九州大学学術情報リポジトリ
Kyushu University Institutional Repository

# Development and Numerical Experiments of Massively Parallel Framework and Software for Shortest Vector Problem 

立岩，斉明
https：／／hdl．handle．net／2324／4784418

出版情報：Kyushu University，2021，博士（数理学），課程博士 バージョン：
権利関係：

# Development and Numerical Experiments of Massively Parallel Framework and Software for Shortest Vector Problem 

Author:

Nariaki TATEIWA

Supervisor:<br>Prof. Katsuki FujISAWA

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Mathematics in the

Graduate School of Mathematics

## KYUSHU UNIVERSITY

# Abstract 

Graduate School of Mathematics

## Doctor of Mathematics

# Development and Numerical Experiments of Massively Parallel Framework and Software for Shortest Vector Problem 

by Nariaki Tateiwa

Lattice-based cryptography has received attention as next-generation encryption because it is believed to be secure against attacks by classical and quantum computers. Its essential security depends on the hardness of solving the shortest vector problem (SVP), the primitive lattice problems. In cryptography, to determine security levels, it is becoming significantly essential to estimate the hardness of the SVP by high-performance parallel computing.

Several algorithms have been developed for SVP, however there is no single definite algorithm. They has different computational profiles; some suffer from super-exponential time, and others require exponential space. This motivated us to develop a novel framework for the parallelization of SVP solvers for the clever coordination of different algorithms that run massively in parallel. With our flexible framework, heterogeneous modules run asynchronously parallel on a large-scale distributed system while exchanging information, drastically boosting overall performance. We also implement full checkpoint-and-restart functionality, which is vital to high-dimensional SVP. The parallel scheme in our framework was designed to facilitate the implementation of past and future parallelization methods. Through numerical experiments with up to 103,680 cores, we evaluated the performance and stability of our framework and demonstrated its high capability for future massive-scale experiments.

In addition, by taking full advantage of the features of our framework, we also developed the software for SVP. We have implemented our proposed a new distributed and asynchronous parallel reduction algorithm, DeepBKZ, which is an enhancement of the block Korkine-Zolotarev (BKZ) reduction algorithm. Randomized copies of a basis are distributed to massively cores and reduced independently in parallel, while some basis vectors are shared asynchronously among all processes. There is a trade-off between randomization and information sharing; if too much information was shared, all processes would work on the same problem and the benefit of parallelization would be lost. To monitor the balance between randomness and sharing, we propose a metric to quantify the variety of bases. We demonstrate by experiments the efficacy of our proposed parallel algorithm and our implementation in both performance and scalability.

Keywords: Shortest vector problem, Parallel computing, Lattice basis reduction, Generalized UG framework.

## Contents

Abstract ..... iii
1 Introduction ..... 1
1.1 Background ..... 1
1.2 Contribution to parallelization of SVP ..... 2
1.2.1 CMAP-LAP: Framework for lattice problems with massively paral- lelization ..... 2
1.2.2 CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization ..... 3
1.3 Related work ..... 4
1.4 Structure of this thesis ..... 5
2 Preliminaries ..... 7
2.1 Lattices and their bases ..... 7
2.2 Lattices Problems ..... 9
3 Algorithms for Shortest Vector Problem ..... 11
3.1 Enumeration ..... 11
3.2 Sieve ..... 13
3.3 Lattice basis reduction ..... 14
3.3.1 LLL reduction ..... 14
3.3.2 HKZ reduction ..... 16
3.3.3 BKZ reduction ..... 17
3.4 Project-and-lift ..... 17
4 CMAP-LAP: Framework for solving lattice problems with massively paralleliza- tion ..... 21
4.1 Design of framework ..... 21
4.1.1 Architecture ..... 22
4.1.2 Parallel dispatch ..... 25
4.2 Implementation ..... 27
4.3 Performances of Framework with Testing Configure ..... 29
4.3.1 Information sharing ..... 30
4.3.2 Coordination of heterogeneous algorithms ..... 30
4.3.3 Scalability ..... 31
4.3.4 Stability with massive parallelization ..... 32
5 CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization ..... 35
5.1 Parallel strategy ..... 35
5.1.1 Ordering of lattice bases for reduction ..... 35
5.1.2 Strategy of parallel sharing in DeepBKZ ..... 36
5.1.3 Implementation ..... 36
Parallel framework ..... 37
Processing flow of the supervisor and solver ..... 38
Checkpoint and Restart ..... 39
5.2 Similarity of lattice bases ..... 40
5.2.1 Grassmann metrics ..... 40
5.2.2 Diversity of bases ..... 41
5.2.3 Effect of sharing short vectors on the diversity of bases ..... 41
5.3 Numerical experiments ..... 44
5.3.1 Metrics to measure the output quality of reduction algorithms ..... 45
5.3.2 Efficacy when sharing short lattice vectors ..... 46
Analysis using deterministic parallel execution ..... 46
Analysis of MPI parallelization using CMAP-DeepBKZ ..... 46
5.3.3 Scalability of the number of processes ..... 50
5.3.4 Transition of diversity on large-scale execution ..... 51
5.3.5 Massive parallelization experiments with checkpoints and restarts ..... 53
6 Conclusion ..... 59
Acknowledgements ..... 61
A Solutions of SVP Challenge ..... 63
A. 1 New records in the hall of frame of SVP challenge ..... 63
A. 2 Solutions closed to record in the hall of frame of SVP challenge ..... 63
B Lattice basis of numerical experiments ..... 71
B. 1 Well-reduced lattice basis in Figure 5.17 ..... 71
Bibliography ..... 75

## List of Symbols

| $\mathbb{N}, \mathbb{Z}, \mathbb{R}$ | sets of natural, integer, real numbers |
| :--- | :--- |
| $\mathbb{Z}^{n}, \mathbb{R}^{n}$ | vector-space of dimension $n$ |
| $\mathbf{x}$ | row vector |
| $\\|\mathbf{x}\\|$ | Euclidean norm of vector $\mathbf{x}$ |
| $\mathbf{B}$ | matrix (composed from vectors, row-wise) |
| $\mathbf{b}_{i}$ | $i^{\text {th }}$ row of matrix $A$ |
| $\operatorname{diag}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ | diagonal matrix $B$ |
| $\mathbf{0}$ | all-zeros vector |
| $\mathbf{I}_{n}$ | $n \times n$ identity matrix |
| $\log x$ | $\ln x$, the natural logarithm with base $e$ |
| $\operatorname{Span}(\mathbf{W})$ | span of row vectors of $\mathbf{W}$ |
| $\mathbf{W}^{\perp}$ | orthogonal complement of Span $(\mathbf{W})$ |
| $\|S\|$ | cardinality of set $S$ |
| $\gamma_{m}$ | $m$-dimensional Hermite constant |

## Chapter 1

## Introduction

### 1.1 Background

A lattice $L$ is the set of all integral combinations of linearly independent vectors in the Euclidean space $\mathbb{R}^{n}$. In the past few years, lattices have attracted considerable interest in cryptography. In particular, with the recent development of quantum computers, since 2015, the US National Institute of Standards and Technology (NIST) started developing new standards for post-quantum cryptography ( $P Q C$ ) and called for proposals to prepare information security systems that can resist quantum computers [SN]. (cf., The most popular cryptographic systems, such as RSA, DSA, and ECDSA, could be broken by Shor's algorithms [Sho94] with the use of large-scale quantum computers.) In 2021, NIST allowed 7 finalists and 8 alternates for the third round of the NIST PQC Standardization Process, among which 7 were based on lattices.

Lattice problems are a class of discrete optimization problems whose objective functions are defined on the set of lattice points or the set of lattice bases. The most fundamental instances of the lattice problems are the Shortest Vector Problem (SVP) and Closest Vector Problem (CVP). SVP asks to find the shortest non-zero vector in a given lattice, and CVP asks to find the closest vector in a given lattice to a given vector. Lattice problems are believed to be computationally hard with both classical and quantum algorithms [Cai00] and have been used to construct various cryptosystems [Pei16], including PQC. More specifically, the security of many cryptosystems, such as Goldreich-Goldwasser-Halevi (GGH) cryptosystem and NTRU encryption schemes, is based on the hardness of an approximate variant of SVP and CVP. Therefore, it is important for cryptanalysis to know the limits of solving these lattice problems (see [Jou12] for cryptanalysis using high-performance computing). However, in a distributed computing platform, efficient use of a large number of MPI processes requires appropriate control of the behavior of many processes, memory usage, and communication, and this is very costly for implementation, testing and debugging. In fact, there are only a few software fore SVP that can work in distributed computing platform. It is also important to use parallel strategies that take advantage of properties of lattice algorithms, which is suitable for distributed computing platform.

There are three basic families of lattice algorithms that have been developed to solve practical lattice problems: lattice basis reduction, enumeration (ENUM), and sieve. These algorithms have advantages and disadvantages, and there is no single definite algorithm for lattice problems. Sieve and ENUM are the algorithms perform an exhaustive search of all the short lattice vectors, whose number is exponential in the lattice dimension. Sieve algorithm searches for the shortest vector by repeatedly storing short differences between the short lattice vectors. A high-dimensional SVP instance requires numerous vectors to be stocked. Specifically, it requires a memory that is exponential in the dimension of the input lattice. According to [Alb+19, Table 2], G6K, implements a variety of basis reduction and sieve algorithms, uses approximately 246 GB of memory for solving 127-dimensional SVP instances. In contrast, ENUM has space-complexity is polynomial in the lattice dimension, but it is asymptotically slower than the sieve algorithm. Lattice basis reduction aim to convert lattice basis whose vectors are nearly-orthogonal. This process can find short vectors quickly, but it cannot guarantee to output the shortest lattice vectors.


Figure 1.1: Relationship of CMAP-LAP and CMAP-DeepBKZ

### 1.2 Contribution to parallelization of SVP

Existing solvers for lattice problem are limited to a fixed set of algorithms and lack in flexibility. There are two main obstacles in developing a large-scale multi-paradigm solver for suitable in distributed computing platform: the need for an efficient high-level informationsharing scheme across different algorithms, and an adaptive task selection and distribution strategy for hundreds of thousands of processes.

The main contribution of this thesis is to provide solutions to overcome these obstacles and develop a flexible framework to make various algorithms work cooperatively on a largescale distributed computing platform. By exploiting the mathematical properties of lattice, a clever vector pooling scheme is introduced to minimize the amount of information communicated among processes. To implement our parallel strategy, we used Generalized UG (UG version 1.0 RC ) that is extended the well-recognized Ubiquity Generator (UG) framework [ Ug ] for Branch-and-Bound ( $\mathrm{B} \& B$ ) algorithms. Based on Generalized UG, we have built a solid backbone to manage hundreds of thousands of processes running heterogeneous algorithms in parallel, where the assignment of algorithms and their parameters can be adaptively tuned according to the available resources and the progress of the whole system. Configurable Massively Parallel Solver for Lattice Problems (CMAP-LAP) is the framework for massively parallel strategies for lattice problems. It is designed to facilitate the implementation of new parallel strategy ideas based on this framework. We have built a solid backbone to manage hundreds of thousands of processes running heterogeneous algorithms in parallel, where the assignment of algorithms and their parameters can be adaptively tuned according to the available resources and the progress of the whole system.

Using CMAP-LAP framework, we also developed the new parallel software Configurable Massively Parallel Solver for DeepBKZ (CMAP-DeepBKZ) specialized for the lattice reduction algorithm, this is also the main our contribution. CMAP-DeepBKZ uses a new parallel strategy of DeepBKZ, a variant of lattice basis reduction, to share a part of the lattice basis by taking advantage of parallel computing and the information sharing feature of CMAP-LAP. We have analyzed the performance of this software in detail by experiments on a large number of cores.

We show the relationship between CMAP-LAP framework and CMAP-DeepBKZ software in Figure 1.1.

### 1.2.1 CMAP-LAP: Framework for lattice problems with massively parallelization

CMAP-LAP [Tat+21] is a generic framework of parallelization for lattice algorithms, including SVP. It covers parallelization of reduction, enumeration and sieve algorithms, and can
run them cooperatively on a large-scale computational platform by supervisor-worker parallel style. Given an input instance, a supervisor distributes randomized instances to all solvers, and all worker processes can execute multiple kinds of solvers and multi-parallel solvers in a heterogeneous. In addition, the supervisor stores lattice bases and vectors in data containers. Using those data containers, each solver can send and receive a lattice basis and vectors asynchronously with small communication overhead.

The features of CMAP-LAP are summarized as follows:

- We propose a novel parallel and multi-algorithm scheme for lattice problems, in which several different single- or multi-rank solvers work cooperatively while sharing information efficiently with other solvers even on a large-scale computing platform. To realize the scheme, CMAP-LAP is developed entirely from scratch by fully utilizing the features of the Generalized UG.
- The testing software using CMAP-LAP with 103,680 cores stably and continuously ran for more than 42 hours. We tested features of CMAP-LAP in several environments with different scales and configurations.
- Each process asynchronously performs various lattice algorithms in coordination while sharing information. Processes for different algorithms are adaptively allocated, and their parameters are tuned according to the available resources, current progress, and estimated time for finding a solution. In particular, our accurate estimation of memory usage has drastically improved the stability and scalability.
- The high-level checkpoint-and-restart functionality is implemented to make it possible to save and resume even on different architectures and platforms of various sizes.
- The efficient information-sharing scheme is developed based on the properties of lattice problems, and is backed with blocking and non-blocking communication mechanisms.
- Highly modular architecture allows one to incorporate new algorithms easily into the system. Existing implementations that work only in a shared-memory environment can work as modules of CMAP-LAP, which run massively in parallel.


### 1.2.2 CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization

We developed software specialized for massive parallelization of lattice basis reduction. Specifically, we parallelize DeepBKZ [YY17] in the CMAP-LAP framework, and call our software CMAP-DeepBKZ. (Note that BKZ can also be adopted in the same way.)

Below we summarize CMAP-DeepBKZ's contribution:

- CMAP-DeepBKZ can share multiple short vectors as block to accelerate the reduction process in every solver. In CMAP-DeepBKZ, each solver periodically sends its short basis vectors to a container of a supervisor. In contrast, the supervisor distributes short lattice vectors stored in its container to all solvers. Thus every solver can share short lattice vectors with the other solvers by communicating only with the supervisor.
- As the number of shared vectors increases, the reduction process can accelerate in every solver, but the randomness of the solver's bases might be lost. Therefore we propose a method to quantify the similarity of lattice bases using metrics for Grassmann manifolds (e.g., see [BG73; GVL96] for Grassmann metrics). Using the method, we verify by experiments the randomness of output bases of our parallel reduction algorithm in CMAP-DeepBKZ.
- We demonstrate the performance and the scalability of CMAP-DeepBKZ by large-scale experiments using up to 103,680 cores. Specifically, we evaluate how the quality of an output basis of our parallel algorithm changes, depending on the numbers of shared vectors and CPU cores. We also evaluate the application performance of CMAPDeepBKZ such as the CPU utilization in a large-scale computing environment. For our experiments, we use instances of the Darmstadt SVP challenge [Sch+10] in dimensions up to around 130.


### 1.3 Related work

We summarize studies and software for the parallelization of lattice algorithms. Applications of high-performance computing to cryptanalysis for RSA and ECDSA are summarized [Jou12].

Divide and conquer Since the ENUM algorithm represents a search space as a depth-first tree structure, it is easy to divide the search space completely. This divide-and-conquer method divides the enumeration tree into sub-trees, and each search process is performed on different sub-trees and collects the results [DS10; Her+10; Kuo+11]. It has also been proposed to perform depth-first search in parallel on GPUs [Her+10] or FPGAs [Det+10]. Equalizing the size of the tasks in each search process can be achieved by creating a large number of tasks consisting of small sub-trees, but this rapidly increases the communication cost.

Task parallelization Another parallelization approach has been pursued by randomization [Kuo+11; BBK19]. Applying unimodular transformation to the basis vectors does not change the lattice but alters the enumeration tree. Hence, a parallel search can be conducted on the bases obtained by applying randomly generated unimodular matrices to the basis. In other words, while the divide-and-conquer parallel strategy targets a single enumeration tree, this randomization strategy searches multiple enumeration trees in parallel. Also, the pruning technique of the search tree [GNR10] can be effectively used for this parallel strategy. Instead of losing the guarantee that the shortest vector will be found, the number of nodes in the tree can be significantly reduced by the pruning technique. This property also serves to reduce the duplication of search in the randomized search tree. Before searching pruned enumeration trees, lattice basis reduction algorithms are performed to reduce the size of enumeration trees. [Kuo+11] creates SVP instances by randomization and performs lattice basis reduction and parallel ENUM independently on CPU or GPU using cloud computing. [BBK19] presented a shared-memory parallelized system based on randomization and extreme pruning of [GNR10]. However, it reports the runtime of solving exact-SVP for dimensions up to at most 100 over quad-socket Intel E7-4890 v2 CPUs ( 60 cores).

Data centralized parallelization Sieve-based algorithms utilize the large number of lattice vectors collected in a centralized place for the dominant part of the computation. Search processes perform nearly (if not completely) independent calculations to take advantage of the randomness in sampling. This scheme is suitable for shared memory systems where the memory is acceptable by all running threads, and concurrent accesses are handled explicitly. In 2019, Albrecht et al. [Alb+19] provided the General Sieve Kernel, abbreviated as G6K, that supports a variety of lattice basis reduction using advanced sieve algorithms. For BKZ with G6K, we can select a sieve algorithm to run as a core exact-SVP oracle in local block lattices. G6K adopts a multi-thread parallelization with highly optimized implementation for core sieve algorithms in high-dimensional lattices. In 2021, a GPU implementation was provided in [DSW21] for advanced sieve algorithms inside G6K to break high-dimensional instances in the Darmstadt SVP challenge (cf., see [PSZ21] for a GPU implementation of enumeration). In 2018, Teruya et al. [TKH18] proposed a massive parallelization for random sampling. In their system, basis vectors except the last few vectors are stored in global storage and shared with all processes in distributed computing platforms. Each process performs random sampling independently on its basis and competes to reduce the basis using vectors in the global storage. A synchronization processing is required only for storing and loading basis vectors between each process and the global storage.

Task parallelization with small data communication In 2020, a distributed and asynchronous parallel reduction algorithm was first developed in [Tat+20], which is called MAPSVP (MAssively Parallel solver for SVP). It was built on the Ubiquity Generator (UG) framework [Ug], a generic framework for branch-and-band algorithms, to parallelize a reduction algorithm based on randomization that generates different bases of the same lattice by a unimodular transformation of an input basis. Specifically, MAP-SVP runs a reduction algorithm
(e.g., BKZ or DeepBKZ) on each solver independently for a randomized basis, but it enables to share a shortest basis vector with all solvers to accelerate the reduction process of every solver. Above other parallelization methods have been implemented in single-program and multiple-data (SPMD) style. Besides, this parallelization is multi-program and multiple-data (MPMD) style, and the data, lattice vectors, are aggregated into a single control process. The performance and scalability of MAP-SVP were reported in [Tat +20 , Section V] by using up to 100,032 cores for solving several instances of the Darmstadt SVP challenge [Sch +10 ].

### 1.4 Structure of this thesis

In Chapter 2, we introduce some definitions of lattice that are used throughout this thesis. These include representative lattice problems and their relationships. Chapter 3 describes basic algorithms for solving SVP that has various motivations and principles. We also explain the properties of each algorithm and how to use them to benefit from parallel computing. These algorithms were used to test the performance and flexibility of our framework. In Chapter 4, we introduce our framework for the massive parallelization of SVP algorithms. Our framework includes a new parallel scheme for lattice problems, where different algorithms are heterogeneously executed in parallel with information sharing. A design of our framework and some implementation techniques are also presented in this chapter. We demonstrate the performance using the basic algorithm on up to 103,680 cores in large-scale experiments. In Chapter 5, we present the first parallel solver using our framework, which parallelizes the lattice basis reduction by fully exploiting the features of our framework. The lattice basis reductions are accelerated by sharing short lattice vectors in the basis as a block. However, there is a trade-off between randomness and the amount of shared information. To quantify the randomness of lattice basis reduction, we also propose a novel metric using the Grassmann manifold. This metric is used for parameter tuning to benefit from the parallelization fully. In addition, we provide in-depth analyses of our solver's quality of output by sharing information and using large-scale computer platforms up to 103,680 cores.

In Appendix A, we give solutions of the SVP challenge found by our solver, including new records of the hall of frame of the SVP challenge. In Appendix B, we give a well-reduced lattice basis of the SVP challenge found by our solver.

## Chapter 2

## Preliminaries

In this chapter, we will introduce the background of lattices. We begin with the basic definitions of lattices, their properties, and the main lattice problems.

### 2.1 Lattices and their bases

Definition 2.1.1 (Lattice and lattice basis) For integers $n \geq m \geq 1$, let $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$ be $m$ linearly independent vectors in $\mathbb{R}^{n}$. A lattice $L$ is the set of all integral linear combinations of the $\mathbf{b}_{i}{ }^{\prime}$ s. In other words, we have,

$$
\begin{equation*}
L=\mathcal{L}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right):=\left\{\sum_{i=1}^{m} v_{i} \mathbf{b}_{i}: v_{i} \in \mathbb{Z}(1 \leq \forall i \leq n)\right\} . \tag{2.1}
\end{equation*}
$$

Besides, we call $\mathbf{B}$ a basis of lattice $L$ when $B$ consists of $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$ vectors span the lattice $L=$ $\mathcal{L}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$.


Figure 2.1: A lattice in $\mathbb{R}^{2}$ and their basis vectors
In this thesis, we denote lattice basis $\mathbf{B}$ as a matrix consists of $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$ as column vectors in as follows

$$
\mathbf{B}=\left[\begin{array}{c}
\longleftarrow \mathbf{b}_{1} \longrightarrow \\
\longleftarrow \mathbf{b}_{2} \longrightarrow \\
\vdots \\
\longleftarrow \mathbf{b}_{m} \longrightarrow
\end{array}\right]
$$

Every lattice has infinitely many bases when $n, m \geq 2$; if two bases $\mathbf{B}_{1}$ and $\mathbf{B}_{2}$ span the same lattice, then there exists an $n \times n$ unimodular matrix $\mathbf{U}$ satisfying $\mathbf{B}_{1}=\mathbf{B}_{2} \mathbf{U}$ (An integral square matrix with determinant $\pm 1$ is called unimodular). Any elementary row operation of matrix is represented unimodular matrix, therefore for any basis $\mathbf{B}$ of a lattice, elementary row operations for basis $\mathbf{B}$ can not change the lattice $\mathcal{L}(\mathbf{B})$.

Definition 2.1.2 (Volume) The volume of lattice $L=\mathcal{L}(\mathbf{B})$ is defined as

$$
\operatorname{vol}(L)=\sqrt{\operatorname{det}\left(\mathbf{B B}^{T}\right)} .
$$

Especially, when $n=m$ for a lattice basis $\mathbf{B} \in \mathbb{R}^{n \times m}$, we have $\operatorname{vol}(L)=\operatorname{det}(\mathbf{B})$. The volume of lattice $L$ is independent of the choice of bases of $L$. It is the volume of the parallelepiped spanned by the vectors $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$ in geometrically.
Definition 2.1.3 (Gram-Schmidt orthogonalization) The Gram-Schmidt orthogonalization for a basis $\mathbf{B}$ is the orthogonal family $\mathbf{B}^{*}=\left(\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{m}^{*}\right)$, recursively defined by $\mathbf{b}_{1}^{*}=\mathbf{b}_{1}$ and for $2 \leq i \leq m$

$$
\begin{equation*}
\mathbf{b}_{i}^{*}=\mathbf{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \mathbf{b}_{j}^{*} \text { with } \mu_{i j}=\frac{\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}^{*}\right\rangle}{\left\|\mathbf{b}_{j}^{*}\right\|^{2}}(j<i) . \tag{2.2}
\end{equation*}
$$

We call $\boldsymbol{\mu}=\left(\mu_{i j}\right)$ the Gram-Schmidt orthogonalization coefficient matrix, where $\mu_{i j}=0$ for all $i<j$ and $\mu_{k k}=1$ for all $1 \leq k \leq m$. Then we have $\mathbf{B}=\mathbf{B}^{*} \mu$, and thus

$$
\operatorname{vol}(L)=\prod_{i=1}^{m}\left\|\mathbf{b}_{i}^{*}\right\|
$$

The Gram-Schmidt orthogonalization $\mathbf{B}^{*}$ is not unique of lattice $L$ and this depends on the basis $\mathbf{B}$ and the order of the vectors of it.

Definition 2.1.4 (Orthogonal projection) Let $\pi_{\ell}$ denote the orthogonal projection onto the orthogonal complement of the $\mathbb{R}$-vector space $\left\langle\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell-1}\right\rangle_{\mathbb{R}}$ defined by

$$
\begin{array}{r}
\pi_{\ell}: \mathbb{R}^{n} \longrightarrow\left\langle\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell-1}\right\rangle \frac{1}{\mathbb{R}}=\left\langle\mathbf{b}_{\ell}^{*}, \ldots, \mathbf{b}_{m}^{*}\right\rangle_{\mathbb{R}} \\
\pi_{\ell}(\mathbf{x})=\sum_{i=\ell}^{m} \frac{\left\langle\mathbf{x}, \mathbf{b}_{i}^{*}\right\rangle}{\left\|\mathbf{b}_{i}^{*}\right\|^{2}} \mathbf{b}_{i}^{*} \text { for } \mathbf{x} \in \mathbb{R}^{n} .
\end{array}
$$

Note that this projection map $\pi_{\ell}$ depends on the basis. We set $\pi_{1}=\mathrm{id}$ (the identity map) for convenience. If $i \geq \ell$ then we have $\pi_{\ell}\left(\mathbf{b}_{i}\right)=\sum_{j=l}^{i} \mu_{i j} \mathbf{b}_{j}^{*}$ else $\pi_{\ell}\left(\mathbf{b}_{i}\right)=\mathbf{0}$.

Definition 2.1.5 (Projected lattice) The lattice in $\mathbb{R}^{n}$ spanned by $\pi_{k}\left(\mathbf{b}_{k}\right), \ldots, \pi_{k}\left(\mathbf{b}_{d}\right)$ is called a projected lattice of $L$, denoted by $\pi_{k}(L)$.

For the convenience of notation, we use $\mathbf{B}_{[i, j]}$ to mean the basis consisting of projected lattice vectors,

$$
\mathbf{B}_{[i, j]}:=\left(\pi_{i}\left(\mathbf{b}_{i}\right), \ldots, \pi_{i}\left(\mathbf{b}_{j}\right)\right),
$$

and we use $L_{[i, j]}$ a lattice generated from $\mathbf{B}_{[i, j]}$,

$$
L_{[i, j]}:=\mathcal{L}\left(\mathbf{B}_{[i, j]}\right)
$$

The projected lattice $L_{[i, j]}$ has dimension $j-i+1$ and

$$
\operatorname{vol}\left(L_{[i, j]}\right)=\prod_{k=i}^{j}\left\|\mathbf{b}_{k}^{*}\right\|
$$

since the Gram-Schmidt orthogonalization of $\left(\pi_{i}\left(\mathbf{b}_{i}\right), \ldots, \pi_{i}\left(\mathbf{b}_{j}\right)\right)$ is given by $\mathbf{b}_{i}^{*}, \ldots, \mathbf{b}_{j}^{*}$. Note that any projected lattice depends on a basis $\mathbf{B}$ of $L$.

Definition 2.1.6 (Successive minima) For $1 \leq k \leq n$, the $k$-th successive minimum of a mdimensional lattice $L$, denoted by $\lambda_{k}(L)$, is the smallest radius of a ball centered at the origin $\mathbf{0}$ containing $k$ linearly independent vectors in $L$.

In particular, the first minimum $\lambda_{1}(L)$ is equal to the length of a non-zero shortest vector in lattice $L$.

Definition 2.1.7 (Hermite Constant) Let $\mathscr{L}_{m}$ be the set of m-dimensional lattice. Then, the mdimensional Hermite constant $\gamma_{m}$ is defined as

$$
\begin{equation*}
\gamma_{m}:=\max _{L \in \mathscr{L}_{m}} \frac{\lambda_{1}(L)^{2}}{\operatorname{vol}(L)^{2 / m}} \tag{2.3}
\end{equation*}
$$

This is also used for the upper bound analysis of the shortest vector norm in output basis by lattice basis reduction algorithm.

Gaussian Heuristic Given a lattice $L$ of dimension $n$ and a measurable set $S$ in $\mathbb{R}^{n}$, the Gaussian Heuristic predicts that the number of vectors in $L \cap S$ is roughly equal to $\operatorname{vol}(S) / \operatorname{vol}(L)$. By applying to the ball $C$ centered at the origin in $\mathbb{R}^{n}$ with radius $\lambda_{1}(L)$, it leads to

$$
\frac{\operatorname{vol}(C)}{\operatorname{vol}(L)} \approx \#(L \cap C) \approx 1
$$

Using $\operatorname{vol}(C)=\omega_{n} \lambda_{1}(L)^{n}$, where $\omega_{n}$ denotes the volume of the unit ball in $\mathbb{R}^{n}$, then we have

$$
\lambda_{1}(L) \approx \omega_{n}^{-\frac{1}{n}} \operatorname{vol}(L)^{\frac{1}{n}}
$$

We denote this heuristic estimation of $\lambda_{1}(L)$ as follows.

$$
\begin{equation*}
\mathrm{GH}(L):=\omega_{n}^{-\frac{1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \sim \sqrt{\frac{n}{2 \pi e}} \operatorname{vol}(L)^{\frac{1}{n}} \tag{2.4}
\end{equation*}
$$

Approximation $\omega_{n}^{-\frac{1}{n}} \sim \sqrt{\frac{n}{2 \pi e}}$ is derived from Stirling's approximation. $\mathrm{GH}(L)$ is only a heuristic, but it roughly holds for random lattices [GM03] in high dimensions such as $n \geq 50$.

### 2.2 Lattices Problems

Lattice problems are algorithmic problems that involve lattices. Among lattice problems, the SVP, CVP and their variants are fundamental importance.


FIGURE 2.2: Example of solutions of SVP (in Definition 2.2.1) and CVP (in Definition 2.2.6) for 2-dimensional lattice $L$; a solid vector represents a shortest vector in $L$, and break vector represents a closest vector in $L$ for a vector t

Definition 2.2.1 (Shortest Vector Problem (SVP)) Find the shortest non-zero vector with respect to the $\ell_{2}$-norm in the lattice L. In the form of optimization,

$$
\min _{\mathbf{v}}\|\mathbf{v}\| \text { such that } \mathbf{v} \in L \backslash\{\mathbf{0}\} .
$$

SVP is a discrete combination optimization problem for finding $x_{i}{ }^{\prime} \mathrm{s}$ in (2.1) and is shown to be NP-hard under randomized reductions [Ajt96]. (That is, a probabilistic Turing-machine exists that reduces any problem in NP to SVP instances in polynomial-time.)

The followings are evaluation metrics for the found lattice vector and basis.
Definition 2.2.2 (Approximation Factor) For a vector $\mathbf{v} \in L$, the value $\|\mathbf{v}\| / \mathrm{GH}(L)$ is called the approximation factor of $\mathbf{v}$. Similarly, for a basis matrix $\mathbf{B}$, the value $\min _{1 \leq i \leq n}\left\|\mathbf{b}_{i}\right\| / G H(\mathcal{L}(\mathbf{B}))$ is called the approximation factor of $\mathbf{B}$.

Definition 2.2.3 (Hermite Factor) For a vector $\mathbf{v} \in L$, the value $\|\mathbf{v}\| / \operatorname{vol}(L)^{1 / n}$ is called the Hermite factor of $\mathbf{v}$. Similarly, for a basis matrix $\mathbf{B}$, the value $\min _{1 \leq i \leq n}\left\|\mathbf{b}_{i}\right\| / \operatorname{vol}(\mathcal{L}(\mathbf{B}))^{1 / n}$ is called the Hermite factor of $\mathbf{B}$.

Based on these metrics, an approximate variant of SVP is defined:
Definition 2.2.4 (Approximate Shortest Vector Problem (ASVP)) Given a lattice $L$ and an approximation factor $\gamma>0$,

$$
\text { find } \mathbf{v} \in L \backslash\{\mathbf{0}\} \text { such that }\|\mathbf{v}\| \leq \gamma \cdot \lambda_{1}(L) .
$$

ASVP is exactly SVP when $\gamma=1$. If $\gamma<\sqrt{2}$, ASVP becomes NP-hard [Mic01].
Definition 2.2.5 (Hermite Shortest Vector Problem (HSVP)) Given a lattice L and an approximation factor $\gamma>0$,

$$
\text { find } \mathbf{v} \in L \backslash\{\mathbf{0}\} \text { such that }\|\mathbf{v}\| \leq \gamma \cdot \operatorname{vol}(\mathcal{L}(\mathbf{B}))^{1 / n}
$$

Another important lattice problem is:
Definition 2.2.6 (Closest Vector Problem (CVP)) Given a a lattice L and a target vector $\mathbf{t}$, find a vector in $L$ that is closest to $\mathbf{t}$. In the form of optimization,

$$
\min _{\mathbf{v}}\|\mathbf{v}-\mathbf{t}\| \text { such that } \mathbf{v} \in L
$$

From a practical point of view, however, both problems are considered equally hard due to Kannan's embedding technique [Kan87] that can transform CVP into SVP. The main idea of Kannan's embedding technique is to define a lattice $\tilde{L}$ containing a short vector $\mathbf{e}=\mathbf{t}-\mathbf{s}$, where $\boldsymbol{s}$ is the optimal solution of CVP. We define a lattice $\tilde{L}$ as $\mathcal{L}\left(\left(\mathbf{b}_{1}, 0\right), \ldots,\left(\mathbf{b}_{m}, 0\right),(\mathbf{t}, M)\right)$ where $0<M \in \mathbb{R}$. Then, by solving SVP on $\tilde{L}$, we can obtain vector $\mathbf{e}$ and $\mathbf{s}$ as $\mathbf{t}-\mathbf{e}$.

A particular case of CVP that we will use later in this thesis is
Definition 2.2.7 (Bounded Distance Decoding (BDD)) Given a lattice $L$ and a target vector $\mathbf{t}$ within distance $\alpha \lambda_{1}(L)$ of $L=\mathcal{L}(\mathbf{B})$ for a constant $0<\alpha \leq \frac{1}{2}$, find a vector in $L$ closest to $\mathbf{t}$.

There are other essential lattice problems related to the security of modern lattice-based cryptosystems, such as the learning with errors and NTRU problems (e.g., see [Pei16]). Most lattice problems can be reduced to SVP or CVP, so SVP and CVP are fundamental. As Kannan's embedding transforms CVP into SVP, We focus on SVP in this thesis to simplify the narrative. However, the proposed framework in Chapter 4 apply to other lattice problems.

## Chapter 3

## Algorithms for Shortest Vector Problem

This chapter introduces primary families of lattice algorithms for solving the shortest vector problem (SVP). We can categorize these algorithms into two types. One is an exact-SVP algorithm, and the other is an approximate-SVP algorithm. These algorithms are not independent but are closely related. For example, the approximate-SVP algorithm uses the exact-SVP algorithm internally, and the output of the approximate-SVP algorithm can be used for the exact SVP algorithm. We introduce Enumeration and sieve as the exact-SVP algorithm and lattice basis reduction as the approximate-SVP algorithm. These algorithms are used in our parallel frameworks and software that will be introduced in later chapters.

### 3.1 Enumeration

Enumeration (ENUM) algorithm is a deterministic algorithm solving SVP exactly. For an SVP instance of dimension $m$, the time complexity is $2^{\mathrm{O}\left(m^{2}\right)}$, but the space complexity is a polynomial in $m$. Given a basis $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right\}$ of a lattice $L$, ENUM is based on a depth-first tree search for an integer combination $\left(v_{1}, \ldots, v_{m}\right)$ such that $\mathbf{v}=v_{1} \mathbf{b}_{1}+\cdots+v_{m} \mathbf{b}_{m}$ has the shortest norm in $L \backslash\{\mathbf{0}\}$.

With the Gram-Schmidt information (2.2), the target vector can be written as

$$
\mathbf{v}=\sum_{i=1}^{m} v_{i}\left(\mathbf{b}_{i}^{*}+\sum_{j=1}^{i-1} \mu_{i j} \mathbf{b}_{j}^{*}\right)=\sum_{j=1}^{m}\left(v_{j}+\sum_{i=j+1}^{m} \mu_{i j} v_{i}\right) \mathbf{b}_{j}^{*}
$$

By the orthogonality of $\mathbf{b}_{i}^{* \prime}$, the projected vector $\pi_{k}(\mathbf{v})$ has length

$$
\rho_{k}=\left\|\pi_{k}(\mathbf{v})\right\|^{2}=\sum_{j=k}^{m}\left(v_{j}+\sum_{i=j+1}^{m} \mu_{i j} v_{i}\right)^{2}\left\|\mathbf{b}_{j}^{*}\right\|^{2} \quad(1 \leq k \leq m) .
$$

Given a search radius $R>0$, ENUM constructs an enumeration tree of depth $m$, whose nodes at depth $m-k+1$ correspond to the set of all vectors in projected lattices $\pi_{k}(L)$ with a maximum length of $R$. The key observation is that if a shortest vector satisfies $\|\mathbf{v}\|<R$, its projections satisfy $\left\|\pi_{k}(\mathbf{v})\right\|^{2} \leq R^{2}$ for all $1 \leq k \leq m$ since $\left\|\pi_{k}(\mathbf{v})\right\|^{2} \leq\|\mathbf{v}\|^{2}$; hence, it appears as a leaf of the tree. These $m$ inequalities provide an efficient enumeration of the tree. The total number of nodes to be searched can be estimated using the Gaussian Heuristic for each projected lattice as $\sum_{\ell=1}^{m} H_{\ell}$, where

$$
\begin{equation*}
H_{\ell}:=\frac{R^{\ell} \omega_{\ell}}{\operatorname{vol}\left(\pi_{m+1-\ell}(L)\right)}=\frac{R^{\ell} \omega_{\ell}}{\prod_{i=m+1-\ell}^{m}\left\|\mathbf{b}_{i}^{*}\right\|} \quad(1 \leq \ell \leq m) \tag{3.1}
\end{equation*}
$$

and $\omega_{l}$ denotes the volume of the unit ball in $\mathbb{R}^{l}$. Therefore, it is crucial to choose a good $R$, which is sufficiently small but larger than he shortest norm. One useful strategy is pruning [GNR10] where a smaller tree is built by replacing the inequalities $\left\|\pi_{k}(\mathbf{v})\right\|^{2} \leq R^{2}$ by $\left\|\pi_{k}(\mathbf{v})\right\|^{2} \leq R_{m+1-k}^{2}$ with a shorter radii $R_{1} \leq \cdots \leq R_{m}=R$ at each depth defined by a

```
Algorithm 1 ENUM [GNR10]
    procedure \(\operatorname{ENUM}(\mathbf{B}, \mathbf{R})\)
            \(\triangleright \mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)\) : basis of a lattice \(L, \mathbf{R}=\left(R_{1}, \ldots, R_{m}\right): R_{k}\) is a radius of depth-k
    projected lattice \(\pi_{n-k+1}(\mathcal{L}(\mathbf{B}))\)
        Set \(\rho, \mathbf{r}, \mathbf{v}, \mathbf{c}\) and \(\mathbf{w}\) to zero array, whose size is \(m+1, m+1, m, m\) and \(m\), respectively;
        Set \(\sigma\) to zero matrix, whose size is \((m+1) \times m\);
        \(r_{2} \leftarrow 1 ; v_{1} \leftarrow 1 ; \ell \leftarrow 1 ;\)
        while true do
            \(\rho_{k} \leftarrow \rho_{k+1}+\left(v_{k}-c_{k}\right)^{2}\left\|\mathbf{b}_{k}^{*}\right\|^{2} ; \quad \triangleright \rho_{k}=\left\|\pi_{k}(\mathbf{v})\right\|^{2}\)
            if \(\rho_{k} \leq R_{m+1-k}^{2}\) then
                if \(k=1\) then return \(\mathbf{v}=\sum_{k=1}^{m} v_{k} \mathbf{b}_{k}\);
                                    \(\triangleright\) Find \(\mathbf{v}\) such that \(\left\|\pi_{k}(\mathbf{v})\right\|^{2} \leq R_{m+1-k}^{2}\) for all \(k\)
                    end if
                \(k \leftarrow k-1 ; r_{k} \leftarrow \max \left(r_{k}, r_{k+1}\right) ;\)
                for \(i=r_{k+1}\) down to \(k+1\) do
                        \(\sigma_{i, k} \leftarrow \sigma_{i+1, k}+\mu_{i k} v_{i} ;\)
                end for
                \(c_{k} \leftarrow-\sigma_{k+1, k} ; v_{k} \leftarrow\left\lfloor c_{k}\right\rceil ; w_{k} \leftarrow 1 ;\)
            else
                \(k \leftarrow k+1 ;\)
                if \(k=m+1\) then return \(\mathbf{0}\); \(\quad \triangleright\) Finish search
                else \(\quad \triangleright\) Go to the successor
                        \(r_{k-1} \leftarrow k ;\)
                        if \(k \geq \ell\) then
                        \(\ell \leftarrow k ; v_{k} \leftarrow v_{k}+1 ;\)
                else
                        if \(v_{k}>c_{k}\) then
                                \(v_{k} \leftarrow v_{k}-w_{k} ;\)
                                else
                        \(v_{k} \leftarrow v_{k}+w_{k} ;\)
                            end if
                end if
                \(w_{k} \leftarrow w_{k}+1 ;\)
                end if
            end if
        end while
    end procedure
```

pruning strategy. This is a probabilistic method because it is not certain that $\mathbf{v}$ can be found in this pruned tree.

The description in pseudo-code of ENUM is given in Algorithm 1. In this algorithm, there is no element of randomness, and the nodes are traversed deterministically. ENUM can obtain the shortest vector by setting radius $R_{1}=\cdots=R_{m}=R$ to the norm of the vector currently known and continuing the search without returning in line 9. In addition, since this algorithm works well even if the parameter $R_{i}$ are updated while the algorithm is running, we can reduce the number of nodes of the enumeration tree without losing the ability to find the shortest vector by updating the parameters $R_{i}$ with the norm of $\mathbf{v}$ in line 9. The size of the enumeration tree is determined by the input lattice basis and the radius parameters $R_{i}$.

Using a basis which is an output of lattice reduction algorithm (described in Section 3.3), the number of nodes in enumeration tree becomes generally smaller. It was pointed out in [GN08] that the approximation

$$
\left\|\mathbf{b}_{i}^{*}\right\| /\left\|\mathbf{b}_{i+1}^{*}\right\| \approx q \quad(1 \leq i \leq m-1)
$$

holds for the Gram-Schmidt coefficients $\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{m}^{*}$ of the lattice basis output by the lattice
reduction algorithm. In addition, from definition of Hermite constant (2.3), the upper bound on the shortest vector norm of $m$-dimensional lattice is given by $\sqrt{\gamma_{m}} \operatorname{vol}(L)^{\frac{1}{m}}$. From GramSchmidt coefficient's property and setting the radius $R$ to $\sqrt{\gamma_{m}} \operatorname{vol}(L)^{\frac{1}{m}}$ which is optimal in the worst case, then $H_{\ell}$ in (3.1) are approximated as follows [GNR10];

$$
H_{\ell} \approx q^{(m-\ell) \ell / 2} V_{\ell}\left(\sqrt{\gamma_{m}}\right)
$$

$\gamma_{m}$ is Hermite constant in (2.3), and from this definitions, the upper bound shortest vector of lattice Therefore, if as $q$ becomes smaller, the number of nodes in the enumeration tree becomes smaller. It is known that $q$ can be reduced by transforming the lattice basis with a stronger reduction algorithm. In other words, we can make the ENUM algorithm work under better conditions by preprocessing of reduction algorithms.

Using as a sampler of short lattice vector In Algorithm 1, we can search all the lattice vectors $\mathbf{v}$ satisfying $\left\|\pi_{k}(\mathbf{v})\right\|^{2} \leq R_{m-k+1}^{2}$, especially $\|\mathbf{v}\|=\left\|\pi_{1}(\mathbf{v})\right\|<R_{m}$, by continuing the search without returning in line 9 . The number of vectors satisfying the condition can be estimated from basis $\mathbf{B}$ and radius $R$. Since an enumeration tree depends on the input basis, it is not easy to switch the basis in the middle of the algorithm. If we want to perform ENUM from another basis, we must terminate the search and start ENUM using another basis. The memory usage of this algorithm is minimal and does not increase during the search.

### 3.2 Sieve

Sieve algorithm has a better asymptotic runtime than enumeration, but it requires exponential space $2^{\Theta(n)}$. The first algorithm of this kind is the randomized sieve algorithm proposed by Ajtai, Kumar and Sivakumar (AKS) [AKS01]. It outputs a shortest lattice vector with overwhelming probability, and its asymptotic complexity is much better than deterministic enumeration algorithms with $2^{O\left(n^{2}\right)}$ time complexity. The idea is that given a lattice $L$ of dimension $n$, consider a ball $S$ centered at the origin and of radius $r$ with $\lambda_{1}(L) \leq r \leq O\left(\lambda_{1}(L)\right)$. Then $\#(L \cap S)=2^{O(n)}$ according to the Gaussian Heuristic. If we could perform an exhaustive search for all vectors in $L \cap S$, we could find a shortest lattice vector within $2^{O(n)}$ polynomial-time operations. In contrast, the AKS algorithm performs a randomized sampling of $L \cap S$. If it was uniformly sampled over $L \cap S$, a short lattice vector would be included in $N$ samples with probability close to 1 for $N \gg \#(L \cap S)$. It can be also shown that there exists a vector $\mathbf{w} \in L \cap S$ such that $\mathbf{w}$ and $\mathbf{w}+\mathbf{s}$ can be sampled with non-zero probability for some shortest lattice vector s. Thus a shortest lattice vector is obtained by computing a shortest difference of any pairs of the $N$ sampled vectors in $L \cap S$. There are various implementations of sieve algorithms that differ mainly in how to sample lattice vectors, such as ListSieve and GaussSieve [MV10]. Similarly to ENUM, the choice of $R$ is crucial to the sieve.

GaussSieve Here we describe the GaussSieve algorithm, which is incorporated into our framework for testing, and a pseudo-code is shown in Algorithm 2. In GaussSieve, vectors are sampled sequentially and stored in a List. Then, to keep that any vector pair of ( $\mathbf{v}, \mathbf{p}$ ) in the list are satisfied the pairwise reduced condition, $\min (\|\mathbf{v} \pm \mathbf{p}\|) \geq \max (\|\mathbf{v}\|,\|\mathbf{p}\|)$, we reduce the sampled vector using vectors in the list. Simultaneously, the vectors in the List are also reduced by the reduced sampled vector. As a result, vectors that do not satisfy the pairwise reduced condition are moved to a Stack and them will use instead of sampling. If the reduced vectors collide with the vectors in List $c$ times, algorithm terminates. We use a priority queue data container to List and Stack. Its norm sorts the vectors in the priority queue. Sampling is executed by Klein's randomized rounding algorithm [Kle00].

Using as a sampler of short lattice vector The norm of the lattice vectors output by a Klein sampler is generally long, and at the beginning of the algorithm, when the number of vectors in a List is small, lattice vectors in a List are long. As the number of vectors in a List

```
Algorithm 2 GaussSieve [MV10]
    procedure GaussSieve( \(\mathbf{B}, c\) )
            \(\triangleright \mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)\) : basis of a lattice \(L, c\) : the maximum number of collision
        List \(\leftarrow\{\mathbf{0}\}\); Stack \(\leftarrow\} ; K \leftarrow 0\);
        while \(K<c\) do
            if Stack is empty then
                Sample \(\mathbf{v}\) using klein sampler with \(\mathbf{B}\);
            else
                Pop \(\mathbf{v}\) from Stack;
            end if
            \(\mathbf{v} \leftarrow\) GaussReduce( \(\mathbf{v}\),List, Stack);
            if \(\mathbf{v}=\mathbf{0}\) then
                \(K \leftarrow K+1 ;\)
            else
                Push v into List;
            end if
        end while
    end procedure
    procedure GaussReduce( \(\mathbf{v}\), List, Stack)
        while \(\exists \mathbf{p} \in L\) such that \(\|\mathbf{p}\| \leq\|\mathbf{v}\| \wedge\|\mathbf{v}-\mathbf{p}\| \leq\|\mathbf{v}\|\) do
            \(\mathbf{v} \leftarrow \mathbf{v}-\mathbf{p} ; \quad \triangleright\) Reduce \(\mathbf{v}\) using \(\mathbf{p}\)
        end while
        while \(\exists \mathbf{p} \in L\) such that \(\|\mathbf{p}\|>\|\mathbf{v}\| \wedge\|\mathbf{p}-\mathbf{v}\| \leq\|\mathbf{p}\|\) do
            Pop \(\mathbf{p}\) from List;
            Push p into Stack;
        end while
    end procedure
```

increases, the sampled vectors become strongly reduced, and the number of short vectors in a List increases. In other words, the algorithm generates shorter vectors as the algorithm proceeds, and the sampler's performance improves. We also can interfere from the outside of the algorithm by adding lattice vectors to Stack because Stack is managed independently from the pairwise reduction condition in List.

### 3.3 Lattice basis reduction

Reduction algorithms find not necessarily shortest lattice vectors, but they are much faster than exact-SVP algorithms such as enumeration and sieve (see [Ngu09; Yas21] for a survey). Given a basis of a lattice, the goal of lattice basis reduction is to find a new basis of the same lattice consisting of nearly orthogonal and relatively short vectors (See Figure. 3.1). Most lattice problems become easier to solve with such a reduced basis. The Lenstra-Lenstra-Lovász (LLL) algorithm [LLL82] is the most celebrated algorithm, and its blockwise generalization is the block Korkine-Zolotarev (BKZ) algorithm [SE94]. Recently, efficient variants of BKZ such as BKZ 2.0 [CN11] are implemented in software libraries (e.g., fplll library [The16]), and they are used to estimate the security level of lattice-based schemes (e.g., see [AD21; Alb+18]).

### 3.3.1 LLL reduction

Here, we first introduce the size-reduction algorithm [Her50], which is the basic component of various lattice basis reduction algorithms.

Definition 3.3.1 (Size-reduction) a matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ is called size-reduced, if its satisfies:

$$
\left|\mu_{i j}\right| \leq \frac{1}{2} \quad(1 \leq j \leq i \leq m)
$$



FIGURE 3.1: An example of lattice reduction: Left is lattice basis before lattice reduction, right is that after lattice reduction.

```
Algorithm 3 Size-reduction algorithm [Her50]
    procedure SizeReduction \((\mathbf{B}) \quad \triangleright \mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)\) : basis of a lattice \(L\)
        for \(i=2\) to \(m\) do
            for \(j=i-1\) down to 1 do
                SizeReduce(B, \(i, j\) );
            end for
        end for
    end procedure
    procedure SizeReduce( \(\mathbf{B}, i, j\) )
        if \(\left|\mu_{i j}\right|>\frac{1}{2}\) then
            \(q \leftarrow\left\lfloor\mu_{i j} \dagger ;\right.\)
            \(\mathbf{b}_{i} \leftarrow \mathbf{b}_{i}-q \mathbf{b}_{j} ;\)
            for \(\ell=1\) to \(j\) do
                    \(\mu_{i \ell} \leftarrow \mu_{i \ell}-q \mu_{j \ell} ;\)
            end for
        end if
    end procedure
```

We can obtain the size-reduced basis by Algorithm 3. Since $\left\|\mu_{i j}\right\|$ is calculated from the inner product of $\mathbf{b}_{i}^{*}$ and $\mathbf{b}_{j}^{*}$, a smaller value indicates that $\mathbf{b}_{i}^{*}$ and $\mathbf{b}_{j}^{*}$ are closer to orthogonal.

Definition 3.3.2 ( $\delta$-LLL-reduction) For $\frac{1}{4}<\delta<1$, a matrix $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right) \in \mathbb{R}^{m \times n}$ is called $\delta$-LLL reduced, if it is size-reduced and satisfies the Lovász condition:

$$
\delta\left\|\pi_{i-1}\left(\mathbf{b}_{i-1}\right)\right\| \leq\left\|\pi_{i-1}\left(\mathbf{b}_{i}\right)\right\|^{2} \quad(1 \leq i<n) .
$$

This Lovász condition is equal to the following condition.

$$
\left\|\mathbf{b}_{i}^{*}\right\| \geq\left(\delta-\mu_{i, i-1}^{2}\right)\left\|\mathbf{b}_{i-1}^{*}\right\| .
$$

For a $\delta$-LLL-reduced basis $\mathbf{B}$, it holds both

$$
\begin{aligned}
& \left\|\mathbf{b}_{1}\right\| \leq \alpha^{\frac{m-1}{2}} \lambda_{1}(L), \text { and } \\
& \left\|\mathbf{b}_{1}\right\| \leq \alpha^{\frac{m-1}{4}} \operatorname{vol}(L)^{\frac{1}{m}}
\end{aligned}
$$

for $L=\mathcal{L}(\mathbf{B})$ and $\alpha=4 /(4 \delta-1)$ (see [Bre11; Ngu09]). To find an LLL-reduced basis, the LLL algorithm [LLL82] calls size-reduction as a subroutine, and it also swaps adjacent basis vectors that do not satisfy Lovász' condition. The LLL algorithm has a complexity polynomial in $m$. In practice, the average approximation factor is smaller than this upper bound when using random lattices. Experiments conducted in [GN08] with a large number of random lattice bases show that in higher dimensions, on average, $\left\|\mathbf{b}_{1}\right\| \approx 1.021^{m} \operatorname{vol}(L)^{1 / m}$.

In addition, MLLL algorithm [Poh87], which is a variant of LLL, can be get rid of the linear dependency of vectors. MLLL is used in the BKZ algorithm described below. Since

```
Algorithm 4 LLL algorithm [LLL82]
    procedure \(\operatorname{LLL}(\mathbf{B}, \delta)\)
            \(\triangleright \mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right)\) : basis of a lattice \(L, \delta\) : parameter of the Lovász condition
        \(B_{i} \leftarrow\left\|\mathbf{b}_{i}^{*}\right\|^{2}(1 \leq i \leq n) ;\)
        \(k \leftarrow 2\);
        while \(k \leq n\) do
            for \(j=k-1\) down to 1 do
                    SizeReduce \((\mathbf{B}, k, j)\);
            end for
        end while
        if \(B_{k} \leq\left(\delta-\mu_{k, k-1}^{2}\right) B_{k-1}\) then
            \(k \leftarrow k+1 ;\)
        else
            \(\operatorname{swap}(\mathbf{B}, k, k-1) ; \quad \triangleright \operatorname{Swap} \mathbf{b}_{k}\) and \(\mathbf{b}_{k-1}\)
            \(k \leftarrow \max \{k-1,2\} ;\)
        end if
    end procedure
```

the MLLL algorithm is a generalization of the LLL algorithm, we will refer to MLLL as LLL in the following description. In other words, we assume that the MLLL algorithm works when a matrix that is not full rank is given as input to LLL.

As a generalization of LLL, non-adjacent basis vectors can be changed in LLL with deep insertions (DeepLLL) [SE94]; Given a basis $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ and a reduction parameter $\frac{1}{4}<\delta<1$, we insert the $k$-th basis vector $\mathbf{b}_{k}$ before $\mathbf{b}_{i}$ as

$$
\begin{equation*}
\mathbf{B} \longleftarrow\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{i-1}, \mathbf{b}_{k}, \mathbf{b}_{i}, \ldots, \mathbf{b}_{k-1}, \mathbf{b}_{k+1}, \ldots, \mathbf{b}_{n}\right) \tag{3.2}
\end{equation*}
$$

for indexes $i<k$ such that $\left\|\pi_{i}\left(\mathbf{b}_{k}\right)\right\|^{2}<\delta\left\|\mathbf{b}_{i}^{*}\right\|^{2}$, instead of swapping the neighboring basis vectors (at line 13 in Algorithm 4). This basis permutation is called a deep insertion. The $i$-th new Gram-Schmidt vector is given by $\pi_{i}\left(\mathbf{b}_{k}\right)$, whose length is shorter than the old one.

Definition 3.3.3 ( $\delta$-DeepLLL-reduced) We say a basis $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right) \delta$-DeepLLL-reduced if it is size-reduced and $\delta\left\|\mathbf{b}_{i}^{*}\right\|^{2} \leq\left\|\pi_{i}\left(\mathbf{b}_{k}\right)\right\|^{2}$ for all $i<k$.

For a $\delta$-DeepLLL-reduced basis B, it holds both

$$
\begin{aligned}
& \left\|\mathbf{b}_{1}\right\| \leq \sqrt{\alpha}\left(1+\frac{\alpha}{4}\right)^{\frac{m-2}{2}} \lambda_{1}(L), \text { and } \\
& \left\|\mathbf{b}_{1}\right\| \leq \alpha^{\frac{m-1}{2 m}}\left(1+\frac{\alpha}{4}\right)^{\frac{(m-1)(m-2)}{4 m}} \operatorname{vol}(L)^{\frac{1}{m}}
\end{aligned}
$$

for $L=\mathcal{L}(\mathbf{B})$ and $\alpha=\frac{4}{4 \alpha-1}$ (see [YY19]). These properties are better than LLL, but the complexity is no longer polynomial.

### 3.3.2 HKZ reduction

Hermite-Korkine-Zolotarev (HKZ) reduction has a more (ideal) strong reduction for lattice basis than LLL.

Definition 3.3.4 (HKZ-reduction) A matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$ is called HKZ-reduced, if it is size-reduced and satisfies:

$$
\left\|\mathbf{b}_{i}^{*}\right\|=\lambda_{1}\left(L_{[i, n]}\right) \quad(1 \leq i \leq n) .
$$

The HKZ-reduced basis has a smaller upper bound than LLL for the norm of $\mathbf{b}_{1}$.
Lemma 3.3.1 ([LLS90, Theorem 2.1]) Let $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$ be an HKZ-reduced basis of a lattice L. We have

$$
\frac{4}{i+3} \lambda_{i}(L)^{2} \leq\left\|\mathbf{b}_{i}\right\| \leq \frac{i+3}{4} \lambda_{i}(L)^{2} \quad(1 \leq i \leq m) .
$$

To obtain the HKZ-reduced basis, we need to solve the SVP on the projected lattice sequentially while incrementing $i$ for $L_{[i, m]}$ from $i=0$. However, since the cost of SVP increases exponentially with the dimension of lattice, it is tough to find the HKZ-reduced basis in practice.

### 3.3.3 BKZ reduction

The Blockwise Korkine-Zolotarev (BKZ) lattice reduction algorithm of Schnorr-Euchner [Sch87; SE94]. It generalizes the HKZ algorithm by introducing a blocksize $\beta>2$. On the other hand, if $\beta=1$, then BKZ reduction is equal to LLL reduction, and BKZ reduction can be said to be a generalization of LLL.

Definition 3.3.5 ( $\beta$-BKZ reduced basis) A matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$ is called $\beta$-BKZ-reduced, if it is LLL-reduced and satisfies:

$$
\left\|\mathbf{b}_{j}^{*}\right\|=\lambda_{1}\left(L_{[j, k]}\right) \quad(1 \leq j \leq n),
$$

where $k=\min (j+\beta-1, d)$.
Note that $L_{[j, k]}$ is the projected lattice as $\mathcal{L}\left(B_{[j, k]}\right)$, and $B_{[j, k]}=\left(\pi_{j}\left(\mathbf{b}_{j}\right), \ldots, \pi_{j}\left(\mathbf{b}_{k}\right)\right)$.
For a $\beta$-BKZ-reduced basis B, it holds

$$
\left\|\mathbf{b}_{1}\right\| \leq \gamma_{\beta}^{\frac{d-1}{\beta-1}} \lambda_{1}(L)
$$

where $\gamma_{\beta}$ denotes Hermite's constant of dimension $\beta$ [Sch92] (see [Ngu09] for Hermite's constants). A $\beta$-BKZ-reduced basis can be found by the BKZ algorithm [SE94], in which LLL is called to reduce $\mathbf{B}_{[j, k]}$ before calling an exact-SVP algorithm (e.g., an enumeration algorithm) over $L_{[j, k]}$. Since larger $\beta$ decreases $\gamma_{\beta}^{1 /(\beta-1)}$ from Mordell's inequality, BKZ finds short lattice vectors, but its computational cost is much more expensive. The complexity of BKZ depends on that of an exact-SVP algorithm over $L_{[j, k]}$. Experimentally results in [GN08] shows $\left\|\mathbf{b}_{1}\right\| \approx 1.0128^{m} \operatorname{vol}(L)^{1 / m}$ and $1.0109^{m} \operatorname{vol}(L)^{1 / m}$ for blocksize $\beta=20$ and 28, respectively, for high-dimensional lattice.

DeepBKZ It is an enhancement of BKZ proposed in [YY17] that uses DeepLLL as a subroutine in a BKZ framework (instead of LLL). We show a basic procedure of DeepBKZ in Algorithm 5 that calls enumeration as an exact-SVP algorithm in line 7. In practice, DeepBKZ can find shorter lattice vectors than BKZ in using the same blocksize $\beta$ (see [YY17; YNY20] for their experimental results). Similarly to BKZ, the complexity of DeepBKZ depends on that of an exact-SVP algorithm (e.g., enumeration) in dimension $\beta$.

Using lattice basis reduction as a sampler of shortest lattice vector Although basis reduction does not aim to obtain the shortest lattice vector, it is experimentally known that it can find small lattice vectors whose norm is less than the theoretical upper bound ([BSW18] calls this phenomenon "head concave"). Also, the vectors in the lattice basis are frequently replaced during the processing of the algorithm. Therefore, we can sample short lattice vectors by fetching the vectors in the basis of the algorithm running at any timing. In addition, since the behavior of the basis reduction changes by randomization with unimodular matrices, it is also possible to sample short lattice vectors by repeating the basis randomization and the execution of (light) basis reduction.

### 3.4 Project-and-lift

The computational complexity of every known algorithm for SVP is exponential. A workaround is to work with a smaller dimensional lattice and lift its shortest vector to find a short vector in the original lattice. A straightforward but effective approach is to project the original basis vectors by $\pi_{k}$ for some $1 \leq k<m$. First, find shortest vectors in the projected ( $m-k+1$ )dimensional lattice by, for example, ENUM or sieve, and lift them to the original lattice so

```
Algorithm 5 DeepBKZ [YY17]
    procedure \(\operatorname{DeepBKZ}(\mathbf{B}, \delta, \beta)\)
            \(\triangleright \mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)\) : basis of a lattice \(L, \delta\) : reduction parameter, \(\beta\) : blocksize
        \(\mathbf{B} \leftarrow \operatorname{DeepLLL}(\mathbf{B}, \delta) \quad \triangleright\) DeepLLL-reduction for the input basis \(\mathbf{B} ;\)
        \(z \leftarrow 0, j \leftarrow 0 ;\)
        while \(z<m-1\) do
            \(j \leftarrow(j(\bmod m-1))+1, k \leftarrow \min (j+\beta-1, m), h \leftarrow \min (k+1, m)\)
            \(\mathbf{v} \leftarrow \operatorname{ENUM}\left(L_{[j, k]}\right) ;\)
                    \(\triangleright\) Enumeration over \(L_{[j, k]}\) to find \(\mathbf{v} \in L\) satisfying \(\left\|\pi_{j}(\mathbf{v})\right\|=\lambda_{1}\left(L_{[j, k]}\right)\)
            if \(\left\|\pi_{j}(\mathbf{v})\right\|<\left\|\mathbf{b}_{j}^{*}\right\|\) then
                \(z \leftarrow 0,\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{h}\right) \leftarrow \operatorname{LLL}\left(\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{j-1}, \mathbf{v}, \mathbf{b}_{j}, \ldots, \mathbf{b}_{h}\right)\right)\)
                    \(\triangleright\) Remove the lsinear dependency by LLL after insertion of \(\mathbf{v}\) at position \(j\)
            else
                \(z \leftarrow z+1 ;\)
            end if
            \(\operatorname{DeepLLL}\left(\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{h}\right), \delta\right)\);
                \(\triangleright\) DeepLLL-reduction for the sub-basis \(\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{h}\right)\) of the current basis B
        end while
    end procedure
```

that their projections by $\pi_{k}$ coincides with the shortest vectors in the projected lattice. The latter lifting process is equivalent to BDD. In this manner, however, it is not guaranteed that a shortest vector will be found.

Sub-sieve Sub-sieve is proposed in [Duc18] which implements this idea using a sieve. Specifically, a sieve algorithm is performed in a projected lattice $\pi_{k}(L)$ to obtain a list of short lattice vectors:

$$
D_{k, \tau}:=\left\{\mathbf{0} \neq \mathbf{v} \in \pi_{k}(L):\|\mathbf{v}\| \leq \tau \cdot \mathrm{GH}\left(\pi_{k}(L)\right)\right\}
$$

for a constant $\tau$ such as $\tau=\sqrt{\frac{4}{3}}$. In practice, $k$ is chosen to be around $m-30$ for highdimensional lattices [Alb+19; DSW21]. Then, by Babai's algorithms [Bab86], the short vectors in the inverse image $\pi_{k}^{-1}\left(D_{k, \tau}\right) \subset L$ are enumerated. For a shortest non-zero vector $\mathbf{s}$ in $L$, we set $d$ and $\tau$ so that the projected vector $\mathbf{s}_{k}:=\pi_{k}(\mathbf{s})$ is included in the list $D_{k, \tau}$. By an exhaustive search over $D_{k, \tau}$, assume that $\mathbf{s}_{k}$ is known. Let $\mathbf{B}$ denote the basis matrix corresponding to $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right\}$. Write $\mathbf{s}=\mathbf{x B}$ for some $\mathbf{x} \in \mathbb{Z}^{n}$, and split $\mathbf{x}$ as ( $\mathbf{x}_{1} \mid \mathbf{x}_{2}$ ) with $\mathbf{x}_{1} \in \mathbb{Z}^{k-1}$ and $\mathbf{x}_{2} \in \mathbb{Z}^{n-k+1}$. Since $\mathbf{s}_{k}=\pi_{k}(\mathbf{x B})=\mathbf{x}_{2} \mathbf{B}_{k}$, we know $\mathbf{x}_{2}$. Here $\mathbf{B}_{k}$ denotes the matrix whose rows are $\mathbf{b}_{k}, \ldots, \mathbf{b}_{n}$. We need to recover $\mathbf{x}_{1}$ so that the vector $\mathbf{s}=\mathbf{x}_{1} \mathbf{B}_{1}+\mathbf{x}_{2} \mathbf{B}_{2}$ is the shortest in $L \backslash\{\mathbf{0}\}$, where we split $\mathbf{B}$ into two matrices $\mathbf{B}_{1}$ and $\mathbf{B}_{2}$. This is a BDD instance over the lattice spanned by the rows of $\mathbf{B}_{1}$ for the target vector $\mathbf{x}_{2} \mathbf{B}_{2}$.

Sub-ENUM We introduce sub-ENUM algorithm [Tat+21]. The first part is very similar to sub-sieve. An ENUM algorithm is performed in a projected lattice $\pi_{k}(L)$ to collect a lot of very short lattice vectors in $D_{k, \tau}$. We call this strategy child-ENUM. Then, instead of Babai's algorithms, an ENUM algorithm is again used to find a shortest vector for a $k$ dimensional lattice spanned by $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k-1}, \mathbf{v}\right\}$ We call this root-ENUM. As described in Section 3.1, ENUM has complexity worse than sieve in high dimensions, but it requires much less space, and thus it is more suitable for massive parallelization with small memory. The basic procedure is as follows:
(i) We first execute ENUM on the sub-lattice $\mathcal{L}\left(\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k-1}\right\}\right)$.
(ii) Then we find a short lattice vector $\mathbf{v}$ by performing child-ENUM over the projected lattice $\pi_{k}(L)$ such that $\mathbf{v} \in D_{k, \tau}$. If we finish searching all nodes of the enumeration tree of $\pi_{k}(L)$, we output the shortest vector found and finish the Sub-ENUM.
(iii) We then run root-ENUM on the sub-lattice $\mathcal{L}\left(\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k-1}, \mathbf{v}\right\}\right)$. If $\pi_{k}(\mathbf{s})=\pi_{k}(\mathbf{v})$ is satisfied, then we can obtain the shortest vector $\mathbf{s} \in L$ by root-ENUM, else we back to step (ii).

## Chapter 4

## CMAP-LAP: Framework for solving lattice problems with massively parallelization

In this chapter, we propose a framework CMAP-LAP that implements a new parallel, multialgorithm scheme for lattice problems based on a supervisor-worker parallel system. Our framework allows several different single-rank or multi-rank solvers to work cooperatively while efficiently sharing information with other solvers, even in a large-scale computational environment. This framework is based on the Generalized UG framework (described detail in Section 4.2), but the information managed by the supervisor and the data structure communicated are customized for the lattice problem and it was created from scratch. In Section 4.1, we show the motivation and overall design of our framework and expanded data pool for lattice problems. In addition, we describe some implementation techniques, checkpoint-and-restart functionally, hybrid parallelization, non-blocking communication. In Section 4.3, we show the performance of CMAP-LAP, such as sharing efficiency, scalability and checkpoint-and-restart functionally.

### 4.1 Design of framework

It is essential for a practical solver to utilize the multiple lattice algorithms introduced in Chapter 3. Most of the existing solvers discussed in Section 1.3 rely on either the combination of lattice reduction and sieve or the combination of lattice reduction and ENUM. These algorithms are inter-dependent and executed sequentially. In contrast, CMAP-LAP is built on a new multi-algorithm paradigm in which multiple lattice algorithms are executed cooperatively and yet asynchronously in parallel. The key idea is that each lattice algorithm described in Chapter 3 can be considered a sampler of short lattice vectors. Furthermore, each algorithm benefits from the knowledge of short vectors; for example, the enumeration tree of ENUM shrinks according to the upper bound $R$ of the shortest norm. Using different algorithms and randomly transformed bases, we can increase the number of samplers,


FIGURE 4.1: Interaction among SVP algorithms


FIgURE 4.2: System overview of CMAP-LAP for lattice problems
which mutually boosts the sampling performance by sharing the information of short vectors found (see Figure 4.1). To realize the novel multi-algorithm paradigm, CMAP-LAP was developed entirely from scratch utilizing the full power of the Generalized UG, which is a generic high-level task parallelization framework.

### 4.1.1 Architecture

We describe the architecture of CMAP-LAP. The Generalized UG consists of a controller process, LoadCoordinator (LC), and multiple Solvers. Each Solver communicates with LC asynchronously. This system is suitable for multiple processes that run different algorithms and share information as needed. CMAP-LAP adopts the Supervisor-Worker load coordination paradigm (see [Ral+18]), where LC is supervisor and Solvers are workers. The main difference to the typical master-worker paradigm is that the supervisor's task is limited and workers act more independently by exchanging small messages with supervisors as needed, avoiding unnecessary overhead to manage workers. The LC has the following data pools: (i) Instance Pool, (ii) Solver Pool, (iii) Task Pool, and (iv) Share-Data Pool. (See Figure 4.2). The LC creates particular purpose local threads as needed: (i) Checkpoint Writer thread (ii) Local solver threads.

Each Solver carries a Task, which is a triple of:

- Instance is the data that represents the problem to solve, which in the case of SVP is a lattice basis, and in the case of CVP is a lattice basis and a target vector.
- Parameters describe the type of algorithm and the parameters of the algorithm-for example, an ENUM algorithm with a pruning strategy from Parameters.
- Status represents the algorithm's progress, e.g., for the depth-first search of the enumeration algorithm, it is the node currently being searched.

Given a lattice problem, each Solver is created in one core and assigned a Task by LC. The basic flow of CMAP-LAP is as follows (see Figure 4.3):
(1) LC stores given Instance in the instance pool.
(2) LC pops an Instance from the instance pool, sets Parameters for Instance, and initializes Status. The created Task $=($ Instance, Parameters, Status $)$ is stored in the task pool.
(3) If there exists an idle Solver, LC pops a Task in the task pool and sends it to the idle Solver, and stores it to the solver pool.
(4) Each Solver takes the algorithm and its input from the received Task, and occasionally shares information to LC, such as Instance, Data, Status. The information sent depends on the algorithm, as shown in Figure 4.1. LC stores the information in the pool according to this type. In addition, Solver sends its Status to LC, and LC updates Task in the solver pool for the checkpoints.


Figure 4.3: Execution flow of CMAP-LAP
(5) Information in the share-data pool is occasionally retrieved from LC, and shared among Solvers. Each Solver updates its Parameters according to the shared information. See Chapter 3 for how the shared information is utilized by each algorithm run by the Solver.
(6) When a Solver finishes the assigned Task, it sends its final Status to LC and becomes idle.

LC always checks for messages from Solver. Messages received by the LC are processed through the message handler according to the type of message. As described above, Solver only communicates with LC, and Solver does not share information with other Solvers directly. This communication via the share-data pool is an effective solution for massive parallelization to achieve (i) the reduction in the number of communication paths, (ii) the management of the total amount of communication, (iii) the control over the memory usage, and (iv) I/O for checkpoint and progress takes place solely within LC.

The detail of the components of CMAP-LAP is given as follows.

Instance Pool Instance pool stores instances of the problem together with their priorities. For example, bases transformed by unimodular matrices give the same lattice and represent different instances of the same lattice problem. The instance pool is initialized with the single basis provided a lattice basis that specifies the lattice problem. LC stores bases sent from Solvers, which run a lattice reduction algorithm. In the case of SVP, the priority can be computed by the estimated total number of nodes in the enumeration tree described in Section 3.1 such that the shortest vector will be found more efficiently with an instance of
higher priority. LC pops an instance with the highest priority from the instance pool and creates a Task from it.

Task Pool Task pool stores Tasks, which are triples of (Instance, Parameters, Status). It manages the Tasks waiting to be executed. LC assigns the Task with the highest priority to a Solver. In this way, the Tasks, which would lead to better solutions quickly, are prioritized. Multiple Tasks may be generated from a single instance using different algorithms and parameters.

Solver Pool Solver pool stores information of the running Solvers. Each Solver is managed by (Solver Id, Task). The Status of Task is periodically updated by the Status message sent from Solver. This mechanism allows LC to grasp the status of all Solvers. When Solver finishes the assigned Task, it is registered as idle. In addition, when LC wants to assign a new Task of high priority immediately, LC chooses a running Solver to interrupt the current Task.

The number of active Solvers that runs on a single machine node is determined by LC according to the computational cost of Task. For example, sieve algorithms have a large memory footprint to maintain a large number of lattice vectors; a single Solver becomes active and runs on a single machine node. Meanwhile, ENUM and reduction algorithms use little memory, and the same number of Solvers as that of the cores run on a single node.

Share-Data Pool Share-data pool stores information that is shared across multiple Solvers. In the case of CMAP-LAP, a typical type of information sent from Solvers is a lattice vector of the small norm. The size of the message is equal to the product of the dimension (e.g., 130) and the size of the scalar (e.g., long integer). LC checks if the sent vector is already in the pool. If it is not in the pool, an entry (Data, Sent-Solvers, priority) is created and added to the pool, where Data is the sent vector. Sent-Solvers is a set that records the Solver Ids to which Data has been sent. The priority is computed by its norm. When the pool size gets bigger, LC decides which entries remain stored in the pool according to their priorities. At an interval, LC selects an entry according to the priority and pushes it to those Solvers whose Solver Ids are not in Sent-Solvers and adds their Solver Id to Sent-Solvers. In this way, information is shared among all Solvers efficiently while controlling the total amount of communication. The interval at which Solvers and LC push information can be tuned depending on the configuration of the machine. There is no danger of locking regarding the order of messages in our scheme.

The share-data pool is the most memory-consuming part of the LC. The size of the sharedata pool increases over time, and the limit of the pool size must be set appropriately according to the available memory. In particular, the size of the Sent-Solvers is dominant and should be estimated carefully in case of massive parallelization. Moreover, the cost of Data retrieval increases when the pool size and the number of Solvers are large. In this case, the limit of the pool size and the frequency of data sharing are suppressed.

Fully Checkpoint Functionality with Checkpoint Writer thread One of the most powerful features of CMAP-LAP is the checkpoint mechanism for storing high-level information of the whole system. Lattice problems are hard and often require millions of core hours. Thus, it is critical to have the functionality to record the progress and resume after interruption. Our checkpoint functionality is carefully designed to store high-level, platform-independent information to enable restart even on different platforms.

When a checkpoint is requested, the data in the pools in LC are serialized and stored in checkpoint files using zlib [DG96], a portable compression library. At the time of restart, CMAP-LAP reads the checkpoint files to restore pools. The task pool contains Tasks, including the progress information Status, which can be assigned to Solvers to resume. When the checkpoint files are loaded in a different environment from the one that has saved them, the number of cores and the available memory may differ. In this case, LC distributes the Tasks in the task pool to Solvers as much as possible, leaving the other Tasks in the task pool. At the same time, LC creates new Tasks when a large number of Solvers are available.

The technically important point is that the message processing from Solvers to LC is blocked when LC writes checkpoint files. With many MPI packages, this is problematic


Figure 4.4: Basic phases of the parallel dispatch
because the size of the queue of MPI messages waiting to be received becomes large and eventually leads to an error when the upper limit is reached. This problem becomes more pronounced as the scale of execution increases. To avoid this problem, LC temporarily creates a copy of the pools on memory, and a dedicated thread in LC, called Checkpoint Writer, is created to write the copy in the checkpoint files. Using the Checkpoint Writer thread has significantly reduced the block time for checkpoints and enabled CMAP-LAP to run stably on large-scale platforms.

Local Solver threads Some solvers can be created as a thread in LC. These Local Solvers work on lightweight tasks requiring access to the entire pools. For example, Local Solvers list the projected vectors in the share-data pool, which are found by Solvers performing sub-ENUM and sub-sieve introduced in Section 3.4. Because Local Solvers have access to the share-data pool without communication, the total amount of communication is reduced in this way.

### 4.1.2 Parallel dispatch

Here, we describe parallel dispatch, which is a comprehensive execution flow in CMAP-LAP. The parallel dispatch executes one parallel computing of one (sub-) problem as one cycle. This parallel dispatch is essential to parallel for solving exact SVP in BKZ algorithm. The parallel dispatch consists of four execution phases: main process, Ramp-Up, Primary, and Ranp-Down, as shown in Figure 4.4. With these four phases as one cycle, parallel dispatch executes the cycle multiple times.

Main process phase Herein, only the LC runs the process, and all Solvers are idle. LC obtains the results of the parallel computation, prepares for the next parallel computation, and performs other operations.

Ramp-Up phase (pseudocode is Algorithm 6) This is the period from when all Solvers are idle until when all Solvers start processing after receiving the instance. LC creates an instance and sends it to the Solvers in turn. Therefore, some Solvers are delayed in receiving instances. We call the waiting time until these Solvers start processing start idle time.

```
Algorithm 6 Ramp-Up Phase
    while LC should create and assign Task do
        LC send Task to an idle Solver;
    end while
```

Primary phase (pseudocode is Algorithm 7) All Solvers are processing the given instance. During this and the Ramp-Down phase, the Solvers send or receive vectors objects to and from the LC asynchronously. It allows all Solvers to share information through LC. LC has a priority queue called the vector pool, which stores vector objects. When a Solver sends the vector objects to the LC, the LC stores them in the vector pool if necessary. Conversely, if a Solver sends a receive request to the LC, the LC sends the appropriate vector objects from the vector pool to the Solver. Each Solver can send and receive the vector objects at its own convenient timing. The vector pool is managed with customized priorities, and when the pool is full, the vectors with lower priorities are removed. Because the LC receives send and receive requests from multiple Solvers, a time lag occurs during sending and receiving. We call it wait idle time.

```
Algorithm 7 Primary Phase
    while True do
        while LC should create and assign Task do
            LC sends Task to an idle Solver;
        end while
        LC checks to have received any messages from Solvers;
                            \(\triangleright\) LC calls handlers according to type of received messages;
        if LC should create checkpoint then
            LC creates checkpoint;
        end if
        while LC should create and assign Task for LocalSolver do
            LC sends Task for LocalSolver to an idle LocalSolver;
        end while
        if There is no active Solver then
            break;
        end if
    end while
```

Ramp-Down phase (pseudocode is Algorithm 8) This is the period when at least one Solver is in an idle state. Information is shared between busy Solvers through LC. The end time of a Solver depends on the instance given, or the vector received from the LC. If there are many Solvers, the end time variance generally becomes large. Therefore, LC has a function that can send a stop request to a Solver. When a Solver receives a stop request, it ends the process immediately.

```
Algorithm 8 Ramp-Down Phase
    LC send TerminateTag to all active Solvers;
    while There are active Solvers do
        LC wait TerminateTag from Solvers;
    end while
```

Solver process (pseudocode is Algorithm 9) Finally, we show a brief pseudo-code for the solver process. Idle Solvers wait for a Taskfrom LC, and when Solver receives the Task from LC, Solver executes the algorithm according to the received Task, information of the algorithm and its arguments. By passing the ParaSolver communication API of CMAP-LAP to the algorithm, we can share the information of lattice basis and lattice vectors and receive

```
Algorithm 9 Solver Process
    while True do
        Solver wait a message from LC;
        if Solver receives new Task then
            break;
        else if Solver receives TagTerminate then
            Solver send statistics data to LC, and send TagTerminate;
            return;
        end if
        Solver run algorithm according to received Task;
    end while
```

the termination notification through the communication API. When the Solver receives a TagTerminate from LC, it sends the statistics of the executed Tasks to LC and send-backs the TagTerminate to LC. By keeping a count of the number of TagTerminates LC has received, LC can terminate after all Solver processes have been finished. This is the safest termination.

### 4.2 Implementation

Generalized UG: A framework to construct CMAP-LAP We have built a solid backbone to manage hundreds of thousands of processes running heterogeneous algorithms in parallel by specializing Generalized UG framework (UG version 1.0 RC). The Generalized UG framework is extending the well-recognized Ubiquity Generator (UG) framework [Ug] for Branch-and-Bound ( $B \& B$ ) algorithms. UG framework is a generic software framework to parallelize an existing state-of-the-art $B \& B$ based solver, which is referred to as the base solver, from "outside". UG is composed of a collection of base C++ classes, which define customizable interfaces to base solvers and translate solutions and subproblems into a solver independent form. Additionally, a base class defines interfaces for different message-passing protocols corresponding to the parallelization library used. UG has been developed primarily in concert with a state-of-the-art mixed integer programming solver called SCIP [Sci]. As such, ParaSCIP [Shi+11], and FiberSCIP [Shi+18a], which run on a distributed computing environment and shared memory computing environment, respectively, are the most mature. Notably, the distributed memory and shared memory solvers execute the same algorithm in general for the instantiations. UG has been successfully utilized for mixed-integer linear programming problems [Shi+18b; Shi+16; SBH18], Steiner tree problems [Gam+17; SRK19; SRG19; RSK21], and quadratic assignment problems [Fuj+21] on supercomputers.

UG has shown flexibility and scalability for solving optimization problems. The ability of UG motivated the development of a parallel solver using a non-B\&B based solver. Generalized UG has been developed to enable parallelization of such a non-B\&B based solver. Generalized UG consists of several abstract classes which can be customized according to the target problem. This customization flexibility is suitable for the realization of various parallel strategies.

Extendability There are many lattice problem solvers, including the state-of-the-art sieve solver G6K, which is available as open-source software. CMAP-LAP's flexible and highly modular design allows solvers to be incorporated as a part of the system. For the ease of incorporation, an interface class ParaSolver is provided, with which existing solvers can be turned into Solvers with minimum effort. Each Solver has a ParaSolver object that takes care of all the communication, and existing solvers only have to receive input data and send the results via ParaSolver's API (see bottom of Figure 4.3). The solvers are not limited to single-rank applications. The UG has a feature to parallelize multi-rank applications. See [Mun+19] as an example.


FIGURE 4.5: Communicators between and within MPI processes: ParaComm and LocalComm

Hybrid parallelization CMAP-LAP uses hybrid parallelization that combines MPI communication with $\mathrm{C}++11$ thread communication. LC and Solver have two kinds of communicators: one is ParaComm, which wraps MPI communication functions, and the other is LocalComm, which wraps C ++11 communication functions. ParaComm is used for interprocess communication, and LocalComm is used for inter-thread communication within a process (see Figure 4.5). Because all Solvers know the MPI rank of LC, Solvers send messages directly to LC using ParaComm and ISendQueue, which is described in the following section. In contrast, when LC sends a message to Solver, LC first sends a message via ParaComm to the MPI rank where the Solver resides. The solver with 0 thread-Id receives the message; we call this the rootSolver. Then, the rootSolver sends the message to the Solver using LocalComm. Therefore, the rootSolver receives more messages than the other Solvers, the received messages must be checked frequently, even during the execution of the algorithm. However, the idle time for message processing can be reduced by using non-blocking communication, as described below.

MPI_ISend communication Because LC receives messages from all busy Solvers, the LC's load is the highest of all the processes in the case of large-scale computation. In addition, depending on the type of messages received, processing such as inserting Data into the sharedata pool occurs in LC. This blocks the LC message processing and delays the receiving of the messages. Note that the load coordination paradigm used in CMAP-LAP is SupervisorWorker [Ral+18] and then small message communications are performed between LC and Solvers for load balancing. Although the frequency for the small message communications can be controlled by run-time parameters, they are crucial in large-scale computations such as over 100,000 Solvers used. Therefore, in CMAP-LAP, to reduce the idle time of communication in Solver, we send all messages from Solver to LC by using MPI_ISend, the non-blocking communication. This leads Solver to resume the algorithm without waiting for the check that LC receives the message. To prevent the objects deleted before they are sent, we copy the objects sent by MPI_ISend to a queue called ISendQueue in the memory of that process. We remove them from ISendQueue as soon as the transmission is confirmed by MPI_Test (see Figure 4.6). By examining the size of each ISendQueue, we can determine the number of unreceived messages of LC. Therefore, we set an upper limit on the size of ISendQueue and do not send messages exceeding the limit, thereby preventing many messages from accumulating in LC.


FIGURE 4.6: MPI_ISend Communication between Solver and LC

### 4.3 Performances of Framework with Testing Configure

In this section, we evaluate the performance of CMAP-LAP with the SVP challenge. The computing platform used in the following numerical experiments includes the Lisa and Emmy at Zuse Institute Berlin, and ITO at Kyushu University. These specifications are summarized in Table 4.1.

TABLE 4.1: Computing platforms used

| Machine | Memory <br> / node | CPU | CPU <br> frequency | \# nodes | \# cores |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lisa | 384 GB | Xeon Platinum 9242 | 2.30 GHz | 1,080 | $103,680(96 \times 1,080)$ |
| Emmy | 384 GB | Xeon Platinum 9242 | 2.30 GHz | 128 | $12,288(96 \times 128)$ |
| ITO | 192 GB | Xeon Gold 6154 | 3.00 GHz | 128 | $4,608(36 \times 128)$ |
| CAL A | 256 GB | Xeon E5-2640 v3 | 2.60 GHz | 4 | $64(16 \times 4)$ |
| CAL B | 256 GB | Xeon E5-2650 v3 | 2.30 GHz | 4 | $80(20 \times 4)$ |

Operating systems and versions: Lisa and Emmy [CentOS Linux release 7.7.1908], ITO [Red Hat Enterprise Linux Server release 7.3.1611], CAL A and CAL C [CentOS Linux release 7.9.2009]. Compilers and versions: Lisa and Emmy [intel19.0.5, impi2019.5], ITO [icc 19.1.1.217, impi2019.4], CAL A [icc 19.1.3.304, openmpi4.0.5], CAL C [icc19.1.3.304, impi2020.4.304]. Libraries and versions: NTL v11.3.3, Eigen v3.3.7, gsl v2.6, OpenBLAS v0.3.7, fplll v5.2.1.

Setting up CMAP-LAP for testing to solve SVP We briefly describe the overall behavior of CMAP-LAP for solving SVP. Recall that an SVP is specified by a lattice basis matrix. At the beginning of the execution, the LC reads the basis matrix from a file and stores it in the instance pool. LC creates a Local Solver to transform the basis with random unimodular matrices and stores the resulting bases in the instance pool. Then, LC generates DeepBKZ Tasks for the bases in the instance pool. The reduced bases are sent from Solvers performing DeepBKZ Tasks to LC, and LC stores them in the instance pool. LC also generates ENUM and sieve Tasks using the bases in the instance pool. Short lattice vectors are occasionally sent from Solvers to LC, which are inserted into the share-data pool. At regular intervals, Solvers request LC to send short vectors from the share-data pool. DeepBKZ Tasks insert the received short vectors into the basis, sieve Tasks use the received short vectors as sampling seeds, while ENUM adjusts the search radius according to the norm of the shortest vector ever found. Some of the contents of the pools in LC are written to checkpoint files at regular intervals: vectors in the data-share pool, basis matrices in the instance pool, and Tasks in the solver pool. The Task mainly contains the basis matrix and the vector and parameters needed to run the algorithm. When restarting, as described in Section 4.1.1, there are few processes other than reading checkpoint files. We calculate the communication interval and the number of vectors shared from the number of cores, and the maximum MPI buffer size to relax the communication delay.

Since computing the exact norm of a shortest vector of a given lattice is as hard as computing a shortest vector, we evaluate the progress of solving an SVP instance by the approximation factor defined in Chapter 3. A smaller value of the approximation factor indicates a


FIgURE 4.7: Transition of the approximation factors for different share-data pool sizes; execution were done on the CAL A and CAL B with 144 cores. The solid blue lines in Figure 4.7, 4.9 and 4.11 represent the same experimental result.
better (temporary) solution. With the Gaussian Heuristics, the approximation factor should be about 1.0 for a good candidate of a shortest vector. From a cryptanalysis viewpoint, an approximate factor of 1.05 is often set as a goal as in the SVP challenge. The numbers of lattice vectors having smaller approximation factors decrease quickly; for example, in dimension $n=130$, the ratio of the numbers of lattice vectors having approximation factors 1.20 and 1.30 is approximately $\left(1.20^{n} / 1.30^{n}\right) \approx 3.03 \times 10^{-5}$. In other words, it is 33,000 times harder to reach an approximate factor of 1.20 than of 1.30 . It becomes increasingly harder to find lattice vectors with smaller approximate factors; for example, the ratio of the numbers of lattice vectors having approximation factors 1.10 and 1.20 is approximately $\left(1.10^{n} / 1.20^{n}\right) \approx 1.22 \times 10^{-5}$.

### 4.3.1 Information sharing

We evaluate the effect of our novel information-sharing scheme and the parallelization with the lattice reduction algorithm. We performed experiments running DeepBKZ with $\beta=30$ for five instances of the SVP challenge of dimension 130 with seeds from 0 to 4 . We executed all computations on the CAL A and CAL B with 144 cores.

We show the efficiency of the information sharing with CMAP-LAP. In CMAP-LAP, Solvers share multiple short lattice vectors via the share-data pool in LC. The amount of information shared among Solvers can be controlled by the size of the share-data pool. Figure 4.7 compares the transition of the approximation factor (averaged over 5 instances) overtime with the size of the share-data pool 0,1 , and 100,000 . When the size of the share-data pool is set to zero, no information is shared and all the Solvers are executed independently. When the size of the share-data pool is set to 1, only the current shortest lattice vector (the current solution) is shared among Solvers. This is equivalent to the sharing scheme of MAP-SVP. We observe that the approximation factor is drastically reduced when the size of the share-data pool is set to 100,000 . This shows the effectiveness of our data sharing scheme.

### 4.3.2 Coordination of heterogeneous algorithms

We show the effectiveness of CMAP-LAP's multi-algorithm paradigm, in which heterogeneous lattice algorithms are executed concurrently in coordination. In this experiment, we fix the number of Solvers assigned to each Task, that is, DeepBKZ, sub-ENUM, and GaussSieve. Each Solver is assigned the the same type Task when it completes the current Task. Figure 4.8 and 4.9 shows the results for a 110- and 130-dimensional SVP with four different configurations of the Task assignment, respectively. We ran the experiment on the CAL A and CAL B with 144 cores for an hour or five hours, and the 1 core was assigned to LC, and


Figure 4.8: Same as Figure 4.7, but dimension is 110 and different allotment of algorithms; execution were done on the CAL A and CAL B with 144 cores.


Figure 4.9: Same as Figure 4.7, but for different allotment of algorithms; execution were done on the CAL A and CAL B with 144 cores.
the other 143 cores were assigned to three types of Tasks. We set the size of the share-data pool to be infinity. The best result was obtained with the combination of (DeepBKZ, subENUM, GaussSieve $)=(110,32,1)$. To investigate the reason, we examine the distribution of vector norms in the share-data pool for two configurations of 130-dimensional experiments (see Figure 4.10). The total number of vectors shared through the share-data pool for (DeepBKZ, sub-ENUM, GaussSieve) $=(143,0,0)$ was 36,055 , and that for (DeepBKZ, sub-ENUM, GaussSieve $)=(110,32,1)$ was 101,952 . In both configurations, shorter vectors were found by DeepBKZ Solver. However, a large number of relatively short vectors found by sub-ENUM and GaussSieve helped DeepBKZ find shorter vectors.

### 4.3.3 Scalability

To see the scalability of CMAP-LAP, we experimented with the same 130-dimensional SVP instances as in Section 4.3.1 on Lisa using 2,976, 6,048, 12,192, 24,480, and 49,056 Solvers with DeepBKZ $(\beta=30)$. We measured the average number of the main iterations (called the tour) performed by each Solver within six hours. The number of tours provides a good estimation of the progress of the DeepBKZ algorithm. As we observe from Table 4.2, the average number of tours stay almost constant when the number of Solvers increases. Therefore, even if the number of Solvers becomes large-scale, there is no significant change in the performance of each Solver.


FIGURE 4.10: Distribution of the norm of vectors in the share-data pool.

In addition, we evaluated the effect of parallelization on the transition of the approximation factor (see Figure 4.11). We experimented with the same SVP instances as in Section 4.3.1 using different numbers of Solvers. The size of the share-data pool was set to 100,000 . We used the CAL A and CAL B with 144 cores and ITO with 2,304 cores for this experiment. The best (minimum) approximation factor obtained within 5 hours with 143 Solvers was 1.176 and 1.117 with 2,303 Solvers. In terms of Gaussian Heuristics, the latter is considered to be $1.176^{130} / 1.117^{130} \approx 800$ times better. It took 14,844 seconds to reach the approximation factor of 1.176 with 143 Solvers while it took 2,965 seconds with 2,303 Solvers, which is a speed-up by a factor of 5.0 compared with 143 Solvers. Similarly, the time for the approximation factor to fall below 1.2 was 7,319 seconds with 143 Solvers and 1,360 seconds with 2,303 Solvers, which is a speed-up by a factor of 5.3.

### 4.3.4 Stability with massive parallelization

We show the results of a long-time execution of CMAP-LAP.

TABLE 4.2: Iterations of DeepBKZ of each Solvers for 130-dimensional SVP

| \# of Solvers | 2,976 | 6,048 | 12,192 | 24,480 | 49,056 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| averaged <br> \# of iterations | 45.86 | 43.32 | 43.08 | 40.10 | 57.07 |



Figure 4.11: Same as Figure 4.7, but for different number of Solvers; execution were done on the CAL A and CAL B with 144 cores, and ITO with 2,304 cores.


FIgURE 4.12: Transition of the approximation factor of a 134-dimensional SVP for long-time execution on the Lisa with 103,680 cores. Each dot represents the beginning of restart from checkpoint.

Figure 4.12 shows the result of multiple executions of a 134 dimensional SVP instance. We ran the experiment 13 times using our checkpoint-and-restart functionality on the Lisa supercomputer with 103,680 cores. The first few executions were performed for short periods to test the checkpoint functionality. During the test, we observed occasional aborts due to an excessive number of MPI messages waiting to be received by the LC. As a workaround, the Checkpoint Writer (described in Section 4.1.1) was developed, and the upper limit of the size of ISendQueue was set based on the number of messages the Solver sends to the LC (described in Section 4.2). This has improved the stability and enabled a longer execution time. We have tested up to 42 hours of continuous execution. Together with checkpoint and restart, the approximation factor was improved over time.

Figure 4.13 shows the result of multiple executions of a 130 dimensional SVP. This time, we tested a restart from a checkpoint created on a different environment. The first 14 executions were performed on the Emmy with 12,288 cores and the last 1 execution was restarted on the Lisa with 103, 680 cores. Although the number of cores used in the Lisa is 8.44 times more than that of the Emmy, the execution was carried over by the checkpoint functionality without any problem. The Tasks running on the Emmy when the checkpoint was created were executed on the Lisa immediately after the restart, and new Tasks were generated from the instance pool and assigned to extra Solvers available on the Lisa. It should be noted that the approximation factor was improved in the last execution after the final restart (see the purple segment in Figure 4.13).

The interval of the creation of checkpoint files were set to an hour. It took an average of $1,531.75$ seconds per checkpoint for the Checkpoint Writer to compress and write the pool's information in files, whose size was approximately 7.09 GB on memory. In contrast, it took only an average of 2.77 seconds for LC to copy the pools for the Checkpoint Writer. In this


FIGURE 4.13: Transition of the approximation factor of a 130-dimensional SVP for long-time execution on the Emmy with 12,280 cores and Lisa with 103,680 cores.
manner, the blocking time of LC's message processing was greatly improved by the Checkpoint Writer. The averaged time required to read a checkpoint is only 64.75 seconds, and since the checkpoint contains Task information, execution can be restarted without prepossessing.

## Chapter 5

## CMAP-DeepBKZ: Software for DeepBKZ with massively parallelization


#### Abstract

In this Chapter, we propose and implement a parallel strategy specialized for lattice basis reduction based on the CMAP-LAP framework, one of the algorithms for SVP. By taking advantage of the information sharing feature of CMAP-LAP, the lattice basis reductions are executed concurrently in multiple processes with sharing a part of the basis among all worker processes. There is a trade-off between this information sharing and the randomness among the basis, and it is important to balance them. In order to obtain the full benefit of parallelization, it is essential that, at least, different computations are performed by multiple processes. However, to the best of our knowledge, no metric has been proposed to quantify the diversity of basis sets. Therefore, we propose a metric to quantify the diversity of a set of bases and verify its validity. Using this metric, we experimentally confirm that the independence of parallel computation will be kept even after information sharing. Finally, we evaluate the performance of the proposed software in detail by experiments using up to about 100,000 cores. As a result, we succeeded in improving the quality of the output basis and updating the SVP challenge record of up to 128 dimensions.


### 5.1 Parallel strategy

In this Section, we introduce the massive parallelization system of DeepBKZ and its implementation. Our parallelization is based on randomization, which enables task-parallel reductions for multiple randomized bases. We also share short basis vectors of the randomized bases among solvers to accelerate the reduction process in every solver through CMAP-LAP featuress.

### 5.1.1 Ordering of lattice bases for reduction

We define an ordering of lattice bases for reduction. Let us recall the process of DeepBKZ: given a basis of a lattice $L$ and a blocksize $\beta \geq 2$, DeepBKZ aims to find a new basis $\mathbf{B}=$ $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$ of $L$ such that $\left\|\mathbf{b}_{j}^{*}\right\|=\lambda_{1}\left(L_{[j, k]}\right)$ for all indices $j$ with $k=\min (j+\beta-1, m)$, by calling an SVP oracle (e.g., an enumeration algorithm in Algorithm 5) on the projected lattice $L_{[j, k]}=\mathcal{L}\left(\mathbf{B}_{[j, k]}\right)$ cyclically for $j=1,2, \ldots, m-1$. During DeepBKZ reduction, the Gram-Schmidt norms $\left(\left\|\mathbf{b}_{1}^{*}\right\|, \ldots,\left\|\mathbf{b}_{m}^{*}\right\|\right)$ decrease monotonically in lexicographic order. As $\beta$ increases, the quality of an output basis improves in both theory and practice. Similar to BKZ , when $\beta=m$, DeepBKZ outputs an HKZ-reduced basis that is the minimum among the bases of $L$ in the lexicographic order of the Gram-Schmidt norms.

For our parallelization of DeepBKZ, we consider the lexicographic order of the GramSchmidt norms when comparing lattice bases. Precisely, for two sub-bases $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m_{1}}\right)$
and $\mathbf{C}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{m_{2}}\right)$ of a lattice, we define an order as

$$
\begin{align*}
& \mathbf{B}<\mathbf{C} \Longleftrightarrow \\
& \quad \exists j \leq \min \left\{m_{1}, m_{2}\right\} \text { s.t. }\left(\left\|\mathbf{b}_{i}^{*}\right\|=\left\|\mathbf{c}_{i}^{*}\right\|\right) \wedge\left(\left\|\mathbf{b}_{j}^{*}\right\|<\left\|\mathbf{c}_{j}^{*}\right\|\right) \text { for all } i<j . \tag{5.1}
\end{align*}
$$

(Cf., for a parameter $0<\Theta<1$, the authors in [TKH18] considered $\sum_{i=1}^{m} \Theta^{i}\left\|\mathbf{b}_{i}^{*}\right\|$ as the score of $\mathbf{B}$ for their random sampling reduction algorithm.)

### 5.1.2 Strategy of parallel sharing in DeepBKZ

Our aim of parallelization is to efficiently find a small lattice basis in the lexicographic order (5.1) of the Gram-Schmidt norms. Our parallelization policy is a heuristic approach. Specifically, we generate a lot of different bases of a lattice through randomization. We then execute DeepBKZ on the randomized bases in parallel by sharing short lattice vectors to find a small basis in the order (5.1). We here denote a unit that executes DeepBKZ as a solver.

Given a lattice $L$, we state that a basis $\mathbf{S}$ of $L$ is global if it satisfies $\mathbf{S} \leq \mathbf{B}$ in the order (5.1) for all bases of the solver B of $L$. For a global basis $\mathbf{S}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{m}\right)$ of $L$, we also call its sub-basis of the form $\mathbf{S}_{k}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{k}\right)$ a global sub-basis for each $1 \leq k \leq m$. Any global sub-basis $\mathbf{S}_{k}$ satisfies $\mathbf{S}_{k} \leq \mathbf{B}$ for all the bases of the solver B from (5.1). In our strategy, all solvers share a common global sub-basis $\mathbf{S}_{k}$ while running DeepBKZ; in other words, all solvers share the first $k$ vectors of a global basis. One of the realizations of sharing the global sub-basis is message passing of the whole and a part of the basis. For the case $k=1$, when the first basis vector $\mathbf{b}_{1}$ of a basis $\mathbf{B}$ is updated in a solver, the basis of that solver becomes a global basis. Thus, we set $\mathbf{s}_{1}=\mathbf{b}_{1}$ and send the vector is sent to all solvers. When a solver receives $\mathbf{s}_{1}$, the solver adds it to the top of its basis $\mathbf{C}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right)$ and performs LLL on the $m+1$ vectors $\left(\mathbf{s}_{1}, \mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right)$ to remove its linear dependency. The vector $\mathbf{s}_{1}$ remains as the first basis vector in most cases; thus, we complete to share $\mathbf{s}_{1}$ with the solver. If the first basis vector $\mathbf{c}_{1}$ of $\mathbf{C}$ after LLL is not equal to $\mathbf{s}_{1}$, then it must hold the $\left\|\mathbf{c}_{1}\right\| \leq\left\|\mathbf{s}_{1}\right\|$ and the basis $\mathbf{C}$ of the solver becomes a new global basis, using the same procedure as above is used to share $\mathbf{c}_{1}$ with the other solvers. To generalize, in the case where $k \geq 1$, when a global basis $\mathbf{S}$ is updated, its global sub-basis $\mathbf{S}_{k}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{k}\right)$ is sent to the other solvers, which can be merged by LLL on $\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{k}, \mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right)$ and the re-sharing of a basis. In practice, it is more stable to sequentially insert one vector at a time into its basis and remove the linear dependency by LLL due to floating-point precision.

### 5.1.3 Implementation

We introduce new software to realize the strategy of parallel sharing DeepBKZ as described in Subsection 5.1.2. Our software is based on CMAP-LAP [Tat+21], a generic framework for the massive parallelization of lattice algorithms, including reduction, enumeration, and sieve algorithms. We call our software "CMAP-DeepBKZ" because it is specialized for the parallelization of DeepBKZ by using supervisor-worker style [Ral+18] functions in CMAPLAP. In our software, we denote each worker process as solver. We represent the progress of a solver as the status, a pair consisting of a basis and a blocksize parameter for DeepBKZ. We also present a triple containing a lattice basis, algorithm parameters, and a status, called a task. Given an input basis of a lattice $L$, the supervisor process generates tasks with randomized bases of $L$ and distributes them to solvers. The solver process executes DeepBKZ according to the received task and periodically communicates the current status to the supervisor to update or fetch a global basis while executing the reduction algorithm.

In Figure 5.1, we show the overall process of parallel sharing DeepBKZ in CMAP-DeepBKZ. We describe each process in Figure 5.1 below.
(i) Given an input basis $\mathbf{B}$ of a lattice $L$, the supervisor sets the global basis $\mathbf{S}$ of $\mathbf{B}$ and creates initial tasks by randomizing the lattice bases $\mathbf{B}$.
(ii) The supervisor sends the tasks to idle solvers and simultaneously stores them in a solver pool.
(iii) Every solver executes DeepBKZ according to a received task.


Figure 5.1: The overall process of parallel sharing DeepBKZ in CMAP-
DeepBKZ
(iv) Every solver sends its status $(\mathbf{B}, \beta)$ to the supervisor periodically, where $\mathbf{B}$ is the current reduced basis and $\beta$ is the current blocksize of DeepBKZ.
(v) When the supervisor receives a status ( $\mathbf{B}, \beta$ ) from a solver, it compares the basis $\mathbf{B}$ of the status with a global sub-basis $\mathbf{S}_{k}$.

- If $\mathbf{B}$ is smaller than the global sub-basis $\mathbf{S}_{k}$ in the lexicographical order of GramSchmidt norms, the supervisor replaces the current global basis $\mathbf{S}$ with $\mathbf{B}$.
- If not, the supervisor sends the global sub-basis $\mathbf{S}_{k}$ back to the solver.
(vi) The supervisor updates tasks in the solver pool according to received statuses.

Because the supervisor maintains a global basis, each solver can obtain the global basis only by communicating solely with the supervisor, that is, without communicating with other solvers. The solver pool maintained within the supervisor is the container of the tasks executed by solvers, which are updated according to their respective statuses sent by the solvers. The solver pool data is used to create a checkpoint file because this pool maintains the latest progress of all solvers.

## Parallel framework

We have implemented CMAP-DeepBKZ based on the CMAP-LAP framework, which applies massively parallel strategies for lattice problems. The CMAP-LAP framework is designed to facilitate the implementation of other parallel strategies based on this framework. CMAPLAP is created by inheriting from the Generalized UG framework (UG version 1.0 RC ), a parallel framework implemented in $\mathrm{C}++11$ which provides the infrastructure for supervisorworker parallelism. The concept of Generalized UG is to parallelize the state-of-the-art solvers from the outside. Generalized UG provides several abstract classes which can be customized according to the target problem and solvers. This customization flexibility is suitable for the realization of our strategy.

The motivation of the CMAP-LAP framework is to utilize the interactions of typical SVP algorithms such as the enumeration, sieve, and lattice reduction algorithms as samplers of lattice basis and vectors. For example, the lattice basis output of the lattice reduction algorithm can be used for the enumeration and sieve algorithm. Moreover, the short lattice

```
Algorithm 10 Processing flow of the supervisor
    procedure supervisor \((\mathbf{B}) \quad \triangleright \mathbf{B}\) : instance basis
        \(\mathbf{S} \leftarrow \mathbf{B} ; \quad \triangleright\) Set initial the global basis \(\mathbf{S}\)
        seed \(\leftarrow 0\);
        for \(i=1 \rightarrow m\) do
            \(\mathbf{C} \leftarrow\) randomize \((\mathbf{B}\), seed \()\); seed \(\leftarrow\) seed +1 ;
            Send task (C, parameters) to \(i\)-rank solver; \(\triangleright\) Send initial tasks to solvers
            SolverPool[i] \(\leftarrow\) (C, parameters);
        end for
        while iProbe(source, tag) do
            if tag is SolverState then
                Receive Status (B, \(\beta\) ) from the source-rank solver;
                            \(\triangleright \mathbf{B}\) is basis and \(\beta\) is blocksize of DeepBKZ
                Update task of source-rank solver in the solver pool using ( \(\mathbf{B}, \beta\) );
                if \(\mathbf{B}<\mathbf{S}_{k}\) then
                    \(\mathbf{S} \leftarrow \mathbf{B} ; \quad \triangleright\) Update the global basis
                else if B \(>S_{k}\) then
                    Send \(\mathbf{S}_{k}\) to the source-rank solver;
                end if
                Send notification to the source-rank solver;
            end if
            if \(t a g\) is Termination then
                \(\mathbf{C} \leftarrow\) randomize \((\mathbf{B}\), seed \()\); seed \(\leftarrow\) seed +1 ;
                Send task (C, parameters) to the source-rank solver;
                SolverPool[source] \(\leftarrow\) (C, parameters);
            end if
            if current time reaches the checkpoint time then
                Serialize SolverPool, compress it, and write it to checkpoint file;
                                    \(\triangleright\) Create a checkpoint file
            end if
            if current time reaches the time limit then
                break;
            end if
        end while
    end procedure
```

vector found by each algorithm can accelerate the lattice basis reduction or sieve. Therefore, CMAP-LAP is designed as a scheme that can heterogeneously parallel execute solvers in parallel and share lattice vectors and bases among the solvers. It has a modular system for the implementation of new strategies relating to large-scale parallelization. Developers can customize task structures to execute multi-thread or multi-rank SVP solvers. In addition, CMAP-LAP's communication API allows solvers to share information synchronously, quickly, and safely with minimal changes. Furthermore, CMAP-LAP has a flexible and highlevel checkpointing function. Thereby, we can challenge to solve high-dimensional SVP instances which require millions of core hours. In [Tat+21], the stability and future performance of the framework are shown by the several experiments of heterogeneous and longrunning execution of the naive algorithms combinations in a large-scale environment using up to 103,680 cores.

## Processing flow of the supervisor and solver

The pseudo processing flow in the supervisor of CMAP-DeepBKZ is shown in Algorithm 10. The supervisor continuously checks whether it has received a message from the solvers using the MPI_iProbe function. If messages have been sent to the supervisor, it handles the received message according to its tag, which represents the message type. In CMAP-DeepBKZ, the most important and frequently exchanged message tag is TagSolverState, which indicates the status of the algorithm. The status is a pair consisting of the basis and the blocksize of

```
Algorithm 11 Reduction algorithm in solver
    procedure Reduction(B, \(\beta\) )
        Set \(t_{s}\) to next status sending time;
        while Reduction has not finished do
            \(\mathbf{B} \leftarrow\) subroutine \((\mathbf{B}, \beta)\); \(\quad \triangleright\) Subroutine of reduction algorithm
            if current time \(>t_{s}\) then
                    Send a status \((\mathbf{B}, \beta)\) to supervisor with SolverState tag;
                    Wait a notification from supervisor;
                    if solver receives the global sub-basis \(\mathbf{S}_{k}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{k}\right)\) then;
                        if \(\mathbf{S}_{\mathbf{k}}<\boldsymbol{B}\) then
                        for \(j=1 \rightarrow k\) do
                            \(l \leftarrow\) minimum index \(h\) satisfies \(\left\|\pi_{h}\left(\mathbf{s}_{j}\right)\right\|<\left\|\mathbf{b}_{h}^{*}\right\| ;\)
                    \(\mathbf{B} \leftarrow \operatorname{LLL}\left(\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{l-1}, \mathbf{s}_{j}, \mathbf{b}_{l}, \ldots, \mathbf{b}_{d}\right)\right) ;\)
                                    \(\triangleright\) Merge the global sub-basis into its own basis
                                    end for
                    end if
            end if
            Update \(t_{s}\) to next status sending time;
            end if
        end while
        Send Termination tag to supervisor;
    end procedure
```

DeepBKZ. In CMAP-LAP, the supervisor only uses the status to update the tasks in the solver pool. In addition, the supervisor in CMAP-DeepBKZ updates and distributes the global basis $\mathbf{S}$ using basis $\mathbf{B}$ of the status. If $\mathbf{B}<\mathbf{S}_{k}$, that is $\mathbf{B}$ satisfies the condition to be the global basis, the supervisor then updates the global basis $\mathbf{S}$ to $\mathbf{B}$. If $\mathbf{S}_{k}<\mathbf{B}$, the supervisor sends the global sub-basis $\mathbf{S}_{k}$ back to the solver. Because the CMAP-DeepBKZ has this supervisorworker style, we can share the global-sub basis using this simple process.

The algorithmic function executed by the solver is shown in Algorithm 11. The solver communicates using the communication API in CMAP-LAP. It periodically sends the basis and the currently running blocksize as status until the algorithm terminates. If the solver's basis is smaller than the global sub-basis, the solver receives the global sub-basis from the supervisor. As shown in Algorithm 11, almost any algorithm can be applied to our software because we are only required to customize for the communication between subroutines. The experiment of running several algorithms in parallel is described in [Tat+21].

## Checkpoint and Restart

It is critical to save the progress of the solvers to resume the computation because it takes a significantly large amount of core hours to solve the large-dimension SVPs. This is accomplished by powerful checkpointing functionality in CMAP-DeepBKZ that stores the complete progress information of the SVP solvers. Because the supervisor periodically receives the algorithm's progress from these solvers, it tracks progress and writes it to the checkpoint file. More specifically, whenever the supervisor receives a status from the solver, it updates the task in the solver pool based on the received status. When a checkpoint is requested, the supervisor serializes the tasks data in the solver pool, compresses and writes them by using zlib [DG96], a portable compression library. When we resume the computation, the tasks are loaded from the checkpoint file and stored in the task pool, a container of tasks waiting for execution. Next, the supervisor distributes the tasks to solvers according to the priority associated with the tasks. The supervisor creates new tasks when many solvers are available. In contrast, if the number of solvers is less than that when the checkpoint file was generated, the tasks remain in the task pool and are given priority when the supervisor distributes the next task.

### 5.2 Similarity of lattice bases

The benefit of parallelization in our algorithm mainly depends on the randomization of bases. Each solver works independently on a randomized copy of the input basis, and we hope that the reduction algorithm works faster for a certain random copy. While this independence allows for asynchronous parallelization, the overall system would benefit from collaboration among solvers. Therefore, we introduced a sharing scheme in the previous section in which solvers indirectly exchange short lattice vectors with each other via the supervisor. However, there is a trade-off between randomness and the amount of shared information. Let us think of the extreme case when all vectors are shared and all solvers work on the same basis, the benefit of parallelization would be completely nullified. It is important to ensure that the diversity of the bases is preserved by the sharing. In this section, we introduce a novel metric to quantify the diversity of lattice bases. This metric will be used to determine the value of the number of share vectors $k$ for the optimal balance.

### 5.2.1 Grassmann metrics

Let $\mathbf{B}$ and $\mathbf{C}$ be two bases of a $d$-dimensional lattice in $\mathbb{R}^{n}$. We define several similarity metrics between $\mathbf{B}$ and $\mathbf{C}$, and use them to quantify the diversity of a set of bases. Recall that DeepBKZ with blocksize $\beta$ is an algorithm to find a basis whose $i$-th basis vector $\mathbf{b}_{i}$ which is the shortest from the projected lattice $\mathcal{L}\left(\mathbf{B}_{[i, \min (i+\beta-1, d)]}\right)$ for all $i$. It is natural to compare the projected lattices $\tilde{B}_{i}:=\mathcal{L}\left(\mathbf{B}_{[i, d]}\right)$ and $\tilde{C}_{i}:=\mathcal{L}\left(\mathbf{C}_{[i, d]}\right)$ for each $1 \leq i \leq d$. Each $\tilde{B}_{i}$ defines an $m$-dimensional subspace in $\mathbb{R}^{n}$, where $m=d-i+1$. The subspace corresponds to a point in the Grassmannian manifold $\operatorname{Gr}(m, n)$ which consists of $m$-dimensional linear subspaces in the Euclidean space $\mathbb{R}^{n}$. The Grassmannian manifold comes equipped with several metrics (distances), which we use as the similarity measures for $\tilde{B}_{i}$ and $\tilde{C}_{i}$.

Let $Y^{i}(\mathbf{B})$ be the $(m \times n)$-orthonormal matrix corresponding to $\tilde{B}_{i}$ whose rows are $\mathbf{b}_{k}^{*} /\left\|\mathbf{b}_{k}^{*}\right\|$ for $i+1 \leq k \leq d$. The standard way to define metrics on the Grassmannian manifold is via principal angles [BN02]. Denote the singular value decomposition (SVD) of $Y^{i}(\mathbf{B}) Y^{i}(\mathbf{C})^{T}$ by

$$
\begin{equation*}
Y^{i}(\mathbf{B}) Y^{i}(\mathbf{C})^{T}=U \operatorname{diag}\left(\cos \theta_{1}, \ldots, \cos \theta_{m}\right) V, \tag{5.2}
\end{equation*}
$$

where $U$ and $V$ are orthonormal matrices and the singular values $\cos \theta_{k}$ are sorted in decreasing order. The singular values $\cos \theta_{k}$ are called canonical correlations and the angles $\theta_{1}, \ldots, \theta_{m} \in[0, \pi / 2]$ are called the principal angles of $Y^{i}(\mathbf{B})$ and $Y^{i}(\mathbf{C})$ [BG73; GVL96]. The first principal angle $\theta_{1}$ is the minimal angle between the two subspaces spanned by $\widetilde{B}_{i}$ and $\tilde{C}_{i}$. If this minimal angle is achieved by $u_{1} \in \operatorname{Span}\left(\tilde{B}_{i}\right)$ and $v_{1} \in \operatorname{Span}\left(\tilde{C}_{i}\right)$, the second principal angle $\theta_{2}$ is the minimal angle between their orthogonal complements. The third and subsequent principal angles are defined in a similar manner.

The geodesic distance, which is induced by the canonical Riemannian metric on $\operatorname{Gr}(m, n)$ as the homogeneous space of the orthogonal group $O(n)$, is computed as $d\left(Y^{i}(\mathbf{B}), Y^{i}(\mathbf{C})\right)=$ $\sqrt{\sum_{i} \theta_{i}^{2}}$. Although the geodesic distance is the most natural and "authentic" metric on $G r(m, n)$, it is computationally expensive since we have to compute the SVD of a large matrix. It is thus preferable to use metrics that can be computed efficiently without invoking SVD. Such metrics include chordal metric $d_{c}$ and the projection 2-norm metric $d_{p 2}$. The chordal metric is defined as the square root of the square sum of the sine of principal angles, but can be computed efficiently by the Frobenius norm of the difference of the projectors:

$$
d_{c}\left(Y^{i}(\mathbf{B}), Y^{i}(\mathbf{C})\right):=\sqrt{\sum_{k} \sin ^{2} \theta_{k}}=\frac{1}{\sqrt{2}}\left\|Y^{i}(\mathbf{B})^{T} Y^{i}(\mathbf{B})-Y^{i}(\mathbf{C})^{T} Y^{i}(\mathbf{C})\right\|_{F}
$$

It is shown in [EAS98, Section 4.3] that the chordal metric provides a lower bound, and in fact, a good approximation to the geodesic distance.

The maximum principal angle $\theta_{m}$ is a generalization of the dihedral angle between two planes in $\mathbb{R}^{3}$, and hence, it is another natural metric to measure the diversity of bases. The
projection 2-norm metric is defined as

$$
d_{p 2}\left(Y^{i}(\mathbf{B}), Y^{i}(\mathbf{C})\right):=\sin \theta_{m}=\left\|Y^{i}(\mathbf{B})^{T} Y^{i}(\mathbf{B})-Y^{i}(\mathbf{C})^{T} Y^{i}(\mathbf{C})\right\|_{2}
$$

Note that the largest singular value can be efficiently computed by the power method. When $n$ is sufficiently large, the maximum principal angle for random $\mathbf{B}$ and $\mathbf{C}$ is close to $\pi / 2$, and the projection 2-norm metric is closed to one regardless of $i$.

### 5.2.2 Diversity of bases

Given a multiset $\mathcal{B}=\left(\mathbf{B}_{1}, \ldots, \mathbf{B}_{m}\right)$ of lattice bases, we define its diversity using the Grassmann metrics defined in the previous subsection.

Definition 5.2.1 (Diversity of projected lattices) Let $P(\mathcal{B})$ be the set of all pairs of elements in $\mathcal{B}$. We define its $i$-th projected diversity associated to a Grassmann metric $d_{g}$ as the mean of the pairwise distance:

$$
\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right):=\frac{1}{|P(\mathcal{B})|} \sum_{(\mathbf{B}, \mathbf{C}) \in P(\mathcal{B})} d_{g}\left(Y^{i}(\mathbf{B}), Y^{i}(\mathbf{C})\right)
$$

The total projected diversity is defined by the mean of the $i$-th projected diversity for $1 \leq i \leq d$ :

$$
\operatorname{Div}\left(\mathcal{B}, d_{g}\right):=\frac{1}{d} \sum_{i=1}^{d} \operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)
$$

The higher value of $\operatorname{Div}\left(\mathcal{B}, d_{g}\right)$ indicates the greater diversity of the bases.

### 5.2.3 Effect of sharing short vectors on the diversity of bases

Here, we investigate how the diversity of the bases is affected by our sharing scheme. To set up a controlled experiment, we run the parallel DeepBKZ in a synchronous manner. Initially, each solver receives a randomized copy of the input lattice basis. Each iteration starts by running a tour of DeepBKZ. The global basis is defined as the minimum among all the bases of the solvers in terms of the order defined in (5.1). All solvers share the top-k lattice vectors of the global basis as shown in lines 10-16 of Algorithm 11. The diversity $\operatorname{Div}\left(\mathcal{B}, d_{g}\right)$ is computed at this point. We then repeat the iteration.

We set the number of solvers $m=100$ and DeepBKZ blocksize $\beta=30$, and perform this experiment with various numbers of shared vectors $k \in\{0,1,8,16,32,64,80\}$ for five 90-dimensional instances of the SVP challenge.

Snapshot of the diversity Figure 5.2 shows the snapshot of $\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)$ averaged for the five SVP instances after 100 tours of DeepBKZ. We observe that the shapes of $\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)$ and $\operatorname{Div}^{i}\left(\mathcal{B}, d_{c}\right)$ are almost identical up to scaling, as $d_{c}$ gives a good approximation to $d_{g}$. In the following analysis, we will focus on $d_{c}$ and $d_{p 2}$ as they can be efficiently computed. Note that $\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)$ for $i \leq k$ are not necessarily 0 although we share the top- $k$ vectors of the global basis. This is because the top- $k$ vectors of the basis of each solver are updated by the insertion and LLL. We observe that the values $\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)$ decrease as the number of shares $k$ increases. This is an expected result in agreement with our intuition, and it is implied that the diversity of the projected lattice can be quantified by the proposed $i$-th projected diversity metric. When $k=0$ and there is no sharing, the shape for the chordal metric shows a symmetry with respect to $i=45$. This is due to the one-to-one correspondence between $\operatorname{Gr}(m, n)$ and $\operatorname{Gr}(n-m, n)$ that maps an $m$-dimensional subspace to its orthogonal complement. The deviation of the shape of $\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)$ from that for the $k=0$ case indicates the decrease in the diversity of the bases due to the sharing. We indeed observe that the shape is closer to that of $k=0$ for smaller $k^{\prime}$ s.

For the projection 2-norm, $\operatorname{Div}^{i}\left(\mathcal{B}, d_{p 2}\right)$ is close to one for all $i$ when $k=0$, as expected. This ensures that each solver works on a different search space. When $k=64$ and 80 ,
geodesic

projection 2-norm

chordal


$$
\begin{array}{ll}
+ & k=0 \\
\times & k=1 \\
+ & k=8 \\
- & k=16 \\
+ & k=32 \\
+ & k=64 \\
- & k=80
\end{array}
$$

FIGURE 5.2: The average of the $i$-th projected diversity $\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)$ computed for 90 -dimensional lattice bases with different numbers of shared vectors $k$ right after 100 DeepBKZ tours.)
the lower values of $\operatorname{Div}^{i}\left(\mathcal{B}, d_{p 2}\right)$ suggest that there is substantial overlap among the search spaces of the solvers, which would affect the overall efficiency of the system. We will discuss this point later in a large-scale experiment in Section 5.3.4.

Transition of the total diversity with tours Figure 5.3 shows the transition of the total diversity $\operatorname{Div}\left(\mathcal{B}, d_{g}\right)$ with respect to the number of tours. We observe that when $k=0$, the total diversity stays constant, indicating that the DeepBKZ algorithm preserves the diversity of bases and the lattice reduction itself does not reduce the diversity of bases. We observe that when $k>0$, the total diversity decreases at the early stage and then converges to a certain value which depends on $k$. This experiment shows that the diversity of the bases of the solvers is preserved to some extent during the execution of our shared DeepBKZ algorithm, even though the randomization is performed only once before the first tour. We confirm these observations through a large-scale experiment in Section 5.3.4.

Evaluation of different randomization Our novel diversity metric has the potential to be applied for various analyses of a set of lattice bases. For example, we conduct an evaluation of the effect of different randomization methods. In general, the quality of the random element generator has a large impact on the performance of a randomized algorithm. In our case, the input basis is multiplied by randomly generated unimodular matrices to produce different bases for the input lattice. We compare three popular ways to generate unimodular matrices using our diversity metric.

- LU: A pair consisting of a lower and an upper integer triangular matrix with 1's along the diagonal is generated.. They are then multiplied after their rows are randomly shuffled.
- Swap: A permutation matrix is generated uniformly randomly.
- Fplll: A permutation matrix is generated uniformly randomly. Then, row operations are performed on it three times, picking a row to add to or subtract from another row. This is used by the fplll library.




$$
\begin{array}{ll}
+ & k=0 \\
\times & k=1 \\
+ & k=8 \\
\cdot & k=16 \\
+ & k=32 \\
+ & k=64 \\
- & k=80
\end{array}
$$

Figure 5.3: Transition of the total diversity $\operatorname{Div}\left(\mathcal{B}, d_{g}\right)$ computed for 90dimensional lattice bases with different numbers of shared vectors $k$ after each tour of DeepBKZ.

First, we generate 100 bases from a single lattice basis by one of the above methods. Then, we calculate $\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)$ after (i) randomization, (ii) randomization and LLL, and (iii) randomization and a tour of DeepBKZ without sharing. Figure. 5.4 shows the average of $\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)$ of five 90 -dimensional instances of the SVP challenge. The three lines corresponding to the three methods grow closer as one proceeds from (i) to (iii). This implies that the three methods are all exhibit bias, but this bias is eliminated by LLL and DeepBKZ. Therefore, in practice, it is not necessary to pay significant attention to the randomization method. It is interesting that the reduction process itself contributes to the diversity of the bases.

Distribution of reduced bases Some lattice algorithms assume the randomness of input bases. For example, extreme pruning [GNR10], a pruning technique for enumeration, relies on the heuristic of [GNR10, Heuristic 3] that the normalized Gram-Schmidt vectors $\left(\mathbf{b}_{1}^{*} /\left\|\mathbf{b}_{1}^{*}\right\|, \ldots, \mathbf{b}_{d}^{*} /\left\|\mathbf{b}_{d}^{*}\right\|\right)$ of a basis is uniformly distributed. This heuristic allows us to estimate the probability that a vector of a given length is included in a pruned enumeration tree. However, to our best knowledge, this heuristic has not yet been verified in detail for reduced bases, or more precisely, bases obtained by a reduction algorithm. Below, we apply our diversity metric to provide supportive evidence for [GNR10, Heuristic 3].

Note that we can sample uniformly from $\operatorname{Gr}(1, n)$ by sampling from the $n$-dimensional normal distribution with the zero mean and the identity covariance. By sampling $m$ elements independently from $\operatorname{Gr}(1, n)$, we obtain an element of $\operatorname{Gr}(m, n)$ almost surely. Let $\mathcal{C}_{i}$ be a multiset of elements in $\operatorname{Gr}(d-i+1, n)$ sampled in this manner. The value

$$
\operatorname{Div}^{i}\left(\mathcal{C}_{i}, d_{g}\right):=\frac{1}{\left|P\left(\mathcal{C}_{i}\right)\right|} \sum_{(\mathbf{B}, \mathbf{C}) \in P\left(\mathcal{C}_{i}\right)} d_{g}(\mathbf{B}, \mathbf{C})
$$

represents the diversity of randomly sampled subspaces. We compare this value with the $i$-th projected diversity of the subspaces defined by the lattice bases derived from a single lattice basis by the randomization and the DeepBKZ algorithm. If the distribution of the reduced bases is similar to that of random bases, the diversity metrics of these two groups should be similar. As in Section 5.2.3, we generate a multiset of the lattice bases $\mathcal{B}$ by running


Figure 5.4: The $i$-th projected diversity for the chordal (left) and the projection 2-norm (right) Grassmann metrics computed (top) immediately after randomization, (middle) after LLL, and (bottom) after one tour of DeepBKZ for 90-dimensional lattice bases with different random generation models of unimodular matrices.

DeepBKZ for 100 tours with no sharing $(k=0)$ on 100 random copies (generated by the $L U$ method) of a single instance of 90 -dimensional SVP challenge. Figure 5.5 shows the difference between $\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)$ and $\operatorname{Div}^{i}\left(\mathcal{C}_{i}, d_{g}\right)$, where $d=90$ and $\left|\mathcal{C}_{i}\right|=100$. In addition to the difference of means, the difference between $\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)$ and the quartiles, denoted by $\operatorname{Div}_{25 \%}^{i}\left(\mathcal{C}, d_{g}\right)$ and $\operatorname{Div}_{75 \%}^{i}\left(\mathcal{C}, d_{g}\right)$, of $\mathcal{C}_{d_{g}}^{i}:=\left\{d_{g}\left(Y^{i}(\mathbf{B}), Y^{i}(\mathbf{C})\right) ;(\mathbf{B}, \mathbf{C}) \in P(\mathcal{C})\right\}$ are shown. We observe that the difference between $\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)$ and $\operatorname{Div}^{i}\left(\mathcal{C}_{i}, d_{g}\right)$ is close to zero. In fact, $\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)$ fall within the quartiles of the diversity of the random elements $\mathcal{C}_{d_{g}}^{i}$ except for $i=2$. The same is observed for other four instances of 90-dimensional SVP challenge. Note that when $i=2$, the first basis vector $\mathbf{b}_{1}$ is likely to be the shortest vector, and hence, reduced bases share the same first basis vector with a certain probability.

This result suggests that the assumption of [GNR10, Heuristic 3] holds for bases reduced by DeepBKZ except for the first vector.

### 5.3 Numerical experiments

In this section, we show experimental results to demonstrate the performance of CMAPDeepBKZ in a large-scale computing environment. We used the computing platforms in Table 5.1 and conducted experiments using up to 103,680 cores. The supercomputers Lisa and Emmy are in the HLRN IV system at Zuse Institute Berlin, and the ITO supercomputer is at Kyushu University. The CPU cluster computers CAL A and CAL C possess a total of 144 and 180 cores, respectively. We used MPI processes without hyper-threading. For our


Figure 5.5: Comparison between the diversity metrics of $\mathcal{C}$ and that of $\mathcal{B}$. mean: $\left(i, \operatorname{Div}^{i}\left(\mathcal{C}, d_{g}\right)-\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)\right), 25 \%:\left(i, \operatorname{Div}_{25 \%}^{i}\left(\mathcal{C}, d_{g}\right)-\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)\right)$, $75 \%$ : $\left(i, \operatorname{Div}_{75 \%}^{i}\left(\mathcal{C}, d_{g}\right)-\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)\right)$ for $(\operatorname{Left}) d_{g}=d_{c}$ the chordal metric, and (Right) $d_{g}=d_{p 2}$ the projection 2-norm.

TABLE 5.1: Computing platforms, operating systems, compilers and libraries

| Machine | Memory <br> / node | CPU | CPU <br> frequency | \# nodes | \# cores |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lisa | 384 GB | Xeon Platinum 9242 | 2.30 GHz | 1,080 | 103,680 |
| Emmy | 384 GB | Xeon Platinum 9242 | 2.30 GHz | 128 | 12,288 |
| ITO | 192 GB | Xeon Gold 6154 | 3.00 GHz | 128 | 4,608 |
| CAL A | 256 GB | Xeon E5-2640 v3 | 2.60 GHz | 4 | 64 |
| CAL C | 256 GB | Xeon E5-2650 v3 | 2.30 GHz | 4 | 80 |

Operating systems and versions: Lisa and Emmy [CentOS Linux release 7.7.1908], ITO [Red Hat Enterprise Linux Server release 7.3.1611], CAL A and CAL C [CentOS Linux release 7.9.2009]. Compilers and versions: Lisa and Emmy [intel19.0.5, impi2019.5], ITO [icc 19.1.1.217, impi2019.4], CAL A [icc 19.1.3.304, openmpi4.0.5], CAL C [icc19.1.3.304, impi2020.4.304]. Libraries and versions: NTL v11.3.3, Eigen v3.3.7, gsl v2.6, OpenBLAS v0.3.7, fplll v5.2.1.
experiments, we used instances in the Darmstadt SVP challenge [Sch+10], but we reduced every instance in advance using LLL implemented in the fplll library [The16].

### 5.3.1 Metrics to measure the output quality of reduction algorithms

As described below, we present typical metrics to measure the output quality of reduction algorithms to compare the experimental results later.

- Hermite factor: Let $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right)$ be a basis of a lattice $L$ output by a reduction algorithm. Assume that $\mathbf{b}_{1}$ is the shortest among the vectors $\mathbf{b}_{i}{ }^{\prime}$ 's. Then, the Hermite factor of the reduction algorithm is defined as $\gamma=\frac{\left\|\mathbf{b}_{1}\right\|}{\operatorname{vol}(L)^{1 / d}}$. As $\gamma$ is smaller, a reduction algorithm can find a shorter basis vector. Exhaustive experiments in [GN08] show that for a practical reduction algorithm such as LLL and BKZ, the root Hermite factor $\gamma^{1 / d}$ converges to a constant value for high dimensions $d \geq 100$. Therefore, the root Hermite factor $\gamma^{1 / d}$ is a useful metric to compare the identical output quality of practical reduction algorithms for lattice bases in high dimensions.
- Enumeration Cost: Given a basis $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right)$ of a lattice $L$, we can estimate the cost to find a shortest non-zero vector in $L$ by enumeration using B. Given a search radius $R>0$, an enumeration tree of depth $n$ is constructed whose nodes at depth $d-k+1$ correspond to the set of all vectors in $\pi_{k}(L)$ with a maximum length of $R$. The key observation here is that if a shortest vector $\mathbf{s}$ satisfies $\|\mathbf{s}\| \leq R$, its projections must also satisfy $\left\|\pi_{k}(\mathbf{s})\right\|^{2} \leq R^{2}$ for all $1 \leq k \leq d$. Hence, it appears as a leaf of the tree. These $d$ inequalities provide an enumeration of the tree. The total number
of nodes to be traversed is estimated using the Gaussian Heuristic as $N=\sum_{k=1}^{d} H_{k}$, where $H_{k}=\frac{R^{k} \omega_{k}}{\operatorname{vol}\left(\pi_{d+1-k}(L)\right)}$ for every $1 \leq k \leq d$ (see [GNR10] for details). As B is reduced, the total number of nodes $N$ decreases in practice.
- Geometric Series Assumption (GSA): Let $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right)$ be a reduced basis, and $\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{d}^{*}$ its Gram-Schmidt vectors. The GSA in [Sch03] states that the plots of log-norms log $\left\|\mathbf{b}_{i}^{*}\right\|$ of Gram-Schmidt vectors approximate a straight line. (For a $\beta$-BKZ-reduced basis, the GSA does not hold for the last $d-\beta$ plots because the last block $\mathbf{B}_{[d-\beta+1: d]}$ is HKZreduced. See [AD21, Figure 1] for an example of the GSA and its tail-adapted version.) To measure the average quality of $\mathbf{B}$, fpylll [The16] adopts a least squares fit of $\log \left\|\mathbf{b}_{i}^{*}\right\|^{2}$ for $1 \leq i \leq d$ is adopted in fpylll [The16] as a slope metric $\rho$. Under the GSA, the slope relates to the root Hermite factor via $\gamma^{1 / d}=\exp \left(-\frac{\rho}{4}\right)$.


### 5.3.2 Efficacy when sharing short lattice vectors

Here, we demonstrate the efficacy of CMAP-DeepBKZ when sharing short lattice vectors among solvers.

## Analysis using deterministic parallel execution

First, we conducted experiments to accurately evaluate the effect of sharing short lattice vectors for 95,100 , and 105-dimensional SVP. We used the parallel DeepBKZ in the synchronous manner described in Section 5.2.3. By repeatedly running a tour of DeepBKZ, sharing, and distributing the global basis for each step, the behaviors of the solvers become deterministic. By contrast, in CMAP-DeepBKZ, a global basis is updated and distributed asynchronously through MPI communication. It is difficult to completely control the shared lattice vectors using CMAP-DeepBKZ.

We executed the parallel DeepBKZ with the number of solvers set to $m=128$, while changing the number of short vectors shared among the solvers. In particular, we used $k=0,2,4,8,16,32$, and 64 as the number of short lattice vectors shared among the solvers, and we performed 10 runs for each value of $k$. (The case where $k=0$ means that no vector is shared among the solvers.) The initial blocksize of DeepBKZ is set as $\beta=30$, and execution times are adjusted according to the dimension of the SVP instances. In Figure 5.6, we show the transition of the averages of minimum root Hermite factors, enumeration costs, and GSA slopes when running our parallel DeepBKZ. (For the enumeration cost, we set $R=\mathrm{GH}(L)$ as the search radius of enumeration.) Comparing the results for $k=0$ and $k>0$, we see that enumeration costs and GSA slopes $\rho$ decreased when sharing short lattice vectors. This means that more reduced bases can be obtained through the sharing of short lattice vectors. However, the root Hermite factor transitions in dimensions $d=95$ and 100 were not explicitly different for the various value of $k$, and variation appeared only in dimension $d=105$. This result shows that for 95-dimensional and 100-dimensional SVP, DeepBKZ with a blocksize $\beta=30$ could find shortest vectors by only utilizing the effect of parallel lattice reductions through randomization. In contrast, for SVPs of dimensions $d \geq 105$, parallel lattice reduction by randomization was insufficient. This finding implies that the transition of the root Hermite factor, enumeration costs, and GSA slopes can be reduced by speeding up DeepBKZ through short vector sharing, in exchange for some loss of basis diversity in a few dimensions.

## Analysis of MPI parallelization using CMAP-DeepBKZ

In Figure 5.7 and Table 5.2, we display the experimental results of CMAP-DeepBKZ for the instances of the Darmstadt SVP challenge in dimension $d=118$ with seeds ranging from 2 to 6 . Specifically, we used $k=0,16$, and 64 as the number of short lattice vectors shared among the solvers. We ran CMAP-DeepBKZ for six hours for each SVP instance on the supercomputer system ITO using 2,304 cores (see Table 5.1 for ITO). Each solver ran DeepBKZ with a blocksize $\beta=30$ and sent the current status to the supervisor at an interval of 120 seconds. (In other words, each solver obtained a global sub-basis of size $k$ every 120 seconds.)


FIGURE 5.6: Transition of metrics on the output quality of parallel sharing DeepBKZ in dimension $d=95$ (Top), 100 (Middle) and 105 (Bottom), by using $k=0,2,4,8,16,32$ and 64 as the number of short vectors shared among solvers using (Left: the average root Hermite factor $\gamma^{1 / d}$, Center: the logarithm of the average enumeration cost $\log (N)$, Right: the minus of the average GSA slope $-\rho>0$ )

In Figure 5.7, we show the transition of the averages of global basis's root Hermite factors, enumeration costs, and GSA slopes when running CMAP-DeepBKZ. In Table 5.2, we summarize the experimental results of CMAP-DeepBKZ after six hours of execution. As illustrated in Figure 5.7 and Table 5.2, it is effective to share short lattice vectors to decrease the metrics of DeepBKZ for finding short lattice vectors. For example, the minimum of the logarithm of the enumeration cost is 62.6578 (resp., 59.7701) for $k=0$ (resp., $k=64$ ) as shown in Figure 5.7, and we calculate $e^{59.7701} / e^{62.6578} \approx 0.0557$. This implies that enumeration costs can be reduced by $5.57 \%$, through sharing 64 short lattice vectors among the solvers.

Remark 5.3.1 (Comparison with BKZ) In cryptanalysis, BKZ and its variants such as BKZ 2.0 [CN11] are de facto standard reduction algorithms utilized to evaluate the security of lattice-based cryptography (see $[A l b+18]$ for details). Under the GSA and the Gaussian Heuristic, a limiting value of the root Hermite factor of BKZ with blocksize $\beta$ for a d-dimensional lattice is predicted in [Che13] as

$$
\begin{equation*}
\lim _{d \rightarrow \infty} \gamma^{\frac{1}{d}}=\left(\omega_{\beta}^{-\frac{1}{\beta}}\right)^{\frac{1}{\beta-1}} \sim\left(\frac{\beta}{2 \pi e}(\pi \beta)^{\frac{1}{\beta}}\right)^{\frac{1}{2(\beta-1)}} \tag{5.3}
\end{equation*}
$$

for $\beta>50$ and $\beta \ll d$ (see [Che13; CN11; YD17] for experimental results supporting the prediction). Table 5.2 shows that CMAP-DeepBKZ can achieve the root Hermite factor around $\gamma^{1 / d}=1.0085$ with average by blocksize $\beta=30$ in dimension $d=118$. (See also Tables 5.3, 5.5 and 5.6 for root Hermite factors of CMAP-DeepBKZ in other dimensions.) In contrast, the prediction (5.3) implies that $B K Z$ requires around $\beta=115$ to achieve the same root Hermite factor. Recall that it is the


Figure 5.7: Same as Figure 5.6, but using CMAP-DeepBKZ and dimension $d=118$, by using $k=0,16$ and 64 as the number of short vectors shared among solvers


FIGURE 5.8: History of updating a global basis in an execution of CMAPDeepBKZ with the number of shares $k=16$ in dimension $d=118$ (Each plot $(x, y)$ indicates that a global basis at index $y$ was updated at time $x$ )
most dominant factor in both BKZ and DeepBKZ to run an exact-SVP algorithm over projected lattices of dimension $\beta$, and the cost is $2^{O\left(\beta^{2}\right)}$ when using an enumeration algorithm for solving exact-SVP in dimension $\beta$. Therefore, CMAP-DeepBKZ is significantly more efficient than BKZ without parallelization.

History of updating global bases In Figure 5.8, we display the history of updating a global basis when running CMAP-DeepBKZ with the number of shares $k=16$ for the SVP instance in dimension $d=118$ with seed 5 , which is the result of updating the shortest vector at the latest time. Each plot $(x, y)$ in the figure indicates that a global basis $\mathbf{S}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{d}\right)$ at index $y$ was updated at time $x$. We can see from Figure 5.8 that a global basis is updated frequently, and it is less frequent to update a global basis at a smaller index. Therefore, if the number of shares $k$ is small, for example $k=1$, each solver will run with almost no information sharing. To benefit from this sharing effect of CMAP-DeepBKZ, it is necessary to have a large number of shares.

Approximation factors in projected lattices In Figure 5.9, we show the approximate factors in projected lattices for a global basis $\mathbf{S}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{d}\right)$, output by CMAP-DeepBKZ after six hours of execution for the SVP lattice $L$ of dimension $d=118$ with seed 2 . Specifically, we plot all $\left(i, y_{i}\right)$ for $1 \leq i \leq d$, where $y_{i}=\frac{\left\|s_{\mathbf{s}}^{*}\right\|}{\operatorname{GH}\left(\pi_{i}(L)\right)}$ denotes the approximate factor in the projected lattice $\pi_{i}(L)$ of dimension $n=d-i+1$. (Recall that $\mathrm{GH}\left(\pi_{i}(L)\right) \approx \lambda_{1}\left(\pi_{i}(L)\right)$ for large $n \geq 50$; however it does not hold for small $n$.) Therefore, we focus on indices $1 \leq i \leq 80$. We note from Figure 5.9 that approximate factors at indices $1 \leq i \leq 16$ are extremely close to 1.0 when the numbers of shares $k=16$ and 64 . This implies that the first 16 basis vectors

TABLE 5.2: Experimental results of CMAP-DeepBKZ after 6 hours execution for instances of the Darmstadt SVP challenge in dimension $d=118$ with seeds 2-6 ( $k$ denotes the number of short vectors shared among solvers, and $\mathbf{b}_{1}$ the shortest basis vector of all solver's bases)

| $\begin{gathered} \text { SVP } \\ \text { instance } \end{gathered}$ | Number of shares | Updated time [h] | Norm of $\mathbf{b}_{1}$ | $\begin{aligned} & \text { Approx. } \\ & \text { factor } \frac{\left\\|\mathbf{b}_{1}\right\\|}{\mathrm{GH}(L)} \end{aligned}$ | Root Hermite factor $\gamma^{1 / d}$ | Machine (Table 5.1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| seed2 | $k=0$ | 4.4354 | 2818.92 | 1.0272 | 1.00867 | ITO |
| seed3 |  | 4.4358 | 2785.57 | 1.0117 | 1.00854 |  |
| seed4 |  | 2.2824 | 2834.39 | 1.0308 | 1.00870 |  |
| seed5 |  | 4.3073 | 2787.56 | 1.0153 | 1.00857 |  |
| seed6 |  | 5.5766 | 2837.97 | 1.0303 | 1.00869 |  |
| Āverage |  |  |  | $1.0 \overline{2} \overline{3} 1$ | $\overline{1} .00 \overline{8} \overline{6}$ |  |
| seed2 | $k=16$ | 2.0172 | 2789.09 | 1.0163 | 1.00858 | ITO |
| seed3 |  | 3.6039 | 2770.70 | 1.0063 | 1.00849 |  |
| seed4 |  | 0.8736 | 2793.29 | 1.0159 | 1.00857 |  |
| seed5 |  | 5.0591 | 2764.17 | 1.0068 | 1.00850 |  |
| seed6 |  | 2.5595 | 2768.58 | 1.0051 | 1.00848 |  |
| Āverage |  |  |  | $1.0 \overline{0} 1$ | $\overline{1} .00085 \overline{2}$ |  |
| seed2 | $k=64$ | 1.7197 | 2789.09 | 1.0163 | 1.00858 | ITO |
| seed3 |  | 1.5907 | 2785.57 | 1.0117 | 1.00854 |  |
| seed4 |  | 1.2151 | 2799.01 | 1.0179 | 1.00859 |  |
| seed5 |  | 1.0780 | 2765.60 | 1.0073 | 1.00850 |  |
| seed6 |  | 3.7370 | 2786.96 | 1.0118 | 1.00854 |  |
| Ā̄ererage |  |  |  | $1.0 \overline{1} \overline{3} 0^{-}$ | $\overline{1.00} \overline{8} 5 \overline{5}$ |  |

of $\mathbf{S}$ are almost equal to those of an HKZ-reduced basis. (We also note from Figure 5.9 that $k=16$ seems sufficient for dimension $d=118$.)

GSA shapes In Figure 5.10, we show the logarithms of the Gram-Schmidt squared norms $\log \left\|\mathbf{s}_{i}^{*}\right\|^{2}$ of a global basis $\mathbf{S}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{d}\right)$, output by CMAP-DeepBKZ with the number of shares $k$ after six hours execution for the SVP instance in dimension $d=118$ with seed 2 . We can observe the "head concavity" as pointed out in [Che16] in both cases with and without sharing (cf., see [AD21, Figure 1] for an image of the GSA shape by the BKZ reduction algorithm.) Specifically, the log-norms $\log \left\|\mathbf{s}_{i}^{*}\right\|^{2}$ at the first 20 indices for the two cases $k=16$ and 64 are more concave than for the case $k=0$.

Remark 5.3.2 (Performance difference due to the number of shares) Through exhaustive experimentation considering different numbers of shares $k$ for 95, 100, and 105-dimensional SVPs in Subsection 5.3.2, the results showed little difference in the root Hermite factor when the number of


FIGURE 5.9: Plots of approximation factors in projected lattices $\left\|\mathbf{s}_{i}^{*}\right\| / \mathrm{GH}\left(\pi_{i}(L)\right)$ for a global basis $\mathbf{S}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{d}\right)$ of a lattice $L$ of dimension $d=118$, output by CMAP-DeepBKZ after 6 hours execution (We used $k=0,16$ and 64 as the number of shares in CMAP-DeepBKZ)


FIGURE 5.10: The logarithms of Gram-Schmidt squared norms $\log _{2}\left\|\mathbf{s}_{i}^{*}\right\|$ of a global basis $\mathbf{S}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{d}\right)$ output by CMAP-DeepBKZ with the numbers of shares $k=0,16$ and 64 after 6 hours execution for an SVP instance in $d=118$


Figure 5.11: Same as Figure 5.7, but the dimension is $d=120$ and lines in each metric represent difference by different numbers of processes (We used $k=16$ as the number of shares)
shares $k>0$. In contrast, the value of the enumeration cost and the GSA slope tended to improve as the number of shares $k$ increased, but converged to similar values for $k \geq 16$. The same tendency was observed in the experiment using CMAP-DeepBKZ in 118-dimensional SVPs in Subsection 5.3.2. In addition, as shown in Figure 5.14, when the number of shares $k=64$, lattice bases update frequently in each solver, and the number of substantial shares is up to 16. This result explains why there are no significant differences between $k=16$ and 64. In the following subsections, we mainly use $k=16$ in terms of both the output quality and the diversity of CMAP-DeepBKZ.

### 5.3.3 Scalability of the number of processes

In this subsection, we show the scalability of CMAP-DeepBKZ in large-scale computing environments. Specifically, we used different computing platforms with a maximum of $p=24,576$ cores (see Table 5.3 for details of computing platforms). We ran CMAP-DeepBKZ for 11 hours for every instance of the Darmstadt SVP challenge [Sch+10] in two dimensions, $d=120$ and $d=124$, with seeds $0-4$. More specifically, each solver used an initial blocksize $\beta=30$ for DeepBKZ, increasing $\beta$ by increments of five with the early termination strategy of [CN11]. (The strategy is also implemented in fplll [The16] as an auto-abort option for BKZ.) When a solver reached $\beta=50$, the reduction process was terminated and the solver received a new task (that is, a new basis) from the supervisor to run DeepBKZ again from the beginning. We set $k=16$ as the number of short basis vectors shared among solvers, which is a low value that on average exhibited good performance in the experiments of the previous section. In Tables 5.3 and 5.4 , we show experimental results on the scalability of CMAP-DeepBKZ in the dimensions $d=120$ and $d=124$, respectively. We assigned one

TABLE 5.3: Results of CMAP-DeepBKZ after 11 hours execution on platforms with the number of processes $p$ for SVP instances in dimension $d=120$ (We used $k=16$ as the number of shares, and let $\mathbf{b}_{1}$ denote a shortest basis vector of all solver's bases)

| SVP <br> instance | Number of processes | Updated time [h] | Norm of $\mathbf{b}_{1}$ | Approx. factor $\frac{\left\\|\mathbf{b}_{1}\right\\|}{\mathrm{GH}(L)}$ | Root Hermite factor $\gamma^{1 / d}$ | Machine (Table 5.1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| seed0 | $p=180$ | 6.2015 | 2848.69 | 1.0288 | 1.00860 | CAL C |
| seed1 |  | 8.2300 | 2963.32 | 1.0669 | 1.00891 |  |
| seed2 |  | 8.6904 | 2996.73 | 1.0785 | 1.00900 |  |
| seed3 |  | 4.6942 | 2898.89 | 1.0424 | 1.00871 |  |
| seed4 |  | 1.6277 | 2947.42 | 1.0618 | 1.00887 |  |
| Āverage |  |  |  | $1.055 \overline{7}$ | $1.0 \overline{0} \overline{8} 8 \overline{2}$ |  |
| seed0 | $p=2,304$ | 1.1908 | 2804.94 | 1.0130 | 1.00847 | ITO |
| seed1 |  | 2.8657 | 2844.46 | 1.0241 | 1.00856 |  |
| seed2 |  | 1.5187 | 2896.61 | 1.0424 | 1.00871 |  |
| seed3 |  | 1.4221 | 2897.27 | 1.0419 | 1.00871 |  |
| seed4 |  | 3.6159 | 2729.25 | 0.9833 | 1.00822 |  |
| Āverage |  |  |  | $1.02 \overline{2} 0 \overline{9}$ | $1.0 \overline{0} \overline{8} 5 \overline{3}$ |  |
| seed0 | $p=24,576$ | 1.5810 | 2756.06 | 0.9954 | 1.00833 | Emmy |
| seed1 |  | 7.0333 | 2792.47 | 1.0054 | 1.00841 |  |
| seed2 |  | 3.1890 | 2778.82 | 1.0001 | 1.00836 |  |
| seed3 |  | 0.6497 | 2842.70 | 1.0222 | 1.00855 |  |
| seed4 |  | 0.6117 | 2729.25 | 0.9833 | 1.00822 |  |
| Āverage |  |  |  | $1.001 \overline{3}$ | $1.00 \overline{8} 3 \overline{7}$ |  |

core to the supervisor except for Emmy and used $p-1$ solvers for basis reduction. When using $p=24,576$ cores for Emmy, we assigned one node to the supervisor with a sufficient amount of memory, and used $p-96=24,480$ solvers for basis reduction. In Figure 5.11, we also show the same as Figure 5.7, but the dimension is $d=120$ and different lines in each metric correspond to different numbers of cores. Because the computing platforms are different, the comparison is not exact; however as shown in Tables 5.3, 5.4 and Figure 5.11, the quality of a global basis improves in every metric as the number of cores is increased. In particular, Table 5.3 shows that an extremely short lattice vector with an approximate factor close to 1.0 in dimension $d=120$ can be found within 11 hours when using $p=24,576$ cores for CMAP-DeepBKZ. To evaluate the scalability, we recall from the Gaussian Heuristic that there are roughly $\alpha^{d}$ lattice vectors of norms less than $\alpha \mathrm{GH}(L)$ in a $d$-dimensional lattice $L$ for a constant $\alpha \geq 1$. When we evaluate the hardness of an approximate SVP by the number of solutions, the approximate factor $\alpha=1.0013$ achieved by using $p=24,576$ processes is $(1.0557 / 1.0013)^{120} \approx 572$ times harder than $\alpha=1.0557$, which was attained by $p=180$ in dimension $d=120$ as shown in Table 5.3.

In Figure 5.12 (resp., Figure 5.13), similar to Figure 5.7 (resp., Figure 5.10), we show approximate factors in projected lattices (resp., the logarithms of Gram-Schmidt squared norms) of a global basis in $d=120$ according to the different numbers of processes. Because we shared the first 16 basis vectors among the solvers, the plots at the first 16 indices in Figure 5.12 become closer to 1.0 by increasing the number of processes. Similarly, we see from Figure 5.13 that the logarithms of the Gram-Schmidt squared norms of a global basis in the first 16 indices are reduced as the number of cores is increased.

### 5.3.4 Transition of diversity on large-scale execution

We measured the diversity of a set of bases of the solver during large-scale execution with Div defined in Section 5.2.2. Figure 5.14 is created from five results of 118 -dimensional instances in Section 5.3.2, with six hours executions using 2,304 cores and 16 shared short vectors. Figure 5.14 shows the three results with different numbers of shared vectors. The left figure shows the transition of the number of overlapping basis vectors, excluding positive and negative differences. Because the solver obtained the global basis from the supervisor at relatively large intervals of 120 seconds, the situation where the top- 16 vectors are aligned


Figure 5.12: Same as Figure 5.7, but the dimension is $d=120$ and plots represent difference by different numbers of cores (We used $k=16$ as the number of shares)


Figure 5.13: Same as Figure 5.10, but the dimension is $d=120$ and three lines represent different GSA shapes by different numbers of processes (We used $k=16$ as the number of shares)
did not occur during the early calculation time, and the number of overlaps approaches 16 after one hour. The right figure shows the transition of the Div values using the chordal metric. The diversity Div is defined as the average of the diversities for all pairs in the basis set. However, because the size of the basis set is 2,303 for these executions, which is equal to the number of solvers, calculating the diversity for all pairs in this set requires high computation time and is impractical. Therefore, we sampled 100 basis pairs from the basis set and approximated Div by taking the average value of those pairs. This computation of Div was performed every 10 minutes, and it was shown that Div grows smaller as the execution progresses, that is, the diversity of the basis set tends to decrease. However, the transition of Div did not continue to decrease and eventually plateaus, even though the actual number of basis vectors received from the supervisor was larger than 16 . This tendency for diversity to plateau was also confirmed in a large-scale experiment using the 24,576 cores. Figure 5.15 was created from the results of experiments utilizing up to 24,576 cores in 11 hours executions on a 120-dimensional SVP in Section 5.3.3. The figures are the same as Figure 5.14 but show the diversity transition for the different number of cores. The tendency for diversity to plateau suggests that the diversity of the basis is preserved even in large-scale execution owing to the one-time randomization performed before the lattice basis reduction. Therefore, even in the large-scale computing platform where massive solvers execute the lattice basis reduction in parallel, the computations of the subroutines of the lattice basis reduction hardly overlapped. This result indicates that efficient use of computational resources was achieved in our software.

Table 5.4: Same as Figure 5.3, but the dimension is $d=124$


FIGURE 5.14: Transition of the diversity of 118-dimensional lattice basis with different the number of shared vectors; left figure is the transition of the number of overlap of basis vectors, right figure is the transition of the Div with Projection metric

### 5.3.5 Massive parallelization experiments with checkpoints and restarts

For CMAP-DeepBKZ, we conducted large-scale experiments on the supercomputer systems Emmy and Lisa (Table 5.1) with multiple checkpoints and restarts for instances of the Darmstadt SVP challenges [Sch +10 ] in dimensions $d=128,130$ and 132. In Figure 5.16, we show the transition of the approximation factor of a shortest basis vector in all bases of solver during the execution of CMAP-DeepBKZ. We started with the numbers of shared vectors $k=16$ and manually increased $k$ to 32 when the global basis was no longer being significantly updated. In Table 5.5, we summarize the final output results of Figure 5.16. In particular, we succeeded in finding a new solution for the SVP challenge in the dimension $d=128$ using an instance with seed 1 . It took approximately 57.5 hours to find the new solution, whose norm (resp., approximation factor) is 2812.0 (resp., 0.98470 ) from Table 5.5. In contrast, it was reported on the webpage of [Sch+10] that it took approximately five months on an iMac core-i 7 to find the previous record in the case of $d=128$, the norm (resp., approximation factor) of which was about 2882 (resp., 1.00477). However, the norms of Table 5.5 in the other dimensions $d=130$ and 132 do not surpass the current records yet.


Figure 5.15: Same as Figure 5.14, but dimension is 120 and with different the number of cores.

TABLE 5.5: Large-scale experimental results of CMAP-DeepBKZ for SVP instances in dimensions $d=128,130$ and 132 ( $\mathbf{b}_{1}$ denotes a shortest basis vector of all solver's bases, and "Updated time" is wall time to update final shortest vectors found)

| SVP Instance |  | \# of cores* | Updated time [h] | $\begin{gathered} \text { Norm } \\ \text { of } \mathbf{b}_{1} \end{gathered}$ | $\begin{aligned} & \text { Approx. } \\ & \text { factor } \frac{\\| \mathbf{b}_{1}}{\mathrm{GH}(L)} \end{aligned}$ | Root Hermite factor $\gamma^{1 / d}$ | Machine* <br> (Table 5.1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dim. | Seed |  |  |  |  |  |  |
| 128 | $1{ }^{+}$ | 24,576 | 57.5 | 2812.00 | 0.98470 | 1.00796 | Emmy |
|  | 2 | 24,576 | 37.1 | 2947,45 | 1.02808 | 1.00830 | Emmy |
| 130 | $\overline{3}$ | $\overline{10} \overline{3}, \overline{6} 8 \overline{0}$ | 81.1 | $2 \overline{9} \overline{6} 8.7 \overline{3}$ | $\overline{1} .0 \overline{3} 0 \overline{0} 1$ | $1.00 \overline{8} 2 \overline{2}$ | Lis'a |
|  | 7 | 103,680 | 39.4 | 2914.22 | 1.01236 | 1.00811 | Lisa |
| 132 | $\overline{1}$ | $\overline{2} \overline{4}, \overline{5} \overline{6}$ | $34 . \overline{6}$ | $2 \overline{9} \overline{6} 8.0 \overline{5}$ | $1.0 \overline{2} 2 \overline{6} 0$ | $\overline{1} . \overline{00} \overline{8} 1 \overline{2}$ | $\overline{\mathrm{E}} \mathrm{\bar{m}} \overline{\mathrm{~m}}$ y |
|  | 2 | 24,576 | 56.5 | 2899.90 | 0.99662 | 1.00818 | Emmy |

$\dagger$ a new solution for the Darmstadt SVP challenge [Sch+10] in dimension 128 (see also Table 5.6 for other dimensions). * We list the maximum number of cores and machines used for executions, including restarts, and the wall time for the updated time.

Execution details on Lisa We describe execution details on Lisa when using 103, 680 cores, which is the maximum number of cores used across all computers (Table 5.1 for computing platforms). We used Lisa for solving SVP instances in dimension 130 with seeds 3 and 7. In both executions, solutions were updated after more than 28 hours of execution (see Table 5.16). In Figure 5.17 and 5.18 , we show snapshots of a global basis $\mathbf{S}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{d}\right)$ in dimension 130 with seed 7 execution. Over the course of the execution, the values of the approximation factor for each $i$-th projected lattice $\left\|\mathbf{s}_{i}^{*}\right\| / \mathrm{GH}\left(\pi_{i}(L)\right)$ grew smaller for indices $i$ under 32, and approached 1.0 at 100 hours. This implies that a basis close to the HKZ-reduced basis was obtained for the first indexes of the basis. This strict reduction is also clearly shown for GSA shapes in Figure 5.18. We can see the step difference at the index with exactly $i=32$, which corresponds to the final number of shares $k$. While the GSA slope $\rho$ of the entire basis is -0.05867 , but the $\rho$ of the sub-basis consisting of $\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{32}\right)$ is -0.03685 , indicating that the first indexes of the basis were more reduced.

Communication performance Here, we describe the memory usage and CPU utilization on Lisa supercomputer using $p=103,680$ cores for a 130-dimensional instance with seed 7 instance. One node was allocated to a supervisor process, leaving $p-96=103,524$ solvers to be created in the remaining nodes. The maximum memory usage in the supervisor (resp., the solver) process was 61.7172 GiB (resp., 0.2274 GiB ). Both transitions of the memory usage during the runtime eventually plateaued, aligning with our expectations. Because the amount of memory usage of DeepBKZ in Algorithm 5 does not change, we can maintain low memory usage in the solver process. This implies that the solver process can execute even in a low-memory computational environment. By contract, because the supervisor has the lattice basis information of all solvers in the solver pool, it requires a sufficient amount of memory.


FIGURE 5.16: Transition of the approximation factor $\frac{\left\|\mathbf{b}_{1}\right\|}{\mathrm{GH}(L)}$ of a shortest basis vector $\mathbf{b}_{1}$ for SVP instances in dimensions $d=128,130$ and 132 (Each dot show the timing of checkpoint-and-restart, and see also Table 5.5 for a summary)

Next, we describe the CPU utilization of the supervisor and solver processes. The ratio of idle time to the total execution time of the solver is $0.9059 \%$, including the communication latency for receiving tasks and lattice vectors from the supervisor process. The ratio of idle time was extremely low, suggesting that the solver process has a high CPU utilization. In the case of the supervisor, the ratio of idle time was $81.36 \%$. This idle time corresponded to the time spent by the supervisor when waiting for a message from the solver, and a large idle rate is desirable because it allows the supervisor to process messages from the solver without delay.

Next, to evaluate the stability of our software, we note the checkpointing times of these executions. Specifically, the checkpoint creation times increase along with the number of solvers because our software writes all task data to checkpoint files, including information of all bases of the solvers. While the supervisor is copying the tasks, its message handling is blocked. Therefore, if there is a significant delay when copying, MPI can run out of memory buffers, causing an error. In an execution on Lisa by using 103, 584 solvers, it took an average of 1.93 seconds for the supervisor to copy the tasks, and 468.01 seconds for the checkpointing thread created in the supervisor to write the file. We can see that the blocking duration of the supervisor handling was kept extremely short, suggesting that execution by more solvers is possible.

New solutions for the Darmstadt SVP challenge In Table 5.6, we list new solutions proposed by CMAP-DeepBKZ for the Darmstadt SVP challenge [Sch+10]. For each dimension $d=103,105,107,109,113$ and 114, we performed CMAP-DeepBKZ with the number of shares $k=16$ for 10 instances from seeds 0 to 9 , and succeeded in finding new solutions for dimensions 103, 109 and 113. For dimension 124 (resp., 128), we found a new solution by


Figure 5.17: Plots of approximation factors in projected lattices $\left\|\mathbf{s}_{i}^{*}\right\| / \mathrm{GH}\left(\pi_{i}(L)\right)$ for a global basis $\mathbf{S}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{d}\right)$ output by CMAPDeepBKZ of a lattice $L$ of dimension $d=130$ with seed $=7$ of SVP challenge instance after 1.0, 33.3,66.6,100 hours executions, and the final numbers of shares $k=32$


FIGURE 5.18: The logarithms of Gram-Schmidt squared norms $\log _{2}\left\|\mathbf{s}_{i}^{*}\right\|$ of a global basis $\mathbf{S}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{d}\right)$ of a lattice $L$ same as Figure 5.17.
executing five instances with seeds ranging from zero to four (resp., two instances of seeds 1 and 2) on Emmy. In [Tat+20], new solutions were found by parallel DeepBKZ with $k=1$ for SVP instances in dimensions up to 127 . For dimension $d=127$, it took approximately 147 hours of execution on several supercomputer systems with up to 91,200 cores (see [Tat+20, Tables II and III]). In contrast, Table 5.6 shows that it took about 57.5 hours for $d=128$ by CMAP-DeepBKZ with $k=16$ on Emmy with 24,576 processes. Such comparisons provide experimental evidence supporting the efficacy of sharing short basis vectors in parallel DeepBKZ.

Comparison with G6K We provide a comparison with G6K [Alb+19], the state-of-the-art SVP solver using advanced sieve algorithms as described in Subsection 1.3. G6K adopts the sub-sieve strategy of [Duc18]. For a $d$-dimensional lattice $L$, it runs a sieve algorithm in a projected lattice $\pi_{k}(L)$ of dimension $m=d-k+1$ to find a significantly large number of short projected lattice vectors, and lifts them into vectors in the whole lattice $L$. Such lattice vectors do not always include shortest vectors in $L$; however, some of them can be short enough to have approximation factors within 1.05 for entering the hall of fame of the SVP challenge. It was reported in [Alb+19, Table 2] that it took about 11.6 (resp., 11.8 and 14.7) days to find a solution of the SVP challenge in dimension $d=151$ (resp., 153 and 155) by using the maximum sieving dimension $m=123$ (resp., 124 and 127). According to the latest result [DSW21, Table 1] for a GPU implementation of sieve algorithms inside G6K, it took about 51.6 days on a server with four NVIDIA Turing GPUs with 1.5TB of RAM for an SVP instance in $d=180$ by using $m=150$. Note that the current SVP records in $d \geq 150$ have approximation factors around 1.03 or 1.04 , they must not be the shortest. Because we do not use the sub-sieve strategy, it is reasonable to compare CMAP-DeepBKZ in dimension

TAble 5.6: New solutions for the Darmstadt SVP challenge [Sch+10], found by parallel sharing DeepBKZ with the number of shares $k=16$

| SVP Instance |  | \# of <br> cores | Updated <br> time | Norm <br> of $\mathbf{b}_{1}$ | Approx. <br> factor $\frac{\left\\|\mathbf{b}_{1}\right\\|}{\mathrm{GH}(L)}$ | Root Hermite <br> factor $\gamma^{1 / d}$ | Machine <br> (Table 5.1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 103 | Seed | 3 | 144 | 52.3 m | 2581.65 | 0.97168 | 1.00875 |
| 109 | 2 | 144 | 49.8 m | 2559.17 | 0.96465 | 1.00845 | CAL A |
| 113 | 5 | 144 | 1.21 h | 2621.54 | 0.97459 | 1.00840 | CAL A A |
| 124 | 2 | 24,576 | 2.85 h | 2826.79 | 1.00215 | 1.00824 | Emmy |
| 128 | 1 | 24,576 | 57.5 h | 2812.00 | 0.98470 | 1.00796 | Emmy |

Table 5.7: Same as Table 5.6 , but $k=1$

| SVP Instance |  | \# of cores | Updated time | Norm of $\mathbf{b}_{1}$ | Approx. factor $\frac{\left\\|\mathbf{b}_{1}\right\\|}{\mathrm{GH}(L)}$ | Root Hermite factor $\gamma^{1 / d}$ | Machine (Table 5.1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dim. | Seed |  |  |  |  |  |  |
| 104 | 35 | 120 | 551 s | 2516 | 0.97173 | 1.00872 | CAL A |
|  | 85 | 120 | 214 s | 2520 | 0.97010 | 1.00870 | CAL A |
|  | 82 | 120 | 432 s | 2529 | 0.97719 | 1.00877 | CAL A |
| 111 | 8 | - $2, \overline{0} \overline{0} \overline{0}$ | $\overline{792}$ s | $25 \overline{7} 7$ | $0.9 \overline{6} 9 \overline{7} 9$ | $1.00 \overline{8} \overline{6} \overline{6}$ | ITŌ |
|  | 30 | 2,000 | 541 s | 2635 | 0.98382 | 1.00856 | ITO |
|  | 29 | 2,000 | 611 s | 2660 | 0.99467 | 1.00843 | ITO |
| 121 | $2$ | -2,30] $\overline{4}$ | $\overline{68} \overline{2} \overline{\mathrm{~m}}$ | $27 \overline{8} 0$ | $0.9 \overline{9} 7 \overline{0} \overline{6}$ | $1.00 \overline{8} 4 \overline{0}$ | IT̄Ō |
|  | 4 | 2,304 | 481 m | 2809 | 1.00820 | 1.00830 | ITO |

$d$ with G6K in the maximum sieving dimension $m$. As shown in Tables 5.5 and 5.6 , the performance of CMAP-DeepBKZ in dimensions around $d=130$ is faster than that of G6K around $m=130$ in [Alb+19, Table 2] if we ignore the difference of computing resources. In contrast, the performance in [DSW21, Table 1] is faster than CMAP-DeepBKZ due to a GPU-implementation for sieve algorithms. However, sieve algorithms require exponentialspace in $m$. Indeed, it is reported in [DSW21] that about 1.4TB of RAM was required for finding an SVP solution in $d=180$ using $m=150$. On the other hand, CMAP-DeepBKZ adopts enumeration for SVP oracles in blocksize $\beta$, and its space-complexity is polynomial with respect to $\beta$. In particular, CMAP-DeepBKZ has sufficient performance even with small blocksizes such as $\beta=30$. This implies that CMAP-DeepBKZ can be practically applied to large-scale computers with minimal memory footprint and no memory limitation.

## Chapter 6

## Conclusion

We proposed a framework for lattice problems, and a solver for SVP. Lattice problems are a type of discrete optimization problem that is difficult to solve, even for a quantum computer. There is little research on solving this problem in large-scale distributed systems. In addition, the difficulty of solving the lattice problems supports the security of major cryptographic systems in post-quantum cryptography. Therefore, investigating the potential of large-scale parallel computation of the lattice problems is important in the field of optimization and cryptanalysis.

In Chapter 4, we propose a novel large-scale framework, CMAP-LAP, for lattice problems. CMAP-LAP offers a multi-algorithm paradigm in which multiple types of lattice algorithms run in parallel while sharing information to improve the performance of the entire system. To realize this paradigm, we have developed four key components. Our communication interface class enables hybrid parallel processing, independent of the solver's internal algorithms. This makes it easy to incorporate existing solvers, those run not only on sharedmemory systems but also on distributed-memory systems [Mun+19]. The efficient collection and distribution of short lattice vectors by the management process facilitate information exchange among heterogeneous solvers. This is based on the fact that each lattice algorithm generates short lattice vectors as by-products, which can be utilized by other algorithms if shared. Furthermore, the management process generates new tasks from the collected information and assigns them to the solvers in order of the estimated likelihood of finding a solution. The periodic collection of all solvers's progress by the management process allows the grasp of the overall system status. This is used to adjust the assignment of tasks to solvers. In addition, a powerful checkpoint functionality is implemented, which is essential for long execution times. The management of memory and communication delays is carefully realized, which are essential for the stability of large-scale parallel execution. Several numerical experiments demonstrated the stability, scalability, and checkpointing of CMAP-LAP and showed performance improvement through information sharing and heterogeneous execution of multiple algorithms.

In Chapter 5, we propose software CMAP-DeepBKZ using the framework of CMAP-LAP for massively parallel execution of a reduction algorithm of BKZ-type. Our software enables us to simultaneously execute a reduction algorithm on randomized bases by sharing short basis vectors among solvers in order to accelerate the reduction process in every solver. We also evaluated the diversity of reduced bases using Grassmann metrics, and verified that the randomness of bases cannot be almost lost during the execution of parallel reduction with sharing $k \leq 64$ short basis vectors for high-dimensional lattices (Figures 5.2, 5.3 and 5.14). Furthermore, we demonstrated by experiments that sharing $k=16$ short basis vectors is effective in both the output quality and the performance of CMAP-DeepBKZ that is our software in using DeepBKZ [YY17] as a reduction algorithm. Our experiments (Table 5.5) showed that CMAP-DeepBKZ with small blocksizes around $\beta=30-40$ can find a very short vector close to the shortest in a lattice of dimension $d=132$ within 100 hours on supercomputers with up to 103,680 cores, without using any strategy like the sub-sieve of [Duc18] adopted in G6K [Alb+19]. In particular, it took about 57.5 hours using 24,576 cores to find a new solution of the Darmstadt SVP challenge in dimension $d=128$ (Table 5.6).

The framework and software this thesis have proposed and implemented are based on UG and are part of its derived applications. Figure 6.1 shows the list of frameworks and software based on UG is shown in the figure. It is expected that further high-performance SVP solvers will be developed based on the CMAP-LAP and CMAP-DeepBKZ.

Primary Framework


Secondary Framework

| B\&B <br> Base Classes |  |  | UG- <br> QAPNB <br> Classes | UGConcorde Classes |
| :---: | :---: | :---: | :---: | :---: |
|  | MIP Solver |  | QAP Solver TSP Solver |  |
| Threaded Solver B\&B | Threaded Solver UG-SCIP Classes |  |  |  |
| Base Classes | MIP Solver |  | B\&B-based solver applications |  |
|  |  |  |  |  |
| CMAP-LAP Classes |  |  | Our application |  |
|  | CMAP- | pBKZ |  |  |
|  | SVP Solver |  |  |  |
|  |  |  |  | for SVP |


| B\&B <br> Base Classes |  |  | UG- <br> QAPNB <br> Classes | UGConcorde Classes |
| :---: | :---: | :---: | :---: | :---: |
|  | MIP Solver |  | QAP Solver TSP Solver |  |
| Threaded Solver B\&B | Threaded Solver UG-SCIP Classes |  |  |  |
| Base Classes | MIP Solver |  | B\&B-based solver applications |  |
|  |  |  |  |  |
| CMAP-LAP Classes |  |  | Our application |  |
|  | CMAP- | pBKZ |  |  |
|  | SVP Solver |  |  |  |
|  |  |  |  | for SVP |


| B\&B <br> Base Classes |  |  | UG- <br> QAPNB <br> Classes | UGConcorde Classes |
| :---: | :---: | :---: | :---: | :---: |
|  | MIP Solver |  | QAP Solver TSP Solver |  |
| Threaded Solver B\&B | Threaded Solver UG-SCIP Classes |  |  |  |
| Base Classes | MIP Solver |  | B\&B-based solver applications |  |
|  |  |  |  |  |
| CMAP-LAP Classes |  |  | Our application |  |
|  | CMAP- | pBKZ |  |  |
|  | SVP Solver |  |  |  |
|  |  |  |  | for SVP |

Applications for a specific problem

Figure 6.1: Frameworks and applications based on Generalized UG

## Acknowledgements

First of all, I would like to express my greatest appreciation to Professor Katsuki Fujisawa at Kyushu University for his continuous useful comments and encouragement. In addition to his lectures on optimization, HPC, and so on, he has given me opportunities for joint research with companies and presentations, and his high-spec and large-scale computing environment has provided me with many skills and knowledge necessary for my research activities. I would like to express my gratitude to Dr. Yuji Shinano at Zuse Institute Berlin (ZIB) for his significant contribution to the framework and software development, including implementation techniques for parallel processing and executions on supercomputers day and night. I would also like to thank Associate Professor Masaya Yasuda at Rikkyo University for taking care of my research, valuable discussions, and various insights. The basic knowledge of lattices and helpful pseudo-codes greatly supported my research. I am grateful to Professor Shizuo Kaji at Kyushu University for his knowledge of mathematics and implementation from various viewpoints. I would also like to thank Fujisawa's laboratory staff, Mrs. Tomoko Sakai and Mrs. Kyoko Ikebe, for their support in all other aspects and past and present members of Fujisawa's laboratory for spending a pleasant time with me. Finally, I would like to express my gratitude to my family and friends for their support and warm encouragement.

## Appendix A

## Solutions of SVP Challenge

## A. 1 New records in the hall of frame of SVP challenge

Through the development of CMAP-LAP framework and CMAP-DeepBKZ software, we have updated the hall of frame of SVP challenge in dimensions 128, 127, 124, 121, 113, 111, 109, 104, 103 and 96. The records are shown in Table A.1.

## A. 2 Solutions closed to record in the hall of frame of SVP challenge

We have also found vectors in Table A. 2 that are close to the hall of frame of the SVP challenge, although the CMAP-LAP framework and CMAP-DeepBKZ software have not updated the record. These are also used to evaluate the performance of these framework and software as well.

Table A.1: New records in the hall of frame of SVP challenge

| SVP Instance |  | norm | Found vector |
| :---: | :---: | :---: | :---: |
| Dim. | Seed |  |  |
| 128 | 1 | 2812.00 | [ -43 -272 -328 267 -121 123-308 301116 99-96 22-13 -185 $317286227-155-5875-176-283-184524-271-259696-288$ -422 193-91-146 -568-174 305-11 282 -220 17 -82 644278 -144 -105 $8123169-274128$-395-30 26431230328 -56 51 -287 397-368-108-35 $309090-171-12356239123556-628$ 140-255-28 -205 20 -180 -274 -115 -89 -19 -164 35 53-401 428-25-90 -240 59 -275-112-71-259 -55-175-461 36-271 -382-313 12 718 -127 123-145-253 440146256155151374 $634-20115174-22782289-508-29365-184103]$ |
| 124 | 2 | 2826.79 | [59 99-145 38338 -140 18833 -493 -58 982 -92 -594 -249 12 $2334260-3565773292197-207144-585382267158$-188 -158 -579 -115 -40 -3615193 155-174-49-308 170241253 1831-224 $231286169295-332-28749515-37-230116-214$ $-9096375-33176-4017142-436431-111-21121-57-38$ -712 $190104235-102234-70-2432-93-24242-191-238$ 474-113-234-29 315-539 289 122-139-64 249-169-294 63 286161 -82-198 $1786-155155011226-46015530-250341$ -203 -164-320-295 139] |
| 121 | 4 | 2780.01 | [50 -79 -316 67138398 -259 -258 12-401 -164 -172 141 13-26 -222 $349427105-35756116146625-1121571634025293$ 14332 -225 165-411-202-29 -52-90 -255 9-290 $22497-17$ -167 $114419-20169380134-367-63-185208-94-167-434$ 429110273 -421-17-133 -74 4-191 175 -91 -80 10578481 -147 816 -254 -178 -15 -162 -132 -93 -130 -164 462 -154 336 386 -229 9 159-2 92 -516 97 -200 674654629311511340 -364 189177422113441 -223-302-223 29126 -182 105205 556-358 50] |
| 121 | 2 | 2809.23 | [94 435-130 -168 -158 -86 -334 165-20 166245422370317 $185125-431-175-31-6457-126-173348282-81158-480$ -468 $110-238-160-216-337235450555-279358355294$ $5631108124-105-154-238254228-49636181215187-70$ -132 -156 $18937-34124112281-427-283-80-24522273-1$ -64 502-261 $177-3664092588164330-88-40212120-188$ 128322 -206 -186 -250 -55-436 -123 -112 -215 231 -359 -186 $7554118220486-35041-192258-45-38253-76-416107$ 393488301 -138 418140 -8] |
| 113 | 5 | 2621.54 | [436-217542327725 16235215 -38 -311-166 -126 -33 223 -154-5-19-242 $216-63401-112115230-191146-4367258$ -110 -524 -74 87-249 89 96-133 53-14756-15758 168-129 82-2 177-273-22 429-489 137 $232-93-246198365-303-284$ -214 113 -556-23 $47269-407-53279862-3562322225144$ -420 37 -229 493-282-199-336 $72404-39-161180194644$ -114 43629178 -157-46-22 $41130-80-223-311-34952480$ 55-93 -8 -74 246 88-211 63] |
| 111 | 29 | 2597.33 | [-235 396 -2 699547418106 -124 72-81 113 103 -107 -240 -532 387 -178 $104157504-38$-88 63-198-261-48 72265126 39-102 212 -99 $249376-719125-44-59173-56139-385$ -200 591363178109431 -538-290 38 -308 711961717635 -313-25 $5501-9261-1374872626580-459-30733-36191$ $-459511-64284-40103-34520-480-22317-153167-125$ $306-9031-154-257-62-88118-177257398-35332-14391$ -110 -122 94-16-216] |


| SVP Instance |  | norm | Found vector |
| :---: | :---: | :---: | :---: |
| Dim. | Seed |  |  |
| 111 | 30 | 2635.23 | [-650 -123 $14671619312-564251-316143299-273-347$ -144 120 -212 -130 $1669414221-183411-286-146112-139$ 57-175 288 -50 -8 76 254-28-365-352 352-205-709-240-82 81 147-173-8 66-81-161-266 179338 -135 90-197 914567 -293 -59 -194 338 -191 $24584-179-156-221208-145-41-92$ -68 $353302-34-2532367-172187-266473-228156-280$ -491 131 -188 $161350-333-291-463180-126-417458-565$ -27 $22796-258-159-201-6268-131183-406]$ |
| 111 | 8 | 2660.27 | [124 362 95-172 -335 375-127-153 -324 141-221-147 416-4 -275 $262403-544494272-63-182-267161-1206093327$ -189 -253 79-223-60 $24-130132-245349668-124-226432$ -83 -364 150 -14 -292 182 -70 -342148 -21 78 -241 363437 242 -98 142 -14 -1 -302 $16670-217-19526-24196-36-157$ -367-472 $205116353553-37-166233-81-279-118133-22$ $24-115287-437-144-129-402-1812613420730421$-67 -218 106 -254 -713 -283 -236-112 -259 -28 -452 -190 -33] |
| 109 | 2 | 2559.17 | $[73-110-44-74-19451183-138-6861230-113-450178$-31 -253 5-110 14-385-169-205 $44017-432318-197-138-344$ $46428483142-86377-223-179-2528-321245-16512-152$ -53 -249 -90 -211 139249 -323-266 -84-862-440 20125096 $-124-485-346-2561-158-382492100-180-132-19331-19$ 105 134-271-18 -542 59-7-232 118-127-160 1913222131 $149183159779667537152-457-137121-256239-1085$ 5041943 -299-192 -52 56] |
| 104 | 35 | 2516.02 | [41 419-285-313 75-397-106 2024132818123 -57-262 168 -103 199168 -192 -265 11394157116 -427 611-132 140297 -338-206 -500 -59 -74-367 $433175-349105-26318-32355$ $399320115-60-482-175-34-266-161407360-2360-41486$ -162 5-89 -180 $556139-216-113-178165887245-71333$ -83-115 102 -263 -65 $4776120-9727652-8108189-253$ -260 -669 406 -114 $831241719-88243209-11718468299$ 93] |
| 104 | 85 | 2520.11 | [-334 -448 -108 -285 -251 39-104 138 84-46 260 -62 -136 -142 $36-237222362724-55227-165163-41-173-182-201206$ -338 $182202-249271130-113-136193-271-256-168-169$ -227 $426261-41673114-10-203-10770-392-59-70-558$ -383 $44869-28-220230-197-54-180-30-322-23111-433$ 15925919291237 616-277-291-88-179-261 28157237 -73 -26 -325-140 -29 -109 161 -117 314 -257 195 -220 -144 793 $-268124241113-27-62-36]$ |
| 104 | 82 | 2529.01 | [20 -79 -397-436 21361 -57 307-179 37613746826260226 14656267387 -789 244 -129 -130 402-11-70 2785418890 $6919317-37133-17-9200160143-302133-90-460-374-7$ 271 -88 75-373 -246-142 -259 401-57 111 -126 189353258 -55 -81 -416 $133-498-44-150-10146271-3751-324-147$ -85 93-37 $62221463-34269-27954-114477-434-156391$ $56756-9712780-199243332-66-36430-199-69]$ |
| 103 | 3 | 2507.58 | [170-185-274 393-201 97 122-220 -86 233 490 -128 160-348 $255-89-25444997-1197-521-88-34-87-29-70-185-125$ -110 -91 -378 -100 -95 $7255-59216$-190 -15 26441 -126 -213 $69782229232-24037616014220-353555-156422$-193 -320 293 166-180-81 392-182-290 -167-15-222 $200-45860$ -105 217 -29 $81-241-16979057271121125-104-2319-98$ -77 $36069-489-3278161113-219-239-2418182-418187$ 337] |


| SVP Instance |  | norm | Found vector |
| :---: | :---: | :---: | :---: |
| Dim. | Seed |  |  |
| 96 | 18 | 2440.53 | $[248$ <br> 230$-276$ |
| 96 | 14 | 2484.15 |  |
| 96 | 19 | 2489.60 | [55 -93 -50 -50 -426 445-198 -362-167 39011441110 -12 18 87-118 -354 210-1 -10 -112-252 225-286 2505276 -385 543 -64 -80 -120 -511-386 $380-314-2922372485614123316$ -98 -312-106 -238 $288594151-321-154-154-8833-11-184$ $-49643234410253-156563135-7938415431-65-239-631$ 16 -33 -70 -8 -49 $21787303-134-10343204-396175265$ -556 173 -75 -34 57 167-155 -66] |
| 96 | 7 | 2495.95 |  |
| 96 | 3 | 2503.98 | [473 822 146-134 110 183-18-164 398 423-142 -269 35724 105-210-265 $9297320-130259-265-220-74120319309$ $365560393279-51659-28890163256-30316-2-84214$ $189281277836214-224447177$-270 -175 $87-280-92-73$ $304351241973-332-3-4618135457-18645144283292$ -113 212 -34 54829313119178176 -201 $55-41252-6-114$ 30-123 2912 393-499 41] |

TAble A.2: Solutions closed to record in the hall of frame of SVP challenge

| SVP Instance |  | norm | Found vector |
| :---: | :---: | :---: | :---: |
| Dim. | Seed |  |  |
| 132 | 1 | 2929.33 | [-115 -295 177-35-46 -600 68 463-305 -125 16820936199 143-174 -133 105-241-331 $16519226411078-72148341$ $2223882-180480-42412564399111-79115-270-122-459$ $258285-67-27638218-3895544-419130-278$-182 -119 $10-882293651244836230863217-9011068$-3 243-139 -153 $199217-3728-250-3599-23464198-13989-348-319$ $-291223438-44299409-189-41153-184-344524-229281$ 309158 -569 $396-2329343673-506-397-43-7742339220$ -382-32 $42475-41226-1612716106151-338-66]$ |
| 132 | 2 | 2899.90 | [ $-21110-5824540-20341397-545-294107-126199260$ -145 -243-271-161 14-13068-18 19233254 -203 67455 -95 -117 103-184 $223294-30624939329393-115129303-632$ -602 112-148 -177 $133-39619117565-161-477-34122-57$ 266 158-378 -124 -164 -10 -154 $240-106-138-469-61-576$ $-41321292-82296129-310336-318208434-52570-236$ 164-196-100 -540 $337383-398332155-78-1813179144$ -248 165 -197 -278 -266 $415131222-306-1864-15463253$ -141 154 -95 -64 -42 $788-87-162-137163-222-3198526$ 351-704-145-291] |
| 130 | 3 | 2968.73 | [-173 175 -280 116 -61 -371 -224 -61 -120 52160173311 -384 11728 -265 -497 131-143 -427 142 -567-417-5 -180 -63 20 $-269-552-196-379-868458199-281-6-88-330121-560$ $-43105-66580228389-11911824119-166-9502-5-222$ 140272 -324 $261159-27872199-117-28656911131195$ $-31735865-348-14270183-3734357-88-50-440336-292$ -67 128-134-233 -143-427 $137628-43-116-291-118-157$ $-245-188-190173-20366-426-68377-145-606-214-318$ $-4548595-189-240-57842475-1322214234-23755-76$ -5 -79] |
| 130 | 7 | 2914.22 |  357 190-11 $234-353-115-19-73-272-406-6718-176857$ -424 -165 266 -292 -357 $24513122343483212291127-30$ 149-154 $283128147-251148121-281152343-211-116-27$ $244-23-57-335-311-29433320231-35-236-55-510-388$ $226243-234132-78-544-99-367-5231-110-484-192564$ -84 145-189 -26 $348128456409298-42515332-442109$ 142 -17-145 -55 -90 158 -4 63-254-293 23132 -75-273 -188] |
| 128 | 2 | 2947.45 | [ -124 -334 -4 42 -193 162299205254 -18 1915640824829 $1417-68$-99 $16539894-534226-391102403327250-236$ 29385 -37-30 372 -109-144 -88-301-106 35195103327 -36 $239-683-218259-14923812-202-1731573252-70-287$ 330-39 84-295-245 378-144-308 607-109-344-386 18717 $39-3130-156-342140-71385-326202220-251-236-136$ $-265-82-724105-39558324-61462-3226-51-227183-251$ $333114-467273218-18822538191-58337-258-404242$ 140 -317-177-87-87 $69207-25229663-355-145]$ |
| 127 | 0 | 2897.58 | [513 -25 161 -131-83 17-475 -356 121-412-592 99 209-378 540 -194 476-300 471-69-213 209-71-101-117-83 315-642 282-272-66 211 -341 $302-344-40-144-242-290-23-15468$ 97199 -225-237 $33246285-89-256-514127117153348$ -253 $379124-8412140545-481-44357-299259211-4843$ -571-483 -356 -89 $23253386822818034-241127-16$-92 $8581-40464116-94-17310094-66-85121-3618236526$ -71 168 $255-44333714091-402273203-25253365-13035$ -52 292 132-70-406-229-144 31-76] |


| SVP Instance |  | norm | Found vector |
| :---: | :---: | :---: | :---: |
| Dim. | Seed |  |  |
| 124 | 0 | 2892.64 |  |
| 124 | 1 | 2872.38 | [ 25317392 -97 225-353-284 2034570 -96 254-237 248-227 -112 123 -465 229 -164 234142 -337 18-211-180 110 -11 96 -208 11 -107 107-312 460-96-324 68-143 257 -480 -489 368 $263184-319529125422347-399377-151-296154-39548$ 323 148-214-255 226348 -153 -99-490 367164341351 -141 -218504 72 -8 -303 42233228 -340-64 -145 7925240377 $-4534521-316126381-81350264-307-57-223-340520$ $-248136171204-472875897309264-54-253-22-55-43$ -28 -396-270 10422318 -148 1 -446] |
| 124 | 3 | 2886.65 | $\begin{array}{lllllllllllll}35 & 399 & 456 & -479 & 94 & 229 & 108 & 22 & 199 & -172 & 128 & 19 & 37 \\ 141 & 127 & 142 \\ 141 & -194 & -131 & 106 & -67 & -262 & -173 & 55 & 239 & 481 & -144 & 255 & -122 \\ 18\end{array}$ -81-132 $129-9782-682-419-5822756209-21279-72-39$ -291-151 143-89 147-203 -80 377-572 130-285 5321445 127-353 -310 $35410204609-157-371863186226-1218$ 652 -368-305 136-231-24 152-339 27103 -291-280 130-12 $-66716639586167-260-479383-14-470393-185-183-52$ $59419-23544289-236747-591-12-151-431-102-81-37$ 69-158 225-226-223-99 73-188] |
| 124 | 4 | 2873.73 | [ $5343-60-596-508-488198-29294-385-573204-28727$ -83-409 415-100 $3311229-54017611227-265376104-63$ 107276 -192 161 -73 303-326 -150 -242-40 235 -115 $80-474$ -52 $309157196-246-60-234-437-56-178-350-120165257$ $35220-2169433138-705117127-20017313272558282$ $205623523-46-321188281151-181-281475-18698-44$ $214393187128185375-341156543-21-149204-659363$ -112 -311 142256 -175 -375 $5838220719513-77-226-168$ 32-148-62-199-573 76 324] |
| 120 | 0 | 2756.06 |  -16 -209 16474 -518 138101 -154 -276 -664 $250-24958612$ $34515067-94-306168366-8851710011-560-34479-102$ $27166-17815747-18433454100218$-309-293-93-195 280 -148 $488172-22339-38560210-99-18-44-20585354-132$ -80 $2234949970119-68-107-406205-60-163-1655846$ 48267 -300 218112 -271-148 464101175 -282-116 17874 -319-326 212] |
| 120 | 1 | 2792.47 | [ $6770-151-314-14-482643601363725-110318249-383$ $397-4399531815438432-269453-106480571134230$ -139 $92225532172-3216396-1839620036-101173-240$ -95 36-236-136 -295-224 145-886-101 368302871568 -13 $21297-178-701472469187255256129109-90259178$ -123 $193209160-87188-127-554-292246-31192-481-27$ -90 -413-190 -54 30-182 -233-160 509-161-224 $126323-10$ $86-84344-306-116122-97-362-169-10998484-130594$ $-525]$ |


| SVP Instance |  | norm | Found vector |
| :---: | :---: | :---: | :---: |
| Dim. | Seed |  |  |
| 120 | 2 | 2778.82 |  |
| 120 | 3 | 2842.70 | [ -327-42 -570 129-162 77-118 204-200 -434 39218180 -88 $152-1467514828-58322-357-377-63-83-414335183$ $-29019743-271208-261324150-258-32301-9-353171$ $-48146-99-25859337-7785-80-8995-58585-858875$ -381-198 $331111-91218-119-3786-788157-479182-125$ $-51-11698-224145-21711411941311-252-213183-329$ $6867334188-2988-30-28768252200-314639-54353304$ -462 20725202204 -180 502 -710 -48 64 -159 -365 584 -16 -86 228 265] |
| 120 | 4 | 2729.25 | [ 214129737112 -285 179-117 1-21 275 -41-490 -447 132 $144186305-4-74371499-46264-242-48-265278-132185$ $-508554-80-179-82322151-3816-9984389-357-12-76$ -275 -65 -418 -131-295-44 36-199-192 -482 419-279 -149 -30 71-149 $244467286-266-3356799-229-906155102$ 128 -76 -298 -83 -158 92284106 -314 -158 -124 122 -67 331 $94-166-474-21943-65182-156-512131-18218-235-10$ $-9329-3888-8287-5619510-246327200-262876-460-3$ -103] |
| 118 | 2 | 2789.09 | [-246 -87 -90 30910523519337 -52 -301 -356-274 211 -415 154-26-408 $255-19995107-173-481763287316-400-255$ 119101558 -257 107140 -124 -81-18 566328158638 -286 $-404487-436449429167201-415-595301252529963-65$ 4721817 -111 730-158 188-229-22-572 303-101-280 -377 $-268-326-285-126373-348-244-26230030924-56-361$ -444 145-42 -21 -7 -149 -155 28 -243 -235-179 123-15 -16 -380 530-117 -80 -79 260 -271 110263163311108210286 -23 183 347] |
| 118 | 3 | 2785.57 |  |
| 118 | 4 | 2793.29 |  -359 274285396488 -623 171-19-130 $210-14822324696$ 290-14 877-15 $226188-4545340-304-35920446-405427$ $427-2079210-15-23-295-4953-319-443-147-208113130$ $216202330484112-204-3009-240-2212153-18310617$ $226523-5845-288-255-309-95-521255284-653468-193$ 31714 -231 67481 -387-98-25 -240 -172 5461 198-217-77 -341 319] |


| SVP Instance |  | norm | Found vector |
| :---: | :---: | :---: | :---: |
| Dim. | Seed |  |  |
| 118 | 5 | 2764.17 | [-112 11758 -320 150 -163 81219 -221 -213 326-301 -637580 -181 -235 124-136 69-166 708118 -7 119-170 316228 294-115 $179102162161-104-17-344-481-372294251-362$ -326-396-46 172 -30 39 98-169 216 -366 -124 -379 $27-270$ -349-336-294 -248 $67-22-137-1142-372-9883285-115$ $113200370304-271-177-242-64109415350255-365257$ 258-374-211 $200-27227-220-16863258361-108136-407$ 6385 -345-207-234 11-262 29294 -119-165-545 21022855 $86-462370-270-160-113]$ |
| 118 | 6 | 2768.58 | [-120 $43014440260254-153-275$-388 $325630-42$-107 614 $61250302-262-106-428-200-53872-28-7-482-45-238$ 422-98-251 $30720137169-29385-231461-85-178$-94363 -259 -124 -323 $72330-166-187-94-64-11314728280$ 95-267-261-79 -220 52 143-5 -392-302 3201917447 -38 213-269 $2302361397-364-18150-12221-86-45544016$ 706 -55 -331 $4738798315298-74-12-81-309279-235-149$ -212-106 $181-35453241-344-237-75-83135348-761-254$ 616] |

## Appendix B

## Lattice basis of numerical experiments

## B. 1 Well-reduced lattice basis in Figure 5.17

CMAP-DeepBKZ has succeeded in finding a sufficiently reduced basis, as shown in Section 5.3. Here, we show the part of the basis used to create Figure 5.17.

Table B.1: 57 lattice vectors from the beginning in the reduced lattice basis of Figure 5.17
[ $[110262-2210-5916-17767-109-80-25-73777255186182243178285-548-9449131-78914315-53-173133-158357190$ $-11234-353-115-19-73-272-406-6718-176857-424-165266-292-35724513122343483212291127-30149-154283128$ $147-251148121-281152343-211-116-27244-23-57-335-311-29433320231-35-236-55-510-388226243-234132-78-544$ $-99-367-5231-110-484-192564-84145-189-26348128456409298-42515332-442109142-17-145-55-90158-463-254$ $-29323132-75-273-188][178199-253123517180-42-315-830-2060-71834058-173204-52265136-325-115-23499-471$ 320101 -406 -211 $67-8521175155397-628-8711991214-723-18-352-191-30-172-458-276-18476234-112-8212183130$ $389-65117-104135243160-51352346-23734-778632-137-278-375201559-135170349319-157-340-16369-259-26-652$ $-108-137-313-78228-105414-136-230233-321-236-290 ~ 255-265 ~ 337-150-381113764095290-57113153-751-466-249-5$ $31143642352210996-338277228258307-94][-136-2-90494313228-17-35-435-16422-308-53308-1145229482-105$ $-1726479107764-219-4-460275-18135-163279148-135196228-92393-118-14388172311-8985257-6990-84-300-385$ $-9190-117115116-37646-110454-148-276-53494267-479-42-32654682420-12317373351-40285-261-137188640650$ $-166245-202-433-1051-750727-540-240199467277-118-122-300-62-229208-227-297296-125129-57-14171-117-100$
 $-436-336-31-284108-25028626014026915222744-126-244-1801616566-350-13672-51348-16100-44241-4753336$ $-34051-52-724-515433-39180-69-17753189331-142141-46363-783268-357-183-513369-5821222220-769-242412$ $-196-148206-105-199-447-37-164-43-137-10511-61-3499623917311710-251321-32619377152-578-150-3526-186$ $-404538-573-20559-19962177240-244-44-21822315-16911398-151230-467208103594120305][-103143292545047$ $14317417198233-412-136178-299198-369-233-21-25855-68-351-478-122-304240-73 ~ 230-237-5547926-76138-225$ $57-161-5952441-332-486-18-102-408-124-604-2763096533144977-19-56356-261938993-115145267-5721060517$ -269 $260-289-11-334-88154-149-81-164218-287-48-99-2158329-20308-12114778683-251-47-242-5611378-6559546$ $-16618025730777-93585-353-79595-3266304-420-60-9-148-362-202189-150549245203-390479343349-65214][-265$
 $286-18219-42298115-122-21327479182319101311-62-12-442-33859309106340-89342117-586565256139-201216$
 $-543788-49333-53-199413-227-116-37160526275416-279-471-443393854-154-37413261269212-480-168-556-234$ $30931-109-3728][-12678-8225179153202-609-604351-41-2164529136320-351-1239-519-40-122-468-497-200-100$ $-72-559-62-474118-28616507-614-478-21694660-355-5-5210-224-443-514-539127-4145238312-61104-230303-188$ $-442-231-150-277229567933510-107-111-104555112-312-132148550-67288-337382-2662554-4817066-263-187176$ $-156-456284122-52-189-267-363334-244211-174336122190158-257-49459101213117188-15026-62566-3050230$ $-26029231135125-17-208159-202-13224-111][-176283-155-30-108-221-160-358-361-7368-342330-155-104205263$ $-185-140-158-18-43382-20812-304-108-32-349-2687846-135544-536-595199520340-16-66-86-140-116-9-15-605473$ $15691-94327-145-118-12138-605-223247-143-291-43732-340-36858658-109-389-13021820-10927-173298439-355$ $-30-19187-2626548-130-130285128-86-543233227726724-89-96-58-287-291-59172-641203-11416879-22257157$ $-12326272348319-47435664875840-420473274228-217170-99-244-452][-70-23167-16-39160-91-279-152380-158$ $910628-305-140-25579-1744-313145275-451-217-339280410-357-448-388197242396-157281-302-333464-775-222$ $188-170175-124-175-142255-212-201-59307690427434-116-121700-134342-70-55-236496404-528356-289-121-31$ $540-685-177-639454-8-874-195-3448246-153-214-742125-110149158320286705-163-205-556-161-165-393-165333$ $502203117-58112775-144217483405-729410-86385-411-168-488-44-213-218119581-13-894-379244229416-53488]$ $[-362-554-277590198202-138-442-645262-672452-101-442-18811-216-200182-10 ~ 276-44-131-323-168-601 ~ 116-586$ $-80-60289-3084521120424322340225752-334-32390-194-298-26-258-32611-50290168477-219-145178-364278106$
 $350400-84-297-300-3640-511356-296208-11841078-185-4143195-143-45078-620-57058-621-1211-260186-36194$ $9-347-516-110540-3393416552][-84-3227-5-237186-19552134372-35771-586-573-377-51148-484190-14627-564$ $164854-25-105-36-1962684868963273-361244410-36-389-62677298-152241195-13530145-145-143-24-439-62-366$ $-215219-10712414-150137277-98-662-42178-186-245-259-142-307108-195-219-76375-281-150412182-57-399-317$ $-96-574-353-162-586-105341493-349-97221-203419214-491-272259-32-185-506327115-567-292-4408268 ~ 323-768$
 $-369-33-21362-22-109-17342209-147-119-194590-17963-497234-439260-39-249-473-246-57-404-283620492-286$ $196-29158-11224-123-458328175286-678-407-165-52-391257-725-368-2558-2930511-573569-60-156212507-51214$ $53-157-46-25661142218-65-1995171-177483-31442147158-5-716-18051150343510493-93242147-318-199155-102$ $3056-62-106-145167-68719173436657-202351213-387929155162866196506-616-154-325-131161][174-18532411$ $-93228-40114-602-9371-46026-89-696-173512-47073-325-158-53459-484-70-508 ~ 374-590117-221-99-91458486-587$ $410-36-1310349535-533-196-1804180-129-15525124150-125124-475-187123-22316160-168-3291006112399-155$ $491-265-2942288120-487623-311539-272504-42827-235105-154-281-59180-77233530-106124853-56176-153-216$ $384160265-48-116365-428293-140-165334462-124198-428387-325-650-617-431486-575-65-13140395-4948357-9$
 $-154-227-576252-367-3611015-452-212-85-370-253587139-186-4094-81-325-772191546-46-112-111-274309-474329$ $159-60686102-175-139-140-441-718347759371329-712-95-321-31-38848-397498-289-144-254-131284486374-250$ 316-135-70 -38 1318-74 177 766-470 235-232-215 $325114-52756150-350764-482-142-204-543-594-207-106-312601-230$
 $338493-44-641127-11365424288661292137747330319-101355-322-13647262179-520150-159349678154440193$ -137-305 128-826-97-62-27 $153763-433-1335131201-391-70243-51413020013-46-400121223-762-409-41084201290$ $-147531-344376438217-570246-438-451-272-78-989103516215-14198-66523540-400179-30916316-38932954-140$ $401528-276391-88153105-26250268301-19100-679-180353-200-176408-306-29917][38-2264326-233-81500167197$ $162-3691023198-14296-60-163540-153-80368-315308-76816045720871118-266-7818211461670-12144664-245-543$ $-17548635124273194386-282334-52246-303409179539-1458943903-411122-102-450534-101-396117-211337508$ $-45413888113-256-93-454658-617541-416-10448253275-218-12-433-523291155384-540194-548-18102-70-6-30125$ $115-116-37232540126575-308-695-74116-429-391226901-159-349341-912103-773-762-292-41960-465505302-325]$ [24 289 -1016 $146353-537223410341-262184-7286-338718120-239254-48036316-452-90-276450-403-50844518254$ -18955-317 $263-180227206-373326608-526-163-442-355577-79-50226-2457111-145608441932539781-142179227$ -261-145 521-280 $392-76-621-237173254-84342202-404189-6787-10245-133-25159234-25348407122308172120290$ $-84-15-658941-42-13690107490-28562-26251124105-307106-124-312319-407421210-29358-341-561-272-696-132$ $3171-58105288459360][-428-92-123125-169-33883162306234380319-9-31810-125-68-191124-105800-843268-339$ $97-279-264682222-423-37-268-1156414-23813377153136-154-320206-27168298-70161-32120-1561-117-427-275$ $-311-95-69517-227-290-1066137685124-39-254-670-159-340-103196-367-207-4931114-306390-83-82727-26-266$ $-235-107-95-532-4657690398178-108140-23042-9-382-757305-194-309334432-12081-72-32-423-104-261517180$ $-182-40-163580-638-345-692-1995690-476-19 ~ 36-12-88][42598-8111-324525-137-831-170-289-323-68-391-436-548$ $-32536483701-419-120162451-49841423-10-104-308399348491243-285-38732385632-144-319-115187512210184$ $168-341-315-403197-295-161-63-37-283461-249325-335245215659-3308-234-576-273256791-317327-426204484$ $-665-321-35-41-150504-7-793-111-107120-714-8235122-324-38-58-321-252-391-327-332-104-646723-2400178-510$ $-450516191453172-60-214232-421-852365111-44-415-277129321-63-508-124488337292-24470]$
 $-220393-434-94-115-619965-279661166-238-81-236328-453103251337-269383-164-410-341-119341-226-240$ $-86-357315317170-59497-277-450-452190141166357-293-68452160-390-94057020151751113-251-127-276375$ $-48282760-141-200-1129-1067479789455-909229-419-210-7-19397-241102318-480-71-267-272-103491111832$ $31115122364510-322-130-1096-180-133138493-195-462-562127][-90-595448-348-263513140-1164072-707105$ $-64017048-283-681-604-203141-223325701021-299108106-175227526-272-122-108-273413-285-135713-454-9$ $1095-474-41470-357-38918718109109113150-665-6222821-154-373-558-33645340717211312231465-74209-97$ $462-4-7-8946169-8550-48-518114-136-262-16119-6046240-214-341-153-168-161-21313761-15383303325-149$ $-27197395-153-33552-33286253257-37453113534555916386-291491-209200-20728018864-313-136-408479]$ [-122 -385 $104786145-63129-616-448-53688-3225553-254-303-453189650-4058-302549-768-287154236124-29$ $-514-484-288-567566185-467-283406565-133-76325-557484-216392-66235-184-67-157-305-26-88-119-293-235$ $-68460-323343-300-287262-163647553418150320-31170-67-351-347438143126564413-589-395278427116830$ 231-16 89-877 163-525 $452159-44352240247899326124823-216-211229-410-132-401234-415-296-57927138-146$ 118 -203 $69339023510441362-126-46030-196280][-24743494348-7211-156526329-1615791-24329-355-524-77$ $-431529-642361-38636-698-234-29263168554-298-183-275-251-353218468-42358-494321733-286820253150$ $410-89129-61282765-826-350-41163-143234-695-164642-231267-1051436-64124331522471-401-200146107$ $-510-37427854-12421412-466248-15351-32990-360-177565233113-826-209-71-30-885219720-84108388-174$ $-14927499-205513149-426-50549-1045444195-1618-1-78-487-24828232117-136-17814841-238][307-209-552$ -42 637-295-161 $6651935076-115126-446200-204-18-141-111-12590-955466-23242185-6105589-146-143-20233$ $38916-87-65-292-793-111274-580-83-181435-307-342-55216-601-252-165-302636-376714-266167374-10221$ $-474605347-55719610-266-302-332-169-92155-163-701969752343885-542418-53067-588-136-270-259575402$ $38-23891-673-489254-100-125287-11-290229-157136620-574-29012182-409-483238-331-222222-269-463244$ $-524-34-268-371397-72623389466-33-218][73192242-3242-141583-159419452539258-508-81184174122146$ $-3283241557233208186-131-271172-251120-207-181-94300251-8659030686578-163271170-240344618-184$ -179 31-47-391-223-393-205-100 96-319-88-211-253-51-178 36 5-255-156 158 309-220 -377 624 719-114 $351-207223$ $464210-523-19925-450554842524-145-66-372-677-463473448-44-281382-58572-26-919-2551-780239-257-277$ $419-24398-669-445-505128-151-207487598-95-168-231184-10063249464-312-353361911-517][-29101-446-21$ $64-31-307-68226308-107208324-705-261-315-358-241641-121413-683-331-201148-502-809-76-255-156-16-237$ $111295-69145-3762009724-196-17075177-117-203-625-332-202353-240213-155-14934212324-158-63338178$ $-235-173-171840-451-851-510-211295-356-580-27153745-101-4107369-62591251-132-33-153-2-34413525711$ $798-48292-466245222421-548790-536-18226-19051-407-268-458691467-441-328-342-4934579-314-161141-92$ $44851374157-215-445-287-214-668791472][-303-337-223-301281471-3049-938131-71-547-5682-63105-339110$ $-43378546257570162200-143-179-357196-157267-36788-60-127-329388103105-4305037043313-64-289-27102$ 543 307-427 453-83-150 -146 294-274-45 433 67 261-568 $319450-265300-351133-384-445238-412219-501-137232$ 424313 104-304-287-365 810-99 3 402-366-200 -332-491-197 $379218306343190-458523-870-442-660-23927473-417$ $-116355-572-71230-14957532-206-564-154632-210419-99413-161216-231-47657275648-80-344][149-136161$ $622-507-92-260-137-413285-40562-89-1110-119-438190-277-103424-74-324-315587159-464-636-353-38646770$ 358-816-61 $13649664382-324519115-316515-399-208745360-197-679420-188-69-10140942248-108-621-202198$ $270103332-586460-249-44913734438646129-29576610-387-47-597176-66383-593-721-826-350-645-112412149$ $440329-5322-549164-203-219-62589192-257-45-454-77175-4521787258-415-359-265-190564-410-732-360887$ $-190328546213-758368-160158738-198335][-28-356-177-251-250323528-25-29330-109-54458-10997353338192$ $-544-300-29632435-62346848610-576271-648828708206536-309-221614-150113-269-422399552182-559118$ $-113-45-13919-1556245726932979592400-82-378276-66445680-631-71-614-429-2418581374-63-454317448$ $-42-503-521-285-306173533-77817-537-145223-190474-237451316354-239-544118-3215-130-195-54-439187$ $-743-288360500-13364-92599-251194638-14299639292-769-3-724137-159-87287-47392-122-253][-19437-616$ $-15568169-249-188-633-159237-21135311-8926-112291-470447187-137-181-65-100-213198-203-324-621332$ $-568276445-397-21421512-188-64840253776-289330-442673471-288-484-52-103-240-317-548-311-403-323-176$ $-938-235186-35553295-257-129-428204-285-9152966483-34682307280-46940-62051332-260117-443-368-255$ $465-57457419028164-334282-568-168-350-5-47075-394-7425-585-218-24641194-59-20-53-355-166297-102$ $-11133-347-572-14-39810500-238-207256-223][-55-65-81164264-317-19959-1032-649-128126-308-381-622-159$ $-522173188-266-244-994372-437755-365-84373-457447-381238221-266238319-62528-71-203-76-2-67717396$ $-573-18225678897-1003-16821639-189-128-17686445-505-250-612-100-477-60-465-115-87315-182-421171-165$ $-630345-13881578328-5574292-685370156463244170443212-126-49750739306-77-143585-569-303-19337419$ $553-382-326232-5323560496-506358-292-461-239291859-675195-3603516957960-381347109-438][-12758917$ $734-635-483462-128-299242-344354435-56-41837523176-163-7949-131-199-81-622-3761310-435188-177202$ $-236-382365224-766273164-427-691006-430-12455619312164-1942678956050-189-25-534317218-475331-225$ -174-210 468-283-101 $78967714-61559-79242163-462-686153370-302280-157-138-463362237147-2791094-170$ -253 387-305-93 -556 -505-382 291 -131 $185495-42724205224521690-42250-1293215-527523258-424-42482563$ $83-266-69-256395482-233-7985-671-286][-59214-365-358280-118479-378599229211-1150-430-312187-10457$ $743-200-157-98415508161387334-212397-324-285-75560288315-644-488254-428-480-420-547367-307536-333$ $-916-417-693145140-423682453-193686-99-102387420-245145-259168-275-862-288365-78-731-54152-6-300$ $-126-178179105261320-24-538320-197169466408412-28599-52-229209575366-45057551-519-144270-170103$ $-174593458-22266-670-146250385223-4632405322527161188-391481101-275100-13-110323687-270-72567]$ [-14 $159446-466-335-15179-169-564-165614971006-8474-123471256-61429198-45445-633-43775199560-576$ $-62249-137-543284-18-627-4353-341-317-3245154-390485279-413670-485150-698-59136145-48-26822472175$ $-120-903-3681040427-29761443217-97231-29184-187-30-175-259131161-1026235-376-185-53-544-49-30026$ $309-14033334449-17452-454-759-362336-210178-351-141-385-27723363587192528-433-13060521311-13288$ $-424420-335-714-316-371233-50-342-618-523519-500-340][248701-193300-193-696-289107-579-10536142383$ $-83-27763573542144-372-56-47041-312-235-688752-818-104-473-3982308062421154325-752-159116-206228$ $-731-4355069525999550-29878332289157-338-505629275306-3077114-51431-116247731201-49491-743-541$ $-50618-305-43095-77-21304831-277272-103110329-218-889-19-73-696-546-782-224322312253-436-689-66555$ $-28-676387-506553-689-385-117990-553-60105-717-336-137-756-14759616692241132305-150162550-7-177$ $-995][-876230-637227444-618-116128-509214-329478150-362-44-482-162-94-813-116-399-263-566-143-692-472$ $747375553301-26-255118-526279-408-406-381-248100307-234-381-238516-115-689203103-148411-205-8122$ $87101-331606171094183-326-462-238-35484458163-178606-137-2698132-368198229328811184-33-542142-65$ $100-2403275151937591013-157-29827568-731-33-619-3876136473525131272-319-554389-312-26-545-717-336$ 221 118-257-1031 308 718-87-50-56-908 211-435481 606 182 50-50] [199 47-7450-225 $35321-65530-1750-57636-92$ $525-150603-27245-30242837651145-33401-271-246-172-286606-864-20441-460126294-53366279-42-400-940$ $-469177500-295-386-579-61-34813-265-100-168408144-359398-41545236143961436080322-152-221182-184$ $167277198-360399-173-181113231-158237-193-389-111-585-3057-148143194-363-277-39325111528-499221$ -147-62-228-648-53 373-244 756-13-258-302 626-646-416 128 17-201-903-37-46 97-64 139-342-260 218252334602$]$ [-299 -277-218 $325-273-150294987486-40173-95-951-112216-10185-429-921872-582270369997-76-42545114-4$ 301 -45 372 -329-1 $1078132576-350-16728047284152565146582396119-334-483414-348-449-164364254-250-685$ $-115234702199-482-84356-258-33-8121-340808469-40024714414530-696-29-2115-745181-176-111-528-87529$ $-38576-962349114-597301-4224575-20598-143-309-579373-249-149273-90-301357-622-126371119-69-757-253$ 32438 -267-74-857 3614228634963499280 391]
[377 $357189-300128-147-284462-135591187269661250132-164906205-475307217869-1331103365421-373-774$ $-2531224673133-30595314262401-308-1-3-5851-34402167321281-121-501-131-361-181-17957300-232712-304$ $419297-73-15151-310-233555224-644-140234-185-165-202820-589587150670-2949251013-12-27-31151-493$ -291 304-627 -439 88-42-280 $247-19-750146-72279-23-1121120-553-652-129-687-357-84-207-395162522-339-30$ $80215251146621363-104-35-40-36665-158279540-387][82524111342849-136-111-16-35530784150-8-113838$ $522-33842680-483123-1139-482-244-659114-286-4136-102-549-258-380-70130-331-106-43780-1159122-348$ $-544-716-477-919-27528214-375400-5241-145-741-607563-214-612-35373331-21662324-640-107-13765850$ $-659-100-122251033-747-820-12420602-272529-347210403-65227365194-456705-400-335459-746613605-499$ 402 6-119 73 438-496501 111-273 $380205-282163120-226-330163-240-503-217-40767-18055254-41313102-81-131$ -336 362] [47853 $372-764-350111180333433-253406144110221106-451248197-66065954936952424-305-183108$ $-220-645-2813756-77-324-161489378-24597407-137-504-342570-403528315-411-37067399387414-341-778066$ $41865-407207-361698285-41-40217786-729-304-73031-628472-59148-672-200-545508-435173-625-43-53926$ $458-81-329-141-203-120-217-7941375-300-202329236-255352-543314-225-562249-965254758347-217105714$ $57-569-208786220-233-124782-105-60284-363221378-263-8][83-250-126186-27779-24367320228153-216-332$ $-509-75-493-2-682-196503011542837-7272-68084765-118373-455312-229764450-580-949-300-143551-269856$ $443-337-101263-818-192-26-825-359-52374535-262332-465127-130-108 ~ 272-576-75-89-47-1331-41-178144-113$ $178-459335-579-324816119644-114-785644-56-720-351-643-217344582-3081941096244-24269-412-3941014409$ $-126-526306-263366-374-112-37-505-597-61775-210-47-430-332183-9628920307-32-220454186432-276331-82$ 938] [-345 -127 645 83-494-393 447-315 77-119 $277686-717-355139119-346-43684-31113-610-665410-771-308-420$ $14-261187-358-386-136-621425-167-507134-29626606-499-372-45-55-33570-46-149-52-371-144-647-218-228$ $42216-91-436-577-619170499-305649-318-246626-16392399797-439262561-23941-35528-106-360-104-956-357$ $276-42929701754638-356-253-166-68136-2429418881601-864345-478571472-95872360367-43451170509-157$
 $446283-771348150-149-37448-95695410281982484751-445-90-564268-14520949177233373-578-341045-47$ $898496217-703-235-418-720-34614729693-28-93-69-23813828357-675-152181-9-501-324269-718356126-482$ $865308775-511-35337435412377-1024-498-268177-190146-184815-257165261-288545-70340-61316136476213$ $233-160-234167-47120-24356-572-552-597621202-229348-40290610233372-295245-12238225321553-776551$ $282-206][-943-13-708421571-837-1-477134-183-28395-29697-57114228283336-81436516197-565513-457-43$ $-325-484-817-344279188177-380-138597645379-179-504307-558-148368-49172-294211313324447271-311128$ $32-51489674-241-949178231-117867721515-489557-12-167938398-293101561-19819-285364601-521085161$ $58193-50226-129-359121-58-355154-426283-125-751-47437493-64706-187-124354-110-35159852-139-47-518$ 13 378-15 402 101-57-337-361-133 -260 -302-139 -469 -663 558-308] [491 $217-420617-488263-345-379151-205-787$ $7071189640499-160252-98-127-664-28-4362653952835111-395-601491-190-925521-476-752-1039836-105433$ $-36226202-395-511496242-91154-206437230-172-293-3711273-266-539-770346-480-37-5167868812-6663825$ $-432-65309-117333118-376-769-818-1049-215582142135-342-474-345219388148169246-546-324-1750581-328$ $821129502108150402441067-537744-19177592264-39-26692248-1247-337-129-49-632-46-17346-350-605-214$ $-231-20790][231298251-363-382-352-3712932649-448497494-53540454-55428-30199-653-232374791318-55$ $-430417198451488-1079-312433-293499-66150613210-558-127-626-221-131155454-611-132-180214339797228$ $71380292-47833569233377-499-68111677253912101784-32-12160-398233441-518-504509-56-378-809-662316$ $-349-46925-383-72274-274-574359273-431-1444-695117867243911392-501753343-432-648410361597696-473$ $918530-444632111483-171-22184-219-202232-14452-62227][-717595253-15-47-225-130-60109174655-237-51$ $-27031154-229-741-32-10-233-8-405419481179349-621377-671108-102316-519-144-274379434128-738128$ $-568-700605-242-377806154-412-78-1369-514-290-253-5527362-41715631213761-420368-17-796-644-462-110$ $352-16612213-465-1183051629-313355-11385-1058958116445-585-20-382561-108540421-9147-7955267-2$ 155-229 464 28-276-27-198 1-353-282-415 843-105-284-223 573 362-136-87-571 249-84-69-801-595-285 30212$][119$ -520 5-157 -102 883-94 -244-299 738 45-190 134-218 $206149166-426-38766209104599-185400-438-66336-42-221$ $-797581369-158-35110739623928-6698-215-595-397-7071096-3754111154-15672-255-795706-618288-80125$ $-278566349-1851032-494-282-399-272-441-430491261044-450239-12296-44364166-1774344382-62880343-630$ 503-193 $377-19-313520133140-188121-511149204-82418315779520277289-6273660-366-66-13943136150-27$ $4855354-756351159-17988-183]$ [525 33-239 274-493-388-804-132 -534-356 611-70-290 -591-49 645-487-33-511 268 $606-809-127507282-62-465253-338-212-16671830-335732-136142-73457295-375122469101-1435533934492$ $236299-284384219175-797-2042493-761827-62-691-877625-574-393-415-467213-82-260-463-130339346-723$ $-469-818537-447614637456-525267-635-474-23104-401-883472894701019306-662269-261-711128-341-149-242$ $522-684137-646-7053-2-570138-201-490-110-1203026947171599359205-938198-443184-300][35770998160299$ $-296602194-370156328-268-81575-128108-564-317200-414-196-754-344201-251131-75218201-790-507-162-980$
 $-74249-170-908-28853084-307-452358390-363-471113-412453-60-381-252-314-328-845-93122-768496-267-194$ $-21020-812617-678-349346-38739529134-44-14616610817685478-492-3241661070735-404147-405-335-452$
 $-169-810641-241990-324840-429446500438-20712283188-177-355115948158391-1035-28491-389271-104-239$ $-58-66-97801244120589-87151-286-14428746-53039713-160426201-527191949-16-556-344298-2535-1998936$ $677622347251212470-736103-242551-297260-47084-184-342-999397-685546543-74133526-432-61214-132261$ $-541391157362343-482-264461195621240162-340215-608222081035309-294-23324310307-73614-437][-13183$ $-568557-16235-149-282-675-42-20311634-243-103-128248279-563-167-424216627-128190115429-481-317743$ $54552612020246309-38326103-422685456-87396-11036-136-29314-37-100-57-141157-54956018733258-203$ 834 276-117-178-65-43-893 33-33-437 $673520426183458368-120-154321-375-447-82624-389-452-440-588687342$ $526-224873-32841098-111-375-666-114-501-325-642-229-722-43930119494101-90-38 ~ 28957-457-914-316-460$ $-134225-117034027-22-15-56981125175-339-288][-2161152-776958116-51714384535-438-30465260676-364$ $572105-125178353-16-18640-4066413811858761-429-572-545-271-65250-866-596-164602-463-247-380154709$ $22-578-1001211-481-188784295-536558768-143190572276-63475478345240317-316109396-506-157-133322$ $-340370-244-433234-347176-495-664-478-94-12427-79250-168345-447-148-122450-287226488557600-246125$ $559-874302-130-195763236-633377690130404-136-143-413-41182308698-5-31-234302255542-733425][356$ $3011052-100-67-631619-414-253688385424-194-6162622664467317313-323287391328-1408-283-655-181-88$ $565630-899371-4142744793131226-54100-315-373-39731216370-121176-100-270358-55-542-271-311583-788$ $-8283-30719-181296-49590548781-6291326-293-386-22-343-40312618-290-331-182209-420-738 ~ 331-378-339$ $42-146-22134-236-323155-324246-65347-425370-154189-76936463-734-480-860-133-12697-40-21041190-129$ $10809-206464370359840-461050-497-715692-132][332123-403459-467-70526-288-245-710874-17923-372-271$ $-226226226239-66157-701-520-481-431-824-210-37570-40319-7206061132-800-317417-6773036838178-569$ $18624354-268-204300-36245846-716-39396-345300119-458-21-227-606222-304470571205-161-845-256-633$ $-514436-146500-407265-2651049-488241-4653855247260-227-250568-36-759635-912-802991114-105228-159$ $-3370-747517-146424-57234461331278-68-97-837-130-872-50-133309-271-157286297-636-31473-78358820]$ $[-8213531226215-881250134-510534236-48041773669900486-206268-739904-793-564-579-61182366-467548$ $-97-433-126-394217-96-78654-506-257-765615113-55931-879-495171-240-3861012-16525-35-248508583-366$ $-161686-165-475387109266-879108-406455-688-3219832673953-53-2782502141027302-213422-128-1324154$ $-367287-52-63619-302585341239-75-98-845-333364-48-460172-485-79855-195-882-390-27193144-201142-359$
 $-51-169318-508206-23-773-49338812222220544-3067081068-70-92-631369-276377-702-210-71-671-497-59243$ $-76-46509-118-378890245433-352-306204-409-32-18330922856220990130155361-143-16439-655-126279108$ $517-426-922-37728822-404572789-247-417-228-189-195-257248-24518170-135-22674-715-200808-452263525$ $-612633-67-30612999515218197-166-388-225218-926-170-320-55646056-4880-138715-287-250490]$

## Bibliography

[AD21] Martin Albrecht and Léo Ducas. "Lattice Attacks on NTRU and LWE: A History of Refinements". In: Cryptology ePrint Archive: Report 2021/799 (2021).
[Ajt96] Miklós Ajtai. "Generating hard instances of lattice problems". In: Symposium on Theory of Computing (STOC 1996). ACM. 1996, pp. 99-108.
[AKS01] Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. "A sieve algorithm for the shortest lattice vector problem". In: Symposium on Theory of Computing (STOC 2001). ACM. 2001, pp. 601-610.
[Alb+18] Martin R Albrecht et al. "Estimate all the \{LWE, NTRU\} schemes!" In: Security and Cryptography for Networks (SCN 2018). Vol. 11035. Lecture Notes in Computer Science. 2018, pp. 351-367.
[Alb+19] Martin Albrecht et al. "The general sieve kernel and new records in lattice reduction". In: Advances in Cryptology-EUROCRYPT 2019. Vol. 11477. Lecture Notes in Computer Science. Springer. 2019, pp. 717-746.
[Bab86] László Babai. "On Lovász' lattice reduction and the nearest lattice point problem". In: Combinatorica 6.1 (1986), pp. 1-13.
[BBK19] Michael Burger, Christian Bischof, and Juliane Krämer. "p3Enum: A New Parameterizable and Shared-Memory Parallelized Shortest Vector Problem Solver". In: Computational Science-ICCS 2019. Vol. 11540. Lecture Notes in Computer Science. Springer. 2019, pp. 535-542.
[BG73] Ȧke Björck and Gene H Golub. "Numerical methods for computing angles between linear subspaces". In: Mathematics of computation 27.123 (1973), pp. 579594.
[BN02] Alexander Barg and D Yu Nogin. "Bounds on packings of spheres in the Grassmann manifold". In: IEEE Transactions on Information Theory 48.9 (2002), pp. 24502454.
[Bre11] Murray R Bremner. Lattice basis reduction: An introduction to the LLL algorithm and its applications. CRC Press, 2011.
[BSW18] Shi Bai, Damien Stehlé, and Weiqiang Wen. "Measuring, Simulating and Exploiting the Head Concavity Phenomenon in BKZ". In: Advances in Cryptology - ASIACRYPT 2018. Vol. 11272. Lecture Notes in Computer Science. Springer, 2018, pp. 369-404. DOI: 10.1007/978-3-030-03326-2_13.
[Cai00] Jin-Yi Cai. "The Complexity of Some Lattice Problems". In: Algorithmic Number Theory. Ed. by Wieb Bosma. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 1-32. ISBN: 978-3-540-44994-2.
[Che13] Yuanmi Chen. "Réduction de réseau et sécurité concrete du chiffrement completement homomorphe". PhD thesis. Paris 7, 2013.
[Che16] Hao Chen. "A Measure Version of Gaussian Heuristic". In: IACR Cryptology ePrint Archive: Report 2016/439 (2016).
[CN11] Yuanmi Chen and Phong Q Nguyen. "BKZ 2.0: Better lattice security estimates". In: Advances in Cryptology-ASIACRYPT 2011. Vol. 7073. Lecture Notes in Computer Science. Springer. 2011, pp. 1-20.
[Det+10] Jérémie Detrey et al. "Accelerating lattice reduction with FPGAs". In: International Conference on Cryptology and Information Security in Latin America. Springer. 2010, pp. 124-143.
[DG96] Peter Deutsch and Jean-Loup Gailly. Zlib compressed data format specification version 3.3. Tech. rep. RFC 1950, May, 1996.
[DS10] Öz6Kür Dagdelen and Michael Schneider. "Parallel enumeration of shortest lattice vectors". In: Euro-Par 2010-Parallel Processing. Vol. 6272. Lecture Notes in Computer Science. Springer. 2010, pp. 211-222.
[DSW21] Léo Ducas, Marc Stevens, and Wessel van Woerden. "Advanced Lattice Sieving on GPUs, with Tensor Cores". In: IACR ePrint 2021/141 (2021).
[Duc18] Léo Ducas. "Shortest vector from lattice sieving: A few dimensions for free". In: Adavances in Cryptology-EUROCRYPT 2018. Vol. 10820. Lecture Notes in Computer Science. Springer. 2018, pp. 125-145.
[EAS98] Alan Edelman, Tomás A Arias, and Steven T Smith. "The geometry of algorithms with orthogonality constraints". In: SIAM journal on Matrix Analysis and Applications 20.2 (1998), pp. 303-353.
[Fuj+21] Koichi Fujii et al. Solving Challenging Large Scale QAPs. eng. Tech. rep. 21-02. Takustr. 7, 14195 Berlin: ZIB, 2021.
[Gam+17] Gerald Gamrath et al. "SCIP-Jack-a solver for STP and variants with parallelization extensions". In: Mathematical Programming Computation 9.2 (2017), pp. 231296. DOI: 10.1007/s12532-016-0114-x.
[GM03] Daniel Goldstein and Andrew Mayer. "On the equidistribution of Hecke points". In: Forum Mathematicum. Vol. 15. 2. De Gruyter. 2003, pp. 165-190.
[GN08] Nicolas Gama and Phong Q Nguyen. "Predicting lattice reduction". In: Advances in Cryptology-EUROCRYPT 2008. Vol. 4965. Lecture Notes in Computer Science. Springer. 2008, pp. 31-51.
[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. "Lattice Enumeration Using Extreme Pruning". In: Advances in Cryptology - EUROCRYPT 2010. Ed. by Henri Gilbert. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 257-278. ISBN: 978-3-642-13190-5.
[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Forth. The Johns Hopkins University Press, 1996.
[Her+10] Jens Hermans et al. "Parallel shortest lattice vector enumeration on graphics cards". In: Progress in Cryptology-AFRICACRYPT 2010. Vol. 6055. Lecture Notes in Computer Science. Springer. 2010, pp. 52-68.
[Her50] C. Hermite. "Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de la théorie des nombres: Deuxième lettre". In: Journal für die Reine und Angewandte Mathematik (1850), pp. 279-315.
[Jou12] Antoine Joux. "A tutorial on high performance computing applied to cryptanalysis (invited talk)". In: Advances in Cryptology-EUROCRYPT 2012. Vol. 7237. Lecture Notes in Computer Science. Springer. 2012, pp. 1-7.
[Kan87] Ravi Kannan. "Minkowski's convex body theorem and integer programming". In: Mathematics of operations research 12.3 (1987), pp. 415-440.
[Kle00] Philip Klein. "Finding the closest lattice vector when it's unusually close". In: Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms. 2000, pp. 937-941.
[Kuo+11] Po-Chun Kuo et al. "Extreme Enumeration on GPU and in Clouds". In: Cryptographic Hardware and Embedded Systems-CHES 2011. Vol. 6917. Lecture Notes in Computer Science. Springer. 2011, pp. 176-191.
[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. "Factoring polynomials with rational coefficients". In: Mathematische Annalen 261.4 (1982), pp. 515-534.
[LLS90] J. C. Lagarias, H. W. Lenstra, and C. P. Schnorr. "Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice". In: Combinatorica 10.4 (Dec. 1990), pp. 333-348. DOI: 10.1007/BF02128669. URL: https ://doi . org/ 10.1007/BF02128669.
[Mic01] Daniele Micciancio. "The shortest vector in a lattice is hard to approximate to within some constant". In: SIAM journal on Computing 30.6 (2001), pp. 20082035. DOI: 10.1137/S0097539700373039.
[Mun+19] Lluís-Miquel Munguía et al. "Parallel PIPS-SBB: multi-level parallelism for stochastic mixed-integer programs". In: Computational Optimization and Applications 73.2 (June 2019), pp. 575-601. ISSN: 1573-2894. DOI: 10.1007/s10589-019-00074-0. URL: https://doi.org/10.1007/s10589-019-00074-0.
[MV10] Daniele Micciancio and Panagiotis Voulgaris. "Faster exponential time algorithms for the shortest vector problem". In: Symposium on Discrete Algorithms (SODA 2010). ACM-SIAM. 2010, pp. 1468-1480.
[Ngu09] Phong Q Nguyen. "Hermite's constant and lattice algorithms". In: The LLL Algorithm. Springer, 2009, pp. 19-69.
[Pei16] Chris Peikert. "A Decade of Lattice Cryptography". In: Foundations and Trends in Theoretical Computer Science 10.4 (2016), pp. 283-424. ISSN: 1551-305X. DOI: 10.1561/0400000074. URL: http://dx.doi.org/10.1561/0400000074.
[Poh87] Michael Pohst. "A modification of the LLL reduction algorithm". In: Journal of Symbolic Computation 4.1 (1987), pp. 123-127.
[PSZ21] Simon Pohmann, Marc Stevens, and Jens Zumbrägel. "Lattice Enumeration on GPUs for fplll". In: IACR ePrint 2021/430 (2021).
[Ral+18] Ted Ralphs et al. "Parallel Solvers for Mixed Integer Linear Optimization". In: Handbook of Parallel Constraint Reasoning. Ed. by Youssef Hamadi and Lakhdar Sais. Cham: Springer International Publishing, 2018, pp. 283-336. ISBN: 978-3-319-63516-3. DOI: 10.1007/978-3-319-63516-3\{\_\}8. URL: https://doi.org/ 10.1007/978-3-319-63516-3_8.
[RSK21] Daniel Rehfeldt, Yuji Shinano, and Thorsten Koch. "SCIP-Jack: An Exact High Performance Solver for Steiner Tree Problems in Graphs and Related Problems". In: Modeling, Simulation and Optimization of Complex Processes HPSC 2018. Ed. by Hans Georg Bock et al. Cham: Springer International Publishing, 2021, pp. 201223. ISBN: 978-3-030-55240-4.
[SBH18] Yuji Shinano, Timo Berthold, and Stefan Heinz. "ParaXpress: an experimental extension of the FICO Xpress-Optimizer to solve hard MIPs on supercomputers". In: Optimization Methods and Software 33.3 (2018), pp. 530-539. DOI: 10. 1080/10556788.2018.1428602. eprint: https://doi.org/10.1080/10556788. 2018.1428602. URL: https://doi.org/10.1080/10556788.2018.1428602.
[Sch03] Claus Peter Schnorr. "Lattice reduction by random sampling and birthday methods". In: Symposium on Theoretical Aspects of Computer Science (STACS 2003). Vol. 2607. Lecture Notes in Computer Science. Springer. 2003, pp. 145-156.
[Sch+10] Michael Schneider et al. "SVP challenge (2010)". In: URL: http://latticechallenge.org/sopchallenge (2010).
[Sch87] Claus-Peter Schnorr. "A hierarchy of polynomial time lattice basis reduction algorithms". In: Theoretical computer science 53.2-3 (1987), pp. 201-224.
[Sch92] Claus-Peter Schnorr. Block Korkin-Zolotarev bases and successive minima. International Computer Science Institute, 1992.
[Sci] SCIP: Solving Constraint Integer Programs. http://scip.zib.de/.
[SE94] Claus-Peter Schnorr and Martin Euchner. "Lattice basis reduction: Improved practical algorithms and solving subset sum problems". In: Mathematical programming 66 (1994), pp. 181-199.
[Shi+11] Yuji Shinano et al. "ParaSCIP—a parallel extension of SCIP". In: Competence in High Performance Computing 2010. Springer, 2011, pp. 135-148.
[Shi+16] Yuji Shinano et al. "Solving Open MIP Instances with ParaSCIP on Supercomputers Using up to 80,000 Cores". In: 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS). Los Alamitos, CA, USA: IEEE Computer Society, 2016, pp. 770-779.
[Shi+18a] Yuji Shinano et al. "FiberSCIP—a shared memory parallelization of SCIP". In: INFORMS Journal on Computing 30.1 (2018), pp. 11-30.
[Shi+18b] Yuji Shinano et al. "FiberSCIP—A Shared Memory Parallelization of SCIP". In: INFORMS Journal on Computing 30.1 (2018), pp. 11-30. DOI: 10.1287 /ijoc . 2017.0762. eprint: https://doi.org/10.1287/ijoc.2017.0762. URL: https: //doi.org/10.1287/ijoc.2017.0762.
[Sho94] Peter W. Shor. "Algorithms for quantum computation: Discrete logarithms and factoring". In: Symposium on Foundations of Computer Science (FOCS 1994). IEEE, 1994, pp. 124-134.
[SN] The National Institute of Standards and Technology (NIST). "Post-Quantum Cryptography". URL: https://csrc. nist. gov/projects/post - quantum -cryptography/post-quantum-cryptography-standardization.
[SRG19] Yuji Shinano, Daniel Rehfeldt, and Tristan Gally. "An Easy Way to Build Parallel State-of-the-art Combinatorial Optimization Problem Solvers: A Computational Study on Solving Steiner Tree Problems and Mixed Integer Semidefinite Programs by using ug[SCIP-*,*]-Libraries". In: 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). 2019, pp. 530-541. DOI: 10.1109/IPDPSW. 2019.00095.
[SRK19] Yuji Shinano, Daniel Rehfeldt, and Thorsten Koch. "Building Optimal Steiner Trees on Supercomputers by Using up to 43,000 Cores". In: Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Vol. 11494. 2019, pp. 529-539. DOI: 10.1007/978-3-030-19212-9_35.
[Tat+20] Nariaki Tateiwa et al. "Massive parallelization for finding shortest lattice vectors based on ubiquity generator framework". In: SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE. 2020, pp. 115.
[Tat+21] Nariaki Tateiwa et al. "CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems "in press"". In: 2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC). IEEE. 2021.
[The16] The FPLLL development team. "fplll, a lattice reduction library". 2016. URL: https://github.com/fplll/fplll.
[TKH18] Tadanori Teruya, Kenji Kashiwabara, and Goichiro Hanaoka. "Fast lattice basis reduction suitable for massive parallelization and its application to the shortest vector problem". In: Public Key Cryptography (PKC 2018). Vol. 10769. Lecture Notes in Computer Science. Springer. 2018, pp. 437-460.
[Ug] UG: Ubiquity Generator framework. http://ug.zib.de/.
[Yas21] Masaya Yasuda. "A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge". In: International Symposium on Mathematics, Quantum Theory, and Cryptography. Springer. 2021, pp. 189-207.
[YD17] Yang Yu and Léo Ducas. "Second order statistical behavior of LLL and BKZ". In: Selected Areas in Cryptography (SAC 2017). Vol. 10719. Lecture Notes in Computer Science. Springer. 2017, pp. 3-22.
[YNY20] Masaya Yasuda, Satoshi Nakamura, and Junpei Yamaguchi. "Analysis of DeepBKZ reduction for finding short lattice vectors". In: Designs, Codes and Cryptography 88 (2020), pp. 2077-2100.
[YY17] Junpei Yamaguchi and Masaya Yasuda. "Explicit formula for Gram-Schmidt vectors in LLL with deep insertions and its applications". In: Number-Theoretic Methods in Cryptology (NuTMiC 2017). Vol. 10737. Lecture Notes in Computer Science. Springer. 2017, pp. 142-160.
[YY19] Masaya Yasuda and Junpei Yamaguchi. "A new polynomial-time variant of LLL with deep insertions for decreasing the squared-sum of Gram-Schmidt lengths". In: Designs, Codes and Cryptography 87 (11 2019), pp. 2489-2505.

## List of Figures

1.1 Relationship of CMAP-LAP and CMAP-DeepBKZ ..... 2
2.1 A lattice in $\mathbb{R}^{2}$ and their basis vectors ..... 7
2.2 Example of solutions of SVP (in Definition 2.2.1) and CVP (in Definition 2.2.6) for 2-dimensional lattice $L$; a solid vector represents a shortest vector in $L$, and break vector represents a closest vector in $L$ for a vector $\mathbf{t}$ ..... 9
3.1 An example of lattice reduction: Left is lattice basis before lattice reduction, right is that after lattice reduction. ..... 15
4.1 Interaction among SVP algorithms ..... 21
4.2 System overview of CMAP-LAP for lattice problems ..... 22
4.3 Execution flow of CMAP-LAP ..... 23
4.4 Basic phases of the parallel dispatch ..... 25
4.5 Communicators between and within MPI processes: ParaComm and Local- Comm ..... 28
4.6 MPI_ISend Communication between Solver and LC ..... 29
4.7 Transition of the approximation factors for different share-data pool sizes; ex- ecution were done on the CAL A and CAL B with 144 cores. The solid blue lines in Figure 4.7, 4.9 and 4.11 represent the same experimental result. ..... 30
4.8 Same as Figure 4.7, but dimension is 110 and different allotment of algorithms; execution were done on the CAL A and CAL B with 144 cores. ..... 31
4.9 Same as Figure 4.7, but for different allotment of algorithms; execution were done on the CAL A and CAL B with 144 cores. ..... 31
4.10 Distribution of the norm of vectors in the share-data pool. ..... 32
4.11 Same as Figure 4.7, but for different number of Solvers; execution were done on the CAL A and CAL B with 144 cores, and ITO with 2,304 cores. ..... 33
4.12 Transition of the approximation factor of a 134-dimensional SVP for long-time execution on the Lisa with 103,680 cores. Each dot represents the beginning of restart from checkpoint. ..... 33
4.13 Transition of the approximation factor of a 130-dimensional SVP for long-time execution on the Emmy with 12,280 cores and Lisa with 103,680 cores. ..... 34
5.1 The overall process of parallel sharing DeepBKZ in CMAP-DeepBKZ ..... 37
5.2 The average of the $i$-th projected diversity $\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)$ computed for 90-dimensional lattice bases with different numbers of shared vectors $k$ right after 100 Deep- BKZ tours.) ..... 42
5.3 Transition of the total diversity $\operatorname{Div}\left(\mathcal{B}, d_{g}\right)$ computed for 90 -dimensional lattice bases with different numbers of shared vectors $k$ after each tour of DeepBKZ. ..... 43
5.4 The $i$-th projected diversity for the chordal (left) and the projection 2-norm (right) Grassmann metrics computed (top) immediately after randomization, (middle) after LLL, and (bottom) after one tour of DeepBKZ for 90-dimensional lattice bases with different random generation models of unimodular matri- ces. ..... 44
5.5 Comparison between the diversity metrics of $\mathcal{C}$ and that of $\mathcal{B}$. mean: $\left(i, \operatorname{Div}^{i}\left(\mathcal{C}, d_{g}\right)-\right.$ $\left.\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)\right), 25 \%:\left(i, \operatorname{Div}_{25 \%}^{i}\left(\mathcal{C}, d_{g}\right)-\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)\right), 75 \%:\left(i, \operatorname{Div}_{75 \%}^{i}\left(\mathcal{C}, d_{g}\right)-\operatorname{Div}^{i}\left(\mathcal{B}, d_{g}\right)\right)$ for (Left) $d_{g}=d_{c}$ the chordal metric, and (Right) $d_{g}=d_{p 2}$ the projection 2-norm.45
5.6 Transition of metrics on the output quality of parallel sharing DeepBKZ in dimension $d=95$ (Top), 100 (Middle) and 105 (Bottom), by using $k=0$, $2,4,8,16,32$ and 64 as the number of short vectors shared among solvers using (Left: the average root Hermite factor $\gamma^{1 / d}$, Center: the logarithm of the average enumeration $\operatorname{cost} \log (N)$, Right: the minus of the average GSA slope $-\rho>0$ ) ..... 47
5.7 Same as Figure 5.6, but using CMAP-DeepBKZ and dimension $d=118$, by using $k=0,16$ and 64 as the number of short vectors shared among solvers . ..... 48
5.8 History of updating a global basis in an execution of CMAP-DeepBKZ with the number of shares $k=16$ in dimension $d=118$ (Each plot $(x, y)$ indicates that a global basis at index $y$ was updated at time $x$ ) ..... 48
5.9 Plots of approximation factors in projected lattices $\left\|\mathbf{s}_{i}^{*}\right\| / \mathrm{GH}\left(\pi_{i}(L)\right)$ for a global basis $\mathbf{S}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{d}\right)$ of a lattice $L$ of dimension $d=118$, output by CMAP- DeepBKZ after 6 hours execution (We used $k=0,16$ and 64 as the number of shares in CMAP-DeepBKZ) ..... 49
5.10 The logarithms of Gram-Schmidt squared norms $\log _{2}\left\|\mathbf{s}_{i}^{*}\right\|$ of a global basis $\mathbf{S}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{d}\right)$ output by CMAP-DeepBKZ with the numbers of shares $k=0$, 16 and 64 after 6 hours execution for an SVP instance in $d=118$ ..... 50
5.11 Same as Figure 5.7, but the dimension is $d=120$ and lines in each metric represent difference by different numbers of processes (We used $k=16$ as the number of shares) ..... 50
5.12 Same as Figure 5.7, but the dimension is $d=120$ and plots represent difference by different numbers of cores (We used $k=16$ as the number of shares) ..... 52
5.13 Same as Figure 5.10, but the dimension is $d=120$ and three lines represent different GSA shapes by different numbers of processes (We used $k=16$ as the number of shares) ..... 52
5.14 Transition of the diversity of 118-dimensional lattice basis with different the number of shared vectors; left figure is the transition of the number of overlap of basis vectors, right figure is the transition of the Div with Projection metric ..... 53
5.15 Same as Figure 5.14, but dimension is 120 and with different the number of cores ..... 54
5.16 Transition of the approximation factor $\frac{\left\|\dot{\mathbf{b}}_{1}\right\|}{\mathrm{GH}(L)}$ of a shortest basis vector $\mathbf{b}_{1}$ for SVP instances in dimensions $d=128,130$ and 132 (Each dot show the timing of checkpoint-and-restart, and see also Table 5.5 for a summary) ..... 55
5.17 Plots of approximation factors in projected lattices $\left\|\mathbf{s}_{i}^{*}\right\| / \mathrm{GH}\left(\pi_{i}(L)\right)$ for a global basis $\mathbf{S}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{d}\right)$ output by CMAP-DeepBKZ of a lattice $L$ of dimension $d=130$ with seed $=7$ of SVP challenge instance after 1.0,33.3, 66.6,100 hours executions, and the final numbers of shares $k=32$ ..... 56
5.18 The logarithms of Gram-Schmidt squared norms $\log _{2}\left\|\mathbf{s}_{i}^{*}\right\|$ of a global basis $\mathbf{S}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{d}\right)$ of a lattice $L$ same as Figure 5.17. ..... 56
6.1 Frameworks and applications based on Generalized UG ..... 60

## List of Tables

4.1 Computing platforms used ..... 29
4.2 Iterations of DeepBKZ of each Solvers for 130-dimensional SVP ..... 32
5.1 Computing platforms, operating systems, compilers and libraries ..... 45
5.2 Experimental results of CMAP-DeepBKZ after 6 hours execution for instances of the Darmstadt SVP challenge in dimension $d=118$ with seeds $2-6$ ( $k$ de- notes the number of short vectors shared among solvers, and $\mathbf{b}_{1}$ the shortest basis vector of all solver's bases) ..... 49
5.3 Results of CMAP-DeepBKZ after 11 hours execution on platforms with the number of processes $p$ for SVP instances in dimension $d=120$ (We used $k=16$ as the number of shares, and let $\mathbf{b}_{1}$ denote a shortest basis vector of all solver's bases) ..... 51
5.4 Same as Figure 5.3, but the dimension is $d=124$ ..... 53
5.5 Large-scale experimental results of CMAP-DeepBKZ for SVP instances in di- mensions $d=128,130$ and $132\left(\mathbf{b}_{1}\right.$ denotes a shortest basis vector of all solver's bases, and "Updated time" is wall time to update final shortest vec- tors found) ..... 54
5.6 New solutions for the Darmstadt SVP challenge [Sch+10], found by parallel sharing DeepBKZ with the number of shares $k=16$ ..... 57
5.7 Same as Table 5.6, but $k=1$ ..... 57
A. 1 New records in the hall of frame of SVP challenge ..... 64
A. 2 Solutions closed to record in the hall of frame of SVP challenge ..... 67
B. 157 lattice vectors from the beginning in the reduced lattice basis of Figure 5.17 ..... 72

