., 128), we found a new solution by

56 Chapter 5. CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization

0 20 40 60 80 100 120

index i

1.0

1.2

1.4

1.6

1.8

2.0

‖s
∗ i‖
/G

H
(π
i
(L

))

time = 1.0 hours

time = 33.3 hours

time = 66.6 hours

time = 100.0 hours

FIGURE 5.17: Plots of approximation factors in projected lattices
∥s∗i ∥/GH(πi(L)) for a global basis S = (s1, . . . , sd) output by CMAP-
DeepBKZ of a lattice L of dimension d = 130 with seed = 7 of SVP challenge
instance after 1.0, 33.3, 66.6, 100 hours executions, and the final numbers of

shares k = 32

0 20 40 60 80 100 120

index i

8

9

10

11

lo
g

2
‖s
∗ i‖

time = 1.0 hours

time = 33.3 hours

time = 66.6 hours

time = 100.0 hours

FIGURE 5.18: The logarithms of Gram-Schmidt squared norms log2 ∥s∗i ∥ of a
global basis S = (s1, . . . , sd) of a lattice L same as Figure 5.17.

executing five instances with seeds ranging from zero to four (resp., two instances of seeds 1
and 2) on Emmy. In [Tat+20], new solutions were found by parallel DeepBKZ with k = 1 for
SVP instances in dimensions up to 127. For dimension d = 127, it took approximately 147
hours of execution on several supercomputer systems with up to 91, 200 cores (see [Tat+20,
Tables II and III]). In contrast, Table 5.6 shows that it took about 57.5 hours for d = 128
by CMAP-DeepBKZ with k = 16 on Emmy with 24, 576 processes. Such comparisons pro-
vide experimental evidence supporting the efficacy of sharing short basis vectors in parallel
DeepBKZ.

Comparison with G6K We provide a comparison with G6K [Alb+19], the state-of-the-art
SVP solver using advanced sieve algorithms as described in Subsection 1.3. G6K adopts the
sub-sieve strategy of [Duc18]. For a d-dimensional lattice L, it runs a sieve algorithm in a
projected lattice πk(L) of dimension m = d − k + 1 to find a significantly large number of
short projected lattice vectors, and lifts them into vectors in the whole lattice L. Such lattice
vectors do not always include shortest vectors in L; however, some of them can be short
enough to have approximation factors within 1.05 for entering the hall of fame of the SVP
challenge. It was reported in [Alb+19, Table 2] that it took about 11.6 (resp., 11.8 and 14.7)
days to find a solution of the SVP challenge in dimension d = 151 (resp., 153 and 155) by
using the maximum sieving dimension m = 123 (resp., 124 and 127). According to the latest
result [DSW21, Table 1] for a GPU implementation of sieve algorithms inside G6K, it took
about 51.6 days on a server with four NVIDIA Turing GPUs with 1.5TB of RAM for an SVP
instance in d = 180 by using m = 150. Note that the current SVP records in d ≥ 150 have
approximation factors around 1.03 or 1.04, they must not be the shortest. Because we do
not use the sub-sieve strategy, it is reasonable to compare CMAP-DeepBKZ in dimension

5.3. Numerical experiments 57

TABLE 5.6: New solutions for the Darmstadt SVP challenge [Sch+10], found
by parallel sharing DeepBKZ with the number of shares k = 16

SVP Instance # of Updated Norm Approx. Root Hermite Machine
Dim. Seed cores time of b1 factor ∥b1∥

GH(L) factor γ1/d (Table 5.1)

103 3 144 52.3 m 2581.65 0.97168 1.00875 CAL A
109 2 144 49.8 m 2559.17 0.96465 1.00845 CAL A
113 5 144 1.21 h 2621.54 0.97459 1.00840 CAL A
124 2 24,576 2.85 h 2826.79 1.00215 1.00824 Emmy
128 1 24,576 57.5 h 2812.00 0.98470 1.00796 Emmy

TABLE 5.7: Same as Table 5.6, but k = 1

SVP Instance # of Updated Norm Approx. Root Hermite Machine
Dim. Seed cores time of b1 factor ∥b1∥

GH(L) factor γ1/d (Table 5.1)

104
35 120 551 s 2516 0.97173 1.00872 CAL A
85 120 214 s 2520 0.97010 1.00870 CAL A
82 120 432 s 2529 0.97719 1.00877 CAL A

111
8 2,000 792 s 2597 0.96979 1.00866 ITO

30 2,000 541 s 2635 0.98382 1.00856 ITO
29 2,000 611 s 2660 0.99467 1.00843 ITO

121 2 2,304 682 m 2780 0.99706 1.00840 ITO
4 2,304 481 m 2809 1.00820 1.00830 ITO

d with G6K in the maximum sieving dimension m. As shown in Tables 5.5 and 5.6, the
performance of CMAP-DeepBKZ in dimensions around d = 130 is faster than that of G6K
around m = 130 in [Alb+19, Table 2] if we ignore the difference of computing resources.
In contrast, the performance in [DSW21, Table 1] is faster than CMAP-DeepBKZ due to a
GPU-implementation for sieve algorithms. However, sieve algorithms require exponential-
space in m. Indeed, it is reported in [DSW21] that about 1.4TB of RAM was required for
finding an SVP solution in d = 180 using m = 150. On the other hand, CMAP-DeepBKZ
adopts enumeration for SVP oracles in blocksize β, and its space-complexity is polynomial
with respect to β. In particular, CMAP-DeepBKZ has sufficient performance even with small
blocksizes such as β = 30. This implies that CMAP-DeepBKZ can be practically applied to
large-scale computers with minimal memory footprint and no memory limitation.

59

Chapter 6

Conclusion

We proposed a framework for lattice problems, and a solver for SVP. Lattice problems are a
type of discrete optimization problem that is difficult to solve, even for a quantum computer.
There is little research on solving this problem in large-scale distributed systems. In addition,
the difficulty of solving the lattice problems supports the security of major cryptographic
systems in post-quantum cryptography. Therefore, investigating the potential of large-scale
parallel computation of the lattice problems is important in the field of optimization and
cryptanalysis.

In Chapter 4, we propose a novel large-scale framework, CMAP-LAP, for lattice prob-
lems. CMAP-LAP offers a multi-algorithm paradigm in which multiple types of lattice algo-
rithms run in parallel while sharing information to improve the performance of the entire
system. To realize this paradigm, we have developed four key components. Our communi-
cation interface class enables hybrid parallel processing, independent of the solver’s internal
algorithms. This makes it easy to incorporate existing solvers, those run not only on shared-
memory systems but also on distributed-memory systems [Mun+19]. The efficient collection
and distribution of short lattice vectors by the management process facilitate information ex-
change among heterogeneous solvers. This is based on the fact that each lattice algorithm
generates short lattice vectors as by-products, which can be utilized by other algorithms if
shared. Furthermore, the management process generates new tasks from the collected in-
formation and assigns them to the solvers in order of the estimated likelihood of finding
a solution. The periodic collection of all solvers’s progress by the management process al-
lows the grasp of the overall system status. This is used to adjust the assignment of tasks
to solvers. In addition, a powerful checkpoint functionality is implemented, which is es-
sential for long execution times. The management of memory and communication delays
is carefully realized, which are essential for the stability of large-scale parallel execution.
Several numerical experiments demonstrated the stability, scalability, and checkpointing of
CMAP-LAP and showed performance improvement through information sharing and het-
erogeneous execution of multiple algorithms.

In Chapter 5, we propose software CMAP-DeepBKZ using the framework of CMAP-LAP
for massively parallel execution of a reduction algorithm of BKZ-type. Our software enables
us to simultaneously execute a reduction algorithm on randomized bases by sharing short
basis vectors among solvers in order to accelerate the reduction process in every solver. We
also evaluated the diversity of reduced bases using Grassmann metrics, and verified that
the randomness of bases cannot be almost lost during the execution of parallel reduction
with sharing k ≤ 64 short basis vectors for high-dimensional lattices (Figures 5.2, 5.3 and
5.14). Furthermore, we demonstrated by experiments that sharing k = 16 short basis vectors
is effective in both the output quality and the performance of CMAP-DeepBKZ that is our
software in using DeepBKZ [YY17] as a reduction algorithm. Our experiments (Table 5.5)
showed that CMAP-DeepBKZ with small blocksizes around β = 30–40 can find a very short
vector close to the shortest in a lattice of dimension d = 132 within 100 hours on supercom-
puters with up to 103, 680 cores, without using any strategy like the sub-sieve of [Duc18]
adopted in G6K [Alb+19]. In particular, it took about 57.5 hours using 24,576 cores to find a
new solution of the Darmstadt SVP challenge in dimension d = 128 (Table 5.6).

The framework and software this thesis have proposed and implemented are based on
UG and are part of its derived applications. Figure 6.1 shows the list of frameworks and
software based on UG is shown in the figure. It is expected that further high-performance
SVP solvers will be developed based on the CMAP-LAP and CMAP-DeepBKZ.

60 Chapter 6. Conclusion

B&B
Base Classes

Threaded Solver
B&B

Base Classes

CMAP-LAP
Classes

Threaded Solver UG-SCIP
Classes

MIP Solver QAP Solver TSP Solver

MIP Solver

CMAP-DeepBKZ
Classes

SVP Solver

Generalized UG
Base Classes

UG-
SCIP

Classes

UG-
Xpress
Classes

UG-
QAPNB
Classes

UG-
Concorde

Classes

B&B-based solver
applications

Our application
for SVP

Primary
Framework

Secondary
Framework

Applications
for a specific problem

FIGURE 6.1: Frameworks and applications based on Generalized UG

61

Acknowledgements
First of all, I would like to express my greatest appreciation to Professor Katsuki Fujisawa

at Kyushu University for his continuous useful comments and encouragement. In addition
to his lectures on optimization, HPC, and so on, he has given me opportunities for joint
research with companies and presentations, and his high-spec and large-scale computing
environment has provided me with many skills and knowledge necessary for my research
activities. I would like to express my gratitude to Dr. Yuji Shinano at Zuse Institute Berlin
(ZIB) for his significant contribution to the framework and software development, including
implementation techniques for parallel processing and executions on supercomputers day
and night. I would also like to thank Associate Professor Masaya Yasuda at Rikkyo Uni-
versity for taking care of my research, valuable discussions, and various insights. The basic
knowledge of lattices and helpful pseudo-codes greatly supported my research. I am grate-
ful to Professor Shizuo Kaji at Kyushu University for his knowledge of mathematics and
implementation from various viewpoints. I would also like to thank Fujisawa’s laboratory
staff, Mrs. Tomoko Sakai and Mrs. Kyoko Ikebe, for their support in all other aspects and
past and present members of Fujisawa ’s laboratory for spending a pleasant time with me.
Finally, I would like to express my gratitude to my family and friends for their support and
warm encouragement.

63

Appendix A

Solutions of SVP Challenge

A.1 New records in the hall of frame of SVP challenge

Through the development of CMAP-LAP framework and CMAP-DeepBKZ software, we have
updated the hall of frame of SVP challenge in dimensions 128, 127, 124, 121, 113, 111, 109,
104, 103 and 96. The records are shown in Table A.1.

A.2 Solutions closed to record in the hall of frame of SVP
challenge

We have also found vectors in Table A.2 that are close to the hall of frame of the SVP chal-
lenge, although the CMAP-LAP framework and CMAP-DeepBKZ software have not updated
the record. These are also used to evaluate the performance of these framework and software
as well.

64 Appendix A. Solutions of SVP Challenge

TABLE A.1: New records in the hall of frame of SVP challenge

SVP Instance norm Found vectorDim. Seed
128 1 2812.00 [-43 -272 -328 267 -121 123 -308 301 116 99 -96 22 -13 -185

317 286 227 -155 -58 75 -176 -283 -184 524 -271 -259 696 -288
-422 193 -91 -146 -568 -174 305 -11 282 -220 17 -82 64 427 8
-144 -105 8 123 169 -274 128 -395 -30 264 31 230 328 -56 51
-287 397 -368 -108 -35 30 90 90 -171 -123 56 239 123 556 -628
140 -255 -28 -205 20 -180 -274 -115 -89 -19 -164 35 53 -401
428 -25 -90 -240 59 -275 -112 -71 -259 -55 -175 -461 36 -271
-382 -313 12 718 -127 123 -145 -253 440 146 256 155 151 374
6 34 -201 151 74 -227 82 289 -508 -29 365 -184 103]

124 2 2826.79 [59 99 -145 383 38 -140 188 33 -493 -58 9 82 -92 -594 -249 12
23 34 260 -356 577 3 292 197 -207 144 -585 382 267 158 -188
-158 -579 -115 -40 -361 51 93 155 -174 -49 -308 170 241 253
183 1 -224 231 286 169 295 -332 -287 495 15 -37 -230 116 -214
-90 96 375 -331 76 -401 71 42 -436 431 -111 -21 121 -57 -38
-712 190 104 235 -102 234 -70 -2 432 -93 -242 42 -191 -238
474 -113 -234 -29 315 -539 289 122 -139 -64 249 -169 -294 63
286 161 -82 -198 17 86 -15 51 550 112 26 -460 155 30 -250 341
-203 -164 -320 -295 139]

121 4 2780.01 [50 -79 -316 67 138 398 -259 -258 12 -401 -164 -172 141 13 -26
-222 349 427 105 -35 75 611 61 466 25 -112 157 16 340 252 93
14 332 -225 165 -411 -202 -29 -52 -90 -255 9 -290 224 97 -17
-167 114 419 -20 169 380 134 -367 -63 -185 208 -94 -167 -434
429 110 273 -421 -17 -133 -74 4 -191 175 -91 -80 105 78 481
-147 816 -254 -178 -15 -162 -132 -93 -130 -164 462 -154 336
386 -229 9 159 -2 92 -516 97 -200 67 465 46 293 115 11 340
-364 189 177 422 113 441 -223 -302 -223 291 26 -182 105 205
556 -358 50]

121 2 2809.23 [94 435 -130 -168 -158 -86 -334 165 -20 166 245 422 370 317
185 125 -431 -175 -31 -64 57 -126 -173 348 282 -81 158 -480
-468 110 -238 -160 -216 -337 235 450 555 -279 358 355 294
563 110 81 24 -105 -154 -238 254 228 -496 36 181 215 187 -70
-132 -156 189 37 -34 124 112 281 -427 -283 -80 -245 222 73 -1
-64 502 -261 177 -366 409 25 88 164 330 -88 -402 12 120 -188
128 322 -206 -186 -250 -55 -436 -123 -112 -215 231 -359 -186
75 54 118 220 486 -350 41 -192 258 -45 -38 253 -76 -416 107
393 488 301 -138 418 140 -8]

113 5 2621.54 [436 -217 542 327 7 25 162 352 15 -38 -311 -166 -126 -33 223
-154 -5 -19 -242 216 -63 401 -112 115 230 -191 146 -43 67 258
-110 -524 -74 87 -249 89 96 -133 53 -147 56 -157 58 168 -129
82 -2 177 -273 -22 429 -489 137 232 -93 -246 198 365 -303 -284
-214 113 -556 -23 47 269 -407 -53 279 862 -356 232 22 251 44
-420 37 -229 493 -282 -199 -336 72 404 -39 -161 180 194 644
-114 436 29 178 -157 -46 -22 41 130 -80 -223 -311 -3 49 52 480
55 -93 -8 -74 246 88 -211 63]

111 29 2597.33 [-235 396 -2 69 9 547 418 106 -124 72 -81 113 103 -107 -240
-532 387 -178 104 157 504 -38 -88 63 -198 -261 -48 72 265 126
39 -102 212 -99 249 376 -7 19 125 -44 -59 173 -56 139 -385
-200 59 136 3 178 109 431 -538 -290 38 -308 71 196 17 176 35
-313 -25 550 1 -9 261 -137 487 262 65 80 -459 -30 733 -361 91
-459 511 -64 284 -40 103 -34 520 -480 -22 317 -153 167 -125
306 -90 31 -154 -257 -62 -88 118 -177 257 398 -35 332 -143 91
-110 -122 94 -16 -216]

A.2. Solutions closed to record in the hall of frame of SVP challenge 65

SVP Instance norm Found vectorDim. Seed
111 30 2635.23 [-650 -123 146 71 61 93 12 -564 251 -316 143 299 -273 -347

-144 120 -212 -130 166 94 142 21 -183 411 -286 -146 112 -139
57 -175 288 -50 -8 76 254 -28 -365 -352 352 -205 -709 -240 -82
81 147 -173 -8 66 -81 -161 -266 179 338 -135 90 -197 91 456 7
-293 -59 -194 338 -191 245 84 -179 -156 -221 208 -145 -41 -92
-68 353 302 -34 -25 32 367 -172 187 -266 473 -228 156 -280
-491 131 -188 161 350 -333 -291 -463 180 -126 -417 458 -565
-27 227 96 -258 -159 -201 -62 68 -131 183 -406]

111 8 2660.27 [124 362 95 -172 -335 375 -127 -153 -324 141 -221 -147 416 -4
-275 262 403 -544 494 272 -63 -182 -267 161 -120 60 93 327
-189 -253 79 -223 -60 24 -130 132 -245 349 668 -124 -226 432
-83 -364 150 -14 -292 182 -70 -342 148 -21 78 -241 363 437
242 -98 142 -14 -1 -302 166 70 -217 -195 26 -24 196 -36 -157
-367 -472 205 116 353 553 -37 -166 233 -81 -279 -118 133 -22
24 -115 287 -437 -144 -129 -402 -18 126 134 207 304 21 -67
-218 106 -254 -713 -283 -236 -112 -259 -28 -452 -190 -33]

109 2 2559.17 [73 -110 -44 -74 -19 451 183 -138 -68 61 230 -113 -450 178 -31
-253 5 -110 14 -385 -169 -205 440 17 -432 318 -197 -138 -344
46 428 483 142 -86 377 -223 -179 -25 28 -321 245 -165 12 -152
-53 -249 -90 -211 139 249 -323 -266 -84 -862 -440 201 250 96
-124 -485 -346 -25 61 -158 -382 492 100 -180 -132 -193 31 -19
105 134 -271 -18 -542 59 -7 -232 118 -127 -160 19 132 22 131
149 183 159 77 96 675 37 152 -457 -137 121 -256 239 -10 85
50 419 43 -299 -192 -52 56]

104 35 2516.02 [41 419 -285 -313 75 -397 -106 202 413 281 81 23 -57 -262 168
-103 199 168 -192 -265 113 94 157 116 -427 611 -132 140 297
-338 -206 -500 -59 -74 -367 433 175 -349 105 -263 18 -32 355
399 320 115 -60 -482 -175 -34 -266 -161 407 360 -236 0 -414 86
-162 5 -89 -180 556 139 -216 -113 -178 165 88 7 245 -71 333
-83 -115 102 -263 -65 477 61 20 -97 276 52 -8 108 189 -253
-260 -669 406 -114 83 124 17 19 -88 243 209 -117 184 68 299
93]

104 85 2520.11 [-334 -448 -108 -285 -251 39 -104 138 84 -46 260 -62 -136 -142
36 -237 222 362 724 -55 227 -165 163 -41 -173 -182 -201 206
-338 182 202 -249 271 130 -113 -136 193 -271 -256 -168 -169
-227 426 261 -416 73 114 -10 -203 -107 70 -392 -59 -70 -558
-383 448 69 -28 -220 230 -197 -54 -180 -30 -322 -231 1 -433
159 259 19 291 237 616 -277 -291 -88 -179 -261 28 157 237 -73
-26 -325 -140 -29 -109 161 -117 314 -257 195 -220 -144 793
-268 124 241 113 -27 -62 -36]

104 82 2529.01 [20 -79 -397 -436 213 61 -57 307 -179 376 13 74 68 26 260 226
146 56 267 387 -789 244 -129 -130 402 -11 -70 278 54 188 90
69 19 317 -37 133 -17 -9 200 160 143 -302 133 -90 -460 -374 -7
271 -88 75 -373 -246 -142 -259 401 -57 111 -126 189 353 258
-55 -81 -416 133 -498 -44 -150 -10 146 271 -375 1 -324 -147
-85 93 -37 62 221 463 -342 69 -279 54 -114 477 -434 -156 391
56 756 -97 127 80 -199 2 43 332 -66 -364 30 -199 -69]

103 3 2507.58 [170 -185 -274 393 -201 97 122 -220 -86 233 490 -128 160 -348
255 -89 -254 449 97 -1 197 -521 -88 -34 -87 -29 -70 -185 -125
-110 -91 -378 -100 -95 72 55 -59 216 -190 -15 264 41 -126 -213
697 82 229 232 -240 376 160 14 220 -353 555 -156 422 -193
-320 293 166 -180 -81 392 -182 -290 -167 -15 -222 200 -458 60
-105 217 -29 81 -241 -169 790 57 271 121 125 -104 -23 19 -98
-77 360 69 -489 -327 81 61 113 -219 -239 -24 18 182 -418 187
337]

66 Appendix A. Solutions of SVP Challenge

SVP Instance norm Found vectorDim. Seed
96 18 2440.53 [248 -276 29 -351 316 362 226 -255 -372 236 -443 76 -465 -36

230 -274 -447 -137 -68 -52 166 614 36 -589 -54 70 -165 -89 276
-279 53 -68 97 -138 116 249 -249 -256 6 -305 304 -122 -549
162 -69 67 549 -5 -308 527 178 172 204 171 -171 65 -118 -35
-208 154 -245 -22 170 71 -16 -402 361 -122 -232 487 -268 349
-9 100 -199 78 -329 -139 290 288 -130 -247 -218 26 223 -238
-341 -113 -92 -219 -158 147 -98 97 -70 86]

96 14 2484.15 [195 -397 51 -195 171 -37 73 209 101 -172 243 196 -70 220 -65
305 -259 24 497 -51 -110 -160 -164 67 -446 363 28 -503 229
-125 -117 43 -60 10 -78 -58 -35 -93 -35 -506 -147 -126 265 97
-498 139 227 78 -269 -213 -131 -301 -346 24 379 -319 -53 95
-438 -387 -135 50 160 313 -403 -410 183 -76 -32 509 96 -174
-467 138 -44 131 540 -64 -478 381 -203 348 498 340 136 -353
-215 238 -326 -111 -150 -70 -152 5 -322 249]

96 19 2489.60 [55 -93 -50 -50 -426 445 -198 -362 -167 390 114 411 10 -12 18
87 -118 -354 210 -1 -10 -112 -252 225 -286 250 5 276 -385 543
-64 -80 -120 -511 -386 380 -314 -292 237 248 56 141 233 16
-98 -312 -106 -238 288 594 151 -321 -154 -154 -88 33 -11 -184
-496 432 344 10 253 -156 563 135 -79 384 154 31 -65 -239 -631
16 -33 -70 -8 -49 217 87 303 -134 -103 43 204 -396 175 265
-556 173 -75 -34 57 167 -155 -66]

96 7 2495.95 [-251 -150 -79 -74 -347 -25 -370 388 -30 295 170 -167 216 404
591 -117 -332 -431 85 -356 -512 -78 -80 -72 -45 448 224 -9 -282
-81 64 345 356 -312 294 -156 81 191 160 3 334 323 128 224 242
-174 -92 82 436 -30 -53 209 365 -194 -400 -321 -224 110 21 69
27 27 -11 63 -35 58 21 67 127 373 336 -115 -553 110 442 -419
469 278 -250 76 107 -181 226 -85 73 -59 -293 424 -109 -43 -17
-74 369 -110 527 364]

96 3 2503.98 [473 822 146 -134 110 183 -18 -164 398 423 -142 -269 357 24
105 -210 -265 92 97 320 -130 259 -265 -220 -74 120 319 309
365 560 393 279 -516 59 -288 90 163 256 -30 316 -2 -84 214
189 28 127 78 36 214 -224 447 177 -270 -175 87 -280 -92 -73
30 435 124 19 73 -332 -3 -461 81 35 457 -186 45 144 283 292
-113 212 -34 548 29 313 119 178 176 -201 55 -412 52 -6 -114
30 -123 29 12 393 -499 41]

A.2. Solutions closed to record in the hall of frame of SVP challenge 67

TABLE A.2: Solutions closed to record in the hall of frame of SVP challenge

SVP Instance norm Found vectorDim. Seed
132 1 2929.33 [-115 -295 177 -35 -46 -600 68 463 -305 -125 168 209 36 199

143 -174 -133 105 -241 -331 165 192 264 110 78 -721 48 341
222 38 82 -180 480 -424 125 64 399 111 -79 115 -270 -122 -459
258 285 -6 7 -276 38 218 -389 5 54 4 -419 130 -278 -182 -119
10 -88 229 36 512 448 362 308 63 217 -90 110 68 -3 243 -139
-153 199 217 -37 28 -250 -35 99 -234 64 198 -139 89 -348 -319
-291 223 438 -44 299 409 -189 -41 153 -184 -344 524 -229 281
309 158 -569 396 -23 293 436 73 -506 -397 -43 -77 423 39 220
-382 -32 42 475 -41 226 -161 271 6 106 151 -338 -66]

132 2 2899.90 [-21 110 -58 245 40 -203 413 97 -545 -294 107 -126 199 260
-145 -243 -271 -161 14 -130 68 -18 192 33 254 -203 67 455 -95
-117 103 -184 223 294 -306 249 39 329 393 -115 129 303 -632
-602 112 -148 -177 133 -396 19 117 565 -161 -477 -341 22 -57
266 158 -378 -124 -164 -10 -154 240 -106 -138 -469 -61 -576
-41 321 292 -82 296 129 -310 336 -318 208 434 -52 570 -236
164 -196 -100 -540 337 383 -398 332 155 -78 -18 13 179 144
-248 165 -197 -278 -266 415 131 222 -306 -18 64 -15 463 253
-141 154 -95 -64 -42 7 88 -87 -162 -137 163 -222 -319 85 26
351 -70 4 -145 -291]

130 3 2968.73 [-173 175 -280 116 -61 -371 -224 -61 -120 52 160 173 311 -384
117 28 -265 -497 131 -143 -427 142 -567 -417 -5 -180 -63 20
-269 -552 -196 -379 -8 68 458 199 -281 -6 -88 -330 121 -560
-43 105 -665 80 228 389 -119 118 24 119 -166 -9 502 -5 -222
140 272 -324 261 159 -278 72 199 -117 -286 569 11 131 195
-317 358 65 -348 -142 70 183 -37 34 357 -88 -50 -440 336 -292
-67 128 -134 -233 -143 -427 137 628 -43 -116 -291 -118 -157
-245 -188 -190 173 -203 66 -426 -68 377 -145 -606 -214 -318
-454 85 95 -189 -24 0 -578 424 75 -13 222 142 34 -237 55 -76
-5 -79]

130 7 2914.22 [110 262 -221 0 -59 16 -177 67 -109 -80 -25 -73 777 255 186
182 243 178 285 -548 -94 49 131 -789 14 315 -53 -173 133 -158
357 190 -11 234 -353 -115 -19 -73 -272 -406 -67 18 -17 68 57
-424 -165 266 -292 -357 245 131 223 434 83 212 291 127 -30
149 -154 283 128 147 -251 148 121 -281 152 343 -211 -116 -27
244 -23 -57 -335 -311 -294 333 20 231 -35 -236 -55 -510 -388
226 243 -234 132 -78 -544 -99 -367 -523 1 -110 -484 -192 564
-84 145 -189 -26 348 128 456 409 298 -42 515 332 -442 109
142 -17 -145 -55 -90 158 -4 63 -254 -293 231 32 -75 -273 -188]

128 2 2947.45 [-124 -334 -4 42 -193 162 299 205 254 -18 191 56 408 248 29
14 17 -68 -99 165 398 94 -534 226 -391 102 403 327 250 -236
293 85 -37 -30 372 -109 -144 -88 -301 -106 351 95 103 327 -36
239 -683 -218 259 -149 238 12 -202 -173 157 3 252 -70 -287
330 -39 84 -295 -245 378 -144 -308 607 -109 -344 -386 187 17
39 -313 0 -156 -342 140 -713 85 -326 202 220 -251 -236 -136
-265 -82 -724 105 -395 58 324 -61 462 -3 226 -51 -227 183 -251
333 114 -467 273 218 -188 225 38 191 -583 37 -258 -404 242
140 -317 -177 -87 -87 69 207 -252 296 63 -355 -145]

127 0 2897.58 [513 -25 161 -131 -83 17 -475 -356 121 -412 -592 99 209 -378
540 -194 476 -300 471 -69 -213 209 -71 -101 -117 -83 315 -642
282 -272 -66 211 -341 302 -344 -40 -144 -242 -290 -23 -154 68
97 199 -225 -237 33 246 285 -89 -256 -514 127 117 153 348
-253 379 124 -84 12 140 545 -481 -443 57 -299 259 211 -484 3
-571 -483 -356 -89 232 53 38 68 228 180 34 -241 127 -16 -92
85 81 -404 64 116 -94 -173 100 94 -66 -85 121 -36 182 365 26
-71 168 255 -443 3 37 140 91 -402 273 203 -25 253 365 -130 35
-52 292 132 -70 -406 -229 -144 31 -76]

68 Appendix A. Solutions of SVP Challenge

SVP Instance norm Found vectorDim. Seed
124 0 2892.64 [135 -334 -246 -296 -462 495 421 72 -138 25 97 -124 -51 -37

-382 -455 523 5 -741 464 397 -416 171 -48 -90 -179 -61 -176 10
379 -447 160 258 445 251 -96 -67 185 -30 -21 -27 -232 270 26
-213 -317 -118 87 10 -9 262 493 -3 165 -269 215 180 55 -228
-180 267 -38 -91 -204 125 -161 -44 133 60 -109 -35 20 -6 440
-334 -16 -121 -2 261 149 15 56 538 -13 -629 27 -443 201 144
101 -173 66 -90 353 -313 146 -564 142 -446 -539 19 98 -121
-29 -268 315 -242 -120 513 -276 -200 210 298 -296 267 -322
-25 141 -107 -101 -181 145 -351 -87]

124 1 2872.38 [253 173 92 -97 225 -353 -284 203 45 70 -96 254 -237 248 -227
-112 123 -465 229 -164 234 142 -337 18 -211 -180 110 -11 96
-208 11 -107 107 -312 460 -96 -324 68 -143 257 -480 -489 368
263 184 -319 529 125 422 347 -399 377 -151 -296 154 -395 48
323 148 -214 -255 226 348 -153 -99 -490 367 164 341 351 -141
-218 504 72 -8 -303 422 332 28 -340 -64 -145 79 252 40 377
-45 345 21 -316 126 381 -81 350 264 -307 -57 -223 -340 520
-248 136 171 204 -472 87 58 97 309 264 -54 -253 -22 -55 -43
-28 -396 -270 104 223 18 -148 1 -446]

124 3 2886.65 [35 399 456 -479 94 229 108 22 199 -172 128 19 37 127 142
141 -194 -131 106 -67 -262 -173 55 239 481 -144 255 -122 18
-81 -132 129 -97 82 -682 -419 -58 227 56 209 -212 79 -72 -39
-291 -151 143 -89 147 -203 -80 377 -572 130 -285 53 214 45
127 -353 -310 354 10 204 609 -157 -37 186 3 186 226 -121 8
652 -368 -305 136 -231 -24 152 -339 27 103 -291 -280 130 -12
-667 166 395 86 167 -260 -479 383 -14 -470 393 -185 -183 -52
594 19 -235 44 289 -236 747 -591 -12 -151 -43 1 -102 -81 -37
69 -158 225 -226 -223 -99 73 -188]

124 4 2873.73 [53 43 -60 -596 -508 -488 198 -29 294 -385 -573 204 -287 27
-83 -409 415 -100 331 122 9 -540 176 112 27 -265 376 104 -63
107 276 -192 161 -73 303 -326 -150 -242 -40 235 -115 80 -474
-52 309 157 196 -246 -60 -234 -437 -56 -178 -350 -120 165 257
35 220 -216 94 33 138 -70 511 71 27 -200 17 313 27 255 8 282
205 62 352 3 -46 -321 188 281 151 -181 -281 475 -186 98 -44
214 393 187 128 185 375 -341 156 543 -21 -149 204 -659 363
-112 -311 142 256 -175 -375 58 382 207 195 13 -77 -226 -168
32 -148 -62 -199 -573 76 324]

120 0 2756.06 [158 305 -150 -24 198 -271 268 -277 185 -283 -312 -95 263 -31
-86 71 50 65 -209 547 139 226 -52 -33 -499 -68 515 164 -279
-16 -209 16 474 -518 138 101 -154 -276 -664 250 -249 586 12
345 150 67 -94 -306 168 366 -88 517 100 11 -560 -344 79 -102
271 66 -178 157 47 -184 334 54 100 218 -309 -293 -93 -195 280
-148 488 172 -223 39 -38 560 210 -99 -18 -44 -205 85 354 -132
-80 223 49 499 70 119 -68 -107 -406 205 -60 -163 -165 58 46
48 267 -300 218 112 -271 -148 464 101 175 -282 -116 178 74
-319 -326 212]

120 1 2792.47 [67 70 -151 -314 -14 -48 264 360 136 37 25 -110 318 249 -383
397 -439 95 318 15 43 8 432 -269 453 -106 4 80 571 134 230
-139 92 225 532 172 -32 16 3 96 -18 396 200 36 -101 173 -240
-95 36 -236 -136 -295 -224 145 -886 -101 368 30 287 1 568 -13
21 297 -178 -70 147 246 91 87 255 256 129 109 -90 259 178
-123 193 209 160 -87 188 -127 -554 -292 246 -31 192 -481 -27
-90 -413 -190 -54 30 -182 -233 -160 509 -161 -224 126 323 -10
86 -84 344 -306 -116 122 -97 -362 -169 -109 98 484 -130 594
-525]

A.2. Solutions closed to record in the hall of frame of SVP challenge 69

SVP Instance norm Found vectorDim. Seed
120 2 2778.82 [-149 -362 65 -30 -329 -40 174 92 247 -90 -227 152 234 -116

214 45 202 217 451 445 -166 565 -209 -324 179 -128 186 282
-144 -1 -222 -45 45 348 433 -336 -97 333 -25 82 152 -336 -309
-148 -129 -545 232 -387 81 377 186 -230 -259 -30 -405 -53 -117
-52 322 35 589 24 -155 -249 206 121 -113 213 -351 -261 132
-53 303 -185 118 -15 -174 -115 -341 150 478 -398 -29 -246 -121
-108 50 175 -6 29 -577 219 577 -356 -136 -54 161 322 167 110
42 -47 99 -387 357 424 -381 -250 151 224 -380 -7 171 294 -529
-89 -189 133 -209 49]

120 3 2842.70 [-327 -42 -570 129 -162 77 -118 204 -200 -434 39 218 180 -88
152 -146 75 148 28 -58 322 -357 -37 7 -63 -83 -414 335 183
-290 197 43 -271 208 -261 324 150 -258 -32 301 -9 -353 171
-481 46 -99 -258 59 337 -77 85 -80 -89 95 -585 85 -8 588 75
-381 -198 331 111 -91 218 -119 -37 86 -788 157 -479 182 -125
-51 -116 98 -224 145 -217 114 119 41 311 -252 -213 183 -329
68 67 334 188 -29 88 -30 -287 68 252 200 -314 639 -54 353 304
-462 207 25 202 204 -180 502 -710 -48 64 -159 -365 584 -16
-86 228 265]

120 4 2729.25 [214 129 737 112 -285 179 -117 1 -21 275 -41 -490 -447 132
144 186 305 -4 -743 714 99 -46 264 -242 -48 -265 2 78 -132 185
-508 554 -80 -179 -82 322 151 -38 16 -99 8 43 89 -357 -12 -76
-275 -65 -418 -131 -295 -44 36 -199 -192 -482 419 -279 -149
-30 71 -149 244 467 286 -266 -335 67 99 -229 -90 6 155 102
128 -76 -298 -83 -158 92 284 106 -314 -158 -124 122 -67 331
94 -166 -474 -219 43 -651 82 -156 -512 131 -18 218 -235 -10
-93 29 -38 88 -82 87 -56 195 10 -246 327 200 -26 28 76 -460 -3
-103]

118 2 2789.09 [-246 -87 -90 309 105 235 193 37 -52 -301 -356 -274 211 -415
154 -26 -408 255 -199 95 107 -173 -48 17 63 287 316 -400 -255
119 101 5 58 -257 107 140 -124 -81 -18 5 66 328 158 638 -286
-404 487 -436 449 429 167 201 -415 -59 530 125 252 99 63 -65
47 218 17 -111 730 -158 188 -229 -22 -572 303 -101 -280 -377
-268 -326 -285 -126 373 -348 -244 -262 300 309 24 -56 -361
-444 145 -42 -21 -7 -149 -155 28 -243 -235 -179 123 -15 -16
-380 530 -117 -80 -79 260 -271 110 263 163 311 108 210 286
-23 183 347]

118 3 2785.57 [392 370 -189 192 30 159 -64 -65 -31 -150 -512 787 -126 -41
164 -155 -252 -428 31 263 -112 150 -223 304 -505 72 -389 94
-12 293 579 42 -249 155 -255 83 -216 -175 73 2 323 488 -2 203
-111 168 -51 126 155 -463 -507 111 -44 -465 567 -103 221 87
-359 380 -12 -541 -107 -339 284 198 271 71 -187 109 131 124
116 37 -326 165 185 288 -253 10 201 17 -209 -295 148 -182
-308 -535 -402 39 -455 -139 18 -105 102 322 -81 103 -283 255
-188 103 277 74 -114 44 67 -80 -522 -29 -198 244 278 -87 226
-44 -35 -60]

118 4 2793.29 [-85 117 -153 -22 -351 -175 -149 -166 -157 -198 -50 -466 -31
261 149 8 -186 -157 -301 -139 113 -93 -485 127 -296 84 -552
-359 274 285 396 488 -623 171 -19 -130 210 -148 223 246 96
290 -14 87 7 -15 226 188 -45 45 340 -304 -359 204 46 -405 427
427 -207 92 10 -15 -23 -295 -49 53 -319 -443 -147 -208 113 130
216 202 330 484 112 -204 -300 9 -240 -221 215 3 -183 106 17
226 523 -58 45 -288 -255 -309 -95 -521 255 284 -653 468 -193
317 14 -231 67 481 -387 -98 -25 -240 -172 54 61 198 -217 -77
-341 319]

70 Appendix A. Solutions of SVP Challenge

SVP Instance norm Found vectorDim. Seed
118 5 2764.17 [-112 117 58 -320 150 -163 81 219 -221 -213 326 -301 -637 -

580 -181 -235 124 -136 69 -166 708 118 -7 119 -170 316 228
294 -115 179 102 162 161 -104 -17 -344 -481 -372 294 251 -362
-326 -396 -46 172 -30 39 98 -169 216 -366 -124 -379 27 -270
-349 -336 -294 -248 67 -22 -137 -11 42 -372 -98 83 285 -115
113 200 370 304 -271 -177 -242 -64 109 415 350 255 -365 257
258 -374 -211 200 -27 227 -220 -168 63 258 361 -108 136 -407
63 85 -345 -207 -234 11 -262 29 294 -119 -165 -545 210 228 55
86 -462 370 -270 -160 -113]

118 6 2768.58 [-120 430 144 40 260 254 -153 -275 -388 325 630 -42 -107 614
61 250 302 -262 -106 -428 -200 -538 72 -28 -7 -482 -45 -238
422 -98 -251 307 20 137 169 -29 385 -231 461 -85 -178 -94 -
363 -259 -124 -323 72 330 -166 -187 -94 -64 -113 147 282 80
95 -267 -261 -79 -220 52 143 -5 -392 -302 320 19 174 47 -38
213 -269 230 236 13 97 -364 -181 50 -122 21 -86 -455 440 16
706 -55 -331 47 387 98 315 298 -74 -12 -81 -309 2 79 -235 -149
-212 -106 181 -354 53 241 -344 -237 -75 -83 135 348 -76 1 -254
616]

71

Appendix B

Lattice basis of numerical
experiments

B.1 Well-reduced lattice basis in Figure 5.17

CMAP-DeepBKZ has succeeded in finding a sufficiently reduced basis, as shown in Section
5.3. Here, we show the part of the basis used to create Figure 5.17.

72 Appendix B. Lattice basis of numerical experiments

TABLE B.1: 57 lattice vectors from the beginning in the reduced lattice
basis of Figure 5.17

[[110 262 -221 0 -59 16 -177 67 -109 -80 -25 -73 777 255 186 182 243 178 285 -548 -94 49 131 -789 14 315 -53 -173 133 -158 357 190
-11 234 -353 -115 -19 -73 -272 -406 -67 18 -17 68 57 -424 -165 266 -292 -357 245 131 223 434 83 212 291 127 -30 149 -154 283 128
147 -251 148 121 -281 152 343 -211 -116 -27 244 -23 -57 -335 -311 -294 333 20 231 -35 -236 -55 -510 -388 226 243 -234 132 -78 -544
-99 -367 -523 1 -110 -484 -192 564 -84 145 -189 -26 348 128 456 409 298 -42 515 332 -442 109 142 -17 -145 -55 -90 158 -4 63 -254
-293 231 32 -75 -273 -188] [178 199 -253 123 517 180 -42 -315 -830 -20 60 -718 340 58 -173 204 -52 265 136 -325 -115 -234 99 -471
320 101 -406 -211 67 -85 211 75 155 397 -628 -87 119 91 214 -723 -18 -352 -191 -30 -172 -458 -276 -184 76 234 -112 -82 121 83 130
389 -65 117 -104 135 243 160 -51 352 346 -237 34 -77 86 32 -137 -278 -375 201 559 -135 1 70 349 319 -157 340 -16 369 -259 -26 -652
-108 -137 -313 -78 228 -105 414 -136 -230 233 -321 -236 -290 255 -265 337 -150 -381 113 76 40 95 290 -57 113 153 -751 -466 -249 -5
3 114 36 423 522 109 96 -338 277 228 258 307 -94] [-136 -2 -90 494 313 228 -17 -35 -435 -164 22 -308 -53 308 -114 52 294 82 -105
-17 26 479 107 76 4 -219 -4 -460 275 -18 135 -163 279 148 -135 196 228 -92 393 -118 -14 388 172 311 -89 85 257 -69 90 -84 300 -385
-9 190 -117 115 116 -376 46 -110 454 -148 -276 -53 494 267 -479 -42 -32 65 46 82 420 -123 17 373 351 -40 285 -261 -137 188 640 650
-166 245 -202 -433 -105 1 -750 727 -540 -240 199 467 277 -118 -122 -300 -62 -229 208 -227 -297 296 -125 129 -57 -141 71 -117 -100
-373 -228 27 230 -586 106 48 -11 -219 -33 137 -98 -93 -11 -63 460 -221] [132 -19 811 -130 -293 189 373 -240 159 558 -10 -24 -273
-436 -336 -31 -284 108 -250 286 260 140 269 152 227 44 -126 -244 -180 161 65 66 -350 -136 72 -51 348 -16 100 -44 241 -47 53 336
-340 51 -52 -724 -515 433 -39 180 -69 -177 53 189 331 -142 141 -46 363 -78 3 268 -357 -183 -513 369 -58 21 222 220 -769 -242 412
-196 -148 206 -105 -199 -447 -37 -164 -43 -137 -105 11 -61 -349 96 239 173 117 10 -251 321 -326 19 377 152 -578 -150 -35 26 -186
-404 538 -573 -205 59 -199 62 177 240 -244 -44 -218 223 15 -169 11 398 -151 230 -467 208 103 594 120 305] [-103 143 292 5 450 47
143 174 17 198 233 -412 -136 178 -299 198 -369 -233 -21 -258 55 -68 -351 -478 -122 -304 240 -73 230 -237 -554 79 26 -76 138 -225
57 -161 -59 52 441 -332 -486 -18 -102 -408 -124 -604 -276 309 653 314 49 77 -19 -56 356 -26 19 389 93 -115 145 267 -572 10 60 517
-269 260 -289 -11 -334 -88 154 -149 -81 -164 218 -287 -48 -99 -2 158 329 -20 308 -121 147 78 683 -251 -47 -242 -56 113 78 -65 59 546
-166 180 257 307 77 -93 585 -353 -79 595 -32 66 304 -420 -60 -9 -148 -362 -202 189 -150 549 245 203 -390 479 343 349 -65 214] [-265
316 -96 -20 -613 126 -329 -463 56 108 -90 193 335 -423 -183 -587 466 -29 47 -238 207 310 151 441 -376 -43 -6 -535 -342 263 449 -244
286 -18 219 -42 298 115 -122 -213 274 79 182 319 101 311 -62 -12 -442 -338 59 309 106 340 -89 342 117 -586 565 256 139 -201 216
-161 -120 596 -442 -176 -23 219 -163 66 -27 -23 -259 443 -115 89 -3 234 171 -317 -133 -138 -306 59 -131 -147 321 -236 -338 231 -155
-543 7 88 -493 33 -53 -199 413 -227 -116 -37 160 5 26 275 416 -279 -471 -44 339 385 4 -154 -37 413 261 269 212 -480 -168 -556 -234
309 31 -109 -372 8] [-126 78 -8 225 179 153 202 -609 -604 351 -41 -216 452 91 36 320 -351 -123 9 -519 -40 -122 -468 -497 -200 -100
-72 -559 -62 -474 118 -286 16 507 -614 -478 -21 694 660 -355 -5 -521 0 -224 -443 -514 -539 127 -41 45 238 312 -61 104 -230 303 -188
-442 -231 -150 -277 229 567 93 3 510 -107 -111 -104 555 112 -312 -132 148 550 -67 288 -337 382 -266 25 54 -48 170 66 -263 -187 176
-156 -456 284 122 -52 -189 -267 -363 334 -244 211 -174 336 122 190 158 -257 -49 459 101 213 117 188 -150 26 -625 66 -30 50 230
-260 292 31 135 125 -17 -208 159 -202 -13 224 -111] [-176 283 -155 -30 -108 -221 -160 -358 -361 -7 368 -342 330 -155 -104 205 263
-185 -140 -158 -18 -433 82 -208 12 -304 -108 -32 -349 -268 78 46 -135 544 -536 -595 199 520 340 -16 -66 -86 -140 -116 -9 -15 -605 473
156 91 -94 327 -145 -118 -121 38 -605 -223 247 -143 -291 -43 732 -340 -368 586 58 -109 -389 -130 218 20 -109 27 -173 298 439 -355
-30 -191 87 -26 265 48 -130 -130 285 128 -86 -543 23 32 277 267 24 -89 -96 -58 -287 -291 -59 172 -641 203 -114 168 79 -222 57 157
-123 262 72 348 319 -474 3 566 487 58 40 -420 473 274 228 -217 170 -99 -244 -452] [-70 -23 167 -16 -391 60 -91 -279 -152 380 -158
910 628 -305 -140 -255 79 -174 4 -313 145 275 -451 -217 -339 280 410 -357 -448 -388 197 242 396 -157 281 -302 -333 464 -775 -222
188 -170 175 -124 -175 -142 255 -212 -201 -59 307 690 427 434 -116 -121 700 -134 342 -70 -55 -236 496 404 -528 356 -289 -121 -31
540 -685 -177 -63 94 54 -8 -874 -195 -344 82 46 -153 -214 -742 125 -110 149 158 320 286 705 -163 -205 -556 -161 -165 -393 -165 333
502 203 117 -58 112 775 -144 217 483 405 -72 94 10 -86 385 -411 -168 -488 -44 -213 -218 119 581 -13 -894 -379 244 229 416 -534 88]
[-362 -554 -277 590 198 202 -138 -442 -645 262 -672 452 -101 -442 -188 11 -216 -200 182 -10 276 -44 -131 -323 -168 -601 116 -586
-80 -602 89 -308 452 11 204 243 223 402 257 52 -334 -32 390 -194 -298 -26 -258 -326 11 -50 290 168 47 7 -219 -145 178 -364 278 106
-293 152 -224 -92 337 113 -586 155 -4 576 -146 -322 457 -170 526 -283 239 158 647 -416 194 -554 -59 253 13 -54 -40 -197 -205 324
350 400 -84 -297 -300 -36 40 -511 356 -296 208 -118 410 78 -185 -414 31 95 -143 -450 78 -620 -570 58 -621 -121 1 -260 186 -361 94
9 -347 -516 -110 540 -339 341 655 2] [-84 -322 7 -5 -237 186 -195 52 134 372 -357 71 -586 -573 -377 -511 48 -484 190 -146 27 -564
164 854 -25 -105 -36 -196 268 486 89 63 273 -361 244 410 -36 -389 -626 77 298 -152 241 195 -135 30 145 -145 -143 -24 -439 -62 -366
-215 219 -107 124 14 -150 137 277 -98 -662 -42 178 -186 -245 -259 -142 -307 108 -195 -219 -76 375 -281 -150 412 182 -57 399 -317
-96 -574 -353 -162 -586 -105 341 493 -349 -97 221 -203 419 214 -491 -272 259 -32 -185 -506 327 115 -567 -292 -440 82 68 323 -768
-464 6 436 -376 -99 -403 -87 245 47 -113 -159 -373 -66 -127 392 -119 -96 79 262] [-12 426 38 -53 224 -176 -571 -796 -651 -326 177
-369 -33 -213 62 -22 -109 -17 342 209 -147 -119 -194 590 -179 63 -497 234 -439 260 -39 -249 -473 -246 -57 -404 -283 620 492 -286
196 -29 158 -112 24 -123 -458 328 175 286 -678 -407 -165 -52 -391 257 -725 -368 -255 8 -29 30 511 -573 569 -60 -156 212 507 -51 214
53 -157 -46 -256 611 422 18 -65 -19 95 171 -177 483 -31 442 147 158 -5 -716 -180 51 150 343 510 493 -93 242 147 -318 -199 155 -102
30 56 -62 -106 -145 167 -687 191 7 343 66 57 -202 351 213 -387 929 155 162 866 196 506 -616 -154 -325 -131 161] [174 -185 32 411
-93 228 -40 114 -602 -93 71 -460 26 -89 -696 -173 512 -470 73 -325 -158 -534 59 -484 -70 -508 374 -590 117 -221 -99 -91 458 486 -587
410 -36 -13 103 495 35 -533 -196 -180 4 180 -1 29 -155 25 124 150 -125 124 -475 -187 123 -223 16 160 -168 -329 100 61 12 399 -155
491 -265 -294 2 288 120 -487 623 -311 539 -272 504 -428 27 -235 105 -154 -281 -59 180 -77 233 530 -106 12 48 53 -56 176 -153 -216
384 160 265 -48 -116 365 -428 293 -140 -165 334 462 -124 198 -428 387 -325 -650 -617 -431 486 -575 -65 -13 140 395 -49 48 357 -9
-118 -464] [35 -117 311 -30 591 -314 -86 -6 392 82 -57 197 -284 45 -123 70 -597 127 -181 190 256 -215 -174 -326 -16 -39 181 1106
-154 -227 -576 252 -367 -361 1015 -452 -212 -85 -370 -253 587 139 -186 -40 94 -81 -325 -772 191 546 -46 -112 -111 -274 309 -474 329
159 -60 686 102 -175 -139 -140 -441 -718 347 759 371 329 -712 -95 -321 -31 -388 48 -397 498 -289 -144 -254 -131 284 486 374 -250
316 -135 -70 -38 1318 -74 177 766 -470 235 -232 -215 325 114 -527 56 150 -350 764 -482 -142 -204 -543 -594 207 -106 -312 601 -230
100 -52 -413 134 -84 60 655 150 350 -74 -60 183 366 403 209] [237 177 369 -76 -529 308 202 -342 343 34 126 -971 -145 254 -749 -594
338 493 -44 -641 127 -113 654 24 288 661 292 137 7 473 303 19 -101 355 -322 -136 472 62 179 -520 150 -159 349 678 154 440 193
-137 -305 128 -826 -97 -62 -27 153 763 -433 -133 51 31 201 -391 -70 243 -514 130 200 13 -46 -400 121 223 -762 -409 -410 84 201 290
-147 531 -344 376 438 217 -570 246 -438 -451 -272 -78 -989 103 516 215 -14 198 -665 235 40 -400 179 -309 163 16 -389 329 54 -140
401 528 -276 391 -88 153 105 -26 250 268 301 -19 100 -679 -180 353 -200 -176 408 -306 -299 17] [38 -226 4 326 -233 -81 500 167 197
162 -369 1023 198 -142 96 -60 -163 540 -153 -80 368 -315 308 -768 160 457 208 71 118 -266 -78 182 114 61 670 -121 446 64 -245 -543
-175 486 35 124 273 194 386 -282 334 -52 246 -303 409 179 539 -145 894 390 3 -411 122 -102 -450 534 -101 -396 117 -211 337 508
-454 138 88 113 -256 -93 -454 658 -617 541 -416 -104 482 53 275 -218 -12 -433 -523 291 155 384 -540 194 -548 -18 102 -70 -6 -301 25
115 -116 -372 325 401 26 575 -308 -695 -74 116 -429 -391 226 901 -159 -349 341 -912 103 -773 -762 -292 -419 60 -465 505 302 -325]
[24 289 -1016 146 353 -537 223 410 341 -262 184 -72 86 -338 718 120 -239 254 -480 363 16 -452 -90 -276 450 -403 -508 445 182 54
-189 55 -317 263 -180 227 206 -373 326 608 -526 -163 -442 -355 577 -79 -502 26 -24 57 111 -145 60 8 441 93 25 397 81 -142 179 227
-261 -145 521 -280 392 -76 -621 -237 173 254 -84 342 202 -404 189 -67 87 -102 45 -133 -251 59 234 -253 48 407 122 308 172 120 290
-84 -15 -658 941 -42 -136 90 107 490 -285 62 -26 251 124 105 -307 106 -124 -312 319 -407 421 210 -29 358 -341 -561 -272 -696 -132
31 71 -58 105 288 459 360] [-428 -92 -123 125 -169 -338 83 162 306 234 380 319 -9 -318 10 -125 -68 -191 124 -105 800 -843 268 -339
97 -279 -264 682 222 -423 -37 -268 -115 64 14 -238 133 77 153 136 -154 -320 206 -271 68 298 -70 161 -32 120 -156 1 -117 -427 275
-311 -95 -69 517 -227 -290 -106 61 376 85 124 -39 -254 -670 -159 -340 -103 196 -367 -207 -493 1 114 -306 390 -83 -82 727 -26 -266
-235 -107 -95 -532 -46 576 90 398 178 -108 140 -230 42 -9 -382 -757 305 -194 -309 334 432 -120 81 -72 -32 -423 -104 -261 517 180
-182 -40 -163 580 -638 -345 -692 -199 56 90 -476 -19 36 -12 -88] [425 98 -8 111 -324 525 -137 -831 -170 -289 -323 -68 -391 -436 -548
-325 36 483 701 -419 -120 162 451 -498 414 23 -10 -104 -308 399 348 491 243 -285 -38 732 385 632 -144 -319 -115 187 512 210 184
168 -341 -315 -403 197 -295 -161 -63 -37 -283 461 -249 325 -335 245 215 659 -330 8 -234 -576 -273 256 791 -3 173 27 -426 204 484
-665 -321 -35 -41 -150 504 -7 -793 -111 -107 120 -714 -8 235 122 -324 -38 -58 -321 -252 -391 -327 -332 -104 -646 723 -240 0 178 -510
-450 516 191 453 172 -60 -214 232 -421 -852 365 111 -44 -415 -277 129 321 -63 -508 -124 488 337 292 -24 470]

B.1. Well-reduced lattice basis in Figure 5.17 73

[-357 -229 -216 195 -118 -181 -683 -294 475 -310 -853 -5 -418 -283 -91 -76 185 -135 562 79 278 -521 796 93 -253 359 255 218
-220 393 -434 -94 -115 -619 965 -279 661 166 -238 -81 -236 328 -453 103 251 337 -269 383 -164 -410 -341 -119 341 -226 -240
-86 -357 315 317 170 -594 97 -277 -450 -452 190 141 166 357 -293 -68 452 160 -390 -940 570 201 517 51 113 -251 -127 -276 375
-48 282 760 -141 -200 -11 29 -106 74 797 89 455 -909 229 -419 -210 -7 -19 397 -241 102 318 -480 -71 -267 -272 -103 491 111 832
311 151 22 364 510 -322 -130 -1096 -180 -133 138 493 -195 -462 -562 127] [-90 -595 448 -348 -263 513 140 -11 640 72 -707 105
-640 170 48 -283 -681 -604 -203 141 -223 325 70 1021 -299 108 106 -175 227 526 -272 -122 -108 -273 413 -285 -135 713 -454 -9
1095 -474 -41 470 -357 -389 187 18 109 109 113 150 -665 -622 282 1 -154 -373 -558 -336 453 407 172 113 122 314 65 -74 209 -97
462 -4 -7 -89 46 169 -85 50 -48 -518 114 -136 -262 -161 19 -60 46 240 -214 -341 -153 -168 -161 -213 137 61 -153 83 303 325 -149
-27 197 395 -153 -33 552 -332 86 253 257 -374 531 135 345 559 16 386 -291 491 -209 200 -207 280 188 64 -313 -136 -408 479]
[-122 -385 104 78 61 45 -631 29 -616 -448 -536 88 -322 55 53 -254 -303 -453 189 650 -405 8 -302 549 -768 -287 154 236 124 -29
-514 -484 -288 -567 566 185 -467 -283 406 565 -133 -76 325 -557 484 -216 392 -66 235 -184 -67 -157 -305 -26 -88 -119 -293 -235
-68 460 -323 343 -300 -287 262 -163 647 553 418 150 320 -31 170 -67 -351 -347 438 143 126 564 413 -589 -395 278 4 271 168 30
231 -16 89 -877 163 -525 452 159 -443 52 240 247 899 326 124 823 -216 -211 229 -410 -132 -401 234 -415 -296 -579 27 138 -146
118 -203 693 390 235 104 41 362 -126 -460 30 -196 280] [-247 43 494 348 -72 11 -156 526 329 -16 157 91 -243 29 -355 -524 -77
-431 529 -642 361 -386 36 -698 -234 -292 631 68 554 -298 -183 -275 -251 -353 218 468 -42 358 -494 321 733 -286 820 253 150
410 -89 129 -612 82 765 -826 -350 -41 163 -143 234 -695 -164 642 -231 267 -105 143 6 -64 124 331 522 471 -401 -200 146 107
-510 -374 278 54 -124 21 412 -466 248 -153 51 -329 90 -360 -177 565 233 113 -826 -209 -71 -30 -88 52 197 20 -84 108 388 -174
-149 274 99 -205 513 149 -426 -505 49 -104 54 441 95 -1618 -1 -78 -487 -248 28 232 117 -136 -178 148 41 -238] [307 -209 -552
-42 637 -295 -161 665 193 507 6 -115 126 -446 200 -204 -18 -141 -111 -125 90 -955 466 -232 42 185 -6 105 589 -146 -143 -202 33
389 16 -87 -65 -292 -793 -111 274 -580 -83 -181 435 -307 -342 -55 216 -60 1 -252 -165 -302 636 -376 714 -266 167 374 -102 21
-474 605 347 -55 719 610 -266 -302 -332 -169 -92 155 -163 -701 96 975 234 388 5 -542 418 -530 67 -588 -136 -270 -259 575 402
38 -23 891 -673 -489 254 -100 -125 287 -11 -290 229 -157 136 620 -574 -290 121 82 -409 -483 238 -331 -222 222 -269 -463 244
-524 -34 -268 -371 397 -72 623 389 466 -33 -218] [73 192 242 -32 42 -141 583 -159 419 452 539 258 -508 -81 184 174 122 146
-328 324 155 7 233 208 186 -131 -271 172 -251 120 -207 -181 -94 300 251 -86 590 306 865 78 -163 271 170 -240 344 618 -184
-179 31 -47 -391 -223 -393 -205 -100 96 -319 -88 -211 -253 -51 -178 36 5 -255 -156 158 309 -220 -377 624 719 -114 351 -207 223
464 210 -523 -199 25 -450 554 8 425 24 -145 -66 -372 -677 -463 473 448 -44 -281 382 -58 572 -26 -919 -25 51 -780 239 -257 -277
419 -243 98 -669 -445 -505 128 -151 -207 487 598 -95 -168 -231 184 -1006 32 494 64 -312 -353 361 911 -517] [-29 101 -446 -21
64 -31 -307 -682 26 308 -107 208 324 -705 -261 -315 -358 -241 641 -121 413 -683 -331 -201 148 -502 -809 -76 -255 -156 -16 -237
111 295 -691 45 -376 200 97 24 -196 -170 75 177 -117 -203 -625 -332 -202 353 -240 213 -155 -149 342 12 324 -158 -63 338 178
-235 -173 -171 840 -451 -851 -510 -211 295 -356 -580 -271 53 745 -101 -410 73 69 -62 591 251 -132 -33 -153 -2 -344 135 257 11
798 -48 292 -466 245 222 421 -548 790 -536 -182 26 -190 51 -407 -268 -458 691 467 -441 -328 -342 -49 345 79 -314 -161 141 -92
448 51 374 157 -215 -445 -287 -214 -668 791 472] [-303 -337 -223 -301 281 471 -304 9 -938 131 -71 -547 -56 82 -63 105 -339 110
-433 785 46 257 570 162 200 -143 -179 -357 196 -157 267 -367 88 -60 -127 -329 388 103 105 -430 50 370 433 13 -64 -289 -27 102
543 307 -427 453 -83 -150 -146 294 -274 -45 433 67 261 -568 319 450 -265 300 -351 133 -384 -445 238 -412 219 -501 -137 232
424 313 104 -304 -287 -365 810 -99 3 402 -366 -200 -332 -491 -197 379 218 306 343 190 -458 523 -870 -442 -660 -239 274 73 -417
-116 355 -572 -71 230 -149 57 532 -206 -564 -154 632 -210 419 -99 413 -161 216 -231 -47 657 275 648 -80 -344] [149 -136 161
622 -507 -92 -260 -137 -413 285 -40 562 -89 -1110 -119 -438 190 -277 -103 424 -74 -324 -315 587 159 -464 -636 -353 -386 46 770
358 -816 -61 136 496 64 382 -324 519 115 -316 515 -399 -208 745 360 -197 -679 420 -188 -69 -101 409 42 248 -108 -621 -202 198
270 103 332 -586 460 -249 -449 137 344 38 646 129 -295 76 610 -387 -47 -597 176 -66 383 -593 -721 -826 -350 -645 -112 412 149
440 329 -5 322 -549 164 -203 -219 -62 589 192 -257 -45 -454 -77 175 -452 178 72 58 -415 -359 -265 -190 564 -410 -732 -360 8 87
-190 328 546 213 -758 368 -160 158 738 -198 335] [-28 -356 -177 -251 -250 323 528 -25 -29 330 -109 -54 458 -109 97 353 338 192
-544 -300 -296 32 435 -623 468 486 10 -576 271 -648 828 708 206 536 -309 -221 614 -150 113 -269 -422 399 552 182 -559 118
-113 -45 -139 19 -155 624 572 693 29 795 92 400 -82 -378 276 -664 456 80 -631 -71 -614 -429 -24 185 813 74 -63 -454 317 448
-42 -503 -521 -285 -306 173 533 -778 17 -537 -145 223 -190 474 -237 451 316 354 -239 -544 118 -3 215 -130 -195 -54 -439 187
-743 -288 360 500 -13 364 -92 599 -251 194 638 -142 99 639 292 -769 -3 -724 137 -159 -87 287 -47 392 -122 -253] [-194 37 -616
-155 68 169 -249 -188 -633 -159 237 -211 35 311 -89 26 -112 291 -470 447 187 -137 -181 -65 -100 -213 198 -203 -324 -621 332
-568 276 445 -397 -21 42 1 512 -188 -648 402 537 76 -289 330 -442 673 471 -288 -484 -52 -103 -240 -317 -548 -311 -403 323 -176
-938 -235 186 -355 53 295 -257 -129 -428 204 -285 -915 296 64 83 -34 682 307 280 -469 40 -620 513 32 -260 117 -443 -368 -255
465 -574 574 190 281 64 -334 282 -568 -168 -350 -5 -470 75 -394 -742 5 -585 -218 -246 41 194 -59 -20 -53 -355 -166 297 -102
-111 33 -347 -572 -14 -398 10 500 -238 -207 256 -223] [-55 -65 -811 64 264 -317 -199 59 -1032 -649 -128 126 -308 -381 -622 -159
-522 173 188 -266 -244 -994 372 -437 755 -365 -84 373 -457 447 -381 238 221 -266 238 319 -62 528 -71 -203 -76 -2 -677 173 96
-573 -182 25 678 897 -1003 -168 216 39 -189 -128 -176 864 45 -505 -250 -612 -100 -477 -60 -465 -115 -87 315 -182 -421 171 -165
-630 345 -138 81 578 328 -557 42 92 -685 370 156 463 244 170 443 212 -126 -49 750 739 306 -77 -143 585 -56 9 -303 -19 337 419
553 -382 -326 232 -532 35 60 496 -506 358 -292 -461 -239 291 859 -675 195 -360 351 69 579 60 -381 347 109 -438] [-127 58 917
734 -635 -483 462 -128 -299 242 -344 354 435 -56 -418 37 523 176 -163 -794 9 -131 -199 -81 -622 -376 1310 -435 188 -177 202
-236 -382 365 224 -766 273 164 -427 -69 1006 -430 -124 556 193 121 64 -194 267 89 560 50 -189 -25 -534 317 218 -475 331 -225
-174 -210 468 -283 -101 789 67 714 -61 559 -79 242 163 -462 -686 153 370 -302 280 -157 -138 -463 362 237 147 -279 1094 -170
-253 387 -305 -93 -556 -505 -382 291 -131 1 85 495 -427 242 0 522 452 16 90 -422 50 -12 93 215 -527 523 258 -424 -424 82 563
83 -266 -69 -256 395 482 -233 -79 85 -671 -286] [-59 214 -365 -358 280 -118 479 -378 599 229 211 -1150 -430 -312 187 -10 457
743 -200 -157 -98 415 508 161 387 334 -212 397 -324 -285 -75 560 288 315 -644 -488 254 -428 -480 -420 -547 367 -307 536 -333
-916 -417 -693 145 140 -423 682 453 -193 686 -99 -102 387 420 -245 145 -259 168 -275 -862 -288 365 -78 -731 -541 52 -6 -300
-126 -178 179 105 261 320 -24 -538 320 -197 169 466 408 412 -285 99 -52 -229 209 575 366 -450 57 551 -519 -144 270 -170 103
-174 593 458 -22 266 -670 -146 250 385 223 -463 240 532 252 716 1188 -391 481 101 -275 100 -13 -110 323 687 -270 -72 567]
[-14 159 446 -466 -335 -151 79 -169 -564 -16 561 497 1006 -84 74 -123 471 256 -614 29 198 -454 45 -633 -43 775 199 560 -576
-62 249 -137 -543 284 -18 -627 -4 353 -341 -317 -32 45 154 -390 485 279 -413 670 -485 150 -698 -591 36 145 -48 -268 224 72 175
-120 -903 -368 1040 427 -297 61 443 217 -97 231 -291 84 -187 -30 -175 -259 131 161 -1026 235 -376 -185 -53 -544 -49 -300 26
309 -140 333 344 49 -17 452 -454 -759 -362 336 -210 178 -351 -141 -385 -277 233 635 87 192 528 -433 -130 605 21 311 -132 88
-424 420 -335 -714 -316 -371 233 -50 -342 -618 -523 519 -500 -340] [248 701 -193 300 -193 -696 -289 107 -579 -105 361 42 383
-83 -277 635 735 42 144 -372 -56 -470 41 -312 -235 -688 752 -818 -104 -473 -398 230 806 242 11 54 325 -752 -159 116 -206 228
-731 -435 506 95 259 99 550 -298 783 32 289 157 -338 -505 629 275 306 -307 7 114 -51 431 -116 247 731 201 -494 91 -743 -541
-50 618 -305 -430 95 -77 -21 304 831 -277 272 -103 110 329 -218 -889 -19 -73 -696 -546 -782 -224 322 312 253 -436 -689 -66 555
-28 -676 387 -506 553 -689 -385 -117 990 -553 -60 105 -717 -336 -137 -756 -147 596 166 92 241 132 305 -150 162 550 -7 -177
-995] [-876 230 -637 227 444 -618 -116 128 -509 214 -329 478 150 -362 -44 -482 -162 -94 -813 -116 -399 -263 -566 -143 -692 -472
747 375 553 301 -26 -255 118 -526 279 -408 -406 -381 -248 100 307 -234 -381 -238 516 -115 -689 203 103 -148 411 -205 -8 122
87 101 -33 160 617 1094 183 -326 -462 -238 -35 484 458 163 -178 606 -137 -269 81 32 -368 198 229 328 811 184 -33 -542 142 -65
100 -240 327 515 193 759 1013 -157 -298 27 568 -731 -33 -619 -387 613 64 73 525 131 272 -319 -554 389 -312 -26 -545 -717 -336
221 118 -257 -1031 308 718 -87 -50 -56 -908 211 -435 481 606 182 50 -50] [199 47 -74 50 -225 35 321 -655 30 -175 0 -57 636 -92
525 -150 603 -27 245 -302 428 376 51 145 -33 401 -271 -246 -172 -286 606 -864 -204 41 -460 126 294 -53 366 279 -42 -400 940
-469 177 500 -295 -386 -579 -61 -348 13 -265 -100 -168 408 144 -359 3 98 -415 452 361 439 614 360 80 322 -152 -221 182 -184
167 277 198 -360 399 -173 -181 113 231 -158 237 -193 -389 -111 -585 -305 7 -148 14 31 94 -363 -277 -393 25 111 528 -499 221
-147 -62 -228 -648 -53 373 -244 756 -13 -258 -302 626 -646 -416 128 17 -201 -903 -37 -46 97 -64 139 -342 -260 218 252 334 602]
[-299 -277 -218 325 -273 -150 294 987 486 -401 73 -95 -951 -112 216 -10 185 -429 -921 872 -582 270 369 997 -76 -425 45 114 -4
301 -45 372 -329 -1 1078 132 576 -350 -167 280 472 84 152 565 146 582 396 119 -334 -483 414 -348 -449 -164 364 254 -250 -685
-115 234 702 199 -482 -843 56 -258 -33 -81 21 -340 808 469 -400 247 144 145 30 -696 -29 -2 115 -745 181 -176 -111 -528 -87 529
-38 576 -962 349 114 -597 301 -42 245 75 -20 598 -143 -309 -579 373 -249 -149 273 -90 -301 357 -622 -126 371 119 -69 -757 -253
324 38 -267 -74 -857 36 142 286 349 63 499 280 391]

74 Appendix B. Lattice basis of numerical experiments

[377 357 189 -300 128 -147 -284 462 -135 591 187 269 661 250 132 -164 906 205 -475 307 217 869 -133 1103 365 421 -373 -774
-253 1224 673 133 -305 95 314 262 401 -308 -1 -3 -5 851 -34 402 167 321 281 -121 -501 -131 -361 -181 -17 957 300 -232 712 -304
419 297 -73 -151 51 -310 -233 555 224 -644 -140 234 -185 -165 -202 820 -589 587 150 670 -294 92 510 13 -12 -27 -311 51 -493
-291 304 -627 -439 88 -42 -280 247 -19 -750 146 -722 79 -23 -1121 120 -553 -652 -129 -687 -357 -84 -207 -395 162 522 -339 -30
80 215 251 146 621 363 -104 -35 -40 -366 65 -158 279 540 -387] [825 241 113 428 49 -136 -111 -16 -355 307 84 150 -8 -113 838
522 -338 42 680 -483 123 -1139 -482 -244 -659 114 -286 -4 136 -102 -549 -258 -380 -70 130 -331 -106 -437 80 -1159 122 -348
-544 -716 -477 -919 -275 28 214 -375 400 -5 241 -145 -741 -607 563 -214 -612 -353 73 331 -216 62 324 -640 -107 -137 658 50
-659 -100 -122 25 1033 -747 -820 -124 20 602 -272 529 -347 210 403 -652 27 365 194 -456 705 -400 -335 459 -746 613 605 -499
402 6 -119 73 438 -496 501 111 -273 380 205 -282 163 120 -226 -330 163 -240 -503 -217 -407 67 -180 552 54 -41 313 102 -81 -131
-336 362] [478 53 372 -764 -350 111 180 333 433 -253 406 144 110 221 106 -451 248 197 -660 659 549 369 52 424 -305 -183 108
-220 -645 -28 137 56 -77 -324 -161 489 378 -245 97 407 -137 -504 -342 570 -403 528 315 -411 -370 67 399 387 414 -341 -77 80 66
41 865 -407 207 -361 698 285 -41 -402 177 86 -729 -304 -730 31 -628 472 -591 48 -672 -200 -545 508 -435 173 -625 -43 -539 26
458 -81 -329 -141 -203 -120 -217 -79 41 375 -300 -202 329 236 -255 352 -543 314 -225 -562 249 -965 254 758 347 -217 105 714
57 -569 -208 786 220 -233 -124 782 -105 -60 284 -363 221 378 -263 -8] [83 -250 -126 186 -277 79 -24 367 320 228 153 -216 -332
-509 -75 -493 -2 -682 -196 50 30 11 542 837 -72 72 -680 847 65 -118 373 -455 312 -229 764 450 -580 -949 -300 -143 551 -269 856
443 -337 -101 263 -818 -192 -26 -825 -359 -523 74 535 -262 332 -465 127 -130 -108 272 -576 -75 89 -47 -133 1 -41 -178 144 -113
178 -459 335 -579 -324 816 119 644 -114 -785 644 -56 -720 -351 -643 -217 344 582 -308 194 1096 244 -242 69 -412 -394 1014 409
-126 -526 306 -263 366 -374 -112 -37 -505 -597 -617 75 -210 -47 -430 -332 183 -96 289 20 307 -32 -220 454 186 432 -276 331 -82
938] [-345 -127 645 83 -494 -393 447 -315 77 -119 277 686 -717 -355 139 119 -346 -436 84 -31 113 -610 -665 410 -771 308 -420
14 -261 187 -358 -386 -136 -621 425 -167 -507 134 -296 26 606 -499 -372 -45 -55 -335 70 -46 -149 -52 -371 -144 -647 -218 -228
42 216 -91 -436 -577 -619 170 499 -305 649 -318 -246 626 -16 392 399 797 -439 262 561 -239 41 -355 28 -106 -360 -104 -956 -357
276 -429 29 701 754 638 -356 -253 -166 -681 36 -24 29 418 881 601 -864 345 -478 571 472 -95 872 360 367 -434 51 170 509 -157
159 99 -515 306 -1295 -43 -649 -56 169 -141 -285 -159 -935 -404 -559 561] [-172 -238 121 -423 189 78 -279 -266 231 249 -215
446 283 -771 348 150 -149 -374 48 -95 6 954 1028 198 248 47 51 -445 -90 -564 268 -145 209 49 177 233 373 -578 -34 1045 -47
898 496 217 -703 -235 -418 -720 -346 147 296 93 -28 -93 -69 -238 138 28 357 -675 -152 181 -9 -501 -324 269 -718 356 126 -482
865 308 775 -511 -353 374 354 123 77 -1024 -498 -268 177 -190 146 -184 815 -257 165 261 -288 545 -70 340 -613 161 36 476 213
233 -160 -234 167 -47 120 -24 356 -572 -552 -597 621 202 -229 348 -40 290 610 233 372 -295 245 -122 382 253 215 53 -776 551
282 -206] [-943 -13 -708 421 571 -837 -1 -477 134 -183 -283 95 -29 697 -57 1142 282 83 336 -814 365 16 197 -565 513 -457 -43
-325 -484 -817 -344 279 188 177 -380 -138 597 645 379 -179 -504 307 -558 -148 368 -491 72 -294 211 313 324 447 271 -311 128
32 -51 489 674 -241 -949 178 231 -117 86 77 215 15 -489 557 -12 -167 938 398 -293 101 561 -198 19 -285 364 601 -52 1085 161
581 93 -502 26 -129 -359 121 -58 -355 154 -426 283 -125 -751 -474 374 93 -64 706 -187 -124 354 -110 -351 598 52 -139 -47 -518
13 378 -15 402 101 -57 -337 -361 -133 -260 -302 -139 -469 -663 558 -308] [491 217 -420 617 -488 263 -345 -379 151 -205 -787
707 1189 640 499 -160 252 -98 -127 -664 -28 -436 265 395 28 351 11 -395 -60 149 1 -190 -925 521 -476 -752 -10 398 36 -105 433
-36 226 202 -395 -511 496 242 -91 154 -206 437 230 -172 -293 -371 1273 -266 -539 -770 346 -480 -37 -51 678 688 12 -666 38 25
-432 -65 309 -117 333 118 -376 -769 -818 -1049 -215 582 142 135 -342 -474 -345 219 388 148 169 246 -546 -324 -17 50 581 -328
821 129 502 108 150 40 244 1067 -537 744 -19 177 592 264 -39 -266 92 248 -1247 -337 -129 -49 -632 -46 -17 346 -350 -605 -214
-231 -207 90] [231 298 251 -363 -382 -352 -371 293 2 649 -448 497 494 -535 404 54 -55 428 -301 99 -653 -2 323 747 91 318 -55
-430 417 198 451 488 -1079 -312 433 -293 499 -66 150 613 210 -558 -127 -626 -221 -131 155 454 -611 -132 -180 214 339 797 228
71 380 292 -478 335 69 233 377 -499 -68 111 677 253 912 101 784 -32 -12 160 -398 233 441 -518 -504 509 -56 -378 -809 -662 316
-349 -46 925 -383 -72 274 -274 -574 359 273 -431 -144 4 -695 1178 672 439 11 392 -501 753 343 -432 -648 410 361 597 696 -473
918 530 -444 632 111 483 -171 -22 184 -219 -202 232 -14 452 -622 27] [-717 595 253 -15 -47 -225 -130 -60 109 174 655 -237 -51
-270 311 54 -229 -741 -32 -10 -233 -8 -405 419 48 11 79 349 -621 377 -671 108 -102 316 -519 -144 -274 379 434 128 -738 128
-568 -700 605 -242 -377 806 154 -412 -78 -13 69 -514 -290 -253 -552 7 362 -417 156 312 137 61 -420 368 -17 -796 -644 -462 -110
352 -166 12 213 -465 -118 305 162 9 -313 355 -11 385 -10 589 581 16 445 -585 -20 -382 561 -108 540 421 -91 47 -79 55 267 -2
155 -229 464 28 -276 -27 -198 1 -353 -282 -415 843 -105 -284 -223 573 362 -136 -87 -571 249 -84 -69 -801 -595 -285 30 212] [119
-520 5 -157 -102 883 -94 -244 -299 738 45 -190 134 -218 206 149 166 -426 -38 7 66 209 104 599 -185 400 -438 -663 36 -42 -221
-797 581 369 -158 -351 107 396 239 28 -66 98 -215 -595 -397 -707 109 6 -37 54 11 1154 -156 72 -255 -795 706 -618 288 -80 125
-278 566 349 -185 1032 -494 -282 -399 -272 -441 -430 491 26 1044 -450 239 -12 296 -44 364 166 -177 43 44 382 -628 80 343 -630
503 -193 377 -19 -3 135 20 133 140 -188 121 -511 149 204 -824 183 157 79 520 277 289 -627 36 60 -366 -66 -139 431 36 150 -27
485 5 354 -756 351 159 -179 88 -183] [525 33 -239 274 -493 -388 -804 -132 -534 -356 611 -70 -290 -591 -49 645 -487 -33 -511 268
606 -809 -127 507 282 -62 -465 253 -338 -212 -166 718 30 -335 732 -136 142 -734 57 295 -375 1224 69 101 -143 55 339 34 492
236 299 -284 384 219 175 -797 -204 249 3 -761 827 -62 -691 -877 625 -574 -393 -415 -467 213 -82 -260 -463 -130 339 346 -723
-469 -818 537 -447 614 637 456 -525 267 -635 -474 -23 104 -401 -88 347 289 470 1019 306 -662 269 -261 -711 128 -341 -149 -242
522 -684 137 -646 -70 53 -2 -570 138 -201 -490 -110 -120 302 69 47 171 599 359 205 -938 198 -443 184 -300] [357 70 998 160 299
-296 602 194 -370 156 328 -268 -81 575 -128 108 -564 -317 200 -414 -196 -754 -344 201 -251 131 -75 218 201 -790 -507 -162 -980
687 -108 -941 -87 -652 141 -548 552 -725 17 -367 -208 -156 339 -847 -220 -18 -186 -141 -636 -328 302 -226 85 -28 -836 -686 -880
-74 249 -170 -908 -288 530 84 -307 -452 358 390 -363 -471 113 -412 453 -60 -381 -252 -314 -328 845 -93 122 -768 496 -267 -194
-210 20 -812 617 -678 -349 346 -387 39 529 134 -44 -146 166 108 176 85 478 -492 -324 166 10 707 35 -404 147 -405 -335 -452
-381 447 276 -161 227 78 -36 -321 -779 660 -140 530] [-361 10 -461 -361 -309 291 562 418 -482 -482 -131 -142 -833 554 -116
-169 -810 641 -241 990 -324 840 -429 446 500 438 -207 122 83 188 -177 -355 1159 48 158 391 -1035 -284 91 -389 271 -104 -239
-58 -66 -97 801 244 1205 89 -87 151 -286 -144 287 46 -530 397 13 -160 426 201 -527 191 949 -16 -556 -344 298 -253 5 -199 89 36
677 622 347 251 212 470 -736 103 -242 551 -297 260 -470 84 -184 -342 -999 397 -685 546 543 -74 133 526 -432 -61 214 -132 261
-541 391 157 362 343 -482 -264 461 195 621 240 162 -340 215 -608 22 208 1035 309 -294 -233 24 310 307 -73 614 -437] [-13 183
-568 557 -162 35 -149 -282 -675 -42 -203 116 34 -243 -103 -128 248 279 -563 -167 -424 216 627 -128 190 115 429 -481 -317 743
545 526 120 202 46 309 -38 326 103 -422 685 456 -87 396 -110 36 -136 -29 314 -37 -100 -57 -141 157 -549 560 187 33 258 -203
834 276 -117 -178 -65 -43 -893 33 -33 -437 673 520 426 183 458 368 -120 -154 321 -375 -447 -82 624 -389 -452 -440 -588 687 342
526 -224 873 -328 410 98 -111 -375 -666 -114 -501 -325 -642 -229 -722 -439 301 19 494 101 -90 -38 289 57 257 -914 -316 -460
-134 225 -1170 340 27 -22 -15 -569 8 1125 175 -339 -288] [-216 1152 -77 69 58 116 -517 143 845 35 -438 -30 465 260 676 -364
572 105 -125 178 353 -16 -186 40 -40 66 41 38 118 587 61 -429 -572 -545 -271 -65 250 -866 -596 -164 602 -463 -247 -380 154 709
22 -578 -1001 211 -481 -188 784 295 -536 558 768 -143 190 572 276 -634 754 783 452 40 317 -316 109 396 -506 -157 -133 322
-340 370 -244 -433 234 -347 176 -495 -664 -478 -94 -12 427 -79 250 -168 345 -447 -148 -122 450 -287 226 488 557 600 -246 125
559 -874 302 -130 -195 7 632 36 -633 377 690 130 404 -136 -143 -413 -411 82 308 698 -5 -31 -234 302 255 542 -733 425] [356
301 1052 -100 -67 -631 619 -414 -253 688 385 424 -194 -616 262 266 44 67 317 313 -323 287 391 328 -140 8 -283 -655 -181 -88
565 630 -899 371 -414 27 447 93 131 226 -54 100 -315 -373 -397 31 216 370 -121 176 -100 -270 358 -55 -542 271 -311 583 -788
-82 83 -30 719 -181 296 -495 90 548 781 -629 1326 -293 -386 -22 -343 -403 126 18 -290 -331 -182 209 -420 -738 331 -378 -339
42 -146 -221 34 -236 -323 155 -324 246 -65 347 -425 370 -154 189 -769 364 63 -734 -480 -860 -133 -126 97 -40 -210 41 190 -129
10 809 -206 464 370 359 840 -46 1050 -497 -715 69 2 -132] [332 123 -403 459 -467 -70 526 -288 -245 -710 874 -179 23 -372 -271
-226 226 226 239 -661 57 -701 -520 -481 -431 -824 -210 -375 70 -403 19 -720 606 1132 -800 -317 417 -677 303 68 38 178 -569
186 24 354 -268 -204 300 -362 458 46 -716 -39 396 -345 300 119 -458 -21 -227 -606 222 -304 470 571 205 -161 -845 -256 -633
-514 436 -146 500 -407 265 -265 1049 -488 241 -46 538 55 247 260 -227 -250 568 -36 -75 96 35 -912 -80 299 1114 -105 228 -159
-33 70 -747 517 -146 424 -572 344 613 312 78 -68 -97 -837 -130 -8 72 -50 -133 309 -271 -157 286 297 -636 -314 73 -783 588 20]
[-82 135 312 26 215 -881 250 134 -510 534 236 -480 417 73 669 900 486 -206 268 -739 904 -793 -564 -579 -611 82 366 -467 548
-97 -433 -126 -394 217 -96 -786 54 -506 -257 -765 615 113 -55 93 1 -879 -495 171 -240 -386 1012 -165 25 -35 -248 508 583 -366
-161 686 -165 -475 387 109 266 -87 9 108 -406 455 -688 -32 198 326 7 395 3 -53 -278 250 214 1027 302 -213 422 -128 -13 24 154
-367 287 -52 -636 19 -302 585 341 239 -75 -98 -845 -333 364 -48 -460 172 -485 -79 855 -195 -882 -390 -271 93 144 -201 142 -359
-961 476 -420 -200 265 368 -22 -643 -378 -674 388 -760] [-19 -121 -96 82 634 -203 478 436 352 -318 686 -571 -384 210 195 305
-51 -169 318 -508 206 -23 -773 -493 388 12 222 220 544 -306 708 1068 -70 -92 -631 369 -276 377 -702 -210 -71 -671 -497 -59 243
-76 -46 509 -118 -378 890 245 433 -352 -306 204 -409 -32 -183 309 228 562 209 90 130 155 361 -143 -16 439 -655 -126 279 108
517 -426 -922 -377 288 22 -404 572 789 -247 -417 -228 -18 9 -195 -257 248 -245 18 170 -135 -226 74 -715 -200 808 -452 263 525
-612 633 -67 -306 129 99 515 21 8 197 -166 -388 -225 218 -926 -170 -320 -556 460 56 -48 80 -138 715 -287 -250 490]

75

Bibliography

[AD21] Martin Albrecht and Léo Ducas. “Lattice Attacks on NTRU and LWE: A History
of Refinements”. In: Cryptology ePrint Archive: Report 2021/799 (2021).

[Ajt96] Miklós Ajtai. “Generating hard instances of lattice problems”. In: Symposium on
Theory of Computing (STOC 1996). ACM. 1996, pp. 99–108.

[AKS01] Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. “A sieve algorithm for
the shortest lattice vector problem”. In: Symposium on Theory of Computing (STOC
2001). ACM. 2001, pp. 601–610.

[Alb+18] Martin R Albrecht et al. “Estimate all the {LWE, NTRU} schemes!” In: Security
and Cryptography for Networks (SCN 2018). Vol. 11035. Lecture Notes in Computer
Science. 2018, pp. 351–367.

[Alb+19] Martin Albrecht et al. “The general sieve kernel and new records in lattice reduc-
tion”. In: Advances in Cryptology–EUROCRYPT 2019. Vol. 11477. Lecture Notes
in Computer Science. Springer. 2019, pp. 717–746.

[Bab86] László Babai. “On Lovász’ lattice reduction and the nearest lattice point prob-
lem”. In: Combinatorica 6.1 (1986), pp. 1–13.

[BBK19] Michael Burger, Christian Bischof, and Juliane Krämer. “p3Enum: A New Pa-
rameterizable and Shared-Memory Parallelized Shortest Vector Problem Solver”.
In: Computational Science–ICCS 2019. Vol. 11540. Lecture Notes in Computer Sci-
ence. Springer. 2019, pp. 535–542.

[BG73] Ȧke Björck and Gene H Golub. “Numerical methods for computing angles be-
tween linear subspaces”. In: Mathematics of computation 27.123 (1973), pp. 579–
594.

[BN02] Alexander Barg and D Yu Nogin. “Bounds on packings of spheres in the Grass-
mann manifold”. In: IEEE Transactions on Information Theory 48.9 (2002), pp. 2450–
2454.

[Bre11] Murray R Bremner. Lattice basis reduction: An introduction to the LLL algorithm and
its applications. CRC Press, 2011.

[BSW18] Shi Bai, Damien Stehlé, and Weiqiang Wen. “Measuring, Simulating and Ex-
ploiting the Head Concavity Phenomenon in BKZ”. In: Advances in Cryptology
– ASIACRYPT 2018. Vol. 11272. Lecture Notes in Computer Science. Springer,
2018, pp. 369–404. DOI: 10.1007/978-3-030-03326-2_13.

[Cai00] Jin-Yi Cai. “The Complexity of Some Lattice Problems”. In: Algorithmic Num-
ber Theory. Ed. by Wieb Bosma. Berlin, Heidelberg: Springer Berlin Heidelberg,
2000, pp. 1–32. ISBN: 978-3-540-44994-2.

[Che13] Yuanmi Chen. “Réduction de réseau et sécurité concrete du chiffrement com-
pletement homomorphe”. PhD thesis. Paris 7, 2013.

[Che16] Hao Chen. “A Measure Version of Gaussian Heuristic”. In: IACR Cryptology
ePrint Archive: Report 2016/439 (2016).

[CN11] Yuanmi Chen and Phong Q Nguyen. “BKZ 2.0: Better lattice security estimates”.
In: Advances in Cryptology–ASIACRYPT 2011. Vol. 7073. Lecture Notes in Com-
puter Science. Springer. 2011, pp. 1–20.

[Det+10] Jérémie Detrey et al. “Accelerating lattice reduction with FPGAs”. In: Interna-
tional Conference on Cryptology and Information Security in Latin America. Springer.
2010, pp. 124–143.

76 Bibliography

[DG96] Peter Deutsch and Jean-Loup Gailly. Zlib compressed data format specification ver-
sion 3.3. Tech. rep. RFC 1950, May, 1996.

[DS10] Öz6Kür Dagdelen and Michael Schneider. “Parallel enumeration of shortest lat-
tice vectors”. In: Euro-Par 2010–Parallel Processing. Vol. 6272. Lecture Notes in
Computer Science. Springer. 2010, pp. 211–222.

[DSW21] Léo Ducas, Marc Stevens, and Wessel van Woerden. “Advanced Lattice Sieving
on GPUs, with Tensor Cores”. In: IACR ePrint 2021/141 (2021).

[Duc18] Léo Ducas. “Shortest vector from lattice sieving: A few dimensions for free”. In:
Adavances in Cryptology–EUROCRYPT 2018. Vol. 10820. Lecture Notes in Com-
puter Science. Springer. 2018, pp. 125–145.

[EAS98] Alan Edelman, Tomás A Arias, and Steven T Smith. “The geometry of algo-
rithms with orthogonality constraints”. In: SIAM journal on Matrix Analysis and
Applications 20.2 (1998), pp. 303–353.

[Fuj+21] Koichi Fujii et al. Solving Challenging Large Scale QAPs. eng. Tech. rep. 21-02.
Takustr. 7, 14195 Berlin: ZIB, 2021.

[Gam+17] Gerald Gamrath et al. “SCIP-Jack—a solver for STP and variants with paral-
lelization extensions”. In: Mathematical Programming Computation 9.2 (2017), pp. 231–
296. DOI: 10.1007/s12532-016-0114-x.

[GM03] Daniel Goldstein and Andrew Mayer. “On the equidistribution of Hecke points”.
In: Forum Mathematicum. Vol. 15. 2. De Gruyter. 2003, pp. 165–190.

[GN08] Nicolas Gama and Phong Q Nguyen. “Predicting lattice reduction”. In: Advances
in Cryptology–EUROCRYPT 2008. Vol. 4965. Lecture Notes in Computer Science.
Springer. 2008, pp. 31–51.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. “Lattice Enumeration Using
Extreme Pruning”. In: Advances in Cryptology – EUROCRYPT 2010. Ed. by Henri
Gilbert. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 257–278. ISBN:
978-3-642-13190-5.

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Forth. The Johns
Hopkins University Press, 1996.

[Her+10] Jens Hermans et al. “Parallel shortest lattice vector enumeration on graphics
cards”. In: Progress in Cryptology–AFRICACRYPT 2010. Vol. 6055. Lecture Notes
in Computer Science. Springer. 2010, pp. 52–68.

[Her50] C. Hermite. “Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de
la théorie des nombres: Deuxième lettre”. In: Journal für die Reine und Angewandte
Mathematik (1850), pp. 279–315.

[Jou12] Antoine Joux. “A tutorial on high performance computing applied to cryptanal-
ysis (invited talk)”. In: Advances in Cryptology–EUROCRYPT 2012. Vol. 7237. Lec-
ture Notes in Computer Science. Springer. 2012, pp. 1–7.

[Kan87] Ravi Kannan. “Minkowski’s convex body theorem and integer programming”.
In: Mathematics of operations research 12.3 (1987), pp. 415–440.

[Kle00] Philip Klein. “Finding the closest lattice vector when it’s unusually close”. In:
Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms.
2000, pp. 937–941.

[Kuo+11] Po-Chun Kuo et al. “Extreme Enumeration on GPU and in Clouds”. In: Crypto-
graphic Hardware and Embedded Systems–CHES 2011. Vol. 6917. Lecture Notes in
Computer Science. Springer. 2011, pp. 176–191.

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. “Factoring
polynomials with rational coefficients”. In: Mathematische Annalen 261.4 (1982),
pp. 515–534.

[LLS90] J. C. Lagarias, H. W. Lenstra, and C. P. Schnorr. “Korkin-Zolotarev bases and
successive minima of a lattice and its reciprocal lattice”. In: Combinatorica 10.4
(Dec. 1990), pp. 333–348. DOI: 10.1007/BF02128669. URL: https://doi.org/
10.1007/BF02128669.

Bibliography 77

[Mic01] Daniele Micciancio. “The shortest vector in a lattice is hard to approximate to
within some constant”. In: SIAM journal on Computing 30.6 (2001), pp. 2008–
2035. DOI: 10.1137/S0097539700373039.

[Mun+19] Lluís-Miquel Munguía et al. “Parallel PIPS-SBB: multi-level parallelism for stochas-
tic mixed-integer programs”. In: Computational Optimization and Applications 73.2
(June 2019), pp. 575–601. ISSN: 1573-2894. DOI: 10.1007/s10589-019-00074-0.
URL: https://doi.org/10.1007/s10589-019-00074-0.

[MV10] Daniele Micciancio and Panagiotis Voulgaris. “Faster exponential time algo-
rithms for the shortest vector problem”. In: Symposium on Discrete Algorithms
(SODA 2010). ACM-SIAM. 2010, pp. 1468–1480.

[Ngu09] Phong Q Nguyen. “Hermite’s constant and lattice algorithms”. In: The LLL Al-
gorithm. Springer, 2009, pp. 19–69.

[Pei16] Chris Peikert. “A Decade of Lattice Cryptography”. In: Foundations and Trends
in Theoretical Computer Science 10.4 (2016), pp. 283–424. ISSN: 1551-305X. DOI:
10.1561/0400000074. URL: http://dx.doi.org/10.1561/0400000074.

[Poh87] Michael Pohst. “A modification of the LLL reduction algorithm”. In: Journal of
Symbolic Computation 4.1 (1987), pp. 123–127.

[PSZ21] Simon Pohmann, Marc Stevens, and Jens Zumbrägel. “Lattice Enumeration on
GPUs for fplll”. In: IACR ePrint 2021/430 (2021).

[Ral+18] Ted Ralphs et al. “Parallel Solvers for Mixed Integer Linear Optimization”. In:
Handbook of Parallel Constraint Reasoning. Ed. by Youssef Hamadi and Lakhdar
Sais. Cham: Springer International Publishing, 2018, pp. 283–336. ISBN: 978-3-
319-63516-3. DOI: 10.1007/978-3-319-63516-3{_}8. URL: https://doi.org/
10.1007/978-3-319-63516-3_8.

[RSK21] Daniel Rehfeldt, Yuji Shinano, and Thorsten Koch. “SCIP-Jack: An Exact High
Performance Solver for Steiner Tree Problems in Graphs and Related Problems”.
In: Modeling, Simulation and Optimization of Complex Processes HPSC 2018. Ed. by
Hans Georg Bock et al. Cham: Springer International Publishing, 2021, pp. 201–
223. ISBN: 978-3-030-55240-4.

[SBH18] Yuji Shinano, Timo Berthold, and Stefan Heinz. “ParaXpress: an experimental
extension of the FICO Xpress-Optimizer to solve hard MIPs on supercomput-
ers”. In: Optimization Methods and Software 33.3 (2018), pp. 530–539. DOI: 10.
1080/10556788.2018.1428602. eprint: https://doi.org/10.1080/10556788.
2018.1428602. URL: https://doi.org/10.1080/10556788.2018.1428602.

[Sch03] Claus Peter Schnorr. “Lattice reduction by random sampling and birthday meth-
ods”. In: Symposium on Theoretical Aspects of Computer Science (STACS 2003). Vol. 2607.
Lecture Notes in Computer Science. Springer. 2003, pp. 145–156.

[Sch+10] Michael Schneider et al. “SVP challenge (2010)”. In: URL: http://latticechallenge.org/svp-
challenge (2010).

[Sch87] Claus-Peter Schnorr. “A hierarchy of polynomial time lattice basis reduction
algorithms”. In: Theoretical computer science 53.2-3 (1987), pp. 201–224.

[Sch92] Claus-Peter Schnorr. Block Korkin-Zolotarev bases and successive minima. Interna-
tional Computer Science Institute, 1992.

[Sci] SCIP: Solving Constraint Integer Programs. http://scip.zib.de/.

[SE94] Claus-Peter Schnorr and Martin Euchner. “Lattice basis reduction: Improved
practical algorithms and solving subset sum problems”. In: Mathematical pro-
gramming 66 (1994), pp. 181–199.

[Shi+11] Yuji Shinano et al. “ParaSCIP—a parallel extension of SCIP”. In: Competence in
High Performance Computing 2010. Springer, 2011, pp. 135–148.

[Shi+16] Yuji Shinano et al. “Solving Open MIP Instances with ParaSCIP on Supercom-
puters Using up to 80,000 Cores”. In: 2016 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). Los Alamitos, CA, USA: IEEE Computer
Society, 2016, pp. 770–779.

78 Bibliography

[Shi+18a] Yuji Shinano et al. “FiberSCIP—a shared memory parallelization of SCIP”. In:
INFORMS Journal on Computing 30.1 (2018), pp. 11–30.

[Shi+18b] Yuji Shinano et al. “FiberSCIP—A Shared Memory Parallelization of SCIP”. In:
INFORMS Journal on Computing 30.1 (2018), pp. 11–30. DOI: 10.1287/ijoc.
2017.0762. eprint: https://doi.org/10.1287/ijoc.2017.0762. URL: https:
//doi.org/10.1287/ijoc.2017.0762.

[Sho94] Peter W. Shor. “Algorithms for quantum computation: Discrete logarithms and
factoring”. In: Symposium on Foundations of Computer Science (FOCS 1994). IEEE,
1994, pp. 124–134.

[SN] The National Institute of Standards and Technology (NIST). “Post-Quantum
Cryptography”. URL: https://csrc.nist.gov/projects/post- quantum-
cryptography/post-quantum-cryptography-standardization.

[SRG19] Yuji Shinano, Daniel Rehfeldt, and Tristan Gally. “An Easy Way to Build Parallel
State-of-the-art Combinatorial Optimization Problem Solvers: A Computational
Study on Solving Steiner Tree Problems and Mixed Integer Semidefinite Pro-
grams by using ug[SCIP-*,*]-Libraries”. In: 2019 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). 2019, pp. 530–541. DOI:
10.1109/IPDPSW.2019.00095.

[SRK19] Yuji Shinano, Daniel Rehfeldt, and Thorsten Koch. “Building Optimal Steiner
Trees on Supercomputers by Using up to 43,000 Cores”. In: Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019.
Vol. 11494. 2019, pp. 529–539. DOI: 10.1007/978-3-030-19212-9_35.

[Tat+20] Nariaki Tateiwa et al. “Massive parallelization for finding shortest lattice vectors
based on ubiquity generator framework”. In: SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE. 2020, pp. 1–
15.

[Tat+21] Nariaki Tateiwa et al. “CMAP-LAP: Configurable Massively Parallel Solver for
Lattice Problems “in press””. In: 2021 IEEE 28th International Conference on High
Performance Computing, Data, and Analytics (HiPC). IEEE. 2021.

[The16] The FPLLL development team. “fplll, a lattice reduction library”. 2016. URL:
https://github.com/fplll/fplll.

[TKH18] Tadanori Teruya, Kenji Kashiwabara, and Goichiro Hanaoka. “Fast lattice basis
reduction suitable for massive parallelization and its application to the short-
est vector problem”. In: Public Key Cryptography (PKC 2018). Vol. 10769. Lecture
Notes in Computer Science. Springer. 2018, pp. 437–460.

[Ug] UG: Ubiquity Generator framework. http://ug.zib.de/.

[Yas21] Masaya Yasuda. “A Survey of Solving SVP Algorithms and Recent Strategies for
Solving the SVP Challenge”. In: International Symposium on Mathematics, Quan-
tum Theory, and Cryptography. Springer. 2021, pp. 189–207.

[YD17] Yang Yu and Léo Ducas. “Second order statistical behavior of LLL and BKZ”. In:
Selected Areas in Cryptography (SAC 2017). Vol. 10719. Lecture Notes in Computer
Science. Springer. 2017, pp. 3–22.

[YNY20] Masaya Yasuda, Satoshi Nakamura, and Junpei Yamaguchi. “Analysis of Deep-
BKZ reduction for finding short lattice vectors”. In: Designs, Codes and Cryptog-
raphy 88 (2020), pp. 2077–2100.

[YY17] Junpei Yamaguchi and Masaya Yasuda. “Explicit formula for Gram-Schmidt
vectors in LLL with deep insertions and its applications”. In: Number-Theoretic
Methods in Cryptology (NuTMiC 2017). Vol. 10737. Lecture Notes in Computer
Science. Springer. 2017, pp. 142–160.

[YY19] Masaya Yasuda and Junpei Yamaguchi. “A new polynomial-time variant of LLL
with deep insertions for decreasing the squared-sum of Gram-Schmidt lengths”.
In: Designs, Codes and Cryptography 87 (11 2019), pp. 2489–2505.

79

List of Figures

1.1 Relationship of CMAP-LAP and CMAP-DeepBKZ 2

2.1 A lattice in R2 and their basis vectors . 7
2.2 Example of solutions of SVP (in Definition 2.2.1) and CVP (in Definition 2.2.6)

for 2-dimensional lattice L; a solid vector represents a shortest vector in L ,
and break vector represents a closest vector in L for a vector t 9

3.1 An example of lattice reduction: Left is lattice basis before lattice reduction,
right is that after lattice reduction. 15

4.1 Interaction among SVP algorithms . 21
4.2 System overview of CMAP-LAP for lattice problems 22
4.3 Execution flow of CMAP-LAP . 23
4.4 Basic phases of the parallel dispatch . 25
4.5 Communicators between and within MPI processes: ParaComm and Local-

Comm . 28
4.6 MPI_ISend Communication between Solver and LC 29
4.7 Transition of the approximation factors for different share-data pool sizes; ex-

ecution were done on the CAL A and CAL B with 144 cores. The solid blue
lines in Figure 4.7, 4.9 and 4.11 represent the same experimental result. 30

4.8 Same as Figure 4.7, but dimension is 110 and different allotment of algorithms;
execution were done on the CAL A and CAL B with 144 cores. 31

4.9 Same as Figure 4.7, but for different allotment of algorithms; execution were
done on the CAL A and CAL B with 144 cores. 31

4.10 Distribution of the norm of vectors in the share-data pool. 32
4.11 Same as Figure 4.7, but for different number of Solvers; execution were done

on the CAL A and CAL B with 144 cores, and ITO with 2,304 cores. 33
4.12 Transition of the approximation factor of a 134-dimensional SVP for long-time

execution on the Lisa with 103,680 cores. Each dot represents the beginning
of restart from checkpoint. 33

4.13 Transition of the approximation factor of a 130-dimensional SVP for long-time
execution on the Emmy with 12,280 cores and Lisa with 103,680 cores. 34

5.1 The overall process of parallel sharing DeepBKZ in CMAP-DeepBKZ 37
5.2 The average of the i-th projected diversity Divi (B, dg

)
computed for 90-dimensional

lattice bases with different numbers of shared vectors k right after 100 Deep-
BKZ tours.) . 42

5.3 Transition of the total diversity Div(B, dg) computed for 90-dimensional lattice
bases with different numbers of shared vectors k after each tour of DeepBKZ. 43

5.4 The i-th projected diversity for the chordal (left) and the projection 2-norm
(right) Grassmann metrics computed (top) immediately after randomization,
(middle) after LLL, and (bottom) after one tour of DeepBKZ for 90-dimensional
lattice bases with different random generation models of unimodular matri-
ces. 44

5.5 Comparison between the diversity metrics of C and that ofB. mean: (i,Divi(C, dg)−
Divi(B, dg)), 25%: (i,Divi

25%(C, dg)−Divi(B, dg)), 75%: (i,Divi
75%(C, dg)−Divi(B, dg))

for (Left) dg = dc the chordal metric, and (Right) dg = dp2 the projection 2-
norm. 45

80 List of Figures

5.6 Transition of metrics on the output quality of parallel sharing DeepBKZ in
dimension d = 95 (Top), 100 (Middle) and 105 (Bottom), by using k = 0,
2, 4, 8, 16, 32 and 64 as the number of short vectors shared among solvers
using (Left: the average root Hermite factor γ1/d, Center: the logarithm of the
average enumeration cost log(N), Right: the minus of the average GSA slope
−ρ > 0) . 47

5.7 Same as Figure 5.6, but using CMAP-DeepBKZ and dimension d = 118, by
using k = 0, 16 and 64 as the number of short vectors shared among solvers . 48

5.8 History of updating a global basis in an execution of CMAP-DeepBKZ with the
number of shares k = 16 in dimension d = 118 (Each plot (x, y) indicates that
a global basis at index y was updated at time x) 48

5.9 Plots of approximation factors in projected lattices ∥s∗i ∥/GH(πi(L)) for a global
basis S = (s1, . . . , sd) of a lattice L of dimension d = 118, output by CMAP-
DeepBKZ after 6 hours execution (We used k = 0, 16 and 64 as the number of
shares in CMAP-DeepBKZ) . 49

5.10 The logarithms of Gram-Schmidt squared norms log2 ∥s∗i ∥ of a global basis
S = (s1, . . . , sd) output by CMAP-DeepBKZ with the numbers of shares k = 0,
16 and 64 after 6 hours execution for an SVP instance in d = 118 50

5.11 Same as Figure 5.7, but the dimension is d = 120 and lines in each metric
represent difference by different numbers of processes (We used k = 16 as the
number of shares) . 50

5.12 Same as Figure 5.7, but the dimension is d = 120 and plots represent difference
by different numbers of cores (We used k = 16 as the number of shares) . . . 52

5.13 Same as Figure 5.10, but the dimension is d = 120 and three lines represent
different GSA shapes by different numbers of processes (We used k = 16 as
the number of shares) . 52

5.14 Transition of the diversity of 118-dimensional lattice basis with different the
number of shared vectors; left figure is the transition of the number of overlap
of basis vectors, right figure is the transition of the Div with Projection metric 53

5.15 Same as Figure 5.14, but dimension is 120 and with different the number of
cores. 54

5.16 Transition of the approximation factor ∥b1∥
GH(L) of a shortest basis vector b1 for

SVP instances in dimensions d = 128, 130 and 132 (Each dot show the timing
of checkpoint-and-restart, and see also Table 5.5 for a summary) 55

5.17 Plots of approximation factors in projected lattices ∥s∗i ∥/GH(πi(L)) for a global
basis S = (s1, . . . , sd) output by CMAP-DeepBKZ of a lattice L of dimension
d = 130 with seed = 7 of SVP challenge instance after 1.0, 33.3, 66.6, 100 hours
executions, and the final numbers of shares k = 32 56

5.18 The logarithms of Gram-Schmidt squared norms log2 ∥s∗i ∥ of a global basis
S = (s1, . . . , sd) of a lattice L same as Figure 5.17. 56

6.1 Frameworks and applications based on Generalized UG 60

81

List of Tables

4.1 Computing platforms used . 29
4.2 Iterations of DeepBKZ of each Solvers for 130-dimensional SVP 32

5.1 Computing platforms, operating systems, compilers and libraries 45
5.2 Experimental results of CMAP-DeepBKZ after 6 hours execution for instances

of the Darmstadt SVP challenge in dimension d = 118 with seeds 2–6 (k de-
notes the number of short vectors shared among solvers, and b1 the shortest
basis vector of all solver’s bases) . 49

5.3 Results of CMAP-DeepBKZ after 11 hours execution on platforms with the
number of processes p for SVP instances in dimension d = 120 (We used
k = 16 as the number of shares, and let b1 denote a shortest basis vector of all
solver’s bases) . 51

5.4 Same as Figure 5.3, but the dimension is d = 124 53
5.5 Large-scale experimental results of CMAP-DeepBKZ for SVP instances in di-

mensions d = 128, 130 and 132 (b1 denotes a shortest basis vector of all
solver’s bases, and “Updated time” is wall time to update final shortest vec-
tors found) . 54

5.6 New solutions for the Darmstadt SVP challenge [Sch+10], found by parallel
sharing DeepBKZ with the number of shares k = 16 57

5.7 Same as Table 5.6, but k = 1 . 57

A.1 New records in the hall of frame of SVP challenge 64
A.2 Solutions closed to record in the hall of frame of SVP challenge 67

B.1 57 lattice vectors from the beginning in the reduced lattice basis of Figure 5.17 72

