SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Development and Numerical Experiments of
Massively Parallel Framework and Software for
Shortest Vector Problem

iIE, B

https://hdl. handle. net/2324/4784418

HARIEHR : Kyushu University, 2021, &1 (#3EZ%) , FEEL
N—=2 3

HEFIBAMR

KYUSHU UNIVERSITY

DOCTORAL THESIS

Development and Numerical Experiments
of Massively Parallel Framework and
Software for Shortest Vector Problem

Author: Supervisor:
Nariaki TATEIWA Prof. Katsuki FUJISAWA

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Mathematics

in the

Graduate School of Mathematics

January 17, 2022

iii

KYUSHU UNIVERSITY

Abstract

Graduate School of Mathematics
Doctor of Mathematics

Development and Numerical Experiments of Massively Parallel Framework and
Software for Shortest Vector Problem

by Nariaki TATEIWA

Lattice-based cryptography has received attention as next-generation encryption because
it is believed to be secure against attacks by classical and quantum computers. Its essential
security depends on the hardness of solving the shortest vector problem (SVP), the primitive
lattice problems. In cryptography, to determine security levels, it is becoming significantly
essential to estimate the hardness of the SVP by high-performance parallel computing.

Several algorithms have been developed for SVP, however there is no single definite
algorithm. They has different computational profiles; some suffer from super-exponential
time, and others require exponential space. This motivated us to develop a novel frame-
work for the parallelization of SVP solvers for the clever coordination of different algorithms
that run massively in parallel. With our flexible framework, heterogeneous modules run
asynchronously parallel on a large-scale distributed system while exchanging information,
drastically boosting overall performance. We also implement full checkpoint-and-restart
functionality, which is vital to high-dimensional SVP. The parallel scheme in our framework
was designed to facilitate the implementation of past and future parallelization methods.
Through numerical experiments with up to 103,680 cores, we evaluated the performance
and stability of our framework and demonstrated its high capability for future massive-scale
experiments.

In addition, by taking full advantage of the features of our framework, we also devel-
oped the software for SVP. We have implemented our proposed a new distributed and asyn-
chronous parallel reduction algorithm, DeepBKZ, which is an enhancement of the block
Korkine-Zolotarev (BKZ) reduction algorithm. Randomized copies of a basis are distributed
to massively cores and reduced independently in parallel, while some basis vectors are
shared asynchronously among all processes. There is a trade-off between randomization
and information sharing; if too much information was shared, all processes would work on
the same problem and the benefit of parallelization would be lost. To monitor the balance
between randomness and sharing, we propose a metric to quantify the variety of bases. We
demonstrate by experiments the efficacy of our proposed parallel algorithm and our imple-
mentation in both performance and scalability.

Keywords: Shortest vector problem, Parallel computing, Lattice basis reduction, General-
ized UG framework.

Contents

Abstract iii
1 Introduction 1
1.1 Background e 1
1.2 Contribution to parallelizationof SVP 2
121 CMAP-LAP: Framework for lattice problems with massively paral-

lelization 2
122 CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization 3
13 Relatedwork. 4
14 Structureof thisthesis 5
2 Preliminaries 7
2.1 Latticesand theirbases 0. 7
2.2 LatticesProblems 9
3 Algorithms for Shortest Vector Problem 11
31 Enumeration e 11
32 Sieve 13
3.3 Latticebasisreduction L. 14
331 LLLreduction. 14
332 HKZreduction 16
333 BKZreduction o 17
34 Project-and-lift 17

4 CMAP-LAP: Framework for solving lattice problems with massively paralleliza-
tion 21
41 Designofframework L L o 21
411 Architecture 22
41.2 Paralleldispatch L. 25
42 Implementation 27
4.3 Performances of Framework with Testing Configure 29
43.1 Informationsharing 30
43.2 Coordination of heterogeneous algorithms 30
433 Scalability 31
434 Stability with massive parallelization 32
5 CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization 35
51 Parallelstrategy 35
5.1.1 Ordering of lattice bases for reduction, 35
512 Strategy of parallel sharingin DeepBKZ 36
513 Implementation L 36
Parallel framework L L 37
Processing flow of the supervisor and solver 38
Checkpointand Restart 39
52 Similarity of latticebases oo oo 40
52.1 Grassmannmetrics L o 40
522 Diversityofbases L Lo o L 41
5.2.3 Effect of sharing short vectors on the diversity of bases 41

53 Numerical experiments L L 44

vi

5.3.1
5.3.2

533
534
535

6 Conclusion

Metrics to measure the output quality of reduction algorithms
Efficacy when sharing short lattice vectors
Analysis using deterministic parallel execution.
Analysis of MPI parallelization using CMAP-DeepBKZ
Scalability of the number of processes
Transition of diversity on large-scale execution
Massive parallelization experiments with checkpoints and restarts . .

Acknowledgements

A Solutions of SVP Challenge
A.1 New records in the hall of frame of SVP challenge
A.2 Solutions closed to record in the hall of frame of SVP challenge

B Lattice basis of numerical experiments
B.1 Well-reduced lattice basis in Figure 517

Bibliography

59

61

63
63
63

71
71

75

vii

List of Symbols

N, Z, R
7" R"

sets of natural, integer, real numbers
vector-space of dimension n

row vector

Euclidean norm of vector x

matrix (composed from vectors, row-wise)
ith row of matrix A

diagonal matrix B

all-zeros vector

n X n identity matrix

In x, the natural logarithm with base e
span of row vectors of W

orthogonal complement of Span(W)
cardinality of set S

m-dimensional Hermite constant

Chapter 1

Introduction

1.1 Background

A lattice L is the set of all integral combinations of linearly independent vectors in the Eu-
clidean space R”. In the past few years, lattices have attracted considerable interest in cryp-
tography. In particular, with the recent development of quantum computers, since 2015, the
US National Institute of Standards and Technology (NIST) started developing new standards
for post-quantum cryptography (PQC) and called for proposals to prepare information security
systems that can resist quantum computers [SN]. (cf., The most popular cryptographic sys-
tems, such as RSA, DSA, and ECDSA, could be broken by Shor’s algorithms [Sho94] with
the use of large-scale quantum computers.) In 2021, NIST allowed 7 finalists and 8 alternates
for the third round of the NIST PQC Standardization Process, among which 7 were based on
lattices.

Lattice problems are a class of discrete optimization problems whose objective functions
are defined on the set of lattice points or the set of lattice bases. The most fundamental in-
stances of the lattice problems are the Shortest Vector Problem (SVP) and Closest Vector Problem
(CVP). SVP asks to find the shortest non-zero vector in a given lattice, and CVP asks to find
the closest vector in a given lattice to a given vector. Lattice problems are believed to be
computationally hard with both classical and quantum algorithms [Cai00] and have been
used to construct various cryptosystems [Peil6], including PQC. More specifically, the secu-
rity of many cryptosystems, such as Goldreich-Goldwasser-Halevi (GGH) cryptosystem and
NTRU encryption schemes, is based on the hardness of an approximate variant of SVP and
CVP. Therefore, it is important for cryptanalysis to know the limits of solving these lattice
problems (see [Joul2] for cryptanalysis using high-performance computing). However, in a
distributed computing platform, efficient use of a large number of MPI processes requires
appropriate control of the behavior of many processes, memory usage, and communication,
and this is very costly for implementation, testing and debugging. In fact, there are only a
few software fore SVP that can work in distributed computing platform. It is also impor-
tant to use parallel strategies that take advantage of properties of lattice algorithms, which
is suitable for distributed computing platform.

There are three basic families of lattice algorithms that have been developed to solve
practical lattice problems: lattice basis reduction, enumeration (ENUM), and sieve. These
algorithms have advantages and disadvantages, and there is no single definite algorithm
for lattice problems. Sieve and ENUM are the algorithms perform an exhaustive search of
all the short lattice vectors, whose number is exponential in the lattice dimension. Sieve
algorithm searches for the shortest vector by repeatedly storing short differences between
the short lattice vectors. A high-dimensional SVP instance requires numerous vectors to be
stocked. Specifically, it requires a memory that is exponential in the dimension of the input
lattice. According to [Alb+19, Table 2], G6K, implements a variety of basis reduction and
sieve algorithms, uses approximately 246 GB of memory for solving 127-dimensional SVP
instances. In contrast, ENUM has space-complexity is polynomial in the lattice dimension,
but it is asymptotically slower than the sieve algorithm. Lattice basis reduction aim to con-
vert lattice basis whose vectors are nearly-orthogonal. This process can find short vectors
quickly, but it cannot guarantee to output the shortest lattice vectors.

2 Chapter 1. Introduction

CMAP-LAP
Dynamic task generation Checkpoint Mechanism
Framework
Data-pooling and distribution Communicator API
) T - o
Test Configure of CMAP-LAP CMAP-DeepBKZ
* Algorithms ' - Algorithms
* DeepBKZ (Reduction) * DeepBKZ (Reduction)
Software * Sub-ENUM (Enumeration) + Data-sharing strategy
* GaussSieve (Sieve) * Block-wise lattice
* Data-sharing strategy basis vector sharing
* Lattice vector sharing
L provided by CMAP-LAP

FIGURE 1.1: Relationship of CMAP-LAP and CMAP-DeepBKZ

1.2 Contribution to parallelization of SVP

Existing solvers for lattice problem are limited to a fixed set of algorithms and lack in flex-
ibility. There are two main obstacles in developing a large-scale multi-paradigm solver for
suitable in distributed computing platform: the need for an efficient high-level information-
sharing scheme across different algorithms, and an adaptive task selection and distribution
strategy for hundreds of thousands of processes.

The main contribution of this thesis is to provide solutions to overcome these obstacles
and develop a flexible framework to make various algorithms work cooperatively on a large-
scale distributed computing platform. By exploiting the mathematical properties of lattice,
a clever vector pooling scheme is introduced to minimize the amount of information com-
municated among processes. To implement our parallel strategy, we used Generalized UG
(UG version 1.0 RC) that is extended the well-recognized Ubiquity Generator (UG) frame-
work [Ug] for Branch-and-Bound (B&B) algorithms. Based on Generalized UG, we have built
a solid backbone to manage hundreds of thousands of processes running heterogeneous al-
gorithms in parallel, where the assignment of algorithms and their parameters can be adap-
tively tuned according to the available resources and the progress of the whole system. Con-
figurable Massively Parallel Solver for Lattice Problems (CMAP-LAP) is the framework for mas-
sively parallel strategies for lattice problems. It is designed to facilitate the implementation
of new parallel strategy ideas based on this framework. We have built a solid backbone to
manage hundreds of thousands of processes running heterogeneous algorithms in parallel,
where the assignment of algorithms and their parameters can be adaptively tuned according
to the available resources and the progress of the whole system.

Using CMAP-LAP framework, we also developed the new parallel software Configurable
Massively Parallel Solver for DeepBKZ (CMAP-DeepBKZ) specialized for the lattice reduction
algorithm, this is also the main our contribution. CMAP-DeepBKZ uses a new parallel strat-
egy of DeepBKZ, a variant of lattice basis reduction, to share a part of the lattice basis by
taking advantage of parallel computing and the information sharing feature of CMAP-LAP.
We have analyzed the performance of this software in detail by experiments on a large num-
ber of cores.

We show the relationship between CMAP-LAP framework and CMAP-DeepBKZ software
in Figure 1.1.

1.2.1 CMAP-LAP: Framework for lattice problems with massively paral-
lelization

CMAP-LAP [Tat+21] is a generic framework of parallelization for lattice algorithms, includ-
ing SVP. It covers parallelization of reduction, enumeration and sieve algorithms, and can

1.2. Contribution to parallelization of SVP 3

run them cooperatively on a large-scale computational platform by supervisor-worker par-
allel style. Given an input instance, a supervisor distributes randomized instances to all
solvers, and all worker processes can execute multiple kinds of solvers and multi-parallel
solvers in a heterogeneous. In addition, the supervisor stores lattice bases and vectors in
data containers. Using those data containers, each solver can send and receive a lattice basis
and vectors asynchronously with small communication overhead.

The features of CMAP-LAP are summarized as follows:

* We propose a novel parallel and multi-algorithm scheme for lattice problems, in which
several different single- or multi-rank solvers work cooperatively while sharing infor-
mation efficiently with other solvers even on a large-scale computing platform. To
realize the scheme, CMAP-LAP is developed entirely from scratch by fully utilizing the
features of the Generalized UG.

¢ The testing software using CMAP-LAP with 103, 680 cores stably and continuously ran
for more than 42 hours. We tested features of CMAP-LAP in several environments with
different scales and configurations.

e Each process asynchronously performs various lattice algorithms in coordination while
sharing information. Processes for different algorithms are adaptively allocated, and
their parameters are tuned according to the available resources, current progress, and
estimated time for finding a solution. In particular, our accurate estimation of memory
usage has drastically improved the stability and scalability.

* The high-level checkpoint-and-restart functionality is implemented to make it possible
to save and resume even on different architectures and platforms of various sizes.

* The efficient information-sharing scheme is developed based on the properties of lat-
tice problems, and is backed with blocking and non-blocking communication mecha-
nisms.

¢ Highly modular architecture allows one to incorporate new algorithms easily into the
system. Existing implementations that work only in a shared-memory environment
can work as modules of CMAP-LAP, which run massively in parallel.

1.2.2 CMAP-DeepBKZ: Software for DeepBKZ with massively paralleliza-
tion

We developed software specialized for massive parallelization of lattice basis reduction.
Specifically, we parallelize DeepBKZ [YY17] in the CMAP-LAP framework, and call our soft-
ware CMAP-DeepBKZ. (Note that BKZ can also be adopted in the same way.)

Below we summarize CMAP-DeepBKZ’s contribution:

* CMAP-DeepBKZ can share multiple short vectors as block to accelerate the reduction
process in every solver. In CMAP-DeepBKZ, each solver periodically sends its short
basis vectors to a container of a supervisor. In contrast, the supervisor distributes short
lattice vectors stored in its container to all solvers. Thus every solver can share short
lattice vectors with the other solvers by communicating only with the supervisor.

¢ As the number of shared vectors increases, the reduction process can accelerate in ev-
ery solver, but the randomness of the solver’s bases might be lost. Therefore we pro-
pose a method to quantify the similarity of lattice bases using metrics for Grassmann
manifolds (e.g., see [BG73; GVL96] for Grassmann metrics). Using the method, we ver-
ify by experiments the randomness of output bases of our parallel reduction algorithm
in CMAP-DeepBKZ.

* We demonstrate the performance and the scalability of CMAP-DeepBKZ by large-scale
experiments using up to 103,680 cores. Specifically, we evaluate how the quality
of an output basis of our parallel algorithm changes, depending on the numbers of
shared vectors and CPU cores. We also evaluate the application performance of CMAP-
DeepBKZ such as the CPU utilization in a large-scale computing environment. For our
experiments, we use instances of the Darmstadt SVP challenge [Sch+10] in dimensions
up to around 130.

4 Chapter 1. Introduction

1.3 Related work

We summarize studies and software for the parallelization of lattice algorithms. Applica-
tions of high-performance computing to cryptanalysis for RSA and ECDSA are summarized
[Joul2].

Divide and conquer Since the ENUM algorithm represents a search space as a depth-first
tree structure, it is easy to divide the search space completely. This divide-and-conquer
method divides the enumeration tree into sub-trees, and each search process is performed
on different sub-trees and collects the results [DS10; Her+10; Kuo+11]. It has also been
proposed to perform depth-first search in parallel on GPUs [Her+10] or FPGAs [Det+10].
Equalizing the size of the tasks in each search process can be achieved by creating a large
number of tasks consisting of small sub-trees, but this rapidly increases the communication
cost.

Task parallelization Another parallelization approach has been pursued by randomiza-
tion [Kuo+11; BBK19]. Applying unimodular transformation to the basis vectors does not
change the lattice but alters the enumeration tree. Hence, a parallel search can be conducted
on the bases obtained by applying randomly generated unimodular matrices to the basis.
In other words, while the divide-and-conquer parallel strategy targets a single enumeration
tree, this randomization strategy searches multiple enumeration trees in parallel. Also, the
pruning technique of the search tree [GNR10] can be effectively used for this parallel strat-
egy. Instead of losing the guarantee that the shortest vector will be found, the number of
nodes in the tree can be significantly reduced by the pruning technique. This property also
serves to reduce the duplication of search in the randomized search tree. Before searching
pruned enumeration trees, lattice basis reduction algorithms are performed to reduce the
size of enumeration trees. [Kuo+11] creates SVP instances by randomization and performs
lattice basis reduction and parallel ENUM independently on CPU or GPU using cloud com-
puting. [BBK19] presented a shared-memory parallelized system based on randomization
and extreme pruning of [GNR10]. However, it reports the runtime of solving exact-SVP for
dimensions up to at most 100 over quad-socket Intel E7-4890 v2 CPUs (60 cores).

Data centralized parallelization Sieve-based algorithms utilize the large number of lattice
vectors collected in a centralized place for the dominant part of the computation. Search
processes perform nearly (if not completely) independent calculations to take advantage of
the randomness in sampling. This scheme is suitable for shared memory systems where the
memory is acceptable by all running threads, and concurrent accesses are handled explicitly.
In 2019, Albrecht et al. [Alb+19] provided the General Sieve Kernel, abbreviated as G6K,
that supports a variety of lattice basis reduction using advanced sieve algorithms. For BKZ
with G6K, we can select a sieve algorithm to run as a core exact-SVP oracle in local block
lattices. G6K adopts a multi-thread parallelization with highly optimized implementation
for core sieve algorithms in high-dimensional lattices. In 2021, a GPU implementation was
provided in [DSW21] for advanced sieve algorithms inside G6K to break high-dimensional
instances in the Darmstadt SVP challenge (cf., see [PSZ21] for a GPU implementation of
enumeration). In 2018, Teruya et al. [TKH18] proposed a massive parallelization for random
sampling. In their system, basis vectors except the last few vectors are stored in global
storage and shared with all processes in distributed computing platforms. Each process
performs random sampling independently on its basis and competes to reduce the basis
using vectors in the global storage. A synchronization processing is required only for storing
and loading basis vectors between each process and the global storage.

Task parallelization with small data communication In 2020, a distributed and asyn-
chronous parallel reduction algorithm was first developed in [Tat+20], which is called MAP-
SVP (MAssively Parallel solver for SVP). It was built on the Ubiquity Generator (UG) frame-
work [Ug], a generic framework for branch-and-band algorithms, to parallelize a reduction
algorithm based on randomization that generates different bases of the same lattice by a uni-
modular transformation of an input basis. Specifically, MAP-SVP runs a reduction algorithm

1.4. Structure of this thesis 5

(e.g., BKZ or DeepBKZ) on each solver independently for a randomized basis, but it enables
to share a shortest basis vector with all solvers to accelerate the reduction process of every
solver. Above other parallelization methods have been implemented in single-program and
multiple-data (SPMD) style. Besides, this parallelization is multi-program and multiple-data
(MPMD) style, and the data, lattice vectors, are aggregated into a single control process. The
performance and scalability of MAP-SVP were reported in [Tat+20, Section V] by using up
to 100,032 cores for solving several instances of the Darmstadt SVP challenge [Sch+10].

1.4 Structure of this thesis

In Chapter 2, we introduce some definitions of lattice that are used throughout this the-
sis. These include representative lattice problems and their relationships. Chapter 3 de-
scribes basic algorithms for solving SVP that has various motivations and principles. We
also explain the properties of each algorithm and how to use them to benefit from paral-
lel computing. These algorithms were used to test the performance and flexibility of our
framework. In Chapter 4, we introduce our framework for the massive parallelization of
SVP algorithms. Our framework includes a new parallel scheme for lattice problems, where
different algorithms are heterogeneously executed in parallel with information sharing. A
design of our framework and some implementation techniques are also presented in this
chapter. We demonstrate the performance using the basic algorithm on up to 103,680 cores
in large-scale experiments. In Chapter 5, we present the first parallel solver using our frame-
work, which parallelizes the lattice basis reduction by fully exploiting the features of our
framework. The lattice basis reductions are accelerated by sharing short lattice vectors in
the basis as a block. However, there is a trade-off between randomness and the amount of
shared information. To quantify the randomness of lattice basis reduction, we also propose
a novel metric using the Grassmann manifold. This metric is used for parameter tuning
to benefit from the parallelization fully. In addition, we provide in-depth analyses of our
solver’s quality of output by sharing information and using large-scale computer platforms
up to 103,680 cores.

In Appendix A, we give solutions of the SVP challenge found by our solver, including
new records of the hall of frame of the SVP challenge. In Appendix B, we give a well-reduced
lattice basis of the SVP challenge found by our solver.

Chapter 2

Preliminaries

In this chapter, we will introduce the background of lattices. We begin with the basic defini-
tions of lattices, their properties, and the main lattice problems.

2.1 Lattices and their bases

Definition 2.1.1 (Lattice and lattice basis) For integersn > m > 1, let by, ..., b, be m linearly
independent vectors in R". A lattice L is the set of all integral linear combinations of the b;’s. In
other words, we have,

= L(by,...,b {Zvl (v, €Z 1<Vl<1’l)} (2.1)

Besides, we call B a basis of lattice L when B consists of by, ..., by, vectors span the lattice L =

L(by,...,by).

FIGURE 2.1: A lattice in R? and their basis vectors

In this thesis, we denote lattice basis B as a matrix consists of by, ..., b, as column vectors
in as follows

— b —

— b, —

B = .

«— by, —
Every lattice has infinitely many bases when n, m > 2; if two bases B; and B, span the same
lattice, then there exists an n x n unimodular matrix U satisfying B; = B,U (An integral
square matrix with determinant +1 is called unimodular). Any elementary row operation
of matrix is represented unimodular matrix, therefore for any basis B of a lattice, elementary
row operations for basis B can not change the lattice £(B).

Definition 2.1.2 (Volume) The volume of lattice L = L(B) is defined as

vol(L) = y/det(BBT).

8 Chapter 2. Preliminaries

Especially, when n = m for a lattice basis B € R"*", we have vol(L) = det(B). The volume
of lattice L is independent of the choice of bases of L. It is the volume of the parallelepiped
spanned by the vectors B = (b, ..., b;,) in geometrically.

Definition 2.1.3 (Gram-Schmidt orthogonalization) The Gram-Schmidt orthogonalization for
a basis B is the orthogonal family B* = (b],...,b;,), recursively defined by by = by and for
2<i<m
. STy (i b)) .,
b =b;, — Z ﬂl]b] with Mij = W (] <). (2.2)
j=1 j

We call u = (p;;) the Gram-Schmidt orthogonalization coefficient matrix, where y;; = 0 for
alli < jand py, = 1forall 1 <k < m. Then we have B = B*y, and thus

m
vol(L) = [T v} .
i=1
The Gram-Schmidt orthogonalization B* is not unique of lattice L and this depends on the

basis B and the order of the vectors of it.

Definition 2.1.4 (Orthogonal projection) Let 7ty denote the orthogonal projection onto the or-
thogonal complement of the R-vector space (by, ..., by_1)R defined by

7 R" — (by,..., by 1)k = (b},...,b})R,
X

i) = 3 B

o

b; forx € R".

Il
~

Note that this projection map 71, depends on the basis. We set 77 = id (the identity map) for
convenience. If i > ¢ then we have 77y(b;) = Z;':l yl-]-b]’-‘ else 7ty(b;) = 0.

Definition 2.1.5 (Projected lattice) The lattice in R" spanned by 1ty (by), ..., m(by) is called a
projected lattice of L, denoted by i (L).

For the convenience of notation, we use B|; ;; to mean the basis consisting of projected lattice
vectors,
B[i,j] = (7'[1' (b,) yeee s TG (b])) ,

and we use L(; ; a lattice generated from By; ;,

Lij:=£L (B[m) :

The projected lattice L; has dimension j —i + 1 and

vol (L)) = kr]:[5]

since the Gram-Schmidt orthogonalization of (77;(b;), ..., 7;(b;)) is givenby b7, ..., b]*. Note
that any projected lattice depends on a basis B of L.

Definition 2.1.6 (Successive minima) For 1 < k < n, the k-th successive minimum of a m-
dimensional lattice L, denoted by Ar(L), is the smallest radius of a ball centered at the origin 0
containing k linearly independent vectors in L.

In particular, the first minimum A4 (L) is equal to the length of a non-zero shortest vector in
lattice L.

Definition 2.1.7 (Hermite Constant) Let %, be the set of m-dimensional lattice. Then, the m-
dimensional Hermite constant vy, is defined as

A1(L)?
Ym := max

2.3
Le%, vol(L)2/m 23)

2.2. Lattices Problems 9

This is also used for the upper bound analysis of the shortest vector norm in output basis by
lattice basis reduction algorithm.

Gaussian Heuristic Given a lattice L of dimension n and a measurable set S in R”, the
Gaussian Heuristic predicts that the number of vectors in LN S is roughly equal to vol(S) /vol(L).
By applying to the ball C centered at the origin in R” with radius A1 (L), it leads to

~#(LNC)~1.

Using vol(C) = wyA1(L)", where w, denotes the volume of the unit ball in R”, then we
have

_1
M(L) ~ wy, "vol(L)i.

We denote this heuristic estimation of A1(L) as follows.

_1
GH(L) := wy, "vol(L)# ~ 1/zimvol(L)%. (2.4)

n
27me

heuristic, but it roughly holds for random lattices [GMO03] in high dimensions such as n > 50.

1

Approximation wy, " ~ is derived from Stirling’s approximation. GH(L) is only a

2.2 Lattices Problems

Lattice problems are algorithmic problems that involve lattices. Among lattice problems, the
SVP, CVP and their variants are fundamental importance.

° . . . |
° . . .
° . . . |
.) * o ® .
° \ tO .
0
° . . . |
° . . . |
° . . .

FIGURE 2.2: Example of solutions of SVP (in Definition 2.2.1) and CVP (in

Definition 2.2.6) for 2-dimensional lattice L; a solid vector represents a short-

est vector in L, and break vector represents a closest vector in L for a vector
t

Definition 2.2.1 (Shortest Vector Problem (SVP)) Find the shortest non-zero vector with respect
to the {y-norm in the lattice L. In the form of optimization,

min ||v|| such that v € L\ {0}.

SVP is a discrete combination optimization problem for finding x;’s in (2.1) and is shown to
be NP-hard under randomized reductions [Ajt96]. (That is, a probabilistic Turing-machine
exists that reduces any problem in NP to SVP instances in polynomial-time.)

The followings are evaluation metrics for the found lattice vector and basis.

Definition 2.2.2 (Approximation Factor) Fora vector v € L, the value ||v||/GH(L) is called the
approximation factor of v. Similarly, for a basis matrix B, the value minj <;<,, ||b;||/GH(L(B))
is called the approximation factor of B.

10 Chapter 2. Preliminaries

Definition 2.2.3 (Hermite Factor) For a vector v € L, the value ||v||/vol(L)/" is called the
Hermite factor of v. Similarly, for a basis matrix B, the value minj<;<, ||b;|| /vol(£(B))Y/" is
called the Hermite factor of B.

Based on these metrics, an approximate variant of SVP is defined:

Definition 2.2.4 (Approximate Shortest Vector Problem (ASVP)) Given a lattice L and an ap-
proximation factor v > 0,

findv € L\ {0} such that ||v] < -Aq(L).
ASVP is exactly SVP when y = 1. If ¥ < /2, ASVP becomes NP-hard [Mic01].

Definition 2.2.5 (Hermite Shortest Vector Problem (HSVP)) Given a lattice L and an approx-
imation factor y > 0,

findv € L\ {0} such that ||v|| < -vol(£(B))/".
Another important lattice problem is:

Definition 2.2.6 (Closest Vector Problem (CVP)) Given a a lattice L and a target vector t, find a
vector in L that is closest to t. In the form of optimization,

min ||v — t|| such that v € L
\%

From a practical point of view, however, both problems are considered equally hard due to
Kannan’s embedding technique [Kan87] that can transform CVP into SVP. The main idea of
Kannan’s embedding technique is to define a lattice L containing a short vector e = t —s,
where s is the optimal solution of CVP. We define a lattice L as £((b1,0), ..., (by,0), (t, M))
where 0 < M € R. Then, by solving SVP on L, we can obtain vector e and s as t — e.

A particular case of CVP that we will use later in this thesis is

Definition 2.2.7 (Bounded Distance Decoding (BDD)) Given a lattice L and a target vector t
within distance aA1 (L) of L = L(B) for a constant 0 < a < %, find a vector in L closest to t.

There are other essential lattice problems related to the security of modern lattice-based
cryptosystems, such as the learning with errors and NTRU problems (e.g., see [Peil6]). Most
lattice problems can be reduced to SVP or CVP, so SVP and CVP are fundamental. As Kan-
nan’s embedding transforms CVP into SVP, We focus on SVP in this thesis to simplify the
narrative. However, the proposed framework in Chapter 4 apply to other lattice problems.

11

Chapter 3

Algorithms for Shortest Vector
Problem

This chapter introduces primary families of lattice algorithms for solving the shortest vec-
tor problem (SVP). We can categorize these algorithms into two types. One is an exact-SVP
algorithm, and the other is an approximate-SVP algorithm. These algorithms are not in-
dependent but are closely related. For example, the approximate-SVP algorithm uses the
exact-SVP algorithm internally, and the output of the approximate-SVP algorithm can be
used for the exact SVP algorithm. We introduce Enumeration and sieve as the exact-SVP
algorithm and lattice basis reduction as the approximate-SVP algorithm. These algorithms
are used in our parallel frameworks and software that will be introduced in later chapters.

3.1 Enumeration

Enumeration (ENUM) algorithm is a deterministic algorithm solving SVP exactly. For an
SVP instance of dimension m, the time complexity is 200m) but the space complexity is a
polynomial in m. Given a basis {by,..., by} of a lattice L, ENUM is based on a depth-first
tree search for an integer combination (vy, ..., v;) such that v = v1by + - - - + v, by, has the
shortest norm in L\ {0}.

With the Gram-Schmidt information (2.2), the target vector can be written as

m i—1 m m
vV = Zvi (bz* + ZVi]'b;’k) = Z (U]' + Z yijvi> b;f
i=1 j j

i=1 j=1 i=j+1

By the orthogonality of b}’s, the projected vector 7y (v) has length

2
m m
o = lmW) P =Y (Uj +), ,uijvi> 7[> (1 <k <m).

=k i=j+1

Given a search radius R > 0, ENUM constructs an enumeration tree of depth m, whose
nodes at depth m — k + 1 correspond to the set of all vectors in projected lattices 7 (L) with
a maximum length of R. The key observation is that if a shortest vector satisfies ||v|| < R, its
projections satisfy ||t (v)||> < R? forall 1 < k < m since ||7;(v)||?> < ||v||?; hence, it appears
as a leaf of the tree. These m inequalities provide an efficient enumeration of the tree. The
total number of nodes to be searched can be estimated using the Gaussian Heuristic for each
projected lattice as)" ; H;, where

Ré(AJg Réwé
Hy = - (1< l<m), 3.1)
Vol /D)~ T 571)

and w; denotes the volume of the unit ball in R!. Therefore, it is crucial to choose a good
R, which is sufficiently small but larger than he shortest norm. One useful strategy is prun-
ing [GNR10] where a smaller tree is built by replacing the inequalities ||7;(v)||> < R? by
| (V) ||2 < anﬂ—k with a shorter radii Ry < --- < R, = R at each depth defined by a

12 Chapter 3. Algorithms for Shortest Vector Problem

Algorithm 1 ENUM [GNR10]

1: procedure ENUM(B, R)
2: >B = (by,...,by): basis of a lattice L, R = (R, ..., Ry): Ry is a radius of depth-k
projected lattice 77, 4, 1(L(B))

3: Set p,r, v, c and w to zero array, whose size is m + 1,m + 1, m, m and m, respectively;
4 Set ¢ to zero matrix, whose size is (m + 1) x m;
5: e lLo—1L0+1;
6: while true do
7 Ok < Ok+1 + (0% —)| bE]1% > ok = [|7m(v) 12
8: if o < R%nﬂ—k then
9: if k =1 then return v =}’ ; v;by;
10: > Find v such that ||t (v)]|? < R;2n+17k for all k
11: end if
12: k <k —1; ry < max(r, rx41);
13: fori =ry,; downtok+1do
14: Oik <= Oig1k T HikOi;
15: end for
16: Ck ¢ —Oki1k Ok < Lok lswg < 1
17: else
18: k+ k+1;
19: if kK = m + 1 then return 0; > Finish search
20: else > Go to the successor
21: r—1 < k;
22: if k > ¢ then
23: L— kv v+ 1;
24: else
25: if v > ¢, then
26: U < U — Wy,
27: else
28: Uk < U + Wy,
29: end if
30: end if
31: wy — w +1;
32: end if
33: end if
34: end while

35: end procedure

pruning strategy. This is a probabilistic method because it is not certain that v can be found
in this pruned tree.

The description in pseudo-code of ENUM is given in Algorithm 1. In this algorithm,
there is no element of randomness, and the nodes are traversed deterministically. ENUM
can obtain the shortest vector by setting radius Ry = -+ = R;; = R to the norm of the
vector currently known and continuing the search without returning in line 9. In addition,
since this algorithm works well even if the parameter R; are updated while the algorithm
is running, we can reduce the number of nodes of the enumeration tree without losing the
ability to find the shortest vector by updating the parameters R; with the norm of v in line
9. The size of the enumeration tree is determined by the input lattice basis and the radius
parameters R;.

Using a basis which is an output of lattice reduction algorithm (described in Section 3.3),
the number of nodes in enumeration tree becomes generally smaller. It was pointed out in
[GNO8] that the approximation

IbF(/Ibill~qg (Q<i<m-—1)

holds for the Gram-Schmidt coefficients bj, ..., b}, of the lattice basis output by the lattice

3.2. Sieve 13

reduction algorithm. In addition, from definition of Hermite constant (2.3), the upper bound
on the shortest vector norm of m-dimensional lattice is given by /7, vol(L) . From Gram-

Schmidt coefficient’s property and setting the radius R to /7, vol(L) 7 which is optimal in
the worst case, then Hy in (3.1) are approximated as follows [GNR10];

Hy ~ "2V, (7).

Ym is Hermite constant in (2.3), and from this definitions, the upper bound shortest vector
of lattice Therefore, if as 4 becomes smaller, the number of nodes in the enumeration tree
becomes smaller. It is known that g can be reduced by transforming the lattice basis with
a stronger reduction algorithm. In other words, we can make the ENUM algorithm work
under better conditions by preprocessing of reduction algorithms.

Using as a sampler of short lattice vector In Algorithm 1, we can search all the lattice
vectors v satisfying |7t (v)|*> < anikﬂ, especially ||v| = ||7r1(v)|| < Ry, by continuing
the search without returning in line 9. The number of vectors satisfying the condition can be
estimated from basis B and radius R. Since an enumeration tree depends on the input basis,
itis not easy to switch the basis in the middle of the algorithm. If we want to perform ENUM
from another basis, we must terminate the search and start ENUM using another basis. The
memory usage of this algorithm is minimal and does not increase during the search.

3.2 Sieve

Sieve algorithm has a better asymptotic runtime than enumeration, but it requires exponen-
tial space 2©("), The first algorithm of this kind is the randomized sieve algorithm proposed
by Ajtai, Kumar and Sivakumar (AKS) [AKSO01]. It outputs a shortest lattice vector with over-
whelming probability, and its asymptotic complexity is much better than deterministic enu-

meration algorithms with 20(7%) time complexity. The idea is that given a lattice L of dimen-
sion n, consider a ball S centered at the origin and of radius r with A1(L) < r < O(A4(L)).
Then #(L N'S) = 20(1 according to the Gaussian Heuristic. If we could perform an ex-
haustive search for all vectors in L NS, we could find a shortest lattice vector within 20()
polynomial-time operations. In contrast, the AKS algorithm performs a randomized sam-
pling of LN S. If it was uniformly sampled over L N S, a short lattice vector would be in-
cluded in N samples with probability close to 1 for N > #(L N S). It can be also shown
that there exists a vector w € L N S such that w and w + s can be sampled with non-zero
probability for some shortest lattice vector s. Thus a shortest lattice vector is obtained by
computing a shortest difference of any pairs of the N sampled vectors in L N S. There are
various implementations of sieve algorithms that differ mainly in how to sample lattice vec-
tors, such as ListSieve and GaussSieve [MV10]. Similarly to ENUM, the choice of R is crucial
to the sieve.

GaussSieve Here we describe the GaussSieve algorithm, which is incorporated into our
framework for testing, and a pseudo-code is shown in Algorithm 2. In GaussSieve, vectors
are sampled sequentially and stored in a List. Then, to keep that any vector pair of (v, p)
in the list are satisfied the pairwise reduced condition, min(||v &+ p||) > max(||v||, ||p]|), we
reduce the sampled vector using vectors in the list. Simultaneously, the vectors in the List
are also reduced by the reduced sampled vector. As a result, vectors that do not satisfy the
pairwise reduced condition are moved to a Stack and them will use instead of sampling. If
the reduced vectors collide with the vectors in List ¢ times, algorithm terminates. We use
a priority queue data container to List and Stack. Its norm sorts the vectors in the priority
queue. Sampling is executed by Klein’s randomized rounding algorithm [Kle00].

Using as a sampler of short lattice vector The norm of the lattice vectors output by a
Klein sampler is generally long, and at the beginning of the algorithm, when the number of
vectors in a List is small, lattice vectors in a List are long. As the number of vectors in a List

14 Chapter 3. Algorithms for Shortest Vector Problem

Algorithm 2 GaussSieve [MV10]

1: procedure GaussSieve(B, c)
2 >B = (by,...,by): basis of a lattice L, ¢c: the maximum number of collision
3 List «+ {0}; Stack < {}; K+ 0;
4 while K < cdo
5: if Stack is empty then
6 Sample v using klein sampler with B;
7 else
8 Pop v from Stack;
9: end if
10: v < GaussReduce(v, List, Stack);
11: if v = 0 then
12: K+ K+1;
13: else
14: Push v into List;
15: end if

16: end while

17: end procedure

18: procedure GaussReduce(v, List, Stack)

19: while 3p € L such that ||p|| < ||[v||A|lv—p]| < |lv| do

20: V<< V—p; > Reduce v using p
21: end while

22: while Jp € Lsuch that ||p|| > [[v[|Allp— V] < |p| do

23: Pop p from List;

24: Push p into Stack;

25: end while

26: end procedure

increases, the sampled vectors become strongly reduced, and the number of short vectors
in a List increases. In other words, the algorithm generates shorter vectors as the algorithm
proceeds, and the sampler’s performance improves. We also can interfere from the outside
of the algorithm by adding lattice vectors to Stack because Stack is managed independently
from the pairwise reduction condition in List.

3.3 Lattice basis reduction

Reduction algorithms find not necessarily shortest lattice vectors, but they are much faster
than exact-SVP algorithms such as enumeration and sieve (see [Ngu09; Yas21] for a survey).
Given a basis of a lattice, the goal of lattice basis reduction is to find a new basis of the same
lattice consisting of nearly orthogonal and relatively short vectors (See Figure. 3.1). Most lat-
tice problems become easier to solve with such a reduced basis. The Lenstra-Lenstra-Lovész
(LLL) algorithm [LLL82] is the most celebrated algorithm, and its blockwise generalization
is the block Korkine-Zolotarev (BKZ) algorithm [SE94]. Recently, efficient variants of BKZ
such as BKZ 2.0 [CN11] are implemented in software libraries (e.g., fplll library [Thel6]),
and they are used to estimate the security level of lattice-based schemes (e.g., see [AD21;
Alb+18]).

3.3.1 LLL reduction

Here, we first introduce the size-reduction algorithm [Her50], which is the basic component
of various lattice basis reduction algorithms.

Definition 3.3.1 (Size-reduction) a matrix B € R™*" is called size-reduced, if its satisfies:

(1<j<i<m).

NI~

lpijl <

3.3. Lattice basis reduction 15

.
[} [}
.
.
0//0//://> . .
0 0 . .
.
.

FIGURE 3.1: An example of lattice reduction: Left is lattice basis before lattice
reduction, right is that after lattice reduction.

Algorithm 3 Size-reduction algorithm [Her50]

1: procedure SizeReduction(B) >B = (by,...,by): basis of a lattice L
2 fori =2tomdo

3 forj=i—1downto1ldo
4 SizeReduce(B, i,);

5: end for

6 end for

7. end procedure

8: procedure SizeReduce(B, i, j)

9 if |p1ij| > 5 then

10: q < Lpijl;

11: b; + b; — qb/,

12: for/=1tojdo

13: Hie <= Hie — qHje;

14: end for

15: end if

16: end procedure

We can obtain the size-reduced basis by Algorithm 3. Since [|3;;|| is calculated from the inner
product of b} and b]’f, a smaller value indicates that b} and b]* are closer to orthogonal.

Definition 3.3.2 (6-LLL-reduction) For 411 < 6 < 1, amatrix B = (bq,...,by) € R" " is
called 6-LLL reduced, if it is size-reduced and satisfies the Lovdsz condition:

Sllmia(bin)|l < llmica (B[(1 <i<n).

This Lovész condition is equal to the following condition.

151> (5= 2y) byl
For a 6-LLL-reduced basis B, it holds both

by < zmef]/\l(L), and

by < &"% vol(L)

for L = £L(B) and « = 4/(46 — 1) (see [Brell; Ngu09]). To find an LLL-reduced basis, the
LLL algorithm [LLL82] calls size-reduction as a subroutine, and it also swaps adjacent basis
vectors that do not satisfy Lovész’ condition. The LLL algorithm has a complexity polyno-
mial in m. In practice, the average approximation factor is smaller than this upper bound
when using random lattices. Experiments conducted in [GN08] with a large number of ran-
dom lattice bases show that in higher dimensions, on average, ||b || =~ 1.021"vol(L)'/".

In addition, MLLL algorithm [Poh87], which is a variant of LLL, can be get rid of the
linear dependency of vectors. MLLL is used in the BKZ algorithm described below. Since

16 Chapter 3. Algorithms for Shortest Vector Problem

Algorithm 4 LLL algorithm [LLL82]

1: procedure LLL(B, 9)

2: >B = (by,...,by): basis of a lattice L, é: parameter of the Lovész condition
5w B bR <i < n)
4: k+ 2;

5: while k < n do
6

7

8

9

forj=k—1downto1ldo

SizeReduce(B, k, j);
end for

: end while
10 if By < (6— 2,) By 1 then
11: k< k+1;
12: else
13: swap(B, k, k—1); > Swap by and by_4
14: k < max{k —1,2};
15: end if

16: end procedure

the MLLL algorithm is a generalization of the LLL algorithm, we will refer to MLLL as LLL
in the following description. In other words, we assume that the MLLL algorithm works
when a matrix that is not full rank is given as input to LLL.

As a generalization of LLL, non-adjacent basis vectors can be changed in LLL with deep
insertions (DeepLLL) [SE94]; Given a basis B = (by,...,b,) and a reduction parameter
% < 6 < 1, we insert the k-th basis vector by before b; as

B «+— (blr cee /biflrbk/ bir cee /bk—lrbk+1r cee /b'rl) (32)

for indexes i < k such that ||71;(by)||* < 6||b}||?, instead of swapping the neighboring basis
vectors (at line 13 in Algorithm 4). This basis permutation is called a deep insertion. The i-th
new Gram-Schmidt vector is given by 7;(by), whose length is shorter than the old one.

Definition 3.3.3 (5-DeepLLL-reduced) We say a basis B = (by,...,by) d-DeepLLL-reduced
if it is size-reduced and 5||b} ||> < ||7t;(by)||* forall i < k.
For a -DeepLLL-reduced basis B, it holds both
Ibul < Va (1+ Z) A1(L), and
Q (m—1)(m=2)

Iby|| < a5 (1+1) T Vol (L)

for L = L(B) and & = ﬁ (see [YY19]). These properties are better than LLL, but the
complexity is no longer polynomial.

3.3.2 HKZ reduction

Hermite-Korkine-Zolotarev (HKZ) reduction has a more (ideal) strong reduction for lattice ba-
sis than LLL.

Definition 3.3.4 (HKZ-reduction) A matrix B € R"*" is called HKZ-reduced, if it is size-reduced
and satisfies:

171 = A1 (L) (1< <),
The HKZ-reduced basis has a smaller upper bound than LLL for the norm of b;.

Lemma 3.3.1 ((LLS90, Theorem 2.1]) Let B = (by,...,by,) be an HKZ-reduced basis of a lattice

L. We have
4

i+3

i+3

ML < byl € —=A(L)? (1< i <m).

3.4. Project-and-lift 17

To obtain the HKZ-reduced basis, we need to solve the SVP on the projected lattice sequen-
tially while incrementing i for L; ,, from i = 0. However, since the cost of SVP increases
exponentially with the dimension of lattice, it is tough to find the HKZ-reduced basis in
practice.

3.3.3 BKZ reduction

The Blockwise Korkine-Zolotarev (BKZ) lattice reduction algorithm of Schnorr-Euchner [Sch87;
SE94]. It generalizes the HKZ algorithm by introducing a blocksize B > 2. On the other
hand, if 8 = 1, then BKZ reduction is equal to LLL reduction, and BKZ reduction can be said
to be a generalization of LLL.

Definition 3.3.5 (3-BKZ reduced basis) A matrix B € R"*" is called B-BKZ-reduced, if it is
LLL-reduced and satisfies:
b7 [= Ai(Lpg) (L <j<mn)

where k = min(j + p —1,4).

Note that Lj; is the projected lattice as L£(B;j), and Bj;) = (7j(bj), ..., 7j(by)).
For a f-BKZ-reduced basis B, it holds

d-1
Ibull < 7} A(L),

where B denotes Hermite’s constant of dimension B [Sch92] (see [Ngu(09] for Hermite’s
constants). A B-BKZ-reduced basis can be found by the BKZ algorithm [SE94], in which
LLL is called to reduce Bj;; before calling an exact-SVP algorithm (e.g., an enumeration

)

short lattice vectors, but its computational cost is much more expensive. The complexity
of BKZ depends on that of an exact-SVP algorithm over L; ;. Experimentally results in
[GN08] shows ||by|| ~ 1.0128"vol(L)""™ and 1.0109"vol(L)/™ for blocksize = 20 and 28,
respectively, for high-dimensional lattice.

algorithm) over Lj; ;. Since larger p decreases yé/(ﬁ Y from Mordell’s inequality, BKZ finds

DeepBKZ It is an enhancement of BKZ proposed in [YY17] that uses DeepLLL as a sub-
routine in a BKZ framework (instead of LLL). We show a basic procedure of DeepBKZ in Al-
gorithm 5 that calls enumeration as an exact-SVP algorithm in line 7. In practice, DeepBKZ
can find shorter lattice vectors than BKZ in using the same blocksize § (see [YY17; YNY20]
for their experimental results). Similarly to BKZ, the complexity of DeepBKZ depends on
that of an exact-SVP algorithm (e.g., enumeration) in dimension .

Using lattice basis reduction as a sampler of shortest lattice vector Although basis re-
duction does not aim to obtain the shortest lattice vector, it is experimentally known that it
can find small lattice vectors whose norm is less than the theoretical upper bound ([BSW18]
calls this phenomenon “head concave”). Also, the vectors in the lattice basis are frequently
replaced during the processing of the algorithm. Therefore, we can sample short lattice vec-
tors by fetching the vectors in the basis of the algorithm running at any timing. In addition,
since the behavior of the basis reduction changes by randomization with unimodular matri-
ces, it is also possible to sample short lattice vectors by repeating the basis randomization
and the execution of (light) basis reduction.

3.4 Project-and-lift

The computational complexity of every known algorithm for SVP is exponential. A workaround
is to work with a smaller dimensional lattice and lift its shortest vector to find a short vector
in the original lattice. A straightforward but effective approach is to project the original basis
vectors by 71; for some 1 < k < m. First, find shortest vectors in the projected (m —k + 1)-
dimensional lattice by, for example, ENUM or sieve, and lift them to the original lattice so

18 Chapter 3. Algorithms for Shortest Vector Problem

Algorithm 5 DeepBKZ [YY17]

1: procedure DeepBKZ(B, ¢,)
2: > B = (by,...,by): basis of a lattice L, J: reduction parameter, B: blocksize
3 B < DeepLLL(B,9) > DeepLLL-reduction for the input basis B;
4 z240,j<0;

5; whilez <m —1do
6

7

8

9

j (j (mod m— 1))+ 1,k min(j+ p— 1,m), h < min(k+1,m)
V < ENUM(L[],k]),

> Enumeration over L[j,k] to find v € L satisfying || nj(v) I = Aq(LU/k])
if [|77;(v)[| < Hb]*H then

10: z <+ 0, (bl, . /bh) — LLL((bl, . ,b]‘,l,V,b]‘, . /bh))

11: > Remove the Isinear dependency by LLL after insertion of v at position j
12: else

13: z+—2z+4+1;

14: end if

15: DeepLLL((bq,...,by),9);

16: > DeepLLL-reduction for the sub-basis (b, ..., by) of the current basis B

17: end while
18: end procedure

that their projections by 7t; coincides with the shortest vectors in the projected lattice. The
latter lifting process is equivalent to BDD. In this manner, however, it is not guaranteed that
a shortest vector will be found.

Sub-sieve Sub-sieve is proposed in [Ducl8] which implements this idea using a sieve.
Specifically, a sieve algorithm is performed in a projected lattice 7;(L) to obtain a list of
short lattice vectors:

Dir:={07# v e m(L): [lv] <7 GH(m(L))}

for a constant T such as 7 = \/%. In practice, k is chosen to be around m — 30 for high-

dimensional lattices [Alb+19; DSW21]. Then, by Babai’s algorithms [Bab86], the short vec-
tors in the inverse image 77, 1(Dk,r) C L are enumerated. For a shortest non-zero vector
s in L, we set d and T so that the projected vector s; := mx(s) is included in the list Dy ..
By an exhaustive search over Dy ., assume that s; is known. Let B denote the basis matrix
corresponding to {by,..., b, }. Write s = xB for some x € Z", and split x as (x1|x;) with
x; € Z¥"1and x; € Z" %1, Since s = m;(xB) = x,By, we know x,. Here By denotes the
matrix whose rows are by, . . ., b,. We need to recover x; so that the vector s = x1B; +x2B; is
the shortest in L \ {0}, where we split B into two matrices B; and B,. This is a BDD instance
over the lattice spanned by the rows of B; for the target vector x;B,.

Sub-ENUM We introduce sub-ENUM algorithm [Tat+21]. The first part is very similar
to sub-sieve. An ENUM algorithm is performed in a projected lattice 7rx(L) to collect a
lot of very short lattice vectors in Dy ;. We call this strategy child-ENUM. Then, instead
of Babai’s algorithms, an ENUM algorithm is again used to find a shortest vector for a k-
dimensional lattice spanned by {b1,...,bx_1,v} We call this root-ENUM. As described in
Section 3.1, ENUM has complexity worse than sieve in high dimensions, but it requires much
less space, and thus it is more suitable for massive parallelization with small memory. The
basic procedure is as follows:

(i) We first execute ENUM on the sub-lattice £({b1,...,br_1}).

(ii) Then we find a short lattice vector v by performing child-ENUM over the projected
lattice 715 (L) such that v € Dy ;. If we finish searching all nodes of the enumeration
tree of 71 (L), we output the shortest vector found and finish the Sub-ENUM.

3.4. Project-and-lift 19

(iii) We then run root-ENUM on the sub-lattice £({b1,...,bx_1,v}). If m(s) = mi(v) is
satisfied, then we can obtain the shortest vector s € L by root-ENUM, else we back to
step (ii).

21

Chapter 4

CMAP-LAP: Framework for
solving lattice problems with
massively parallelization

In this chapter, we propose a framework CMAP-LAP that implements a new parallel, multi-
algorithm scheme for lattice problems based on a supervisor-worker parallel system. Our
framework allows several different single-rank or multi-rank solvers to work cooperatively
while efficiently sharing information with other solvers, even in a large-scale computational
environment. This framework is based on the Generalized UG framework (described de-
tail in Section 4.2), but the information managed by the supervisor and the data structure
communicated are customized for the lattice problem and it was created from scratch. In
Section 4.1, we show the motivation and overall design of our framework and expanded
data pool for lattice problems. In addition, we describe some implementation techniques,
checkpoint-and-restart functionally, hybrid parallelization, non-blocking communication. In
Section 4.3, we show the performance of CMAP-LAP, such as sharing efficiency, scalability
and checkpoint-and-restart functionally.

4.1 Design of framework

It is essential for a practical solver to utilize the multiple lattice algorithms introduced in
Chapter 3. Most of the existing solvers discussed in Section 1.3 rely on either the combina-
tion of lattice reduction and sieve or the combination of lattice reduction and ENUM. These
algorithms are inter-dependent and executed sequentially. In contrast, CMAP-LAP is built
on a new multi-algorithm paradigm in which multiple lattice algorithms are executed co-
operatively and yet asynchronously in parallel. The key idea is that each lattice algorithm
described in Chapter 3 can be considered a sampler of short lattice vectors. Furthermore,
each algorithm benefits from the knowledge of short vectors; for example, the enumeration
tree of ENUM shrinks according to the upper bound R of the shortest norm. Using differ-
ent algorithms and randomly transformed bases, we can increase the number of samplers,

'/ / \\
» P 4
4_._
___.> —.—p

reduced basis short vectors current shortest
vector found

FIGURE 4.1: Interaction among SVP algorithms

Chapter 4. CMAP-LAP: Framework for solving lattice problems with massively

22 ..
parallelization
rank O
LoadCoordinator (LC)
Instance Pool Task Pool Solver Pool Share-data Pool
ﬁ ﬁ DeepBKZ Checkpoint
| ENnUM | [sieve | Writer Local Solver
rank 1 rank 2 @ rank 3 @ rank N

Solver: Solver: Solver: Solver: Solver: Solver: (thread = 0) Sieve
(thread =0) || (thread = 1) (thread = 0) (thread =0) |/ (thread = 1) List sampler

DeepBKZ DeepBKZ ENUM g) DeepBKZ ENUM ; . u[]

FIGURE 4.2: System overview of CMAP-LAP for lattice problems

which mutually boosts the sampling performance by sharing the information of short vec-
tors found (see Figure 4.1). To realize the novel multi-algorithm paradigm, CMAP-LAP was
developed entirely from scratch utilizing the full power of the Generalized UG, which is a
generic high-level task parallelization framework.

4.1.1 Arxrchitecture

We describe the architecture of CMAP-LAP. The Generalized UG consists of a controller pro-
cess, LoadCoordinator (LC), and multiple Solvers. Each Solver communicates with LC asyn-
chronously. This system is suitable for multiple processes that run different algorithms and
share information as needed. CMAP-LAP adopts the Supervisor-Worker load coordination
paradigm (see [Ral+18]), where LC is supervisor and Solvers are workers. The main dif-
ference to the typical master-worker paradigm is that the supervisor’s task is limited and
workers act more independently by exchanging small messages with supervisors as needed,
avoiding unnecessary overhead to manage workers. The LC has the following data pools: (i)
Instance Pool, (ii) Solver Pool, (iii) Task Pool, and (iv) Share-Data Pool. (See Figure 4.2). The
LC creates particular purpose local threads as needed: (i) Checkpoint Writer thread (ii) Local
solver threads.
Each Solver carries a Task, which is a triple of:

e Instance is the data that represents the problem to solve, which in the case of SVP is a
lattice basis, and in the case of CVP is a lattice basis and a target vector.

® Parameters describe the type of algorithm and the parameters of the algorithm—for
example, an ENUM algorithm with a pruning strategy from Parameters.

® Status represents the algorithm’s progress, e.g., for the depth-first search of the enu-
meration algorithm, it is the node currently being searched.

Given a lattice problem, each Solver is created in one core and assigned a Task by LC. The
basic flow of CMAP-LAP is as follows (see Figure 4.3):

(1) LC stores given Instance in the instance pool.

(2) LC pops an Instance from the instance pool, sets Parameters for Instance, and initializes
Status. The created Tusk = (Instance, Parameters, Status) is stored in the task pool.

(3) If there exists an idle Solver, LC pops a Task in the task pool and sends it to the idle
Solver, and stores it to the solver pool.

(4) Each Solver takes the algorithm and its input from the received Task, and occasionally
shares information to LC, such as Instance, Data, Status. The information sent depends
on the algorithm, as shown in Figure 4.1. LC stores the information in the pool according
to this type. In addition, Solver sends its Status to LC, and LC updates Task in the solver
pool for the checkpoints.

4.1. Design of framework 23

~ LoadCoordinator (LC)

(2) Create and
store task .~ Task Pool

(2) Pop Task
instance 4 ° Parameters g Task |
r EEEE + . it status 3) Pop

task

(1) Store Instance Pool Share-data Pool. — Solver Pool
instance m
T | X3

*

(4) Store || (4) Store (5) Share (4) Update
Instance Data Data Status of Task | (3) Send
[task
[Message Handler]

N

~ Solver

v
ParaSolver Message Handler

4 (4) Receive

f i | 4 5) | task

Algorithm (4) (5) oK

m + * Parameters
m + Initial Status

(4) Run algorithm from Status (4) Take
(4) Share Instance, algorithm

CJC 2
Data and Status, periodically) 4—_5 D

FIGURE 4.3: Execution flow of CMAP-LAP

(5) Information in the share-data pool is occasionally retrieved from LC, and shared among
Solvers. Each Solver updates its Parameters according to the shared information. See
Chapter 3 for how the shared information is utilized by each algorithm run by the
Solver.

(6) When a Solver finishes the assigned Task, it sends its final Status to LC and becomes idle.

LC always checks for messages from Solver. Messages received by the LC are processed
through the message handler according to the type of message. As described above, Solver
only communicates with LC, and Solver does not share information with other Solvers
directly. This communication via the share-data pool is an effective solution for massive
parallelization to achieve (i) the reduction in the number of communication paths, (ii) the
management of the total amount of communication, (iii) the control over the memory usage,
and (iv) I/O for checkpoint and progress takes place solely within LC.

The detail of the components of CMAP-LAP is given as follows.

Instance Pool Instance pool stores instances of the problem together with their priorities.
For example, bases transformed by unimodular matrices give the same lattice and represent
different instances of the same lattice problem. The instance pool is initialized with the
single basis provided a lattice basis that specifies the lattice problem. LC stores bases sent
from Solvers, which run a lattice reduction algorithm. In the case of SVP, the priority can
be computed by the estimated total number of nodes in the enumeration tree described in
Section 3.1 such that the shortest vector will be found more efficiently with an instance of

Chapter 4. CMAP-LAP: Framework for solving lattice problems with massively

24 parallelization

higher priority. LC pops an instance with the highest priority from the instance pool and
creates a Task from it.

Task Pool Task pool stores Tasks, which are triples of (Instance, Parameters, Status). It man-
ages the Tasks waiting to be executed. LC assigns the Task with the highest priority to a
Solver. In this way, the Tasks, which would lead to better solutions quickly, are prioritized.
Multiple Tasks may be generated from a single instance using different algorithms and pa-
rameters.

Solver Pool Solver pool stores information of the running Solvers. Each Solver is man-
aged by (Solver 1d, Task). The Status of Task is periodically updated by the Status message
sent from Solver. This mechanism allows LC to grasp the status of all Solvers. When Solver
finishes the assigned Task, it is registered as idle. In addition, when LC wants to assign a new
Task of high priority immediately, LC chooses a running Solver to interrupt the current Task.
The number of active Solvers that runs on a single machine node is determined by LC
according to the computational cost of Tusk. For example, sieve algorithms have a large
memory footprint to maintain a large number of lattice vectors; a single Solver becomes
active and runs on a single machine node. Meanwhile, ENUM and reduction algorithms use
little memory, and the same number of Solvers as that of the cores run on a single node.

Share-Data Pool Share-data pool stores information that is shared across multiple Solvers.
In the case of CMAP-LAP, a typical type of information sent from Solvers is a lattice vector
of the small norm. The size of the message is equal to the product of the dimension (e.g.,
130) and the size of the scalar (e.g., long integer). LC checks if the sent vector is already in
the pool. If it is not in the pool, an entry (Data, Sent-Solvers, priority) is created and added
to the pool, where Data is the sent vector. Sent-Solvers is a set that records the Solver Ids
to which Data has been sent. The priority is computed by its norm. When the pool size
gets bigger, LC decides which entries remain stored in the pool according to their priorities.
At an interval, LC selects an entry according to the priority and pushes it to those Solvers
whose Solver Ids are not in Sent-Solvers and adds their Solver Id to Sent-Solvers. In this
way, information is shared among all Solvers efficiently while controlling the total amount
of communication. The interval at which Solvers and LC push information can be tuned
depending on the configuration of the machine. There is no danger of locking regarding the
order of messages in our scheme.

The share-data pool is the most memory-consuming part of the LC. The size of the share-
data pool increases over time, and the limit of the pool size must be set appropriately ac-
cording to the available memory. In particular, the size of the Sent-Solvers is dominant and
should be estimated carefully in case of massive parallelization. Moreover, the cost of Data
retrieval increases when the pool size and the number of Solvers are large. In this case, the
limit of the pool size and the frequency of data sharing are suppressed.

Fully Checkpoint Functionality with Checkpoint Writer thread One of the most powerful
features of CMAP-LAP is the checkpoint mechanism for storing high-level information of the
whole system. Lattice problems are hard and often require millions of core hours. Thus,
it is critical to have the functionality to record the progress and resume after interruption.
Our checkpoint functionality is carefully designed to store high-level, platform-independent
information to enable restart even on different platforms.

When a checkpoint is requested, the data in the pools in LC are serialized and stored in
checkpoint files using zlib [DG96], a portable compression library. At the time of restart,
CMAP-LAP reads the checkpoint files to restore pools. The task pool contains Tasks, includ-
ing the progress information Status, which can be assigned to Solvers to resume. When the
checkpoint files are loaded in a different environment from the one that has saved them, the
number of cores and the available memory may differ. In this case, LC distributes the Tusks
in the task pool to Solvers as much as possible, leaving the other Tasks in the task pool. At
the same time, LC creates new Tasks when a large number of Solvers are available.

The technically important point is that the message processing from Solvers to LC is
blocked when LC writes checkpoint files. With many MPI packages, this is problematic

4.1. Design of framework 25

1) main process 2) Ramp-Up
~ LC ——— - Solver —— ~ LC =———— send - Solver -
status:idle inetances ~ | status: e |
run - Solver T create _— Solver """"
process | status: idle instances status: idle |
- Solver - \ - Solver -
status: idle status: idle
3) Primary 4) Ramp-Down
~ LC =——— send / receive [Solver ~ LC = stop request Solver
Vector pool vector , | status: busy Vector pool status: busy
_— /
vector A — - Solver vector A - Solver ——
vector B b > | status: busy vector B status: idle
vector C vectorC || = e
. r Solver . - Solver ———
status: busy status: idle

FIGURE 4.4: Basic phases of the parallel dispatch

because the size of the queue of MPI messages waiting to be received becomes large and
eventually leads to an error when the upper limit is reached. This problem becomes more
pronounced as the scale of execution increases. To avoid this problem, LC temporarily cre-
ates a copy of the pools on memory, and a dedicated thread in LC, called Checkpoint Writer,
is created to write the copy in the checkpoint files. Using the Checkpoint Writer thread has
significantly reduced the block time for checkpoints and enabled CMAP-LAP to run stably
on large-scale platforms.

Local Solver threads Some solvers can be created as a thread in LC. These Local Solvers
work on lightweight tasks requiring access to the entire pools. For example, Local Solvers
list the projected vectors in the share-data pool, which are found by Solvers performing
sub-ENUM and sub-sieve introduced in Section 3.4. Because Local Solvers have access to
the share-data pool without communication, the total amount of communication is reduced
in this way.

4.1.2 Parallel dispatch

Here, we describe parallel dispatch, which is a comprehensive execution flow in CMAP-LAP.
The parallel dispatch executes one parallel computing of one (sub-) problem as one cycle.
This parallel dispatch is essential to parallel for solving exact SVP in BKZ algorithm. The
parallel dispatch consists of four execution phases: main process, Ramp-Up, Primary, and
Ranp-Down, as shown in Figure 4.4. With these four phases as one cycle, parallel dispatch
executes the cycle multiple times.

Main process phase Herein, only the LC runs the process, and all Solvers are idle. LC
obtains the results of the parallel computation, prepares for the next parallel computation,
and performs other operations.

Ramp-Up phase (pseudocode is Algorithm 6) This is the period from when all Solvers
are idle until when all Solvers start processing after receiving the instance. LC creates an in-
stance and sends it to the Solvers in turn. Therefore, some Solvers are delayed in receiving
instances. We call the waiting time until these Solvers start processing start idle time.

Chapter 4. CMAP-LAP: Framework for solving lattice problems with massively

26 parallelization

Algorithm 6 Ramp-Up Phase

1: while LC should create and assign Task do
2: LC send Task to an idle Solver;
3: end while

Primary phase (pseudocode is Algorithm 7) All Solvers are processing the given instance.
During this and the Ramp-Down phase, the Solvers send or receive vectors objects to and
from the LC asynchronously. It allows all Solvers to share information through LC. LC has a
priority queue called the vector pool, which stores vector objects. When a Solver sends the
vector objects to the LC, the LC stores them in the vector pool if necessary. Conversely, if a
Solver sends a receive request to the LC, the LC sends the appropriate vector objects from
the vector pool to the Solver. Each Solver can send and receive the vector objects at its own
convenient timing. The vector pool is managed with customized priorities, and when the
poolis full, the vectors with lower priorities are removed. Because the LC receives send and
receive requests from multiple Solvers, a time lag occurs during sending and receiving. We
call it wait idle time.

Algorithm 7 Primary Phase

1: while True do

2: while LC should create and assign Task do
3: LC sends Task to an idle Solver;
4: end while
5: LC checks to have received any messages from Solvers;
6: > LC calls handlers according to type of received messages;
7: if LC should create checkpoint then
8: LC creates checkpoint;
9: end if
10: while LC should create and assign Task for LocalSolver do
11: LC sends Task for LocalSolver to an idle LocalSolver;
12: end while
13: if There is no active Solver then
14: break;
15: end if

16: end while

Ramp-Down phase (pseudocode is Algorithm 8) This is the period when at least one
Solver is in an idle state. Information is shared between busy Solvers through LC. The
end time of a Solver depends on the instance given, or the vector received from the LC. If
there are many Solvers, the end time variance generally becomes large. Therefore, LC has a
function that can send a stop request to a Solver. When a Solver receives a stop request, it
ends the process immediately.

Algorithm 8 Ramp-Down Phase

1: LC send TerminateTag to all active Solvers;
2: while There are active Solvers do

3: LC wait TerminateTag from Solvers;

4: end while

Solver process (pseudocode is Algorithm 9) Finally, we show a brief pseudo-code for the
solver process. Idle Solvers wait for a Taskfrom LC, and when Solver receives the Tusk
from LC, Solver executes the algorithm according to the received Task, information of the
algorithm and its arguments. By passing the ParaSolver communication API of CMAP-LAP
to the algorithm, we can share the information of lattice basis and lattice vectors and receive

4.2. Implementation 27

Algorithm 9 Solver Process

1: while True do

Solver wait a message from LC;

if Solver receives new Task then
break;

else if Solver receives TagTerminate then
Solver send statistics data to LC, and send TagTerminate;
return;

end if

9: Solver run algorithm according to received Task;
10: end while

the termination notification through the communication API. When the Solver receives a
TagTerminate from LC, it sends the statistics of the executed Tasks to LC and send-backs the
TagTerminate to LC. By keeping a count of the number of TagTerminates LC has received, LC
can terminate after all Solver processes have been finished. This is the safest termination.

4.2 Implementation

Generalized UG: A framework to construct CMAP-LAP We have built a solid backbone
to manage hundreds of thousands of processes running heterogeneous algorithms in parallel
by specializing Generalized UG framework (UG version 1.0 RC). The Generalized UG frame-
work is extending the well-recognized Ubiquity Generator (UG) framework [Ug] for Branch-
and-Bound (B&B) algorithms. UG framework is a generic software framework to parallelize
an existing state-of-the-art B&B based solver, which is referred to as the base solver, from
“outside”. UG is composed of a collection of base C++ classes, which define customizable
interfaces to base solvers and translate solutions and subproblems into a solver independent
form. Additionally, a base class defines interfaces for different message-passing protocols
corresponding to the parallelization library used. UG has been developed primarily in con-
cert with a state-of-the-art mixed integer programming solver called SCIP [Sci]. As such,
ParaSCIP [Shi+11], and FiberSCIP [Shi+18a], which run on a distributed computing envi-
ronment and shared memory computing environment, respectively, are the most mature.
Notably, the distributed memory and shared memory solvers execute the same algorithm
in general for the instantiations. UG has been successfully utilized for mixed-integer linear
programming problems [Shi+18b; Shi+16; SBH18], Steiner tree problems [Gam+17; SRK19;
SRG19; RSK21], and quadratic assignment problems [Fuj+21] on supercomputers.

UG has shown flexibility and scalability for solving optimization problems. The ability
of UG motivated the development of a parallel solver using a non-B&B based solver. Gen-
eralized UG has been developed to enable parallelization of such a non-B&B based solver.
Generalized UG consists of several abstract classes which can be customized according to
the target problem. This customization flexibility is suitable for the realization of various
parallel strategies.

Extendability There are many lattice problem solvers, including the state-of-the-art sieve
solver G6K, which is available as open-source software. CMAP-LAP’s flexible and highly
modular design allows solvers to be incorporated as a part of the system. For the ease of
incorporation, an interface class ParaSolver is provided, with which existing solvers can be
turned into Solvers with minimum effort. Each Solver has a ParaSolver object that takes
care of all the communication, and existing solvers only have to receive input data and
send the results via ParaSolver’s API (see bottom of Figure 4.3). The solvers are not lim-
ited to single-rank applications. The UG has a feature to parallelize multi-rank applications.
See [Mun+19] as an example.

Chapter 4. CMAP-LAP: Framework for solving lattice problems with massively

28 parallelization

Rank =0
r LoadCoordinator (LC) |

N —

ISendQueue | ISendQueue
Thread 0 Thread 1 Thread T Thread 0 Thread T
| |

rootSolver Solver Solver
———— Rank=1 g h Rank=N —~

Flow of communication
LC - Solver == Solver S Solver Solver > LC

FIGURE 4.5: Communicators between and within MPI processes: ParaComm
and LocalComm

Hybrid parallelization CMAP-LAP uses hybrid parallelization that combines MPI com-
munication with C++11 thread communication. LC and Solver have two kinds of commu-
nicators: one is ParaComm, which wraps MPI communication functions, and the other is
LocalComm, which wraps C++11 communication functions. ParaComm is used for inter-
process communication, and LocalComm is used for inter-thread communication within a
process (see Figure 4.5). Because all Solvers know the MPI rank of LC, Solvers send mes-
sages directly to LC using ParaComm and ISendQueue, which is described in the following
section. In contrast, when LC sends a message to Solver, LC first sends a message via Para-
Comm to the MPI rank where the Solver resides. The solver with O thread-Id receives the
message; we call this the rootSolver. Then, the rootSolver sends the message to the Solver us-
ing LocalComm. Therefore, the rootSolver receives more messages than the other Solvers,
the received messages must be checked frequently, even during the execution of the algo-
rithm. However, the idle time for message processing can be reduced by using non-blocking
communication, as described below.

MPI_ISend communication Because LC receives messages from all busy Solvers, the LC’s
load is the highest of all the processes in the case of large-scale computation. In addition, de-
pending on the type of messages received, processing such as inserting Data into the share-
data pool occurs in LC. This blocks the LC message processing and delays the receiving of
the messages. Note that the load coordination paradigm used in CMAP-LAP is Supervisor-
Worker [Ral+18] and then small message communications are performed between LC and
Solvers for load balancing. Although the frequency for the small message communications
can be controlled by run-time parameters, they are crucial in large-scale computations such
as over 100,000 Solvers used. Therefore, in CMAP-LAP, to reduce the idle time of com-
munication in Solver, we send all messages from Solver to LC by using MPI_ISend, the
non-blocking communication. This leads Solver to resume the algorithm without waiting
for the check that LC receives the message. To prevent the objects deleted before they are
sent, we copy the objects sent by MPI_ISend to a queue called ISendQueue in the memory of
that process. We remove them from ISendQueue as soon as the transmission is confirmed
by MPI_Test (see Figure 4.6). By examining the size of each ISendQueue, we can determine
the number of unreceived messages of LC. Therefore, we set an upper limit on the size of
ISendQueue and do not send messages exceeding the limit, thereby preventing many mes-
sages from accumulating in LC.

4.3. Performances of Framework with Testing Configure 29

receive receive
message A message B time
Rank 0 (LC) i
/MPI_ISend (A& B)
Rank r (Solvers) \
push A B
ISendQueue messages |[BU[—— —

execute MPI_Test and remove
messages that has been sent

FIGURE 4.6: MPI_ISend Communication between Solver and LC

4.3 Performances of Framework with Testing Configure

In this section, we evaluate the performance of CMAP-LAP with the SVP challenge. The com-
puting platform used in the following numerical experiments includes the Lisa and Emmy
at Zuse Institute Berlin, and ITO at Kyushu University. These specifications are summarized
in Table 4.1.

TABLE 4.1: Computing platforms used

Machine Memory CPU CPU #nodes # cores
/ node frequency
Lisa 384 GB Xeon Platinum 9242 2.30 GHz 1,080 103,680 (96 x 1,080)
Emmy 384 GB Xeon Platinum 9242 2.30 GHz 128 12,288 (96 x 128)
ITO 192 GB Xeon Gold 6154 3.00 GHz 128 4,608 (36 x 128)
CALA 256GB Xeon E5-2640 v3 2.60 GHz 4 64 (16 x 4)
CALB 256 GB Xeon E5-2650 v3 2.30 GHz 4 80 (20 x 4)

Operating systems and versions: Lisa and Emmy [CentOS Linux release 7.7.1908], ITO [Red Hat Enterprise Linux
Server release 7.3.1611], CAL A and CAL C [CentOS Linux release 7.9.2009]. Compilers and versions: Lisa and
Emmy [intel19.0.5, impi2019.5], ITO [icc 19.1.1.217, impi2019.4], CAL A [icc 19.1.3.304, openmpi4.0.5], CAL C
[icc19.1.3.304, impi2020.4.304]. Libraries and versions: NTL v11.3.3, Eigen v3.3.7, gsl v2.6, OpenBLAS v0.3.7, fplll
v5.2.1.

Setting up CMAP-LAP for testing to solve SVP We briefly describe the overall behavior
of CMAP-LAP for solving SVP. Recall that an SVP is specified by a lattice basis matrix. At
the beginning of the execution, the LC reads the basis matrix from a file and stores it in the
instance pool. LC creates a Local Solver to transform the basis with random unimodular
matrices and stores the resulting bases in the instance pool. Then, LC generates DeepBKZ
Tasks for the bases in the instance pool. The reduced bases are sent from Solvers performing
DeepBKZ Tasks to LC, and LC stores them in the instance pool. LC also generates ENUM
and sieve Tasks using the bases in