
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Offline Map Matching Using Time-Expanded Graph
for Low-Frequency GPS Data

田中, 智

https://hdl.handle.net/2324/4784416

出版情報：Kyushu University, 2021, 博士（数理学）, 課程博士
バージョン：
権利関係：



KYUSHU UNIVERSITY

DOCTORAL THESIS

Offline Map Matching Using
Time-Expanded Graph for Low-Frequency

GPS Data

Author:
Akira TANAKA

Supervisor:
Dr. Katsuki FUJISAWA

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Mathematics

in the

Graduate School of Mathematics

January 7, 2022

https://www.kyushu-u.ac.jp/en/
http://opt.imi.kyushu-u.ac.jp/lab/en/member/tanaka.html
http://opt.imi.kyushu-u.ac.jp/lab/en/fujisawa.html
https://www.math.kyushu-u.ac.jp/eng/index.php




iii

KYUSHU UNIVERSITY

Abstract
Graduate School of Mathematics

Doctor of Mathematics

Offline Map Matching Using Time-Expanded Graph for Low-Frequency GPS
Data

by Akira TANAKA

Map matching is an essential preprocessing step for most trajectory-based intelligent
transport system services. Due to device capability constraints and the lack of a high-
performance model, map matching for low-sampling-rate trajectories is of particular
interest. Therefore, we developed a time-expanded graph matching (TEG-matching)
that has three advantages (1) high speed and accuracy, as it is robust for spatial
measurement error and a pause such as at traffic lights; (2) being parameter-free,
that is, our algorithm has no predetermined hyperparameters; and (3) only requir-
ing ordered locations for map matching. Given an entire low-frequency GPS data,
we construct a time-expanded graph (TEG) whose path from source to sink repre-
sents a candidate route. We find the shortest path on TEG to obtain the matched
route with a small area between the vehicle trajectory. Additionally, we introduce
two general speedup techniques (most map matching methods can apply) bottom-
up segmentation and fractional cascading. Numerical experiments with worldwide
vehicle trajectories in a public dataset show that TEG-matching outperforms state-
of-the-art algorithms in terms of accuracy and speed, and we verify the effectiveness
of the two general speedup techniques. Moreover, we propose an upgraded model,
called NewTEG-matching, to solve a theoretical limitation and complex calculation
of TEG-matching. NewTEG-matching is more straightforward, intuitive, and high-
speed, but the comprehensive experiments are left for our future work.

HTTPS://WWW.KYUSHU-U.AC.JP/EN/
https://www.math.kyushu-u.ac.jp/eng/index.php




v

Acknowledgements
First and foremost, I would like to show my extreme gratitude to my supervisor,

Professor Katsuki Fujisawa, who gave me invaluable advice, continuous support,
and words of encouragement during my MS and Ph.D. study. His immense knowl-
edge and ample experience have educated and encouraged me in my academic re-
search and daily life. I would also like to thank my lab mates for their significant
discussions and fantastic leisure time. I would like to thank my lab’s technical staff,
Mrs. Tomoko Sakai and Mrs. Kyoko Ikebe, for their consideration, such as simpli-
fying office procedures and organizing refresh events. Additionally, my gratitude
extends to the cooperative research partner companies for providing an opportunity
to develop real-world applications. I also appreciate colleagues in the National In-
stitute of Information and Communications Technology (NICT). They support me in
succeeding in a new academic field and spending better life in a relocation site. Fi-
nally, I would like to express my gratitude to my family and friends for their support
and warm encouragement.





vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Overview of TEG-matching . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Time-Expanded Graph (TEG) 7
2.1 Topology construction of the TEG . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Weight of the TEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Area weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Direction change weight . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Spatial weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Weight of the edge in TEG . . . . . . . . . . . . . . . . . . . . . . 15

3 Bottom-up Segmentation 17

4 Fractional Cascading 21

5 Numerical Experiment 25
5.1 Experiment settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 Preprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.3 Experimental platform . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.4 Evaluation index . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Experimental results of fractional cascading . . . . . . . . . . . . . . . . 27
5.3 Map-matching models compared to our model . . . . . . . . . . . . . . 27
5.4 Comparison with all models . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5.1 Impact of bottom-up segmentation . . . . . . . . . . . . . . . . . 32

6 Conclusion 35

A Proof about Square Query 37

B NewTEG-matching 43
B.1 Abstract of NewTEG-matching . . . . . . . . . . . . . . . . . . . . . . . 43
B.2 Problem setting and symbols . . . . . . . . . . . . . . . . . . . . . . . . 43
B.3 Detailed walk area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.4 Algorithm calculating a detailed walk area . . . . . . . . . . . . . . . . 46



viii

B.5 Definition of NewTEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.6 Bijection between detailed walks and walks on NewTEG . . . . . . . . 51

Bibliography 59



ix

List of Figures

1.1 Example of a road network, a vehicle trajectory, and the corresponding
matched path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 (Left and center) Visualization of a distance d(·), perpendicular dis-
tance d̃(·), a projection η, and a perpendicular point ζ. (Right) Example
of a polyline that “lies on the p′ side.” . . . . . . . . . . . . . . . . . . . 10

2.2 Examples of area weight warea(·). Area weight is represented as the sum
of the areas of green and yellow. . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Visualization of warea0 ((p, p′) , a), warea1 (p, p′, a), and warea2 (p, p′, a). . 11
2.4 Visualization of warea1(p, p′, v, v′). . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Visualization of warea(ai) by cases. . . . . . . . . . . . . . . . . . . . . . 14
2.6 Visualization of wd

(
(ai

1, ai
2)
)
. The left (right) side is the case where

the position fix is far (near) from a significant direction change at the
intersection of two arcs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 (Left) Influence of max_error on the bottom-up segmentation. The
max_error is written at the lower left of each drawing. (Right) Proce-
dure for the bottom-up segmentation. . . . . . . . . . . . . . . . . . . . 18

4.1 (Left) Two-dimensional point coordinates with a rectangular range
query. (Right) Data structure for fractional cascading. The minmax and
maxmin pointers used for the rectangular range query are only drawn,
and the split points are underlined in each vertex. Reported points
are bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Speed (#GPS/sec) and memory of FC, k-d tree, and brute force for
different numbers of shape nodes. . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Accuracy of all algorithms for each trajectory. . . . . . . . . . . . . . . . 29
5.3 Speed (#GPS/sec) of all algorithms for each trajectory. . . . . . . . . . 29
5.4 Peak memory usage of all algorithms and the number of shape nodes

for each vehicle trajectory. The peak memory usage denotes the re-
quired memory except the data structure such as FC and kd-tree. . . . 30

5.5 Shape nodes (small black dots), junctions (big black dots), a vehicle tra-
jectory (green marks), and matched paths (sky blue) of map-matching
algorithms, as well as the correct path (red). . . . . . . . . . . . . . . . 31

5.6 Shape nodes (small black dots), junctions (big black dots), a vehicle tra-
jectory (green marks), and matched paths (sky blue) of map-matching
algorithms, as well as the correct path (red). . . . . . . . . . . . . . . . 31

5.7 Shape nodes (small black dots), junctions (big black dots), a vehicle tra-
jectory (green marks), and matched paths (sky blue) of map-matching
algorithms, as well as the correct path (red). . . . . . . . . . . . . . . . 31



x

5.8 Shape nodes (small black dots), junctions (big black dots), a vehicle tra-
jectory (green marks), and matched paths (sky blue) of map-matching
algorithms, as well as the correct path (red). . . . . . . . . . . . . . . . 32

5.9 Accuracy of our TEG-matching for each trajectory while changing the
max_error of the bottom-up segmentation. “Original” implies no use
of bottom-up segmentation to the road network. . . . . . . . . . . . . . . 33

5.10 Speed (#GPS/sec) of our TEG-matching for each trajectory while chang-
ing the max_error of bottom-up segmentation. “Original” implies no
use of bottom-up segmentation to the road network. . . . . . . . . . . . 33

5.11 Vehicle trajectory (green marks), correct path (red), and matched paths
(sky blue) of TEG-matching applied and not applied bottom-up seg-
mentation, as well as the correct path (red). . . . . . . . . . . . . . . . . 34

5.12 Vehicle trajectory (green marks), correct path (red), and matched paths
(sky blue) of TEG-matching applied and not applied bottom-up seg-
mentation, as well as some colored arcs. . . . . . . . . . . . . . . . . . . 34

A.1 Visualization of the symbols used in the lemma. . . . . . . . . . . . . . 37

B.1 Example of a road network, a vehicle trajectory P = (Pi)
4
i=1, and a detailed

walk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.2 An arc are is drawn as a green area for each case. . . . . . . . . . . . . 46
B.3 Example of a detailed walk WDW and the corresponding s-t walk WTEG

on a NewTEG. s-t walk on the NewTEG is drawn as bold arrows, and
the other edges are drawn as dotted arrows. The parameter h of the
NewTEG is two, and aij ∈ A is defined as aij := (vi, vj). . . . . . . . . . 51



xi

List of Tables

2.1 Definition of warea1(p, p′, v, v′). (1) implies whether the line contain-
ing (p, p′) separates the (v, v′); and (2) represents whether the angle
between the (p, p′) and (v, v′) is less than π/2. . . . . . . . . . . . . . . 12

2.2 Definition of warea(ai). (a)ζPi ,a 6= nil, (b) ζPi+1,a 6= nil, and (c) ζPi−1,a 6=
nil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Feature summary for the three widely-known algorithms. . . . . . . . 18

4.1 Complexities of each data structure for 2-dimensional data . . . . . . . 21

5.1 The total number of GPS points (#GPS) and the distance (m) between
two consecutive GPS points applied and not applied bottom-up seg-
mentation over all vehicle trajectories. “Original” implies the vehicle
trajectories where bottom-up segmentation is not applied. The per-
centage of #GPS is the ratio to the original road network. The distance
interval is written as (mean)±(standard deviation). The trajectories
used for evaluating map-matching algorithms are bold. . . . . . . . . 26

5.2 Speed (#GPS/sec) of fractional cascading, k-d tree, and brute force
for square range query with a side of 400 m. This speed is calculated
using all the GPS points. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Accuracy and speed (#GPS/sec) of all algorithms for the dataset. The
highest accuracy or speed is bold. . . . . . . . . . . . . . . . . . . . . . 28

5.4 Number of shape nodes, accuracy and speed of our TEG-matching with
or without bottom-up segmentation. The shape nodes covers areas asso-
ciated with all vehicle trajectories. “Original” implies that bottom-up
segmentation is not applied to the road network. K represents ×103,
and a percentage is a ratio to the original shape node’s number. The
highest accuracy and speed are bold. . . . . . . . . . . . . . . . . . . . 33

B.1 Symbols in Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . 44





xiii

List of Symbols

V set of nodes and junctions (see Figure 1.1)
A set of arcs (see Figure 1.1)
tail(a) (a ∈ A) tail of an arc a
head(a) (a ∈ A) head of an arc a
G road network
P = (Pi)

n+1
i=1 a vehicle trajectory from time stamp 1 to n + 1

d(X, Y) Euclidean distance between X and Y where X (Y) is either
an element or a subset of Euclidean space.

d(X, Y)∞
Chebyshev distance between X and Y where X (Y) is either
an element or a subset of Euclidean space.

Rn n-dimensional Euclidean space
‖x‖p `p norm of a vector x = (x1, x2, . . . , xm) ∈ Rn, that is, ‖x‖p := (∑n

i=1 |xi|p)1/p

‖x‖∞
maximum norm of a vector x = (x1, x2, . . . , xn) ∈ Rn,
that is, ‖x‖∞ := max {|x1|, . . . , |xn|}

T(G, P) time-expanded graph





1

Chapter 1

Introduction

1.1 Background

Map-matching algorithms determine the user or vehicle travel route by aligning the
discrete positioning data to the road network and are driven by the ubiquity and
improvement of positioning devices. According to functional scenarios and appli-
cations, current map-matching solutions can be categorized into online and offline
map-matching. Online map-matching processes the current sample with a limited
number of preceding or succeeding samples (Goh et al., 2012; Yin et al., 2018). The
process is often fast and straightforward for interactive performance and is used for
route guidance, autonomous cars, collision avoidance systems, lane departure warn-
ing, emergency response, and enhanced driver awareness systems (White, Bern-
stein, and Kornhauser, 2000; Toledo-Moreo, Betaille, and Peyret, 2010; Sathiaseelan,
2011). In contrast, offline map matching is performed after the entire trajectory is ob-
tained, aiming for an optimal matching route with fewer processing time constraints.
Offline map matching is utilized for traffic flow analysis, road pricing, traffic surveil-
lance, and transport operations (Velaga and Pangbourne, 2014).

1.2 Related work

To review the current status of map-matching and determine future research direc-
tions, Chao et al. (2020) and Huang et al. (2021) classified map-matching models
based on the technical perspective (core matching model) and the sampling fre-
quency of positioning data, respectively. Chao et al. (2020) focused on categorizing
only competitive algorithms while including new models that appear after the last
comprehensive survey. These algorithms are classified into four categories: similar-
ity, state-transition, candidate-evolving, and scoring models.

The similarity models return the vertices and arcs that are geometrically closest to
the trajectory. Based on the definition of closest, the similarity models are divided into
two subcategories. Distance-based models regard the spatial distance as the close-
ness between a trajectory and a matched path, and Fréchet distance (Alt et al., 2003;
Wei et al., 2013) and the longest common subsequence (Zhu, Holden, and Gonder,
2017) are commonly used approaches. Meanwhile, the pattern-based algorithm as-
sumes that people tend to travel on the same paths given a pair of origin and destina-
tion points. Historical map-matched data were utilized to determine similar travel
patterns (Zheng et al., 2012).

The state-transition model builds a weighted topological graph whose vertices
represent the possible state where the vehicle may be located at a particular mo-
ment. The arcs represent the transitions between states at different timestamps. The
matched path is then obtained from the optimal path in the graph globally. There



2 Chapter 1. Introduction

are three primary ways to build a graph and solve the optimal path problem: the
hidden Markov model (HMM) (Newson and Krumm, 2009; Goh et al., 2012), condi-
tional random field (CRF) (Hunter, Abbeel, and Bayen, 2014), and weighted graph
technique (WGT) (Hsueh and Chen, 2018; Hu et al., 2017). In the HMM, each trajec-
tory sample is regarded as the observation, while the actual location of the vehicle
on the road, which is unknown, is the hidden state. The optimal path is obtained by
the Viterbi algorithm, which is a dynamic programming approach. CRF is a statisti-
cal model and considers interactions among observations. HMM is also a statistical
model and focuses only on the relationship between an observation and the state at
the same stage.

The WGT enumerates candidate points for each positioning data and selects the
most probable point sequence after creating a weighted candidate graph. A candi-
date point corresponds to any of the following things: (1) a road, (2) an endpoint of
a road, and (3) a point on a road. For example, the spatio-temporal based match-
ing algorithm (STD-matching) (Hsueh and Chen, 2018) and the AntMapper algo-
rithm (Gong et al., 2018) use “(3) a point on a road” as a candidate point. Their al-
gorithms calculate the shortest path problems between any pair of two consecutive
candidate points to set the candidate graph’s weight, but this incurs a high computa-
tional cost. Focusing on high-sampling-rate global positioning system (GPS) trajec-
tories, Tang et al. (2016) introduced a time-dependent graph to address this problem.
For each position fix, their algorithm utilizes the potential path area rather than the
candidate points; hence, they do not need to solve the shortest path problems be-
tween two consecutive candidate points. Their algorithm finally produces a reason-
able network-time path, representing the expected arc travel times and dwell times
at possible intermediate stops. Although they succeeded in building both offline and
real-time map-matching algorithms for high-sampling-rate trajectories, few studies
have developed their model for low-sampling-rate trajectories. Therefore, we have
developed a time-expanded graph matching (TEG-matching) for low-sampling-rate
trajectories.

The candidate-evolving model holds a set of candidates (also known as particles
or hypotheses) during map matching. The candidate set is initiated based on the
first trajectory sample. It continues to evolve by adding new candidates propagated
from the old ones close to the latest measurements while pruning the irrelevant ones.
Compared to the state-transition model, the candidate-evolving type is more robust
for off-track matching issues, and the particle filter (PF) (Wang and Ni, 2016; Bon-
nifait and Laneurit, 2009) and the multiple hypothesis technique (Taguchi, Koide,
and Yoshimura, 2019; Knapen et al., 2018) are two representative solutions. The PF
is a state estimation technique that combines Monte Carlo sampling methods with
Bayesian inference. The PF model’s general idea is to recursively estimate the prob-
ability density function (PDF) of the road network section around the observation
as time advances. According to the moving status, the particles with higher weights
are more likely to propagate to feed particles for the next cycle, while those with low
weights are likely to die. The multiple hypothesis technique determines the scores to
the candidate road edge (or point) rather than approximating the complicated PDF
of the neighboring map area, which leads to a reduction in computation.

The scoring models (Quddus and Washington, 2015; Toledo-Moreo, Betaille, and
Peyret, 2010) assign a group of candidates to each trajectory segment (or location ob-
servation) and finds an arc from each group that maximizes the predefined scoring
function. According to the working scenario, every timestamp’s discovered segment
is either returned or joined with other matched segments.

On the other hand, Huang et al. (2021) classified map-matching algorithms based



1.3. Problem setting 3

on the sampling frequency and insisted that GPS information is desired to be recorded
at a lower frequency to save energy consumption and communication cost pro-
duced by large-scale GPS devices. Yuan et al. (2010) collected positioning data of
more than 10,000 taxis in Beijing and revealed that 66% occupied the low-frequency
data (sampling frequency is more than one minute). Therefore, map-matching al-
gorithms based on low-frequency sampling data have attracted much attention in
recent years (Huang et al., 2021; Chen et al., 2014; Yuan et al., 2010; Hsueh and Chen,
2018; Gong et al., 2018). Chen et al. (2014) proposed an online candidate-evolving
map-matching algorithm for large-scale low-frequency data using multi-criteria dy-
namic programming (MDP). The MDP technique reduces the number of candidate
routes when candidate routes stored from the previous position are extended to can-
didate routes at the current position. As for offline map-matching, (Yuan et al., 2010)
developed an interactive voting-based map-matching algorithm. The authors con-
sider spatial information, temporal information, and the mutual influence between
matched points for neighboring GPS points. Recent works for tackling the same
issue are STD-matching (Hsueh and Chen, 2018) and AntMapper algorithm (Gong
et al., 2018), which utilizes WGT. STD-matching and the AntMapper algorithm enu-
merate candidate roads for each position data and use the longest path problem
and an ant colony algorithm, respectively, to find the best combination of candidate
roads.

Although these studies contribute to developing an offline map-matching algo-
rithm for low-frequency data, there are the following shortcomings:

1. Few models achieve both high speed and accuracy.

2. Some methods require additional information such as velocity and angle, which
are not obtained by some vehicles.

3. Some algorithms suffer from the tuning of hyperparameters.

Therefore, we utilized a concept from previous research (Tang et al., 2016) and devel-
oped a time-expanded graph matching (TEG-matching). We leverage the concept of
TEG and formulate the map-matching problem as the shortest path problem, which
achieves high speed and accuracy with only positioning data (Chapter 2). The elab-
orate weight on TEG makes the proposed model parameter-free (Section 2.2).

1.3 Problem setting

In this study, we handle a 2D road network containing two types nodes: junctions and
shape nodes. A one-way road (hereinafter called arc) is represented by a polyline
whose first and last points are junctions, and the other points are shape nodes. Let
V be the set of junctions and shape nodes, A be the set of arcs, G be a road network
that has arc set A. Then, arc a is represented as a := (v1, v2, . . . , vm), {vj}m

j=1 ⊂ V,
and every two-way road is expressed as two one-way roads such as (v1, . . . , vm) ∈
A and (vm, vm−1, . . . , v1) ∈ A. A pair of two consecutive points of an arc is re-
ferred to as a shape arc and denoted by (vi, vi+1), where vi, vi+1 ∈ V. A vehicle
trajectory is a chronologically ordered position fixes P = (P1, P2, . . . , Pn+1) produced
by a GPS device mounted on the vehicle. For each time step i, Pi includes only
the east and north coordinates. The proposed algorithm aims to restore the most
likely path (a1, a2, . . . , am) (aj ∈ A) of the vehicle under a given vehicle trajectory
P = (Pi)

n+1
i=1 . The predicted path is referred to as the matched path, and the arc in-

cluded in the matched path is called the matched arc. Figure 1.1 represents an example



4 Chapter 1. Introduction

of map-matching for a vehicle trajectory P = (P1, P2, . . . ), and the matched path is
((v0, v1), (v1, v4, v5), (v5, v6), . . . ). A correct path denotes a finite sequence of arcs on
which the vehicle actually travels, and an arc included in the correct path is called a
correct arc.

FIGURE 1.1: Example of a road network, a vehicle trajectory, and the
corresponding matched path.

1.4 Contribution

Intuitively, if the area between a vehicle trajectory (Pi)
n+1
i=1 and a matched path is suf-

ficiently small, the match path almost coincides with the correct path; hence, our al-
gorithm finds the matched path with a small area. We first specify a potential area
L(G, Pi), where the vehicle may pass through from time step i to i + 1. Then, each
pair of two consecutive position fixes (Pi, Pi+1) (i ∈ {1, 2, . . . , n}) is simultaneously
matched to a path (referred to as a partial path) on L(G, Pi) while maintaining the
connectivity of the two consecutive partial paths. A selected partial path tends to have
few abrupt direction changes and creates a small area between the two position fixes.
We formulate the matching as the shortest path problem on a time-expanded graph
(TEG). In summary, our contributions are listed as follows:

• We propose a parameter-free offline map-matching approach called TEG-matching
that requires only the vehicle’s ordered locations. TEG-matching is robust for
spatial measurement errors and pauses such as at traffic lights. We experimen-
tally achieved a higher Jaccard index of 0.098 and a 5.6x faster outcome than
two state-of-the-art algorithms, namely, the STD-matching (Hsueh and Chen,
2018) and the AntMapper algorithm (Gong et al., 2018).

• We applied fractional cascading (FC) to candidate shape node search and veri-
fied a 2.5x speedup compared with the k-d tree. To use FC, we also conducted
a geometric analysis and answered “how big a square is needed to obtain all
arcs within a radius r from a position fix.”

• We applied the existing bottom-up segmentation to a road network and achieved
a 64% reduction of shape nodes, resulting in a 1.78x speedup with only a 0.0074
accuracy drop for map matching.

• We propose an upgraded model, called newTEG-matching, to solve a theoret-
ical limitation and complex calculation of TEG-matching in Appendix B.

1.5 Overview of TEG-matching

Proposed map-matching model follows these steps:



1.5. Overview of TEG-matching 5

1. Preprocess

(a) Define junctions and shape nodes
Some datasets do not distinguish between junctions and shape nodes; hence,
nodes on the road network are classified into these two types according
to the topology of the road network. We also split long shape arcs (add
shape nodes) such that the length of each shape arc is less than or equal to
the predefined parameter `max. This is because that we may overlook arcs
close to a certain point if the arc contains some long shape arcs. This situa-
tion occurs when both endpoints of a long shape arc are far from the point
because we report an arc if at least one shape node of the arc is in a square
centered on the point. The road network that completes this process is
referred to as the processed road network.

(b) Fractional cascading (Chapter 4)
The first step of map matching is to obtain the arcs close to a vehicle tra-
jectory, and FC data structure accelerates the process. We want to report
arcs within r meter from a certain point, and an elementary geometry de-
termines whether or not arcs are in the circle. However, this process is
computationally expensive if the road network has vast arcs. We speed
up this step by utilizing FC that reports every arc that has at least one
shape node belonging to a square centered on a certain point. Based on the
Theorem 2, if we set the side length of the square c = 2 ·max

(
r, `max+2r

2
√

2

)
if `max ≤ 2

(
1 +
√

2
)

r (otherwise c = `max), we obtain either of the end-
points of the shape arc within a radius r meter from a certain point. This
implies we acquire all arcs within r meter from the point. Before per-
forming map-matching, we construct FC data structure with all the shape
nodes of processed road network; and the FC is utilized for the step “2. TEG-
matching >(a) Obtain neighborhood arcs” as mentioned below.

(c) Bottom-up segmentation (Chapter 3)
Processed road network have some redundant shape nodes to represent the
shape of the road. Bottom-up segmentation reduces these nodes and con-
tributes to memory reduction and speedup in map matching.

2. TEG-matching

(a) Obtain neighborhood arcs
Given a vehicle trajectory P = (Pi)

n+1
i=1 , we first obtain arcs, where the

vehicle may travel from time stamp i to i + 1 (i ∈ {1, . . . , n}). We as-
sume that these arcs lie within r′ = d(Pi, Pi+1)/2 + rGPS from the mid-
point of Pi and Pi+1 (hearinafter denoted by Pi,i+1), where rGPS is the
upper bound of the spatial measurement error, and d(x, y) is the Eu-
clidean distance between x and y. From the above discussion, if we set
`max = 2(1 +

√
2)rGPS

(
≤ 2(1 +

√
2)r′

)
and ci = 2 ·max

(
r′, `max+2r′

2
√

2

)
, we

can obtain all arcs that lie within r′ from Pi,i+1. FC speed up the query.

(b) Construct a time-expanded graph (TEG) and find the shortest path on
TEG (Chapter 2)
We construct a TEG that represents the space-time movement of the ve-
hicle. To attain the most plausible matched path, we find the shortest path
on the TEG and restore the matched path from the shortest path.





7

Chapter 2

Time-Expanded Graph (TEG)

Given a time series of GPS recording, our model first builds a time-expanded graph
(TEG) and obtains a matched path by solving the shortest path problem on the TEG.
This section starts with the topology construction of the TEG in Section 2.1 and then
explains three types of weights on TEG in Section 2.2.

We first introduce some notation used in this section. Given X, Y ⊂ R2 or
X, Y ∈ R2, d(X, Y), and d∞(X, Y) are the Euclidean and Chebyshev distances be-
tween X and Y, respectively. For example, the distance between a shape arc (v1, v2)
and a position fix Pi is denoted by d ((v1, v2), Pi). d ((v1, v2), Pi) is the perpendicular
distance if the perpendicular distance is achieved on the segment (v1, v2); other-
wise, min {d ((v1, Pi) , d ((v2, Pi)}. Similarly, if a = (v1, . . . , vm) is an arc, d(a, Pi) =
min1≤j≤m−1 d

(
(vj, vj+1), Pi

)
. The first and last node (junction) of an arc a are denoted

by tail(a) := v1 and head(a) := vm, respectively.

2.1 Topology construction of the TEG

Given a road network G that has arc set A, we define the line graph (Ray-Chaudhuri,
1967) L(G) of G as the directed graph whose vertex set V (L(G)) := A and whose
directed edge set E (L(G)) := {(a, ã) | a, ã ∈ A, head(a) = tail(ã)}. Given G and
a vehicle trajectory P = (Pi)

n+1
i=1 , the corresponding time-expanded graph (TEG), re-

ferred to as T(G, P) = (V (T(G, P)) , E (T(G, P))), consists of n subgraphs of L(G)
denoted by

L(G, Pi) = (V (L(G, Pi)) , E (L(G, Pi))) (1 ≤ i ≤ n) (2.1)

. The i-th layer graph L(G, Pi) represents a partial road network where the vehicle
may travel from time stamp i to i + 1; hence L(G, Pi) includes the area near Pi and
Pi+1. Specifically, V (L(G, Pi)) includes all arcs that lie within r′ = d(Pi, Pi+1)/2 +
rGPS from the Pi,i+1 where rGPS is the upper bound of measurement error, and Pi,i+1
is the midpoint of Pi and Pi+1. Based on the previous discussion in Section 1.5, we
define

V (L(G, Pi)) :=
{

ai | a = (v1, . . . , vm) ∈ A, min
1≤j≤m

d∞(vj, Pi,i+1) ≤ ci/2
}

and (2.2)

E (L(G, Pi)) :=
{(

ai, ãi
)
∈ V (L(G, Pi))×V (L(G, Pi)) | head(a) = tail(ã)

}
, (2.3)

where ci is defined in Section 1.5. For any notation x, xi is the copy of x related to
the time stamp i, and the superscript i is used for distinguishing copies related to
different time stamps. For instance, ai exists in i-th layer graph and is the copy of the
arc a ∈ A. ai ∈ V (L(G, Pi)) and (ai, ãi) ∈ E (L(G, Pi)) are referred to as a layer vertex
and layer edge, respectively. (ai, ãi) implies that the vehicle moves from the arc a to



8 Chapter 2. Time-Expanded Graph (TEG)

the arc ã between the time stamps i and i + 1. To express the travel of the vehicle
from time stamp i to i + 2, we define the set of layer-to-layer edges ELtL (L(G, Pi, Pi+1))
as

ELtL (L(G, Pi, Pi+1)) :=
{
(ai, ai+1) ∈ V (L(G, Pi))×V (L(G, Pi+1)) | d(a, Pi+1) ≤ rGPS

}
(2.4)

for i ∈ {1, 2, . . . , n − 1}. (ai, ai+1) implies that the vehicle lies on arc a at the time
stamp i+ 1. We also define source s and sink t so that we formulate the map-matching
problem as a shortest path problem from s to t. The set of source edges Esource (L(G, P))
and the set of sink edges Esink (L(G, P)) are defined as follows:

Esource (L(G, P)) :=
{
(s, a1) | a1 ∈ V (L(G, P1))

}
(2.5)

Esink (L(G, P)) := {(an, t) | an ∈ V (L(G, Pn))} . (2.6)

In conclusion, the TEG T(G, P) = (V (T(G, P)) , E (T(G, P))) is defined as follows:

V (T(G, P)) :=

(
n⋃

i=1

V (L(G, Pi))

)
∪ {s, t} (2.7)

E (T(G, P)) :=

(
n⋃

i=1

E (L(G, Pi))

)
∪
(

n−1⋃
i=1

ELtL (L(G, Pi))

)
(2.8)

∪ Esource (L(G, P)) ∪ Esink (L(G, P)) (2.9)

A path from s to t represents the vehicle’s travel from time stamp 1 to n + 1, and
the next subsection assigns weight to T(G, P) to find the most reasonable space-time
path. The following theorem insists that TEG has the path corresponding to the
correct path under a certain condition.

Theorem 1. Let G be a road network that has arc set A, P = (Pi)
n+1
i=1 be a vehicle trajectory.

If the vehicle lies within r′ = d(Pi, Pi+1)/2 + rGPS from the Pi,i+1 between the time stamp i
and i + 1 (1 ≤ ∀i ≤ n), the TEG has the path from source s to sink t that corresponds to
the correct path.

Proof. Let
(

ai
1, ai

2, . . . , ai
Li

)
be the correct path (the sequence of arcs that the vehicle

actually travels) between the time stamp i and i + 1. Then, the equation ai
Li

=

ai+1
1 (1 ≤ i ≤ n − 1) satisfies. As V (L(G, Pi)) includes all arcs that lie within

r′ = d(Pi, Pi+1)/2 + rGPS from the Pi,i+1, especially V (L(G, Pi)) includes all the arcs
that lie within rGPS from Pi and Pi+1. At the time step 1, as the vehicle lies within
rGPS from P1, a1

1 ∈ V (L(G, P1)), which implies
(
s, a1

1

)
∈ Esource (L(G, P)). For the

same reason,
(

an
Ln

, t
)
∈ Esink (L(G, P)). We also know ai

k ∈ V (L(G, Pi)) (1 ≤ ∀i ≤
n, 1 ≤ ∀k ≤ Li) from the assumption. From the characteristic of the (correct) path,
head

(
ai

k

)
= tail

(
ai

k+1

)
(1 ≤ ∀i ≤ n, 1 ≤ ∀k ≤ Li − 1) holds. Hence

(
ai

k, ai
k+1

)
∈

E (L(G, Pi)). If we are concern about ai
Li
∈ V (L(G, Pi)), ai+1

1 ∈ V (L(G, Pi+1)),

ai
Li

= ai+1
1 and d

(
ai+1

1 , Pi+1

)
≤ rGPS, we have

(
ai

Li
, ai+1

1

)
∈ ELtL (L(G, Pi)) for

1 ≤ ∀i ≤ n− 1. In summary,{(
s, a1

1

)
,
(

a1
1, a1

2

)
, . . . ,

(
a1

Li−1, a1
Li

)
,
(

a1
Li

, a2
1

)
,
(
a2

1, a2
2
)

, . . . ,
(
an

Ln−1, an
Ln

)
,
(
an

Ln
, t
)}
(2.10)



2.2. Weight of the TEG 9

is the path from source s to sink t on TEG that corresponds to the correct path.

2.2 Weight of the TEG

The path from source s to sink t on the TEG represents the space-time travel of the
vehicle, and we formulate map matching as a shortest path problem from s to t. To
quantify the improbability of the path, we consider three points: (1) area between
the path and the vehicle trajectory, (2) abrupt direction changes, and (3) spatial mea-
surement error. The corresponding weight functions are area weight warea(·), direction
change weight wd(·), and spatial weight ws(·), respectively. The following subsections
explain the details of these weights and their motivations using mathematical ex-
pressions. The last subsection integrates these three weights into the weight of TEG.

We introduce some notations and definitions, which are illustrated in Figure 2.1.
Let p, p′, vj ∈ R2 (j ∈ {1, 2, . . . }) be a two-dimensional point coordinate. For a poly-
line a = (v1, . . . , vm), the l(a) := ∑m−1

j=1 d(vj, vj+1) denotes the length of the poly-
line a. We define d̃ (p, (v1, v2)) as the perpendicular distance between p and the
segment (v1, v2), that is, d (p, (v1, v2)) is the Euclidean distance between p and the
line containing the two points v1 and v2. The point on the “line” (not segment)
that achieves the perpendicular distance is called the perpendicular point and is de-
noted by ζp,(v1,v2). If ζp,(v1,v2) lies on (v1, v2), we say that “p achieves perpendicular
distance on (v1, v2)”. The projection of p onto (v1, v2) is denoted by ηp,(v1,v2). If p
achieves a perpendicular distance on (v1, v2), ζp,(v1,v2) = ηp,(v1,v2) satisfies; other-
wise, ηp,(v1,v2) = argmin

v∈{v1,v2}
d(p, v). Similarly, we say that “p achieves perpendicular

distance on a polyline a = (v1, . . . , vm)” if at least one segment (vj, vj+1) (1 ≤ j ≤
m− 1) achieves the perpendicular distance on (vj, vj+1). If p achieves perpendicu-
lar distance on a, the perpendicular point ζp,a is defined as the nearest perpendicular
point for (vj, vj+1) (1 ≤ j ≤ m − 1), that is, ζp,a := ζp,(vj,vj+1) such that p achieves
perpendicular distance on (vj, vj+1) and d̃

(
p,
(
vj, vj+1

))
≤ d̃

(
p,
(
vj′ , vj′+1

))
∀j′ ∈

{j′ | p achieves perpendicular distance on (vj′ , vj′+1)}. Otherwise, ζp,a := nil, where
“nil” implies that the position fix p does not have the perpendicular point on the
polyline a. The tail and head of the segment on which the perpendicular point ζp,a
lies on are denoted by vj(tail,p,a) and vj(head,p,a), respectively. Specifically, we define
vj(tail,p,a) := vj and vj(head,p,a) := vj+1 if ζp,a = ζp,(vj,vj+1); otherwise, if ζp,a = nil,
vj(tail,p,a) = vj(head,p,a) = nil. The perpendicular distance between p and a polyline a is
denoted by d̃(p, a) and is defined as

d̃(p, a) := min
{

d̃
(

p, (vj, vj+1)
)
| 1 ≤ j ≤ m− 1, p achieves perpendicular distance on (vj, vj+1)

}
(2.11)

if p achieves perpendicular distance on a. The projection of p onto a polyline a is de-
noted by

ηp,a := argmin
ηp,(vj ,vj+1)

d
(

p, ηp,(vj,vj+1)

)
(2.12)

subject to 1 ≤ j ≤ m− 1. Given two point coordinates p, p′ ∈ R2, we say that the
polyline a = (v1, . . . , vm) “lies on p′ side” if ζvj,(p,p′) ∈ {p′ + (p′ − p)θ | θ ≥ 0}



10 Chapter 2. Time-Expanded Graph (TEG)

for all j ∈ {1, . . . , m}. The closest perpendicular point is called the nearest perpen-
dicular point and denoted by ζ∗a,(p,p′) := argmin

ζvj ,(p,p′)

d
(

ζvj,(p,p′), (p, p′)
)

subject to j ∈

{1, . . . , m}, and the corresponding point on the polyline is denoted by v∗a,(p,p′) :=

argmin
vj

d
(

ζvj,(p,p′), (p, p′)
)

subject to j ∈ {1, . . . , m}. Figure 2.1 visualizes these no-

tations.

FIGURE 2.1: (Left and center) Visualization of a distance d(·), perpen-
dicular distance d̃(·), a projection η, and a perpendicular point ζ. (Right)

Example of a polyline that “lies on the p′ side.”

2.2.1 Area weight

If the area between a vehicle trajectory and the matched path is sufficiently small, the
matched path is probably the same as the correct path. We attempt to obtain the path
with a small area, but lining up probable candidate paths is difficult. To address the
issue, the area weight of an arc is defined as the area between the arc and a vehicle
trajectory; then, the area between a path and a vehicle trajectory is defined as the total
area weight overall arcs contained in the path. The area weight facilitates the acquisi-
tion of the path that has a small area with a vehicle trajectory. This section defines the
area weight, and the assignment is explained in Section 2.2.4. Figure 2.2 illustrates the
area weights as the sum of the green and yellow areas. We calculate the area weights
in various ways according to the relative positions of the arc and position fixes, and
the color corresponds to these situations. We categorize the relative positions and
explain how to calculate the area weight for each case.

FIGURE 2.2: Examples of area weight warea(·). Area weight is repre-
sented as the sum of the areas of green and yellow.

The area weight warea(·) is defined using warea0(·), warea1(·), and warea2(·), which
are illustrated in Figure 2.3; hence, we first provide these three definitions. Let
p, p′, pi, vj ∈ R2 (i, j ∈ {1, 2, . . . }) be a two-dimensional point coordinate. Suppose
that (p, p′) and (p1, . . . , pn) are subsequences of a vehicle trajectory, and a = (v1, . . . , vm)
is a subsequence of an arc. Then, warea0 ((p1, . . . , pn) , a) defines the area between
(p1, . . . , pn) and a under the assumption that the {pi}n

i=1 are obtained when the ve-
hicle travels on a. Formally, if every pi (1 ≤ i ≤ n) achieves perpendicular distance on



2.2. Weight of the TEG 11

a, warea0 ((p1, . . . , pn) , a) is defined as follows:

warea0 ((p1, . . . , pn) , a) :=

(
1
n

n

∑
i=1

d̃(pi, a)

)
l(a) =

(
1
n

n

∑
i=1

d̃(pi, a)

)(
m−1

∑
j=1

d(vj, vj+1)

)
(2.13)

warea1 (p, p′, a) defines the area between a and the segment (p, p′) under the as-
sumption that the position fix p (p′) is acquired before (after) the vehicle travels
on a. More precisely, warea1 (p, p′, a) is normally the area between a and the line
containing p and p′. We define warea1 (p, p′, a) as the sum of the areas between
the shape arc (vj, vj+1) (j = 1, . . . , m − 1) and the line containing p and p′; that
is, warea1(p, p′, a) := ∑m−1

j=1 warea1(p, p′, vj, vj+1), where warea1(p, p′, v, v′) is defined
as follows. warea1(p, p′, v, v′) is the improbability estimation of the vehicle passing
through the shape arc (v, v′) during the interval of p and p′. warea1(p, p′, v, v′) be-
comes large if the angle difference between (v, v′) and (p, p′) is large, or if the (v, v′)
is far from the (p, p′). Normally, warea1(p, p′, v, v′) becomes the area between (v, v′)
and the line containing p and p′. However, the exact definition depends on the two
spatial conditions: (1) whether the line containing (p, p′) separates the (v, v′); and
(2) whether the angle between the (p, p′) and (v, v′) is less than π/2. The exact def-
inition and the corresponding figures are summarized in Table 2.1 and Figure 2.4,
respectively.

warea2(p, p′, a) denotes the penalty that the vehicle passes through a far from the
two consecutive position fixes p and p′ during the interval of p and p′. Formally,
warea2(p, p′, a) is defined as follows:

warea2(p, p′, a) :=

{
d
(

ζ∗a,(p,p′), (p, p′)
)

d
(

v∗a,(p,p′), ζ∗a,(p,p′)

)
if a lies on p or p′ side

0 otherwise
(2.14)

, as shown in the right side on 2.3.

FIGURE 2.3: Visualization of warea0 ((p, p′) , a), warea1 (p, p′, a), and
warea2 (p, p′, a).



12 Chapter 2. Time-Expanded Graph (TEG)

FIGURE 2.4: Visualization of warea1(p, p′, v, v′).

case (1) (2) warea1(p, p′, v, v′)

(a) D (
d
(

v, ζv,(p,p′)

)
+ d

(
v′, ζv′,(p,p′)

))
d
(

ζv,(p,p′), ζv′,(p,p′)

)
/2

(b) d
(

ζv′,(p,p′), ζv,(p,p′)

) (
d
(

v, ζv,(p,p′)

)
+ d(v′, v)

)
(c) D D

(
d(v,ζv,(p,p′))

2
+d(v′,ζv′ ,(p,p′))

2)
d(ζv′ ,(p,p′),ζv,(p,p′))

2(d(v,ζv,(p,p′))+d(v′,ζv′ ,(p,p′)))

(d) D
(

d
(

v,ζv,(p,p′)

)
+d
(

v′ ,ζv′ ,(p,p′)

)
+d(v′ ,v)

)(
d
(

v,ζv,(p,p′)

)2
+d
(

v′ ,ζv′ ,(p,p′)

)2
)

d
(

ζv′ ,(p,p′),ζv,(p,p′)

)
(

d
(

v,ζv,(p,p′)

)
+d
(

v′ ,ζv′ ,(p,p′)

))2

TABLE 2.1: Definition of warea1(p, p′, v, v′). (1) implies whether the
line containing (p, p′) separates the (v, v′); and (2) represents whether

the angle between the (p, p′) and (v, v′) is less than π/2.
Consider the area weight warea(ai) for the layer vertex ai ∈ V (L(G, Pi)), where

the vehicle may travel from the time step i to i + 1. If we denote the arc by a =
(v1, . . . , vm), warea(ai) indicates the improbability that the vehicle travels on the arc
a from the time step i to i + 1. The improbability is basically expressed as the area
between the arc a and the vehicle trajectory. However, the exact definition depends
on the relative positions of the arc a, position fixes Pi−1, Pi, and Pi+1. Figure 2.5
illustrates the warea(ai), and Table 2.2 summarizes the definition of warea(ai) by cases,
and the detailed explanation is given below:

1. (case1) Both Pi and Pi+1 achieve perpendicular distance on a. (ζPi ,a 6= nil, and
ζPi+1,a 6= nil)
We can suppose that the vehicle trajectory is

(
d̃(Pi, a) + d̃(Pi+1, a)

)
/2 away

from the arc a on average; hence, we define warea(ai) := warea0 ((Pi, Pi+1), a).

2. (case2) Pi achieves perpendicular distance on a, but Pi+1 does not. (ζPi ,a 6= nil,
and ζPi+1,a = nil)
When a vehicle passes through the shape arc (vj(tail,Pi ,a), vj(head,Pi ,a)), the vehicle
trajectory is likely d̃(Pi, a) away from the shape arc. Hence, we add

warea0

(
(Pi), (vj(tail,Pi ,a), vj(head,Pi ,a))

)
to warea(ai). Because Pi+1 does not achieve a perpendicular distance on a, we
can suppose that the vehicle passes through the polyline

(vj(head,Pi ,a), vj(head,Pi ,a)+1, . . . , vm)



2.2. Weight of the TEG 13

during the interval of Pi and Pi+1. This implies that we add

warea1

(
Pi, Pi+1, (vj(head,Pi ,a), vj(head,Pi ,a)+1, . . . , vm)

)
to warea(ai). For the polyline

(
v1, v2, . . . , vj(tail,Pi ,a)

)
, we consider two cases. If

Pi−1 achieves a perpendicular distance on a, we can suppose that the vehicle
trajectory

(
d̃(Pi−1, a) + d̃(Pi, a)

)
/2 away from the polyline on average. Hence,

we add
warea0

(
(Pi−1, Pi),

(
v1, . . . , vj(tail,Pi ,a)

))
to warea(ai). In the other case, that is, if Pi−1 does not achieve a perpendicular
distance on a, we suppose that the Pi−1 is obtained before the vehicle passes
through the a. Hence, we add

warea1

(
Pi−1, Pi, (v1, . . . , vj(tail,Pi ,a))

)
to warea(ai).

3. (case3) Pi does not achieve perpendicular distance on a.
Because warea(ai) represents the improbability of the vehicle passing through
the arc a from the time stamp i to i + 1, we suppose that Pi is acquired be-
fore the vehicle travels on arc a. Hence, we add warea1 (Pi, Pi+1, a) to warea(ai).
Moreover, we assign the penalty warea2 (Pi, Pi+1, a) to warea(ai) to address the
situation in which the arc a is far from the segment (Pi, Pi+1).



14 Chapter 2. Time-Expanded Graph (TEG)

FIGURE 2.5: Visualization of warea(ai) by cases.

(a) (b) (c) case warea(ai)

D D D
case1 warea0 ((Pi, Pi+1), a)D D

D D case2

warea0

(
(Pi−1, Pi),

(
v1, . . . , vj(tail,Pi ,a)

))
+warea0

(
(Pi), (vj(tail,Pi ,a), vj(head,Pi ,a))

)
+warea1

(
Pi, Pi+1, (vj(head,Pi ,a), vj(head,Pi ,a)+1, . . . , vm)

)

D case2

warea1

(
Pi−1, Pi, (v1, . . . , vj(tail,Pi ,a))

)
+warea0

(
(Pi), (vj(tail,Pi ,a), vj(head,Pi ,a))

)
+warea1

(
Pi, Pi+1, (vj(head,Pi ,a), vj(head,Pi ,a)+1, . . . , vm)

)
D D

case3 warea1 (Pi, Pi+1, a) + warea2 (Pi, Pi+1, a)D D
TABLE 2.2: Definition of warea(ai). (a)ζPi ,a 6= nil, (b) ζPi+1,a 6= nil, and

(c) ζPi−1,a 6= nil.

2.2.2 Direction change weight

We assume that the position fix is obtained every time the vehicle makes a significant
direction change, and the direction change weight wd(·) reflects this assumption. wd(·)
becomes large if there is no position fix near a significant direction change when the
vehicle moves from one arc to another. For an layer edge (ai

1, ai
2) ∈ Ai, the wd

(
(ai

1, ai
2)
)

is defined as the square of the distance between the common node of these two arcs
(a1 and a2) and the segment whose endpoints are ηPi ,a1 and ηPi ,a2 .

wd

(
(ai

1, ai
2)
)

:= {d (head (a1) , (ηPi ,a1 , ηPi ,a2))}
2 (2.15)

Figure 2.6 shows two cases where the position fix is far and near from a large di-
rection change at the intersection of two arcs. We assume that the vehicle travels
(. . . , v1, v2, v3, v4, v5, . . . ), and Pi is acquired when the vehicle passes through v3.

2.2.3 Spatial weight

Spatial weight ws(·) is the penalty when the vehicle lies on the arc far from the position
fix Pi+1 at the time stamp i + 1. Because layer-to-layer edge (ai, ai+1) indicates that the
vehicle lies on the arc a at the time step i + 1, ws

(
(ai, ai+1)

)
is defined as the square



2.2. Weight of the TEG 15

FIGURE 2.6: Visualization of wd
(
(ai

1, ai
2)
)
. The left (right) side is the

case where the position fix is far (near) from a significant direction
change at the intersection of two arcs.

of the distance between the position fix Pi+1 and arc a:

ws

(
(ai, ai+1)

)
:= {d(Pi+1, a)}2 (2.16)

We define similar but large weights for the first and last position fix (P1 and Pn+1) to
prevent the matched path from being shorter than the correct path. The shorter path is
caused by the property of the shortest path problem. Formally, for a source arc (s, a1)
and a sink arc (an, t), we define

ws

(
(s, a1)

)
:= d(P1, a)lmean (2.17)

ws ((an, t)) := d(Pn+1, a)lmean (2.18)

, where lmean is the average arcs length.

2.2.4 Weight of the edge in TEG

This section integrates area, direction change, and spatial weights into the weight of
the TEG. Let G be a road network, P = (Pi)

n+1
i=1 be the vehicle trajectory, T(G, P) =

(V (T(G, P)) , E (T(G, P))) be the corresponding TEG, where V (T(G, P)) is the ver-
tex set and E (T(G, P)) is the edge set. We assign a weight to each edge of the
TEG by transferring the vertex weight to the edge weight. Formally, for each edge
e = (etail, ehead) ∈ E (T(G, P)), edge weight is defined as follows:

w(e) :=


warea(etail) + wd(e) (if e is a layer edge)
ws(e) (if e is a source edge or layer-to-layer edge)
ws(e) + warea(etail) (if e is a sink edge)

(2.19)

Our model solves the shortest path problem from source to sink on the TEG, thus
obtaining the matched path.





17

Chapter 3

Bottom-up Segmentation

A segmentation method is applied to both (1) a road network to reduce the graph size
and (2) vehicle trajectory to generate the evaluation data (low-sampling-rate trajecto-
ries). Keogh et al. (2002) undertook an extensive review and empirical comparison of
several piecewise linear approximation techniques for the time series databases and
proposed a new algorithm. Although such an approach does not initially develop
for a directed graph, the approach is transferred to graph simplification while main-
taining the topology of the graph. This section introduces three basic segmentation
techniques, and we apply the most suitable one to the road network and the vehicle
trajectory. We further visualized the arcs applied and did not apply the segmentation
technique using different hyper-parameters.

Given a time series data T1, T2, . . . , Tn, each of which includes only coordinates
(spatial data), these algorithms aim to create a polyline similar to the time series data
using a smaller number of line segments. According to Keogh et al. (2002), we es-
sentially categorize time-series segmentation algorithms into three groups: (1) slid-
ing windows (Koski, Juhola, and Meriste, 1995; Park, Kim, and Chu, 2001), (2) top-
down (DOUGLAS and PEUCKER, 1973; Park, Lee, and Chu, 1999), and (3) bottom-
up (Keogh and Pazzani, 1998; Luebke, 2001). The sliding window algorithm is a sim-
ple and intuitive online algorithm. It works by anchoring the first data point as the
tail of a potential segment and then approximates the data with increasingly longer
segments. At some point i, the potential segment’s error is greater than the user-
specified threshold; thus, the subsequence from the anchor to i − 1 is transformed
into a segment. The top-down algorithm works by considering every possible parti-
tioning of the time series and splitting it at the best location. We then tested whether
the approximation error of each subsection was below a user-specified threshold.
A failed subsection was recursively split until all the segments had approximation
errors below the threshold. The bottom-up segmentation is a natural complement
to the top-down algorithm. The algorithm begins by creating the finest possible
approximation of the time series. The merge cost of two adjacent segments is calcu-
lated, and the lowest cost pair is iteratively merged until a stopping criterion is met.
Keogh et al. (2002) concluded that the sliding window algorithm shows a generally
poor quality, and the bottom-up algorithm often significantly outperforms the other
two algorithms. The properties of the three algorithms are summarized in Table 3.1.

Because we apply a segmentation method to a road network and vehicle trajectories
offline, bottom-up segmentation is the most suitable approach. We introduce some
notation to describe the procedure of bottom-up segmentation. Let T = (t1, t2, . . . )
be a finite sequence of points, where ti is a coordinate. T[a : b] := (ta, ta+1, . . . , tb)
denotes the contiguous subsequence of T from a-th point to b-th point. A piece-
wise linear approximation of T is the output of bottom-up segmentation and is de-
noted by Seg_TS. Seg_TS is defined as the sequence of approximate segments, each
of which is a two-element subsequence of T. An approximate segment “Seg” (=



18 Chapter 3. Bottom-up Segmentation

TABLE 3.1: Feature summary for the three widely-known algorithms.

Algorithm User can specify1 Online
Top-Down E,ME,K No
Bottom-Up E,ME,K No
Sliding Window E Yes
1 E and ME are the maximum errors for a given segment and for

an entire time series, respectively, where K represents the num-
ber of segments.

(ttail, thead)) approximates a contiguous subsequence of T, and tail(Seg) := ttail and
head(Seg) := thead denote the endpoints of the “Seg.” The approximation error of
“Seg,” denoted by calculate_error(Seg), is the maximum distance between the “Seg”
and one of the approximated contiguous subsequence points. merge(Seg, Seg’) :=
(tail(Seg), head(Seg’)) is the rough approximate segment integrating two approximate
segments Seg and Seg’. Hence, the corresponding two approximated contiguous sub-
sequences are also merged.

Using these symbols, we show the pseudocode in Algorithm 1, and the right side
of Figure 3.1 shows how the algorithm works. The max_error is the parameter that
determines the approximation accuracy, and the influence is visualized on the left
side in Figure 3.1. The figure indicates that too large a max_error destroys the road
shape; thus, we have to choose an appropriate max_error based on the complexity
and density of a road network.

FIGURE 3.1: (Left) Influence of max_error on the bottom-up segmen-
tation. The max_error is written at the lower left of each drawing.

(Right) Procedure for the bottom-up segmentation.



Chapter 3. Bottom-up Segmentation 19

Algorithm 1: bottom-up segmentation(T, max_error)
Input : a sequence of points T = (t1, t2 . . . , tn), n ≥ 3; max_error that

decides the approximation accuracy
Output: A piecewise linear approximation of T, denoted by Seg_TS

1

2 Function calculate_merge_cost(Seg1, Seg2):
3 merge_seg←merge(Seg1, Seg2)
4 merge_cost← calculate_error(merge_seg)
5 return merge_cost

6 Function bottom_up_segmentation(T,max_error):
// Initialization

7 Seg_TS← [(t1, t2), (t2, t3), . . . , (tn−1, tn)]
8 for i← 1 to n− 2 do
9 merge_costs[i]← calculate_merge_cost(Seg_TS[i], Seg_TS[i + 1])

10 while min(merge_costs) < max_error and len(Seg_TS) > 1 do
// Find the minimum pair to merge

11 i← arg mini(merge_costs[i])
12 Seg_TS[i]←merge(Seg_TS[i], Seg_TS[i + 1])
13 delete(Seg_TS[i + 1])
14 delete(merge_costs[i])
15 if 0 < i− 1 then
16 merge_costs[i-1]← calculate_merge_cost(Seg_TS[i− 1],

Seg_TS[i]))

17 if i + 1 <len(Seg_TS)+1 then
18 merge_costs[i]← calculate_merge_cost(Seg_TS[i],

Seg_TS[i + 1])

19 return Seg_TS





21

Chapter 4

Fractional Cascading

All map-matching algorithms first restrict candidate nodes and arcs near position-
ing data. Because this operation is often repeated for each position fix, it can be a
computational bottleneck. To speed up this operation, we introduced the fractional
cascading (FC), proposed by Chazelle and Guibas (1986).

FC is a data structure for an orthogonal range query with a query time ofO (log n + k)
in the 2-dimensional space, where n is the total number of points in the data struc-
ture, and k is the number of the points lying in the orthogonal range. The range tree,
an existing data structure, has a query time O

(
(log n)2 + k

)
, and the k-d tree (Bent-

ley, 1975) has a query time O
(
n1/2 + k

)
. Thus the FC is found to be an efficient

algorithm, although it requires significant memory (Table 4.1).

Query time Space complexity

Fractional Cascading O (log n + k) O (n log n)
range-tree O

(
(log n)2 + k

)
O (n log n)

kd-tree O
(
n1/2 + k

)
O (n)

TABLE 4.1: Complexities of each data structure for 2-dimensional
data

For 1-dimensional range queries, we commonly utilize the simple binary search
tree. The set of points is split into two subsets of approximately equal sizes: one
subset contains points smaller than or equal to the splitting value, while the other
subset contains the points larger than the splitting value. The splitting value is stored
at the root, and the two subsets are stored recursively in the two subtrees. This
structure can be expanded to higher-dimensional range queries using FC.

The construction of the FC consists of two stages: creating a binary tree and set-
ting minmax and maxmin pointers. Creating a binary tree is remarkably similar to the
aforementioned one-dimensional case. The set of points is recursively split into two
subsets of roughly equal size according to x-value. The only difference is that every
vertex v of an FC tree contains not only the split point vsplit but also a sorted list vlist,
a sub-list of points in lexicographical order for (y, x). The pseudocode is described
as “create_fctree” in Algorithm 2, where vleft and vright represent the left and right
children of vertex v, respectively. An example of an FC tree is illustrated in Figure 4.1
along with the original data points. At the root vertex v0, the lexicographical order
for (x, y) is C, A, E, F, D, G, B; hence, F is selected as split point. All the points smaller
than or equal to F (i.e., C, A, E, F) are held by the left child v1 and sorted in lexico-
graphical order for (y, x). The minmax (maxmin) pointers facilitate specifying points
smaller (larger) than or equal to a specific point in lexicographical order for (y, x).
Let vlist[i] be the i-th point of vlist and vchild be the child of v. The minmax (maxmin)



22 Chapter 4. Fractional Cascading

pointer minmax(vlist[i], vchild) (maxmin (vlist[i], vchild)) is defined as the pointer point-
ing to the smallest (largest) element of vchild larger (smaller) than or equal to vlist[i]
in lexicographical order (y, x), respectively. If no element satisfies the condition, the
pointer becomes nil. For example, Figure 4.1 shows that all the points of v1 larger
than or equal to B in lexicographical order (y, x) are C, E, F which are located on the
right side of the head of the minmax(B, v1) (blue arc). The pseudocode of setting min-
max and maxmin pointer is described as “set_pointer” in Algorithm 2, and the overall
procedure of building FC tree is also represented as “main” in Algorithm 2.

FIGURE 4.1: (Left) Two-dimensional point coordinates with a rect-
angular range query. (Right) Data structure for fractional cascading.
The minmax and maxmin pointers used for the rectangular range query
are only drawn, and the split points are underlined in each vertex.

Reported points are bold.

We explain how the FC answers a two-dimensional orthogonal range query [x, x′]×
[y, y′]. FC implements a binary search on the x-axis, whereas minmax and maxmin
pointers automatically performs y-axis search. We search all the points lying in [y, y′]
at only the root vertex, and minmax and maxmin pointers perform the y-axis check
for other vertices automatically. Algorithm 3 presents the pseudocode of orthogo-
nal range searching, and an example is drawn in Figure 4.1. We first enumerate the
candidate points in terms of y-axis at the root node v0; that is, the points lying in
[y, y′] are specified (B, C, D, E, and F remain). If the x-coordinate of v0split(= F) is
greater than or equal to x, we continue searching for the left child of v0 by following
minmax and minmax pointers. Precisely, we follow the minmax pointer of the left-end
point among the remaining points. In this case, we follow minmax(B, v1) and reach
C in v1. We also follow maxmin pointer of the right-end point F in v0 and reach F in
v1. Notably, each point in v1 lies in [y, y′] if and only if the point is located between
C and F (heads of the two pointers). This fact is directly deduced from the defini-
tions of minmax and maxmin pointers and implies that the y-axis search is sufficient
to be performed only at the root. The operation, deciding whether the child needs
to be explored and following minmax and minmax pointers, is performed recursively
until all the remaining points are included in [x, x′] in the current vertex. With such
a situation, we report all these points. For example, all the points of v4 lie in [x, x′];
hence, E and F are reported without searching for children of v4.



Chapter 4. Fractional Cascading 23

Algorithm 2: constructing a fractional cascading tree(S)
Input : a set of 2-dimensional data points S
Output: a data structure for fractional cascading

1

2 Function fctree(list):
3 vlist ← list
4 vsplit ←median point of “list” in lexicographical order (x, y)
5 leftlist← sub-list consisting of all the points less than or equal to vsplit in

lexicographical order (x, y)
6 rightlist← sub-list consisting of all the points greater than vsplit in

lexicographical order (x, y)
7 if len(leftlist) > 0 then
8 vleft ← fctree(leftlist)

9 if len(rightlist) > 0 then
10 vright ← fctree(rightlist)

11 return v

12 Function create_fctree(S):
13 list← sorted array of points S in lexicographical order (y, x)
14 vroot ← fctree(list)
15 return vroot

16 Function set_pointer(vroot):
17 V← {vroot}
18 while V 6= ∅ do
19 v← V.pop()
20 for side ∈ { left, right } do
21 if there exists vside then
22 for p ∈ vlist do
23 minmax(p, vside)← the smallest element of vside larger

than or equal to p in lexicographical order (y, x) if it
exists; otherwise, nil

24 maxmin(p, vside)← the largest element of vside smaller
than or equal to p in lexicographical order (y, x) if it
exists; otherwise, nil

25 V.add(vside)

26 Function main(S):
27 vroot ← create_fctree(S)
28 set_pointer(vroot)
29 return vroot



24 Chapter 4. Fractional Cascading

Algorithm 3: Two-dimensional search for a rectangular range query using
fractional cascading

Input : a query rectangle [x, x′]× [y, y′]; an FC tree vroot
Output: the set of all the points R which lie in [x, x′]× [y, y′]

1

2 S← {vroot}
3 R← ∅
4 if all points of vroot do not lie in [y, y′] then
5 return R

6 al(vroot)← the smallest element of vroot lying in [y, y′]
7 ar(vroot)← the largest element of vroot lying in [y, y′]
8 while S 6= ∅ do

// Pop out an element from a set S
9 v← S.pop()

10 if all points in v from al(v) and ar(v) lies in [x, x′] then
11 all points in v from al(v) and ar(v) are added to R
12 continue

13 C ← ∅
14 sv← the x coordinate of vsplit

15 if x ≤ sv then
16 add vleft to C

17 if sv < x′ then
18 add vright to C

19 for vchild ∈ C do
20 al(vchild)← minmax(al(v), vchild)
21 ar(vchild)← maxmin(ar(v), vchild)
22 if al(vchild) 6= nil and ar(vchild) 6= nil then

// The most important fact here is that a point of vchild lies in

[y, y′] if and only if the point is between al(vchild) and ar(vchild)
23 add vchild to S

24 return R



25

Chapter 5

Numerical Experiment

This section first explains the dataset and introduces the parameters used in the ex-
periment. We then compare our TEG-matching with two latest algorithms, namely,
the STD-matching (Hsueh and Chen, 2018) and the AntMapper algorithm (Gong et
al., 2018), using an open dataset.

5.1 Experiment settings

5.1.1 Dataset

In our experiments, we utilized worldwide vehicle trajectories in a public dataset (Ku-
bička et al., 2015). This dataset includes 100 global vehicle trajectories (ID = 0, 1, . . . , 99),
each of which is associated with the correct path and the road network around the ve-
hicle trajectory. The vehicle trajectory is a sequence of GPS points, each of which
consists of a timestamp and a longitude–latitude pair. The longitude–latitude pair
is converted to 2D coordinates using a UTM-WGS84 converter1. We excluded data
(ID=2,19,33,41,42,69,75,76,80,86, and 89) that the corresponding correct path (e1, . . . , em)
is not a path; that is, there exist consecutive edges ei, ei+1 such that head(ei) 6=
tail(ei+1). The average distance between two consecutive GPS points is 11 m, which
is not suitable for evaluating map matching for low-frequency data. Hence, we sam-
ple the GPS points from each GPS trajectory by utilizing bottom-up segmentation
with max_error = 7 m. The thinned-out vehicle trajectories are used for evaluat-
ing map-matching algorithms. Bottom-up segmentation instead of constant inter-
val sampling avoids overlooking significant direction changes, which is a critical
assumption of our TEG-matching. The max_error = 7 provides an outline of the
vehicle trajectory while removing unnecessary position fixes. The number of GPS
points and distance between two consecutive GPS points applied and not applied to
the bottom-up segmentation are summarized in Table 5.1.

5.1.2 Preprocess

This section explains the parameters and procedure of the map-matching preprocess
explained in Section 1.5. We set the upper bound of the spatial measurement error
as rGPS = 200 m and the maximum length of the shape arc `max = 2(1 +

√
2)rGPS

meter. Shape nodes and junctions (illustrated in Figure 1.1) are identified based on the
road network topology because the original dataset does not distinguish them. We
also split long shape arcs (add shape nodes) such that the length of each shape arc is less
than or equal to `max to obtain all the shape arcs close to a position fix (see details in
Section 1.5). For each area associated with a vehicle trajectory, we built a fractional
cascading (FC) data structure and applied bottom-up segmentation.

1https://github.com/Turbo87/utm



26 Chapter 5. Numerical Experiment

max_error (m) Original
Bottom-up segmentation

3 7 15 30

#GPS(%) 209,901 (100%) 17,723 (8.4%) 10,041 (4.8%) 6,351 (3.0%) 4,316 (2.1 %)
Distance interval (m) 11± 12 135± 257 238± 427 374± 572 549± 724

TABLE 5.1: The total number of GPS points (#GPS) and the distance
(m) between two consecutive GPS points applied and not applied
bottom-up segmentation over all vehicle trajectories. “Original” im-
plies the vehicle trajectories where bottom-up segmentation is not ap-
plied. The percentage of #GPS is the ratio to the original road network.
The distance interval is written as (mean)±(standard deviation). The

trajectories used for evaluating map-matching algorithms are bold.

5.1.3 Experimental platform

We used only one core of the PC server (2.30 GHz Intel Core E5-2670 with 24 cores
and 512 GB of memory). Python 3.8.1 and NetworkX are utilized to calculate the
shortest and longest paths. The calculation of the longest path is used for STD-
matching that is compared with our TEG-matching.

5.1.4 Evaluation index

We evaluated map-matching algorithms using arcs, rather than shape arcs, to verify
the effectiveness of bottom-up segmentation, which removes redundant shape nodes
from the road network. We compared our approach with existing models in terms of
accuracy and speed (#GPS/sec). In our experiment, the accuracy is the intersection
over the union of the two multisets of matched arcs and correct arcs. More precisely,
given two multisets of correct arcs Ci and matched arcs Di for each vehicle trajectory
i ∈ {1, . . . , N}, the accuracy is defined as follows:

Accuracy for i-th trajectory =
#(Ci ∩ Di)

#(Ci ∪ Di)
(5.1)

Accuracy for dataset = ∑N
i=1 #(Ci ∩ Di)

∑N
i=1 #(Ci ∪ Di)

(5.2)

We do not use the average of #(Ci∩Di)
#(Ci∪Di)

because the number of position fixes varies per
trajectory. For each vehicle trajectory i ∈ {1, . . . , N}, let Ti be the processing time and
#GPSi be the number of remaining GPS points after bottom-up segmentation. Then,
the speed (#GPS/sec) is defined as follows:

Speed for i-th trajectory =
#GPSi

Ti
(5.3)

Speed for dataset = ∑N
i=1 #GPSi

∑N
i=1 Ti

(5.4)

The processing time is defined as the duration from the end of candidate node and arc
search to the output of a matched path. We leave out the candidate node and arc search
from the speed because this process is inevitable for all map-matching algorithms.



5.2. Experimental results of fractional cascading 27

5.2 Experimental results of fractional cascading

For each GPS point, almost all the matching algorithms must search the nodes and
arcs close to the GPS point; hence, a fast searching speed (#GPS/sec) is vital for map
matching. Fractional cascading (FC) accelerates the search for a given rectangular
query, as explained in Chapter 4. We calculated the searching speed of the FC, k-d
tree, and brute force for a square query with a side of 2rGPS = 400 m while chang-
ing the number of shape nodes in the data structure. Brute force checks individually
whether the query square includes a node. Table 5.2 shows the speed of each algo-
rithm, using all GPS points. The FC searches the shape nodes 2.5x and 195x faster than
the k-d tree and brute force search, respectively. The speed and memory usage for
different numbers of shape nodes are illustrated in Figure 5.1 (theoretical values are
summarized in Table 4.1). The speed of FC is faster than that of the kd-tree and brute
force for any number of shape nodes. However, the speed gradually decreases as the
number of shape nodes increases, which is compatible with the theoretical query time.
Besides, the memory usage of the FC is much larger than that of the kd-tree and brute
force. Therefore, if we have enough memory, we should utilize FC; otherwise, the
kd-tree is suitable for a candidate node search.

Fractional Cascading kd-tree Brute Force

Speed (#GPS/sec) 10,143 3,990 52

TABLE 5.2: Speed (#GPS/sec) of fractional cascading, k-d tree, and
brute force for square range query with a side of 400 m. This speed is

calculated using all the GPS points.

FIGURE 5.1: Speed (#GPS/sec) and memory of FC, k-d tree, and brute
force for different numbers of shape nodes.

5.3 Map-matching models compared to our model

We compare our TEG-matching with STD-matching (Hsueh and Chen, 2018) and
the AntMapper algorithm (Gong et al., 2018), and this section provides an overview
of these models.

For each position fix, STD-matching lists the candidate arcs where a vehicle may
be located, and the vehicle location is supposed to be the projection of the position
fix onto the arc. To obtain a matched path, STD-matching constructs a graph whose
nodes are projections and whose arcs are all two projections corresponding to two
consecutive positions. The weight of each arc is determined based on two factors:
(1) the ratio of the shortest path distance between the two projections to the distance
of the corresponding two position fixes and (2) the distance between the position fix



28 Chapter 5. Numerical Experiment

TEG STD AntMapper

Accuracy 0.9645 0.8672 0.3568

Speed (#GPS/sec) 19.3 3.4 0.2

TABLE 5.3: Accuracy and speed (#GPS/sec) of all algorithms for the
dataset. The highest accuracy or speed is bold.

and the arc. STD-matching finally finds the most reasonable path from the projection
of the first position fix to the projection of the last position fix.

In contrast, the AntMapper algorithm is non-deterministic; that is, the algorithm
may produce a different matched path despite that the trajectory is the same. Similar
to the case with STD-matching, the AntMapper algorithm matches each position fix
to an arc. However, it computes both the global likelihood of the path and the local
likelihood related to two consecutive projections. The AntMapper algorithm finally
merges the local and global likelihoods, and the highest-value path is explored using
the ant colony algorithm.

The parameters of STD-matching and AntMapper algorithms are the same as
those used in the corresponding literature. Our dataset only includes timestamps
and locations; thus, existing algorithms utilize only this information.

5.4 Comparison with all models

The accuracy, speed, and memory usage of our TEG-matching, STD-matching, and
AntMapper algorithms are summarized in Table 5.3, Figure 5.2, 5.3 and 5.4. As
shown in Table 5.3, our TEG-matching is 0.098 higher and 5.6 times faster than the
existing models in terms of accuracy and speed, respectively. Significantly, our TEG-
matching outperforms the existing models for almost all the data, as illustrated in
Figure 5.2. TEG-matching achieves sufficient accuracy for almost all data compared
to the existing methods, whose accuracy are extremely low for some data. The pro-
longed speed of the AntMapper algorithm results from the ant colony algorithm
used for computing the global likelihoods. The ant colony algorithm, one of the
population-based metaheuristics, also yields lower accuracy than the shortest path
algorithm, one of the optimization algorithms used by TEG- or STD-matching. In
general, an optimization algorithm produces a better solution than a heuristic algo-
rithm, which is true for our experiments.

As illustrated in Figure 5.4, the peak memory usage of all algorithms has a weak
correlation with the number of shape nodes, and the most memory-saved algorithm is
difficult to determine. Our TEG-matching and the AntMapper algorithm use large
amounts of memory for some trajectories.

We analyzed the matched paths and revealed the advantages of TEG-matching
over existing algorithms. We have provided some trajectories for which existing
algorithms are unsuccessful, but our TEG-matching is successful in its prediction.
We have identified the situation in which our TEG-matching works well and why
existing algorithms predict incorrect paths. Another trajectory in which our model
fails to predict the correct path is also provided.

Area weight of TEG-matching contributes to a correct prediction in Figure 5.5.
Both STD-matching and AntMapper algorithm match Pi+2 to arc (v1, v2) because of
a spatial measurement error. In contrast, TEG-matching matches Pi+2 to arc (v1, v3)



5.4. Comparison with all models 29

FIGURE 5.2: Accuracy of all algorithms for each trajectory.

FIGURE 5.3: Speed (#GPS/sec) of all algorithms for each trajectory.



30 Chapter 5. Numerical Experiment

FIGURE 5.4: Peak memory usage of all algorithms and the number
of shape nodes for each vehicle trajectory. The peak memory usage
denotes the required memory except the data structure such as FC

and kd-tree.

by considering the area between the trajectory and a matched path. The area be-
comes small if we match Pi+2 to arc (v1, v3) rather than match Pi+2 to arcs (v1, v2)
and (v2, v3). Moreover, the angle difference between (Pi+2, Pi+3) and Pi+2’s matched
arc becomes large if we match Pi+2 to (v1, v2) and (v2, v3) compared to matching
Pi+2 to (v1, v3). Therefore, area weight of the correct path becomes smaller than that
of an incorrect path (matched path of STD-matching or AntMapper), resulting in the
accurate prediction of TEG-matching.

The trajectory (ID=21) shown in Figure 5.6 has a spatial measurement error at the
starting position (P1 and P2). The STD-matching and AntMapper predict the wrong
U-turn paths because the direction between the correct arc and the segment (P1, P2)
is the opposite. The direction change weight of our TEG-matching avoids U-turns and
helps obtain the correct path.

Figure 5.7 (ID=21) is the example where the STD-matching and AntMapper present
matched paths that go back and forth when the vehicle pauses. STD-matching matches
two consecutive position fixes with two points such that the distance between the
two position fixes is close to the shortest path distance of the corresponding two pro-
jections. Pi+1 ∼ Pi+6 are slightly different from each other, which causes an otiose
detour for STD-matching. The inconsistent directions of two consecutive position
fixes provide AntMapper with a round-trip path. The direction change weight of our
TEG-matching helps remove these unnecessary detours.

TEG-matching fails to predict the matched path for the trajectory (ID=95) shown
in Figure 5.8. The vehicle makes a U-turn in the middle of the long arc (v1, v2), and
the “long” arc causes a mistake in the prediction. If our model matches (Pi+2, Pi+3)
and (Pi+3, Pi+4) with arcs (v1, v2) and (v2, v1) respectively, the direction change weight
wd
(
(v1, v2)i+3, (v2, v1)

i+3) becomes very large because Pi+2, Pi+3 and Pi+4 are far



5.4. Comparison with all models 31

FIGURE 5.5: Shape nodes (small black dots), junctions (big black dots),
a vehicle trajectory (green marks), and matched paths (sky blue) of map-

matching algorithms, as well as the correct path (red).

FIGURE 5.6: Shape nodes (small black dots), junctions (big black dots),
a vehicle trajectory (green marks), and matched paths (sky blue) of map-

matching algorithms, as well as the correct path (red).

FIGURE 5.7: Shape nodes (small black dots), junctions (big black dots),
a vehicle trajectory (green marks), and matched paths (sky blue) of map-

matching algorithms, as well as the correct path (red).

from v2. Therefore our models selects the shortcut path (. . . , (v1, v3), (v3, v4), (v4, v3), . . . ).
To avoid this situation, we need to split long arcs at direction change shape nodes.
AntMapper is a non-deterministic algorithm that offers an incorrect path containing
two round-trips, and STD-matching yields the correct matched path.

In summary, our TEG-matching is robust against spatial measurement errors and
pauses, such as traffic lights. However, if the vehicle makes a U-turn in the middle
of a long arc, the TEG-matching outputs an incorrect shortcut path. We can solve
this problem by splitting long arcs at direction change shape nodes.



32 Chapter 5. Numerical Experiment

FIGURE 5.8: Shape nodes (small black dots), junctions (big black dots),
a vehicle trajectory (green marks), and matched paths (sky blue) of map-

matching algorithms, as well as the correct path (red).

5.5 Sensitivity analysis

5.5.1 Impact of bottom-up segmentation

The bottom-up segmentation explained in Chapter 3 reduces the graph size while
preserving the topology of a road network. Table 5.4 shows the number of shape nodes,
speed, and accuracy of our TEG-matching with or without bottom-up segmentation.
In the table, “Original” implies not applying bottom-up segmentation to the road net-
work. Surprisingly, a tiny parameter value (max_error = 3) achieves approximately
50% reduction in shape nodes, which implies that we succeed in significant node re-
duction while preserving the shape of the original road network. We achieved a 1.78x
speed increase with only a 0.0074 accuracy drop at the max_error=10, where the
accuracy 0.9571 is still higher than the existing models (STD:0.8672 and AntMap-
per:0.3568). The accuracy and speed for each trajectory are shown in Figure 5.9
and 5.10, respectively. Bottom-up segmentation achieves an effective map-matching
speedup with only a small accuracy drop.

Figure 5.11 shows the vehicle trajectory whereby bottom-up segmentation has
a negative influence on the accuracy. Bottom-up segmentation brings the correct
arc away for the position fix Pi; hence, the matched path is wrong. The appropri-
ate max_error is the key to balancing the accuracy and speed of map matching. In
contrast, bottom-up segmentation occasionally improves the accuracy, as shown in
Figure 5.12. Our TEG-matching produces a shortcut path with a U-turn (yellow arc)
for the original road network. The long purple arc is unlikely to be chosen because
the long arc increases the area weight. Besides, Pi+1 and Pi+2 achieve perpendicular



5.5. Sensitivity analysis 33

max_error (meter) Original
Bottom-up segmentation

3 5 10 30

#Shape node(%) 1,996 K (100%) 1,045 K (52%) 890 K (45%) 725 K (36%) 553 K (28 %)
Accuracy 0.9645 0.9622 0.9619 0.9571 0.9469
Speed (#GPS/sec) 19.3 30.9 32.0 34.3 44.20

TABLE 5.4: Number of shape nodes, accuracy and speed of our TEG-
matching with or without bottom-up segmentation. The shape nodes cov-
ers areas associated with all vehicle trajectories. “Original” implies
that bottom-up segmentation is not applied to the road network. K
represents×103, and a percentage is a ratio to the original shape node’s

number. The highest accuracy and speed are bold.

FIGURE 5.9: Accuracy of our TEG-matching for each trajectory while
changing the max_error of the bottom-up segmentation. “Original”

implies no use of bottom-up segmentation to the road network.

FIGURE 5.10: Speed (#GPS/sec) of our TEG-matching for each tra-
jectory while changing the max_error of bottom-up segmentation.
“Original” implies no use of bottom-up segmentation to the road net-

work.



34 Chapter 5. Numerical Experiment

distances on the yellow arc, which reduces the area weight of the arc. After bottom-
up segmentation, Pi+2 does not achieve a perpendicular distance on the yellow arc;
therefore, TEG-matching is successful in prediction.

FIGURE 5.11: Vehicle trajectory (green marks), correct path (red), and
matched paths (sky blue) of TEG-matching applied and not applied

bottom-up segmentation, as well as the correct path (red).

FIGURE 5.12: Vehicle trajectory (green marks), correct path (red), and
matched paths (sky blue) of TEG-matching applied and not applied

bottom-up segmentation, as well as some colored arcs.



35

Chapter 6

Conclusion

We propose a parameter-free map-matching algorithm called TEG-matching. TEG-
matching achieves an accuracy improvement and 5.6x speedup than existing mod-
els. TEG-matching constructs a time-dependent graph and solves the shortest path
problem to obtain the most plausible space-time path. Numerical experiments indi-
cate that our TEG-matching is robust against spatial measurement errors and pauses
such as at traffic lights. However, an appropriate arc split is required for further ac-
curacy improvement. We also performed a theoretical analysis and determined how
large a square is needed to obtain all the arcs within a radius r from a certain point.
Moreover, we utilized the fractional cascading to achieve a high-speed neighbor-
hood search. Bottom-up segmentation also achieves a 64% reduction in shape nodes,
resulting in a 1.78x speed increase with only a small accuracy reduction for map
matching.

The proposed algorithm is promising for offline usage in ITS, such as traffic dy-
namics analysis and urban planning to alleviate traffic congestion. The traffic dy-
namics analysis applies data mining methods to understand spatial and social be-
havior such as travelers’ route choice, accessibility patterns, and commercial center
attractiveness. Advantageous properties of our algorithm are (1) high speed and
accuracy for low-frequency data, (2) being parameter-free, and (3) only requiring
ordered locations for map matching, which are highly beneficial to a practical case
that requires high performance and reduces the cost of data transmission and tuning
hyperparameters.





37

Appendix A

Proof about Square Query

We utilize square query to find all arcs near a vehicle trajectory. To this end, we re-
peatedly obtain all shape arcs contained in a square. This section answers how large
the square is required to obtain either of the endpoints of the shape arc located within
a radius r meter from a point. Theorem 2 presents the side length of the square, and
both Lemma 1 and Lemma 2 are used to prove the Theorem 2.

Lemma 1. Let 0 < r ≤ s, ∂C :=
{

x ∈ R2 | ‖x‖2 = r
}

, and ∂L :=
{

x ∈ R2 | ‖x‖∞ = s
}

.
Then we have

min
(x,y)∈∂C

l(x, y) = min
{

2
(√

2s− r
)

, 2s
}

where l(x, y) is the distance between the two intersection points between ∂L and the tangent
line at (x, y) of ∂C. If s = r and the tangent line is either x = r, x = −r, y = r, or y = −r,
the intersection points are infinite. In this case, we define l(x, y) = 2s, which is compatible
with this lemma.

FIGURE A.1: Visualization of the symbols used in the lemma.

Proof. By symmetry, we only consider the point of tangency at 0 ≤ x ≤ r, 0 ≤ y ≤ r.
Given the circle with the center at the origin and radius of r, the tangent line at
(x0, y0)T ∈ R2 is given by the following equation:

x0x + y0y = r2 (A.1)

Hence, the intersection conforms to any of the following three cases:
(1) The tangent line intersects ∂L at y = s and y = −s.
(2) The tangent line intersects ∂L at x = s and x = −s.
(3) The tangent line intersects ∂L at x = s and y = s.
In cases (1) and (2), l(x, y) takes minimum value l(x, y) = 2s if the tangent line is
parallel to either the x-axis or y-axis; hence, we only consider case (3) in the following
proof. Because the tangent point is neither x = 0 nor y = 0, the tangent line at



38 Appendix A. Proof about Square Query

(x, y)T (0 < x, y < r) intersects ∂L at the following two points:

p1(x, y) =
(

s,
r2 − sx

y

)T

, p2(x, y) =
(

r2 − sy
x

, s
)T

(A.2)

By using polar coordinates, the distance between p1(x, y) and p2(x, y), denoted by
l(x, y), is expressed by

(l(x, y))2 = ‖p1(x, y)− p2(x, y)‖2
2 (A.3)

=

(
r2 − s(x + y)

x

)2

+

(
r2 − s(x + y)

y

)2

(A.4)

=
(r2 − s(x + y))2(x2 + y2)

x2y2 (A.5)

=
r2(r2 − sr(cos θ + sin θ))2

r4 sin2 θ cos2 θ
(A.6)

=
(r− s(cos θ + sin θ))2

sin2 θ cos2 θ
(A.7)

≡ f (θ), (A.8)

where

x = r cos θ, y = r sin θ (A.9)

Because l(x, y) is non-negative, the problem is equivalent to finding the minimum
value of f (θ) on θ ∈

(
0, π

2

)
.

We perform the first derivative test and find the global minimum value. Because

(sin2 θ cos2 θ)′ = 2 sin θ cos θ(cos2 θ − sin2 θ), (A.10)

the derivative of f , denoted by f ′, agrees with the following equation:

f ′(θ) =
−2s sin2 θ cos2 θ(cos θ − sin θ) (r− s(sin θ + cos θ))

sin4 θ cos4 θ
(A.11)

−
2 sin θ cos θ

(
cos2 θ − sin2 θ

)
(r− s(sin θ + cos θ))2

sin4 θ cos4 θ
(A.12)

=
2(r− s(sin θ + cos θ)) (s(1 + sin θ cos θ)− r(sin θ + cos θ)) (cos θ − sin θ)

sin3 θ cos3 θ
.

(A.13)

We first evaluate r − s(sin θ + cos θ). Because sin θ + cos θ =
√

2 sin
(
θ + π

4

)
and

0 < θ < π
2 ,

1 < sin θ + cos θ ≤
√

2
(

π

4
< θ +

π

4
<

3
4

π

)
(A.14)

Hence,

r− s(sin θ + cos θ) < r− s ≤ 0 (A.15)



Appendix A. Proof about Square Query 39

Next, we handle s(1+ sin θ cos θ)− r(sin θ + cos θ) by transforming the equation
as follows:

s(1 + sin θ cos θ)− r(sin θ + cos θ) ≥ s (1 + sin θ cos θ − (sin θ + cos θ)) (A.16)
= s(1− sin θ)(1− cos θ) > 0 (A.17)

We finally consider cos θ − sin θ. Because cos θ − sin θ = −
√

2 sin
(
θ − π

4

)
and

−π
4 < θ − π

4 < π
4 when 0 < θ < π

2 , we have

−π

4
< θ − π

4
< 0

(
0 < θ <

π

4

)
⇒ cos θ − sin θ > 0 (A.18)

0 ≤ θ − π

4
<

π

4

(π

4
≤ θ <

π

2

)
⇒ cos θ − sin θ ≤ 0 (A.19)

From the above discussions, we conclude as follows:

0 < θ <
π

4
⇒ f ′(θ) < 0 (A.20)

π

4
≤ θ <

π

2
⇒ f ′(θ) ≥ 0 (A.21)

Therefore, f (θ) has a minimum value 4
(√

2s− r
)2

at θ = π
4 on

(
0, π

2

)
, implying

that l(x, y) finds the minimum value

√
4
(√

2s− r
)2

= 2
(√

2s− r
)

at |x| = |y| =
r√
2
.

Lemma 2. Let 0 < r ≤ s and L := {x ∈ R2 | ‖x‖∞ ≤ s}. Any line intersecting
C := {x ∈ R2 | ‖x‖2 ≤ r} has exactly two intersection points with ∂L, and the distance
between the two intersection points has the minimum value min{2(

√
2s− r), 2s}. If s = r

and the line is either x = r, x = −r, y = r, or y = −r, the intersection points are infinite.
In this case, we define the distance as 2s, which is compatible with this lemma.

Proof. We divide this problem into three cases according to the conditions of the line.
Here, we define r′ as the distance between the line and the origin.
(1) r′ = 0
The distance has a minimum value of 2s when the line is parallel to the x-axis or
y-axis.
(2) 0 < r′ ≤ r
Any line not going through the origin is regarded as the tangent line of the origin-
centered circle with a radius of r′; hence, we denote the tangent point by (x, y)T

(‖(x, y)T‖2 = r′). Let l(x, y) be the distance between the two intersection points
between the tangent line and ∂L. From Lemma 1, l(x, y) has a minimum value of
min{2(

√
2s− r′), 2s}.

From (1) and (2), we can conclude that the distance has a minimum value of min{2(
√

2s−
r), 2s}.

Theorem 2. Consider the road network whose shape arc is represented as a straight segment.
Let 0 < r ≤ s, `max > 0 be the maximum length of the shape arc that satisfies `max ≤
min{2

(√
2s− r

)
, 2s}. Then, for the shape arc (u, v) and any point P, we have

d ((u, v), P) ≤ r ⇒ min {‖u− P‖∞, ‖v− P‖∞} ≤ s



40 Appendix A. Proof about Square Query

. Moreover, if `max ≤ 2
(√

2 + 1
)

r, then `max ≤ min
{

2
(√

2s− r
)

, 2s
}

is equivalent to
`max+2r

2
√

2
≤ s. Otherwise, `max

2 ≤ s.

Proof. Without losing generality, we may assume that P is located at the origin by
shifting the road network in parallel. Except for the equivalent condition, the claim
is directly induced from Lemma 2; hence, we prove the equivalent condition by
considering the following two cases:
(1) 2

(√
2s− r

)
≤ 2s

(2) 2
(√

2s− r
)
≥ 2s

In case (1), as min
{

2
(√

2s− r
)

, 2s
}
= 2

(√
2s− r

)
,

`max ≤ min
{

2
(√

2s− r
)

, 2s
}
⇔ `max + 2r

2
√

2
≤ s (A.22)

. In case (2), as min
{

2
(√

2s− r
)

, 2s
}
= 2s,

`max ≤ min
{

2
(√

2s− r
)

, 2s
}
⇔ `max

2
≤ s (A.23)

On the other hand, performing a simple transformation, we have

2
(√

2s− r
)
≤ 2s⇔ s ≤

(√
2 + 1

)
r (A.24)

Therefore

`max ≤ min
{

2
(√

2s− r
)

, 2s
}

(A.25)

⇔
(
`max + 2r

2
√

2
≤ s ≤

(√
2 + 1

)
r
)
∨
(

max
{
`max

2
,
(√

2 + 1
)

r
}
≤ s
)

(A.26)

If `max ≤ 2
(√

2 + 1
)

r, max
{

`max
2 ,
(√

2 + 1
)

r
}

=
(√

2 + 1
)

r. Therefore, if we are
concerned about

`max + 2r
2
√

2
≤
(√

2 + 1
)

r ⇔ `max ≤ 2
(√

2 + 1
)

r (A.27)

, we have(
`max + 2r

2
√

2
≤ s ≤

(√
2 + 1

)
r
)
∨
(

max
{
`max

2
,
(√

2 + 1
)

r
}
≤ s
)

(A.28)

⇔
(
`max + 2r

2
√

2
≤ s ≤

(√
2 + 1

)
r
)
∨
((√

2 + 1
)

r ≤ s
)

(A.29)

⇔
(
`max + 2r

2
√

2
≤ s ∨

(√
2 + 1

)
r ≤ s

)
∧
(

s ≤
(√

2 + 1
)

r ∨
(√

2 + 1
)

r ≤ s
)

(A.30)

⇔min
{
`max + 2r

2
√

2
,
(√

2 + 1
)

r
}
≤ s (A.31)

⇔ `max + 2r
2
√

2
≤ s (A.32)



Appendix A. Proof about Square Query 41

. Otherwise, if `max > 2
(√

2 + 1
)

r, we have `max+2r
2
√

2
>
(√

2 + 1
)

r from A.27. There-
fore, we have(

`max + 2r
2
√

2
≤ s ≤

(√
2 + 1

)
r
)
∨
(

max
{
`max

2
,
(√

2 + 1
)

r
}
≤ s
)

(A.33)

⇔max
{
`max

2
,
(√

2 + 1
)

r
}
≤ s (A.34)

⇔ `max

2
≤ s (A.35)

.





43

Appendix B

NewTEG-matching

In the main body of our paper, we propose TEG-matching that obtains the matched
path that has a small area between a vehicle trajectory. TEG-matching outperforms
state-of-the-art algorithms in terms of accuracy and speed; however, it has the fol-
lowing problems:

• TEG-matching implicitly assumes that at most one GPS is obtained each arc;
however, this situation is not actual for a long arc or high-frequency GPS data.

• We understand the motivation and exact definition of an area between a vehicle
trajectory and matched path, but the calculation is complex and time expensive.

Therefore, Appendix B proposes a more straightforward, intuitive, and high-speed
map matching algorithm, called NewTEG-matching, that solves these problems. We
perform the theoretical analysis for NewTEG-matching, and comprehensive experi-
ments will be conducted in our future research.

B.1 Abstract of NewTEG-matching

NewTEG-matching finds the vehicle route that has the smallest area between a ve-
hicle trajectory. Because vehicle route candidates are innumerable and hence impos-
sible to calculate an are for each route, we define the area as the sum of areas be-
tween the vehicle trajectory and the arc contained in the route. The area between
the vehicle trajectory and an arc is named as arc area. We develop an interpretative
model by defining the arc area simply and intuitively. Finally, we propose a new
time-expanded graph and transform a map-matching problem into the shortest path
problem on the new TEG (NewTEG).

The remainder of this Appendix is organized as follows: Section B.2 presents a
problem setting and symbols used in Appendix B. We define arc area and an area
between a route and vehicle trajectory in Section B.3. Section B.4 describes the algo-
rithm that calculates the areas. NewTEG and its weight are defined in Section B.5.
We finally prove that the shortest path on NewTEG corresponds to the route with
the minimum area between a vehicle trajectory in Section B.6.

B.2 Problem setting and symbols

This section formulates a map matching problem and defines the symbols used in
Appendix B. We are concerned that (1) the output of NewTEG-matching is different
from TEG-matching; (2) symbols used in Appendix B have different meanings to the
main body ones.



44 Appendix B. NewTEG-matching

FIGURE B.1: Example of a road network, a vehicle trajectory P = (Pi)
4
i=1,

and a detailed walk.

Symbol Definition
V set of nodes
A set of arcs
G = (V, E) road network
`a (a ∈ A) length of an arc
tail(a) (a ∈ A) tail of the arc a
head(a) (a ∈ A) tail of the arc a
P = (Pi)

n
i=1 vehicle trajectory from time stamp i to n

W = (a1, a2, . . . , am) (aj ∈ A) walk on a road network
fp : {P1, P2, . . . , Pn} →W GPS projection
WDW set of detailed walks
d(x, y) Euclidean distance between x and y
d(x, y)∞ Chebyshev distance between x and y
fidx : W → {1, . . . , m}, aj 7→ j index function for an walk W = (a1, a2, . . . , am)
WTEG set of s-t walks on a NewTEG

TABLE B.1: Symbols in Appendix B

We regard a 2D road network G = (V, A) where V is the set of nodes and A is the
set of arcs (directed edges). Unlike the main body, a node is one type and hence is
not categorized into junctions and shape nodes. An arc is an ordered pair of adjacent
nodes. For an arc a = (v, v′) ∈ A, `a is the length of the arc, and tail(a) = v and
head(a) = v′ denotes the tail and head of the arc, respectively. A vehicle trajectory
is a chronologically ordered position fixes P = (Pi)

n
i=1 = (P1, P2, . . . , Pn) produced

by a GPS device mounted on a vehicle. For each time step i, Pi includes only the
east and north coordinates. NewTEG-matching aims to restore the most likely walk
W = (a1, a2, . . . , am) (aj ∈ A, head(aj) = tail(aj+1)) of the vehicle under a given
vehicle trajectory P = (Pi)

n
i=1. NewTEG-matching also specifies the arc where the

vehicle is located at each time step, and the function is named GPS projection and
denoted by fp : {P1, P2, . . . , Pn} → W. A pair of walk W and GPS projection fp is
named an detailed walk WDW = (W, fp), and its set is denoted byWDW. In summary,
NewTEG-matching outputs a detailed walk given a vehicle trajectory. Figure B.1 shows
a road network, a GPS trajectory, and a detailed walk. Symbols used in this Appendix
are arranged in Table B.1.

B.3 Detailed walk area

NewTEG-matching finds the detailed walk whose walk has the smallest area between
a vehicle trajectory. The area is named as a detailed walk area and is defined as the sum
of arc areas of the arcs contained in a walk, where an arc area is the area bounded



B.3. Detailed walk area 45

between the arc and a vehicle trajectory. This section provides the definition of arc
area and detailed walk area.

Arc area is defined as the product of the arc length and the average distance
between the GPS and actual vehicle position when the vehicle passes through the
arc. We estimate the average distance by dividing into two cases whether or not
at least one GPS point is obtained during the transition on the arc a = (v, v′). Fig-
ure B.2 illustrates an arc area for each case, and the formal definition is as follows. Let
P = (Pi)

n
i=1 be a vehicle trajectory, WDW = (W, fp) be a detailed walk, and aj = (v, v′)

be the arc contained in the walk W. Then, the arc area w
(
(v, v′), P, fp

)
is defined as

follows:

• case1 (at least one GPS point is obtained when the vehicle passes the arc a)
Suppose that Pis , Pis+1, . . . , Pie are all the GPS points obtained during the tran-
sition on the arc aj = (v, v′), i.e.,

fp (Pi) = aj (is ≤ i ≤ ie)

∧is − 1 ≥ 1⇒ fp (Pis−1) 6= aj

∧ie + 1 ≤ n⇒ fp (Pie+1) 6= aj (B.1)

. Then, the average distance between the vehicle and GPS position is estimated
as 1

ie−is+1 ∑ie
i=is

d (Pi, (v, v′)) where d(X, Y) is the Euclidean distance between X
and Y. Therefore, we define

w
(
(v, v′), P, fp

)
:= `(v,v′) ·

1
ie − is + 1

ie

∑
i=is

d
(

Pi, (v, v′)
)

.

• case2 (GPS point Pis and Pis+1 are observed before and after the transition on
the arc aj, respectively)
This case is formally expressed as:

fidx
(

fp(Pis)
)
< j < fidx

(
fp(Pis+1)

)
(B.2)

, where fidx : W → {1, . . . , m}, aj 7→ j returns the index of the walk W and
is names as an index function for an walk W. Then, we estimate the average
distance between the vehicle and GPS position as the mean distance between
an endpoint of the arc and a segment (Pis , Pis+1). Therefore, we define

w
(
(v, v′), P, fp

)
:= `(v,v′) ·

1
2
(
d (v, (Pis , Pis+1)) + d

(
v′, (Pis , Pis+1)

))
.

Using arc area w
(
(v, v′), P, fp

)
, a detailed walk area w(W, P, fp) is defined as:

w(W, P, fp) :=
m

∑
j=1

w
(
aj, P, fp

)
(B.3)

, where W = (a1, a2, . . . , am). Because NewTEG-matching finds the detailed walk that
has the minimum detailed walk area, the output of NewTEG-matching is the optimal



46 Appendix B. NewTEG-matching

solution of the following optimization problem:

min
WDW=(W, fp)∈WDW

w
(
W, P, fp

)
(B.4)

We transform the problem into a shortest path problem on a NewTEG that is ex-
plained later.

FIGURE B.2: An arc are is drawn as a green area for each case.

B.4 Algorithm calculating a detailed walk area

Algorithm 4 describes the way to calculate a detailed walk area, and this section pro-
vides an overview and the correctness of the algorithm.

Algorithm 4 calculates an arc area for the first to last arc in a walk W (line 4 or 9)
and finally summing up these arc areas (line 20). We calculate an arc area based on
the relationship between an arc and a GPS projection that is classified into case1 and
case2 (see Section B.3). In Algorithm 4, the functions “calculate_nonskip_area” and
“calculate_skip_area” correspond to case1 and case2, respectively.

Now we prove the correctness of Algorithm 4 by focusing loop invariant and ter-
mination. Loop invariants, conditions that satisfy at any iteration, are listed below.

• calculate_nonskip_area

– At the start of the function (line 3), the following proposition is always
true.

fp(Pis) = aj ∧
(
is > 1⇒ fp (Pis−1) 6= aj

)
(B.5)

– At the calculation of an arc area (line 4), Equation B.1 always satisfies.

• calculate_skip_area

– At the right after line 7, the following proposition is always true.

Equation B.2 is true for j ≤ ∀j′ < min
{

k ∈ {j, . . . , m} | fp(Pis+1) = ak
}

(B.6)

, which implies that Equation B.2 is always true at the calculation of an
arc area (line 9).

We show that the above invariants are true at any iteration. Consider the first it-
eration of calculate_nonskip_area. Then, is = 1 and j = 1. Because fp(P1) = a1,



B.4. Algorithm calculating a detailed walk area 47

Equation B.5 satisfies. From the definition of ie at line 3, Equation B.1 is true for any
iteration if Equation B.5 satisfies at line 3. Next, we prove Equation B.6 for any
iteration. Because “calculate_skip_area” is called after “calculate_nonskip_area”,
fp (Pie) = aj ∧ fp (Pie+1) 6= aj is always true at the right before line 6; hence

fp (Pis) = aj−1 ∧ fp (Pis+1) 6= aj−1 (B.7)

is true at the right after line 7, which implies Equation B.6. Finally, we show that
Equation B.5 satisfies at the 2nd or more than iteration. From Equation B.7 and j is
nondecreasing from line 8 to 11, fp(Pis−1) 6= aj at the end of “calculate_skip_area”.
Obviously, fp(Pis) = aj is true at the end of “calculate_skip_area”. Because “calcu-
late_nonskip_area” is called after “calculate_skip_area” except for the first iteration,
Equation B.5 is true at the 2nd or more than iteration.

Because we have proved that (1) Equation B.1 is always true at line 4; (2) Equa-
tion B.2 is always true at line 9, any arc area is correctly calculated. Moreover, the
right after line 19, we have calculated w

(
aj, P, fp

)
for j = 1, . . . , m, the correctness of

Algorithm 4 is verified.

Algorithm 4: calculate detailed walk area(P, WDW)

Input : a vehicle trajectory P = (P1, . . . , Pn); a detailed walk WDW = (W, fp)
where W = (a1, . . . , am) and fp : P→ A.

Output: the detailed walk area w(W, P, fp)
1

2 Function calculate_nonskip_area(P, WDW, is, j):
3 ie ← max{i | is ≤ i ≤ n, fp (Pi′) = aj (is ≤ ∀i′ ≤ i)}
4 w

(
aj, P, fp

)
← `aj · 1

ie−is+1 ∑ie
i=is

d
(

Pi, aj
)

5 Function calculate_skip_area(P, WDW, ie, j):
6 is ← ie
7 j← j + 1
8 while fp(Pis+1) 6= aj do
9 w

(
aj, P, fp

)
←

`aj · 1
2

{
d
(
tail

(
aj
)

, (Pis , Pis+1)
)
+ d

(
head

(
aj
)

, (Pis , Pis+1)
)}

10 j← j + 1

11 is ← is + 1

12 Function calculate_detailedwalk_area(P, WDW):
13 is ← 1
14 j← 1
15 while ture do
16 calculate_nonskip_area (P, WDW, is, j)
17 if j = m then
18 break

19 calculate_skip_area (P, WDW, ie, j)

20 S← ∑m
j=1 w

(
aj, P, fp

)
21 return S



48 Appendix B. NewTEG-matching

B.5 Definition of NewTEG

This section defines a NewTEG that is a directed graph. Any detailed walk is paired
with exactly one walk from s to t on a NewTEG, and the wight of the walk on the
NewTEG equals to the detailed walk area, where s and t are special nodes on the
NewTEG. The bijection is defined in Section B.6.

Let G = (V, A) be a road network, P = (Pi)
n
i=1 be a vehicle trajectory. The parame-

ters of NewTEG are as follows.

• h ≥ 1 : maximum number of GPS points to be acquired when passing through
one arc.

• rGPS : maximum GPS error.

Then, a NewTEG G(P) = (U(P), E(P)) is defines as follows. For time stamp i ∈
{1, . . . , n − 1}, Ui is defined as the set of arcs where a vehicle may exist from time
stamp i to i + 1 (arcs near Pi or Pi+1):

Ui :=
{

ai | a ∈ ArGPS,`max(Pi, Pi+1)
}

(B.8)

where ArGPS,`max(Pi, Pi+1) ⊂ A is the neighborhood arcs of Pi and Pi+1 defined in the last
paragraph of this section. For any notation x, xi is the copy of x related to the time
stamp i, and the superscript i is used for distinguishing copies related to different
time stamps. Ei (i ∈ {1, 2, . . . , n− 1}) denotes a transition from one arc to another
from time stamp i to i + 1 and is defined as:

Ei := {(ai, bi) ∈ Ui ×Ui | head(a) = tail(b)} (B.9)

. (ai, bi) ∈ Ei means that a vehicle pass through the arc a from time stamp i to i + 1,
that is, there exists j such that(

fidx
(

fp(Pi)
)
< j < fidx

(
fp(Pi+1)

))
∧
(
aj = a

)
∧
(
aj is in the walk on a detailed walk area

)
(B.10)

. Based on the definition of an arc area, the the weight of ei =
(
ai, bi) ∈ Ei is defined

as follows:

w
(

ei
)

:= `a ·
1
2
{d (tail(a), (Pi, Pi+1)) + d (head(a), (Pi, Pi+1))} (B.11)

(B.12)

. For a convenience, we define Ũi as the copy of Ui (i ∈ {1, . . . , n− 1});

Ũi :=
{

ãi | ai ∈ Ui
}

(B.13)

. For ∀i ∈ {1, . . . , n − 2} and i + 1 ≤ ∀i′ ≤ min{i + h, n − 1}, Ei,i′
LtL denotes an arc

where a vehicle exists from time stamp i + 1 to i′:

Ei,i′
LtL :=

{
(ai, ãi′) ∈ Ui × Ũi′

}
(B.14)



B.5. Definition of NewTEG 49

.
(

ai, ãi′
)
∈ Ei,i′

LtL represents that

fp(Pi) 6= a ∧ fp(Pk) = a (i + 1 ≤ ∀k ≤ i′) ∧ fp(Pi′+1) 6= a (B.15)

; hence the the weight of
(

ai, ãi′
)
∈ Ei,i′

LtL is defined as follows:

w
((

ai, ãi′
))

:= `a ·
1

i′ − i

i′

∑
k=i+1

d (Pk, a) (B.16)

. For ∀i ∈ {1, . . . , n− 1}, we define Ẽi to ensure the connectivity of Ũi:

Ẽi :=
{
(ãi, bi) ∈ Ũi ×Ui | head(a) = tail(b)

}
(B.17)

. Then, the weight of ẽi ∈ Ẽi is defined as w
(

ẽi
)
= 0. We add s, the source node of

any walk, and define Ei
source (1 ≤ ∀i ≤ h) that represents arcs where a vehicle exists

from a time stamp 1 to i:

Ei
source :=

{(
s, ãi
)
| ãi ∈ Ũi, a ∈ ArGPS,`max(Pk) (1 ≤ ∀k ≤ i)

}
(B.18)

Esource :=
⋃

1≤i≤h

Ei
source (B.19)

, where ArGPS,`max(Pk) ⊂ A is the neighborhood arcs of Pk defined in the last paragraph

of this section.
(

s, ãi
)
∈ Ei

source represents that

fp(Pk) = a (1 ≤ ∀k ≤ i) ∧ fp(Pi+1) 6= a (B.20)

. Hence, the wight of
(

s, ãi
)
∈ Ei

source is defined as:

w
((

s, ãi
))

:= `a ·
1
i

i

∑
i′=1

d (Pi′ , a) (B.21)

. Similarly, we add the sink node t and Ei
sink (n− h ≤ ∀i ≤ n− 1) that is the set of

arcs where a vehicle exists from i + 1 to n:

Ei
sink :=

{(
ai, t
)
| ai ∈ Ui, a ∈ ArGPS,`max(Pk) (i + 1 ≤ ∀k ≤ n)

}
(B.22)

Esink :=
⋃

n−h≤i≤n−1

Ei
sink (B.23)

.
(
ai, t
)
∈ Ei

sink represents that

fp(Pi) 6= a ∧ fp(Pk) = a (i + 1 ≤ ∀k ≤ n) (B.24)

. Therefore, the wight of
(
ai, t
)
∈ Ei

sink is defined as:

w
((

ai, t
))

:= `a ·
1

n− i

n

∑
i′=i+1

d (Pi′ , a) (B.25)



50 Appendix B. NewTEG-matching

. Finally, we define U∗ and E∗ to represent the case that a vehicle always exists an
arc a ∈ A:

U∗ := {a∗ | a ∈ ArGPS,`max(Pi) (1 ≤ ∀i ≤ n)} (B.26)

E∗ :=
⋃

a∗∈U∗
{(s, a∗), (a∗, t)} (B.27)

. The weight of (s, a∗), (a∗, t) ∈ E∗ is defines as

w ((s, a∗)) := `a ·
1
n

n

∑
i=1

d (Pi, a) (B.28)

w ((a∗, t)) := 0 (B.29)

. Utilizing these symbols, NewTEG G(P) = (U(P), E(P)) is defines as

U(P) :=

(
n−1⋃
i=1

Ui ∪ Ũi

)
∪ {s, t} ∪U∗ (B.30)

E(P) :=

(
n−1⋃
i=1

Ei ∪ Ẽi

)
∪

n−2⋃
i=1

min{i+h,n−1}⋃
i′=i+1

Ei,i′
LtL

 ∪ Esource ∪ Esink ∪ E∗ (B.31)

. A walk from s to t is named as a s-t walk, and WTEG denotes the set of s-t walks
on a NewTEG. For WTEG ∈ WTEG, the weight of WTEG is defined as the total weight
of arcs contained in WTEG and is denoted by w (WTEG). Then, there exists a bijec-
tion fDW : WTEG → WDW such that w

(
W, P, fp

)
= w(WTEG) (∀WTEG ∈ WTEG),

where (W, fp) = fDW(WTEG), which implies that the shortest path on the NewTEG
corresponds to the detailed walk with the minimum detailed walk area. Therefore, the
output of NewTEG-matching is the detailed walk corresponding to the shortest path
on NewTEG. Section B.6 proves the existence of the bijection. Figure B.3 illustrates
a detailed walk WDW and the corresponding s-t walk WTEG on a NewTEG. If a detailed
walk WDW = (W, fp) is

W = (a12, a23, a34, a45) (B.32)

fp =


fp(P1) = a12

fp(Pi) = a34 (2 ≤ i ≤ 3)
fp(P4) = a45

(B.33)

, the corresponding s-t walk on the NewTEG is

WTEG =
((

s, ã1
12

)
,
(

ã1
12, a1

23

)
,
(

a1
23, a1

34

)
,
(

a1
34, ã3

34

)
,
(

ã3
34, a3

45

)
,
(
a3

45, t
))

(B.34)

, where we define aij := (vi, vj) ∈ A.
We define the neighborhood arcs ArGPS,`max(P) and ArGPS,`max(P, P′) that appear in

this section. `max is the maximum length of an arc, and rGPS is the maximum GPS
error. We define ArGPS,`max(P) as the set of arcs that intersects the minimum square
required to obtain all the arcs within rGPS from P:

ArGPS,`max(P) := {a = (u, v) ∈ A | d∞(u, P) ≤ c ∨ d∞(v, P) ≤ c} (B.35)



B.6. Bijection between detailed walks and walks on NewTEG 51

FIGURE B.3: Example of a detailed walk WDW and the corresponding
s-t walk WTEG on a NewTEG. s-t walk on the NewTEG is drawn as
bold arrows, and the other edges are drawn as dotted arrows. The
parameter h of the NewTEG is two, and aij ∈ A is defined as aij :=

(vi, vj).

, where c = `max+2rGPS
2
√

2
if `max ≤ 2

(
1 +
√

2
)

rGPS

(
otherwise c = `max

2

)
. We note that

d ((u, v), P) ≤ rGPS ⇒ d∞(u, P) ≤ c ∨ d∞(v, P) ≤ c⇒ (u, v) ∈ ArGPS,`max(P) (B.36)

satisfies because of Theorem 2. ArGPS,`max(P, P′) denotes the set of arcs intersects the
minimum square required to obtain all the arcs within rGPS +

d(P,P′)
2 from P+P′

2 :

ArGPS,`max

(
P, P′

)
:=
{

a = (u, v) ∈ A | d∞

(
u,

P + P′

2

)
≤ c ∨ d∞

(
v,

P + P′

2

)
≤ c
}

(B.37)

, where c = `max+2r′

2
√

2
if `max ≤ 2

(
1 +
√

2
)

r′
(

otherwise c = `max
2

)
and r′ = rGPS +

d(P,P′)
2 .

B.6 Bijection between detailed walks and walks on NewTEG

This section creates a bijection fDW :WTEG →WDW such that

w
(
W, P, fp

)
= w(WTEG) (∀WTEG ∈ WTEG) (B.38)



52 Appendix B. NewTEG-matching

, where (W, fp) = fDW(WTEG) and P = (Pi)
n
i=1 is a vehicle trajectory. We first present

some lemmas needed to prove Equation B.38 and finally obtain the output of NewTEG-
matching by utilizing fDW.

Lemma 3. For any s-t walk on a NewTEG, there exists the corresponding detailed walk
on a road network. The mapping is denoted by fDW :WTEG →WDW.

Proof. Let P = (Pi)
n
i=1 be a vehicle trajectory and WTEG be a s-t walk on the NewTEG.

If WTEG = ((s, a∗), (a∗, t)) for an arc a, a vehicle exists the arc a from time stamp 1
to n; hence the corresponding detailed walk WDW = (W, fp) is W = (a) and fp(Pi) =
a (1 ≤ ∀i ≤ n). In the other case, WTEG is expressed by

WTEG =
(

es, ẽi1 , ei1
0 , . . . , ei1

ni1−1, ei1
ni1

)
+
(

ei1,i2
LtL , ẽi2 , ei2

0 , . . . , ei2
ni2

)
+ . . .

+
(

eiK−1,iK
LtL , ẽiK , . . . , eiK

niK
, et

)
=

((
s, ãi1

i1

)
,
(

ãi1
i1

, ai1
i1,0

)
,
(

ai1
i1,0, ai1

i1,1

)
, . . . ,

(
ai1

i1,ni1−1, ai1
i1,ni1

)
,
(

ai1
i1,ni1

, ai1
i2

))
+

((
ai1

i2
, ãi2

i2

)
,
(

ãi2
i2

, ai2
i2,0

)
,
(

ai2
i2,0, ai2

i2,1

)
, . . . ,

(
ai2

i2,ni2
, ai2

i3

))
+ . . .

+

((
aiK−1

iK
, ãiK

iK

)
,
(

ãiK
iK

, aiK
iK ,0

)
, . . . ,

(
aiK

iK ,niK
, aiK

n

)
,
(

aiK
n , t
))

, where 1 ≤ K ≤ n− 1, 1 ≤ ik < ik+1 ≤ n− 1 (1 ≤ ∀k ≤ K − 1), es =

(
s, ãi1

i1

)
∈

Esource, ẽik =

(
ãik

ik
, aik

ik ,0

)
∈ Ẽik (1 ≤ ∀k ≤ K), eik

j =
(

aik
ik ,j, aik

ik ,j+1

)
∈ Eik (1 ≤

∀k ≤ K, 0 ≤ ∀j ≤ nik − 1), eik
nik

=
(

aik
ik ,nik

, aik
ik+1

)
∈ Eik (1 ≤ ∀k ≤ K − 1), eiK

niK
=(

aiK
iK ,niK

, aiK
n

)
∈ Eik , eik ,ik+1

LtL =

(
aik

ik+1
, ãik+1

ik+1

)
∈ Eik ,ik+1

LtL (1 ≤ k ≤ K − 1), and et =(
aiK

n , t
)
∈ Esink. For 1 ≤ ∀k ≤ K, nik is either −1 or a non-negative integer. If

nik = −1, we define

. . . , eik−1,ik
LtL , ẽik , eik ,ik+1

LtL , · · · = . . . ,
(

aik−1
ik

, ãik
ik

)
,
(

ãik
ik

, aik
ik+1

)
,
(

aik
ik+1

, ãik+1
ik+1

)
, . . . (B.39)

as a special case. From the definition of es =

(
s, ãi1

i1

)
(Equation B.20), we have

fp (Pi) = ai1 (0 ≤ i ≤ i1) ∧ fp (Pi1+1) 6= ai1 (B.40)

. The definition of ei1
j =

(
ai1

i1,j, ai1
i1,j+1

)
∈ Ei1 (Equation B.10) indicates that all the

arcs where a vehicle pass through from the right after i1 to the right before i1 + 1 are

ai1,0, ai1,1, . . . , ai1,ni1
in chronological order. Besides, ei1,i2

LtL =

(
ai1

i2
, ãi2

i2

)
∈ Ei1,i2

LtL means



B.6. Bijection between detailed walks and walks on NewTEG 53

that

fp (Pi) = ai2 (i1 + 1 ≤ i ≤ i2) ∧ fp(Pi2+1) 6= ai2 (B.41)

, as mentioned Equation B.15. We apply a similar discussion to ik (2 ≤ k ≤ K) and
finally have

fp (Pi) = an (iK + 1 ≤ i ≤ n) (B.42)

from the definition of et =
(

aiK
n , t
)

(see Equation B.24). In summary, the correspond-
ing detailed walk WDW = (W, fp) is as follows:

W :=
(

ai1 , ai1,0, ai1,1, . . . , ai1,ni1
, ai2 , ai2,0, . . . , aiK ,niK

, an

)
(B.43)

fp (Pi) :=


ai1 (0 ≤ i ≤ i1)
aik+1 (1 ≤ k ≤ K− 1, ik + 1 ≤ i ≤ ik+1)

an (iK + 1 ≤ i ≤ n)
(B.44)

.

Lemma 4. For any detailed walk on a road network, there exits the corresponding s-t
walk on a NewTEG. The mapping is denoted by fTEG :WDW →WTEG.

Proof. Let P = (Pi)
n
i=1 be a vehicle trajectory and WDW = (W, fp) be a detailed walk

on a road network. If W = (a) for an arc a, fp(Pi) = a (1 ≤ ∀i ≤ n); hence, the
corresponding s-t walk on the NewTEG is WTEG = ((s, a∗), (a∗, t)). In the other case,
WDW is expressed by

W =
(

ai1 , ai1,0, ai1,1, . . . , ai1,ni1
, ai2 , ai2,0, . . . , ai2,ni2

, . . . , aiK ,niK
, an

)
(B.45)

Pr (Pi) =


ai1 (0 ≤ i ≤ i1)
aik+1 (1 ≤ k ≤ K− 1, ik + 1 ≤ i ≤ ik+1)

an (iK + 1 ≤ i ≤ n)
(B.46)

, where 1 ≤ K ≤ n− 1 and 1 ≤ ik < ik+1 ≤ n− 1 (1 ≤ ∀k ≤ K− 1). For 1 ≤ ∀k ≤ K,
nik is either −1 or a non-negative integer. If nik = −1, we define

W =
(

. . . , aik−1,nik−1
, aik , aik+1 , . . .

)
(B.47)

as a special case. Then, the corresponding s-t walk WTEG is

WTEG =

((
s, ãi1

i1

)
,
(

ãi1
i1

, ai1
i1,0

)
,
(

ai1
i1,0, ai1

i1,1

)
, . . . ,

(
ai1

i1,ni1−1, ai1
i1,ni1

)
,
(

ai1
i1,ni1

, ai1
i2

))
(B.48)

+

((
ai1

i2
, ãi2

i2

)
,
(

ãi2
i2

, ai2
i2,0

)
,
(

ai2
i2,0, ai2

i2,1

)
, . . . ,

(
ai2

i2,ni2
, ai2

i3

))
(B.49)

+ . . . (B.50)

+

((
aiK−1

iK
, ãiK

iK

)
,
(

ãiK
iK

, aiK
iK ,0

)
, . . . ,

(
aiK

iK ,niK
, aiK

n

)
,
(

aiK
n , t
))

(B.51)



54 Appendix B. NewTEG-matching

. We note that
(

s, ãi1
i1

)
∈ Esource,

(
ãik

ik
, aik

ik ,0

)
∈ Ẽik (1 ≤ ∀k ≤ K),

(
aik

ik ,j, aik
ik ,j+1

)
∈

Eik (1 ≤ ∀k ≤ K, 0 ≤ ∀j ≤ nik − 1),
(

aik
ik ,nik

, aik
ik+1

)
∈ Eik (1 ≤ ∀k ≤ K − 1),(

aik
ik+1

, ãik+1
ik+1

)
∈ Eik ,ik+1

LtL (1 ≤ ∀k ≤ K− 1),
(

aiK
iK ,niK

, aiK
n

)
∈ EiK , and

(
aiK

n , t
)
∈ Esink.

Lemma 5. Let WDW = (W, fp) be a detailed walk on a road network and fTEG (WDW) =
WTEG be the corresponding s-t walk on a NewTEG. Then, w

(
W, P, fp

)
= w(WTEG), where

P = (Pi)
n
i=1 is a vehicle trajectory.

Proof. If W = (a) for an arc a, fp(Pi) = a (1 ≤ ∀i ≤ n); hence WTEG = ((s, a∗) , (a∗, t))
from Lemma 4. Based on the definition of the weight on the NewTEG,

w(WTEG) = w ((s, a∗)) + w ((a∗, t)) = `a ·
1
n

n

∑
i=1

d(Pi, a) (B.52)

. On the other hand, if we calculate the detailed walk area using Algorithm 4, we have

w
(
W, P, fp

)
= `a ·

1
n− 1 + 1

n

∑
i=1

d(Pi, a) (B.53)

, which implies w
(
W, P, fp

)
= w(WTEG). If W 6= (a), WDW = (W, fp) is expressed as

W =
(

ai1 , ai1,0, ai1,1, . . . , ai1,ni1
, ai2 , ai2,0, . . . , ai2,ni2

, . . . , aiK ,niK
, an

)
(B.54)

fp (Pi) =


ai1 (1 ≤ i ≤ i1)
aik+1 (1 ≤ k ≤ K− 1, ik + 1 ≤ i ≤ ik+1)

an (iK + 1 ≤ i ≤ n)
(B.55)

, where 1 ≤ K ≤ n− 1 and 1 ≤ ik < ik+1 ≤ n− 1 (1 ≤ ∀k ≤ K− 1). For 1 ≤ ∀k ≤ K,
nik is either −1 or a non-negative integer. If nik = −1, we define

W =
(

. . . , aik−1,nik−1
, aik , aik+1 , . . .

)
(B.56)



B.6. Bijection between detailed walks and walks on NewTEG 55

as a special case. Then, utilizing Algorithm 4, we have

w (W, P, Pr) =`ai1
· 1

i1

i1

∑
i=1

d(Pi, ai1)

+

ni1

∑
j=0

`ai1,j ·
1
2
{

d
(
tail

(
ai1,j
)

, (Pi1 , Pi1+1)
)
+ d

(
head

(
ai1,j
)

, (Pi1 , Pi1+1)
)}

+ `ai2
· 1

i2 − i1

i2

∑
i=i1+1

d(Pi, ai2)

+ · · ·

+

niK

∑
j=0

`aiK ,j ·
1
2
{

d
(
tail

(
aiK ,j

)
, (PiK , PiK+1)

)
+ d

(
head

(
aiK ,j

)
, (PiK , PiK+1)

)}
+ `an ·

1
n− iK

n

∑
i=iK+1

d(Pi, an) (B.57)

=
K

∑
k=0

{
`aik+1

· 1
ik+1 − ik

ik+1

∑
i=ik+1

d
(

Pi, aik+1

)}

+
K

∑
k=1

nik

∑
j=0

{
`aik ,j ·

1
2
{

d
(
tail

(
aik ,j
)

, (Pik , Pik+1)
)
+ d

(
head

(
aik ,j
)

, (Pik , Pik+1)
)}}

(B.58)

, where i0 := 0 and iK+1 := n for a convenience. In contrast, based on Lemma 4, the
corresponding s-w walk on the NewTEG is denoted by

WTEG =

((
s, ãi1

i1

)
,
(

ãi1
i1

, ai1
i1,0

)
,
(

ai1
i1,0, ai1

i1,1

)
, . . . ,

(
ai1

i1,ni1−1, ai1
i1,ni1

)
,
(

ai1
i1,ni1

, ai1
i2

))
+

((
ai1

i2
, ãi2

i2

)
,
(

ãi2
i2

, ai2
i2,0

)
,
(

ai2
i2,0, ai2

i2,1

)
, . . . ,

(
ai2

i2,ni2
, ai2

i3

))
+ . . .

+

((
aiK−1

iK
, ãiK

iK

)
,
(

ãiK
iK

, aiK
iK ,0

)
, . . . ,

(
aiK

iK ,niK
, aiK

n

)
,
(

aiK
n , t
))

(B.59)

. We note that
(

s, ãi1
i1

)
∈ Esource,

(
ãik

ik
, aik

ik ,0

)
∈ Ẽik (1 ≤ ∀k ≤ K),

(
aik

ik ,j, aik
ik ,j+1

)
∈

Eik (1 ≤ ∀k ≤ K, 0 ≤ ∀j ≤ nik − 1),
(

aik
ik ,nik

, aik
ik+1

)
∈ Eik (1 ≤ ∀k ≤ K − 1),(

aik
ik+1

, ãik+1
ik+1

)
∈ Eik ,ik+1

LtL (1 ≤ ∀k ≤ K − 1),
(

aiK
iK ,niK

, aiK
n

)
∈ EiK , and

(
aiK

n , t
)
∈ Esink.



56 Appendix B. NewTEG-matching

According to the definition of weight on the NewTEG, we have

w (WTEG) =w
(

s, ãi1
i1

)

+
K

∑
k=1

nik
−1

∑
j=0

w
((

aik
ik ,j, aik

ik ,j+1

))
+

K−1

∑
k=1

w
(

aik
ik ,nik

, aik
ik+1

)
+

K−1

∑
k=1

w
((

aik
ik+1

, ãik+1
ik+1

))
+ w

((
aiK

iK ,niK
, aiK

n

))
+ w

((
aiK

n , t
))

(B.60)

=`ai1
· 1

i1

i1

∑
i=1

d(Pi, ai1)

+
K

∑
k=1

nik
−1

∑
j=0

`aik ,j ·
1
2
{

d
(
tail

(
aik ,j
)

, (Pik , Pik+1)
)
+ d

(
head

(
aik ,j
)

, (Pik , Pik+1)
)}

+
K−1

∑
k=1

`aik ,nik
· 1

2

{
d
(

tail
(

aik ,nik

)
, (Pik , Pik+1)

)
+ d

(
head

(
aik ,nik

)
, (Pik , Pik+1)

)}
+

K−1

∑
k=1

{
`aik+1

· 1
ik+1 − ik

ik+1

∑
i=ik+1

d
(

Pi, aik+1

)}

+ `aiK ,niK
· 1

2

{
d
(

tail
(

aiK ,niK

)
, (PiK , PiK+1)

)
+ d

(
head

(
aiK ,niK

)
, (PiK , PiK+1)

)}
+ `an ·

1
n− iK

n

∑
i=iK+1

d(Pi, an) (B.61)

=`ai1
· 1

i1

i1

∑
i=1

d(Pi, ai1)

+
K−1

∑
k=1

{
`aik+1

· 1
ik+1 − ik

ik+1

∑
i=ik+1

d
(

Pi, aik+1

)}

+ `an ·
1

n− iK

n

∑
i=iK+1

d(Pi, an)

+
K

∑
k=1

nik

∑
j=0

{
`aik ,j ·

1
2
{

d
(
tail

(
aik ,j
)

, (Pik , Pik+1)
)
+ d

(
head

(
aik ,j
)

, (Pik , Pik+1)
)}}

(B.62)

=
K

∑
k=0

{
`aik+1

· 1
ik+1 − ik

ik+1

∑
i=ik+1

d
(

Pi, aik+1

)}

+
K

∑
k=1

nik

∑
j=0

{
`aik ,j ·

1
2
{

d
(
tail

(
aik ,j
)

, (Pik , Pik+1)
)
+ d

(
head

(
aik ,j
)

, (Pik , Pik+1)
)}}

(B.63)

=w (W, P, Pr) (B.64)



B.6. Bijection between detailed walks and walks on NewTEG 57

, where we define i0 := 0 and iK+1 := n for a convenience.

Theorem 3. There exists a bijection from the set of detailed walks on a road network
to the set of s-t walks on a NewTEG, and the corresponding detailed walk area equals to
the weight of the corresponding walk on the NewTEG. Formally, fDW : WTEG → WDW is
bijective, and w

(
W, P, fp

)
= w(WTEG) (∀WTEG ∈ WTEG), where (W, fp) = fDW(WTEG)

and P = (Pi)
n
i=1 is a vehicle trajectory.

Proof. The proof is complete if we show the following things:

1. fDW ( fTEG (WDW)) = WDW (∀WDW ∈ WDW).

2. fTEG ( fDW (WTEG)) = WTEG (∀WTEG ∈ WTEG)

3. w
(
W, P, fp

)
= w(WTEG) (∀WTEG ∈ WTEG), where (W, fp) = fDW(WTEG)

1 and 2 are directly induced from the definitions of fDW and fTEG (see Lemma 3 and
Lemma 4). We arbitrarily take WTEG ∈ WTEG. Then, utilizing Lemma 5, we have

w
(
W, P, fp

)
= w ( fTEG ( fDW(WTEG))) = w(WTEG) (B.65)

, where (W, fp) = fDW(WTEG).

We obtain the output of NewTEG-matching by utilizing fDW : WTEG → WDW.
Given a vehicle trajectory P = (Pi)

n
i=1, we have

min
WDW=(W, fp)∈WDW

w
(
W, P, fp

)
(B.66)

= min
WTEG∈WTEG

w (WTEG) (B.67)

from Theorem 3. Because the optimal solution of Equation B.67 is the shortest path
from s to t on the NewTEG, denoted by W∗TEG, and if we define

(
W∗, f ∗p

)
= fDW (W∗TEG),

we have

w
(

W∗, P, f ∗p
)
= w(W∗TEG) = min

WTEG∈WTEG
w (WTEG) = min

WDW=(W, fp)∈WDW

w
(
W, P, fp

)
(B.68)

. Because the output of NewTEG-matching is defined as the optimal solution of
Equation B.66, fDW (W∗TEG) is the output of NewTEG-matching.





59

Bibliography

Alt, Helmut et al. (2003). “Matching planar maps”. In: J. Algorithms 49.2, pp. 262–283.
ISSN: 01966774. DOI: 10.1016/S0196-6774(03)00085-3.

Bentley, Jon Louis (1975). “Multidimensional Binary Search Trees Used for Associa-
tive Searching”. In: Commun. ACM 18.9, pp. 509–517. ISSN: 15577317. DOI: 10.
1145/361002.361007.

Bonnifait, Philippe and Jean Laneurit (2009). “Multi-hypothesis Map-Matching us-
ing Particle Filtering To cite this version :” in: 16th World Congr. ITS Syst. Serv.
HAL, pp. 1–8.

Chao, Pingfu et al. (2020). “A Survey on Map-Matching Algorithms”. In: Databases
Theory Appl. Ed. by Renata Borovica-Gajic, Jianzhong Qi, and Weiqing Wang.
Cham: Springer International Publishing, pp. 121–133. ISBN: 978-3-030-39469-1.

Chazelle, Bernard and Leonidas J Guibas (1986). “Fractional cascading: I. A data
structuring technique”. In: Algorithmica 1.1, pp. 133–162. ISSN: 1432-0541. DOI:
10.1007/BF01840440. URL: https://doi.org/10.1007/BF01840440.

Chen, Bi Yu et al. (2014). “Map-matching algorithm for large-scale low-frequency
floating car data”. In: Int. J. Geogr. Inf. Sci. 28.1, pp. 22–38. ISSN: 13658816. DOI:
10.1080/13658816.2013.816427. URL: http://dx.doi.org/10.1080/13658816.
2013.816427.

DOUGLAS, DAVID H and THOMAS K PEUCKER (1973). “ALGORITHMS FOR
THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT
A DIGITIZED LINE OR ITS CARICATURE”. In: Cartogr. Int. J. Geogr. Inf. Geovisu-
alization 10.2, pp. 112–122. ISSN: 0317-7173. DOI: 10.3138/FM57-6770-U75U-7727.
URL: https://utpjournals.press/doi/10.3138/FM57-6770-U75U-7727.

Goh, C. Y. et al. (2012). “Online map-matching based on hidden Markov model for
real-time traffic sensing applications”. In: IEEE Conf. Intell. Transp. Syst. Proceed-
ings, ITSC 117543, pp. 776–781. DOI: 10.1109/ITSC.2012.6338627.

Gong, Yue Jiao et al. (2018). “AntMapper: An Ant Colony-Based Map Matching Ap-
proach for Trajectory-Based Applications”. In: IEEE Trans. Intell. Transp. Syst. 19.2,
pp. 390–401. ISSN: 15249050. DOI: 10.1109/TITS.2017.2697439.

Hsueh, Yu Ling and Ho Chian Chen (2018). “Map matching for low-sampling-rate
GPS trajectories by exploring real-time moving directions”. In: Inf. Sci. (Ny). 433-
434, pp. 55–69. ISSN: 00200255. DOI: 10.1016/j.ins.2017.12.031. URL: https:
//doi.org/10.1016/j.ins.2017.12.031.

Hu, Gang et al. (2017). “IF-Matching: Towards Accurate Map-Matching with Infor-
mation Fusion”. In: IEEE Trans. Knowl. Data Eng. 29.1, pp. 114–127. ISSN: 10414347.
DOI: 10.1109/TKDE.2016.2617326.

Huang, Zhenfeng et al. (2021). “Survey on vehicle map matching techniques”. In:
CAAI Trans. Intell. Technol. 6.1, pp. 55–71. ISSN: 24682322. DOI: 10.1049/cit2.
12030.

Hunter, Timothy, Pieter Abbeel, and Alexandre Bayen (2014). “The path inference
filter: Model-based low-latency map matching of probe vehicle data”. In: IEEE
Trans. Intell. Transp. Syst. 15.2, pp. 507–529. ISSN: 15249050. DOI: 10.1109/TITS.
2013.2282352. arXiv: 1109.1966.

https://doi.org/10.1016/S0196-6774(03)00085-3
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1007/BF01840440
https://doi.org/10.1007/BF01840440
https://doi.org/10.1080/13658816.2013.816427
http://dx.doi.org/10.1080/13658816.2013.816427
http://dx.doi.org/10.1080/13658816.2013.816427
https://doi.org/10.3138/FM57-6770-U75U-7727
https://utpjournals.press/doi/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1109/ITSC.2012.6338627
https://doi.org/10.1109/TITS.2017.2697439
https://doi.org/10.1016/j.ins.2017.12.031
https://doi.org/10.1016/j.ins.2017.12.031
https://doi.org/10.1016/j.ins.2017.12.031
https://doi.org/10.1109/TKDE.2016.2617326
https://doi.org/10.1049/cit2.12030
https://doi.org/10.1049/cit2.12030
https://doi.org/10.1109/TITS.2013.2282352
https://doi.org/10.1109/TITS.2013.2282352
https://arxiv.org/abs/1109.1966


60 Bibliography

Keogh, E. et al. (2002). “An online algorithm for segmenting time series”. In: pp. 289–
296. DOI: 10.1109/icdm.2001.989531.

Keogh, Ej and Mj Pazzani (1998). “An enhanced representation of time series which
allows fast and accurate classification, clustering and relevance feedback”. In:
Kdd 98, pp. 239–243. ISSN: <null>. DOI: 10.1.1.42.1358. URL: http://www.aaai.
org/Papers/KDD/1998/KDD98-041.pdf.

Knapen, Luk et al. (2018). “Likelihood-based offline map matching of GPS record-
ings using global trace information”. In: Transp. Res. Part C Emerg. Technol. 93.June,
pp. 13–35. ISSN: 0968090X. DOI: 10.1016/j.trc.2018.05.014. URL: https:
//doi.org/10.1016/j.trc.2018.05.014.

Koski, Antti, Martti Juhola, and Merik Meriste (1995). “Syntactic recognition of ECG
signals by attributed finite automata”. In: Pattern Recognit. 28.12, pp. 1927–1940.
ISSN: 00313203. DOI: 10.1016/0031-3203(95)00052-6.

Kubička, Matěj et al. (2015). “Dataset for testing and training of map-matching algo-
rithms”. In: 2015 IEEE Intell. Veh. Symp. IEEE, pp. 1088–1093.

Luebke, D P (2001). “A Survey of Polygonal Simplification Algorithms”. In: Comput.
Graph. Appl. IEEE 21, pp. 24–35. DOI: 10.1109/38.920624.

Newson, Paul and John Krumm (2009). “Hidden Markov map matching through
noise and sparseness”. In: GIS Proc. ACM Int. Symp. Adv. Geogr. Inf. Syst., pp. 336–
343. DOI: 10.1145/1653771.1653818.

Park, S, D Lee, and W W Chu (1999). “Fast retrieval of similar subsequences in long
sequence databases”. In: Proc. 1999 Work. Knowl. Data Eng. Exch. (Cat. No.PR00453),
pp. 60–67. DOI: 10.1109/KDEX.1999.836610.

Park, Sanghyun, Sang-Wook Kim, and Wesley W Chu (2001). “Segment-based Ap-
proach for Subsequence Searches in Sequence Databases”. In: Proc. 2001 ACM
Symp. Appl. Comput. SAC ’01. New York, NY, USA: ACM, pp. 248–252. ISBN: 1-
58113-287-5. DOI: 10.1145/372202.372334. URL: http://doi.acm.org/10.1145/
372202.372334.

Quddus, Mohammed and Simon Washington (2015). “Shortest path and vehicle tra-
jectory aided map-matching for low frequency GPS data”. In: Transp. Res. Part C
Emerg. Technol. 55, pp. 328–339. ISSN: 0968090X. DOI: 10.1016/j.trc.2015.02.
017. URL: http://dx.doi.org/10.1016/j.trc.2015.02.017.

Ray-Chaudhuri, D. K. (1967). “Characterization of line graphs”. In: J. Comb. Theory
3.3, pp. 201–214. ISSN: 00219800. DOI: 10.1016/S0021-9800(67)80068-1.

Sathiaseelan, Arjuna (2011). “The Role of Location Based Technologies in Intelligent
Transportation Systems”. In: Asian J. Inf. Technol. 10.6, pp. 227–233. ISSN: 1682-
3915. DOI: 10.3923/ajit.2011.227.233.

Taguchi, Shun, Satoshi Koide, and Takayoshi Yoshimura (2019). “Online Map Match-
ing with Route Prediction”. In: IEEE Trans. Intell. Transp. Syst. 20.1, pp. 338–347.
ISSN: 15249050. DOI: 10.1109/TITS.2018.2812147.

Tang, Jinjin et al. (2016). “Estimating the most likely space–time paths, dwell times
and path uncertainties from vehicle trajectory data: A time geographic method”.
In: Transp. Res. Part C Emerg. Technol. 66, pp. 176–194. ISSN: 0968-090X. DOI: 10.
1016/J.TRC.2015.08.014. URL: https://www.sciencedirect.com/science/
article/pii/S0968090X15003150.

Toledo-Moreo, R, D Betaille, and F Peyret (2010). “Lane-Level Integrity Provision
for Navigation and Map Matching With GNSS, Dead Reckoning, and Enhanced
Maps”. In: IEEE Trans. Intell. Transp. Syst. 11.1, pp. 100–112. ISSN: 1524-9050. DOI:
10.1109/TITS.2009.2031625.

Velaga, Nagendra R. and Kate Pangbourne (2014). “Achieving genuinely dynamic
road user charging: Issues with a GNSS-based approach”. In: J. Transp. Geogr. 34,

https://doi.org/10.1109/icdm.2001.989531
https://doi.org/10.1.1.42.1358
http://www.aaai.org/Papers/KDD/1998/KDD98-041.pdf
http://www.aaai.org/Papers/KDD/1998/KDD98-041.pdf
https://doi.org/10.1016/j.trc.2018.05.014
https://doi.org/10.1016/j.trc.2018.05.014
https://doi.org/10.1016/j.trc.2018.05.014
https://doi.org/10.1016/0031-3203(95)00052-6
https://doi.org/10.1109/38.920624
https://doi.org/10.1145/1653771.1653818
https://doi.org/10.1109/KDEX.1999.836610
https://doi.org/10.1145/372202.372334
http://doi.acm.org/10.1145/372202.372334
http://doi.acm.org/10.1145/372202.372334
https://doi.org/10.1016/j.trc.2015.02.017
https://doi.org/10.1016/j.trc.2015.02.017
http://dx.doi.org/10.1016/j.trc.2015.02.017
https://doi.org/10.1016/S0021-9800(67)80068-1
https://doi.org/10.3923/ajit.2011.227.233
https://doi.org/10.1109/TITS.2018.2812147
https://doi.org/10.1016/J.TRC.2015.08.014
https://doi.org/10.1016/J.TRC.2015.08.014
https://www.sciencedirect.com/science/article/pii/S0968090X15003150
https://www.sciencedirect.com/science/article/pii/S0968090X15003150
https://doi.org/10.1109/TITS.2009.2031625


Bibliography 61

pp. 243–253. ISSN: 09666923. DOI: 10.1016/j.jtrangeo.2013.09.013. URL:
http://dx.doi.org/10.1016/j.jtrangeo.2013.09.013.

Wang, Xuemei and Wenbo Ni (2016). “An improved particle filter and its application
to an INS/GPS integrated navigation system in a serious noisy scenario”. In:
Meas. Sci. Technol. 27.9. ISSN: 13616501. DOI: 10.1088/0957-0233/27/9/095005.

Wei, Hong et al. (2013). “Map matching by Fréchet distance and global weight opti-
mization”. In: Dep. Comput. Sci. . . .

White, Christopher E., David Bernstein, and Alain L. Kornhauser (2000). “Some map
matching algorithms for personal navigation assistants”. In: Transp. Res. Part C
Emerg. Technol. 8.1-6, pp. 91–108. ISSN: 0968090X. DOI: 10.1016/S0968-090X(00)
00026-7.

Yin, Yifang et al. (2018). “Feature-based Map Matching for Low-Sampling-Rate GPS
Trajectories”. In: ACM Trans. Spat. Algorithms Syst. 4.2, pp. 1–24. ISSN: 2374-0353.
DOI: 10.1145/3266430.

Yuan, Jing et al. (2010). “An Interactive-Voting based Map Matching algorithm”. In:
Proc. - IEEE Int. Conf. Mob. Data Manag., pp. 43–52. ISSN: 15516245. DOI: 10.1109/
MDM.2010.14.

Zheng, Kai et al. (2012). “Reducing uncertainty of low-sampling-rate trajectories”.
In: Proc. - Int. Conf. Data Eng., pp. 1144–1155. ISSN: 10844627. DOI: 10 . 1109 /
ICDE.2012.42.

Zhu, Lei, Jacob R Holden, and Jeffrey D Gonder (2017). “Trajectory segmentation
map-matching approach for large-scale, high-resolution GPS data”. In: Transp.
Res. Rec. 2645.1, pp. 67–75.

https://doi.org/10.1016/j.jtrangeo.2013.09.013
http://dx.doi.org/10.1016/j.jtrangeo.2013.09.013
https://doi.org/10.1088/0957-0233/27/9/095005
https://doi.org/10.1016/S0968-090X(00)00026-7
https://doi.org/10.1016/S0968-090X(00)00026-7
https://doi.org/10.1145/3266430
https://doi.org/10.1109/MDM.2010.14
https://doi.org/10.1109/MDM.2010.14
https://doi.org/10.1109/ICDE.2012.42
https://doi.org/10.1109/ICDE.2012.42

	Abstract
	Acknowledgements
	Introduction
	Background
	Related work
	Problem setting
	Contribution
	Overview of TEG-matching

	Time-Expanded Graph (TEG)
	Topology construction of the TEG
	Weight of the TEG
	Area weight
	Direction change weight
	Spatial weight
	Weight of the edge in TEG


	Bottom-up Segmentation
	Fractional Cascading
	Numerical Experiment
	Experiment settings
	Dataset
	Preprocess
	Experimental platform
	Evaluation index

	Experimental results of fractional cascading
	Map-matching models compared to our model
	Comparison with all models
	Sensitivity analysis
	Impact of bottom-up segmentation


	Conclusion
	Proof about Square Query
	NewTEG-matching
	Abstract of NewTEG-matching
	Problem setting and symbols
	Detailed walk area
	Algorithm calculating a detailed walk area
	Definition of NewTEG
	Bijection between detailed walks and walks on NewTEG

	Bibliography

