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Abstract

A point where several critical lines intersect is called a multicritical point. Near
such a point, multiple critical phenomena interfere and a finite-size correction becomes
large. Therefore, conventional methods cannot be applied near the multicritical point.
We propose a new method to numerically calculate a transition point for a quantum
spin chain near the multicritical point.

We treat a bond-alternating (BA) XXZ model for S = 1/2, 1, 3/2. In a ground-state
phase diagram of this model, a 2D Gaussian universality transition line bifurcates into
two 2D Ising universality transition lines, which make a multicritical point. At this
point, Berezinskii-Kosterlitz-Thouless transition occurs, where the correlation length
diverges singularly.

To deal with a 2D Ising universality, we review a transverse field 1D quantum Ising
(TFI) model, corresponding to the classical 2D Ising model with transfer matrix. A
relation between a disorder phase and an order phase is known as the Kramers-Wannier
duality transformation. We find a proper duality transformation that is exact in the
finite-size TFI model with a periodic and anti-periodic boundary condition. This shows
that the energies for the two boundary conditions are crossing at the transition point. A
free fermion field theory is derived from the critical Ising model by taking a continuum
limit. From a conformal field theory, we verify that the energy-crossing is realized in
the 2D Ising universality class, not only in the TFI model.

We apply our method to the BA XXZ model. The energy-crossing happens in
boundary conditions that are twisted around a z-axis and y-axis. In an anisotropic
limit, two energies in a finite-size are crossing at the transition point since the BA XXZ
model is identical to the TFI model. on the other hand, at the multicritical point,
the finite-size correction vanishes by an isotropy and a twist translation symmetry.
Therefore, near the multicritical point, our method has a smaller finite-size correction.

In this paper, we also review the 2D Gaussian universality. By a bosonization,
the BA XXZ model can be transformed to a phase Hamiltonian composed of boson
operators. The degenerate energies for a twisted boundary condition are split by a
perturbation around a Gaussian fixed point.

By our method, we numerically calculate a transition point of the BA XXZ model
for S = 1/2, 1, 3/2. As expected, the finite-size correction of numerical results becomes
very small near the multicritical point.
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Chapter 1

Introduction

1.1 Critical Phenomena

Critical phenomena are interesting subjects in condensed matter physics. To under-
stand the critical phenomena, it is important to find a transition point. For unsolvable
models, a numerical calculation is an important way to determine where it occurs. Al-
though critical phenomena occur only in infinite systems, the number of particle or
spin is limited by numerical resources. Therefore, sometimes we cannot obtain reliable
results due to a finite-size correction (FSC). Moreover, since various critical phenomena
interfere near a multicritical point, the FSC becomes larger. One example for a multi-
critical point is shown in Fig.1.1. In previous researches, several methods to calculate
a transition point have been proposed[1][2]. However, these conventional methods can
not calculate a reliable transition point near a multicritical point.
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Figure 1.1: The phase diagram of the BA XXZ model. The multicritical point is
denoted by ×. Two transition lines get closer near the multicritical point.

1.2 Bond-Alternating XXZ chain

As a model that has a multicritical point, we treat a bond-alternating (BA) XXZ
chain in this thesis.

1.2.1 Hamiltonian

The Hamiltonian of the BA XXZ chain is

Ĥ(δ,∆) =
N∑
j

[
1− (−1)jδ

] (
Ŝx
j Ŝ

x
j+1 + Ŝy

j Ŝ
y
j+1 +∆Ŝz

j Ŝ
z
j+1

)
, (1.2.1)

Ŝi
j’s are the spin operators (i = x, y, z). The commutation relations are

[
Ŝk
j , Ŝ

l
j′

]
=iδjj′

3∑
m=1

ϵklmŜ
m
j . (1.2.2)

The [1− (−1)jδ] is the bond-alternation coefficient. For δ > 0, a bond between 2j and
2j+1 takes a stronger interaction than 2j−1 and 2j bond. The ∆ makes anisotropy in
the z-direction. We take the system size even, N = 2n (n is an integer). The Ashkin-
Teller model is known as an equivalent model of BA XXZ chain [3, 4, 5] (Appendix
A).
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1.2.2 Symmetry

The BA XXZ model has the following symmetries and conserved quantities.

• The Hamiltonian is invariant for a spin θ-rotation of all-sites around the z-axis

Û z
θ = exp (iθ

∑
j

(
Ŝz
j −

1

2

)
). (1.2.3)

The conserved quantity is a magnetization

M =
∑
j

Sz
j . (1.2.4)

• Because of the anisotropy, the Hamiltonian is invariant for a spin π-rotation
around the y-axis,

Ûy
π = exp (iπ

∑
j

(
Ŝy
j −

1

2

)
). (1.2.5)

The conserved quantity is a parity of a spin reversal

Uy
π = ±1. (1.2.6)

• We define the translational operator T̂R,

T̂RŜjT̂
−1
R = Ŝj+1. (1.2.7)

For δ ̸= 0, the Hamiltonian has a two-site translational symmetry,

(T̂R)
2Ĥ(T̂R)

−2 = Ĥ, (1.2.8)

in the periodic boundary condition (PBC)

Ŝx
L+1 = Ŝx

1 . (1.2.9)

Since the N -site translation is an identity operator,

(T̂R)
N = 1̂, (1.2.10)

the eigenvalue of T̂R is

TR = exp iq, (q = 0,
2π

N
, · · · , 2π(N − 1)

N
). (1.2.11)

The change of the sign of the bond-alternation parameter δ is regarded as one-site
translation,

T̂RĤ(−δ,∆)T̂−1
R = Ĥ(δ,∆), (1.2.12)

and therefore, the model has the same energy-spectrum for the opposite sign.
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1.2.3 Solvable Region for S=1/2

• δ = ±1,∆ > 0
The model is reduced to a sum of isolated two spins. The ground-state is a direct
product of singlet pairs

(|↑⟩ |↓⟩ − |↓⟩ |↑⟩) (|↑⟩ |↓⟩ − |↓⟩ |↑⟩) · · · . (1.2.13)

The spin reversal symmetry Uy
π = (−1)N/2 is not broken.

• ∆ → ∞
The z-direction is dominant. The ground-state is doubly degenerate Néel state,

|↑↓↑↓↑↓ · · ·⟩ and |↓↑↓↑↓↑ · · ·⟩ . (1.2.14)

The spin reversal symmetry is broken.

• δ = 0 for S=1/2
The Bethe ansatz [6] gives an exact solution for the S=1/2 XXZ chain. At the
isotropic point, ∆ = 1, a Berezinskii-Kosterlitz-Thouless (BKT) transition occurs,

where the correlation length diverges singularly, ξ ∼ exp
(

C√
∆−1

)
[7]. (C is a

constant.)

1.2.4 Phase Transition

In the intermediate region, 0 < ∆ < ∞, 0 < δ < 1, phase transitions may occur.
The phase diagram is Fig.1.1. The bond-alternation makes the spins to take the singlet
pairing, called a dimer phase. The ground-state is unique and has an energy gap. By
the anisotropy ∆ > 1, the neighbouring spins tend to take the opposite direction, called
a Néel phase. There are doubly degenerate ground-state and spontaneous breaking of
the spin reversal symmetry. The phase transition between the dimer and the Néel phase
belongs to a 2D Ising universality class.

There are two types of dimer phase. In δ > 0, spins on the 2j and 2j + 1 site form
a singlet, called a dimer1 phase. On the contrary, in δ < 0, the singlet pair is formed
on the 2j − 1 and 2j site, a dimer2 phase. The 2D Gaussian transition occurs in a
boundary between the dimer1 and the dimer2 phase. For S=1/2, this transition line is
exactly δ = 0, verified from a symmetry with a twisted boundary condition[8].

The 2D Gaussian transition line bifurcates into two 2D Ising transition lines, that
makes a multicritical point. This point is called an Ashkin-Teller multicritical point
　 (from now on, we abbreviate it as an AT point). The 2D Ising transition lines get
closer near the multicritical point. Thereby, the correlation length becomes large, which
brings a difficulty in a finite-size numerical calculation.
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1.3 Haldane conjecture

The BA XXZ model has a different characteristic depending on the value of S. For
the case of ∆ = 1, δ = 0, a Heisenberg model, Haldane[9] predicted about an energy gap
as follows. A half-odd integer spin chain has a degenerate ground state, which is gapless.
On the other hand, the integer spin chain has a unique disordered ground state, which
has an energy gap. The XXZ chain for S = 1/2 is exactly solvable by Bethe ansatz
and known as gapless at the isotropic point, which agree with the Haldane conjecture.
The solvability is broken by an addition of another interaction term, for example, the
bond-alternation. In general, the XXZ chain for S > 1/2 is unsolvable.

1.4 Level Spectroscopy Method

A useful method to calculate a transition point, a Level Spectroscopy (LS) method
was proposed by Nomura. The LS method cancels logarithmic corrections of a Berezinskii-
Kosterlitz-Thouless (BKT) transition by using the z-axis twisted boundary condition
[10, 11, 12]. Some universality class can be calculated by the LS method, for exam-
ple a 2D Gaussian one, Sec 3.3. However, we can not calculate 2D Ising universality
transition by the LS method. So, we propose a new method applicable to a 2D Ising
universality.

1.5 Organization of this thesis

This thesis is organized as follows. In Chap. 2, we deal with a 2D Ising universality.
We review a correspondence between a 2D classical Ising and a 1D quantum Ising
model. By the Kramers-Wannier duality, energy-crossings are proved. In addition, we
review an exact solution by Lieb et al[15].

For a continuum limit, we verify that the energy-crossing is realized in a 2D Ising
universality class (Sec 2.3) by a free fermion conformal field theory. Our new method is
proposed in Sec 2.4.3. The finite-size correction is discussed in Sec 2.4.4. Next, we deal
with a 2D Gaussian universality in Chap. 3. By bosonization, the bond-alternating
XXZ chain is converted to a phase Hamiltonian, Sec 3.2. The perturbative calculation
around a fixed point is described in Sec 3.3. The numerical results for S = 1/2, 1, 3/2
are shown in Chap. 4.
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Chapter 2

2D Ising Universality Class

In this chapter, we review properties of an Ising model. By using a transfer matrix,
a quantum 1D Ising model is derived from a classical 2D Ising model. This quantum
model has the Kramers-Wannier duality, that relates an order phase to a disorder phase.
By this duality, for a finite system, energies for different boundary conditions cross at
a critical point. To consider a continuum limit, we discuss a conformal field theory of
a free fermion.

Finally, we introduce a method to calculate a 2D Ising universality transition point.
The smallness of the FSC is also explained.

2.1 2D classical Ising model

The 2D classical Ising model on a square lattice (Fig.2.1) is defined as

H = −

(
J1

M,N∑
i,j

σi,jσi+1,j + J2

M,N∑
i,j

σi,jσi,j+1

)
. (2.1.1)

Each classical Ising spin σ takes two possible values σi,j = ±1. The spins interact with
nearest neighbor spins. This model was solved firstly by Onsager[13]. The transition
temperature Tc satisfies sinh (2J1/kBTc) sinh (2J2/kBTc) = 1.
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Figure 2.1: The 2D M ×N square lattice. Each spin is localized on ◦.

2.1.1 Classical-Quantum Correspondence

We review a correspondence between the classical 2D and the quantum 1D Ising
model using the transfer matrix [14][15]. The partition function for the 2D classical
Ising model is calculated as

Z =
∑
σ=±1

exp (−βH)

=
∑
σ=±1

exp

(
K1

M,N∑
i,j

σi,jσi+1,j +K2

M,N∑
i,j

σi,jσi,j+1

)
, (2.1.2)

where K1 = βJ1, K2 = βJ2. The summation is taken over all spin-configurations∑
σ=±1

≡
∑

σ1=±1

∑
σ2=±1

∑
σ3=±1

· · ·
∑

σN=±1

. (2.1.3)

We rewrite the summation for j as a product sum

Z =
∑
σ=±1

N∏
j

exp

(
K1

M∑
i

σi,jσi+1,j +K2

M∑
i

σi,jσi,j+1

)
. (2.1.4)

Firstly, we deal with the case where spins interact only in the i-direction, in other
words, K2 = 0. The summation can be calculated using the 2 × 2 matrices

(vj)σi,jσi+1,j
=exp (K1σi,j, σi+1,j)

vj =

(
eK1 e−K1

e−K1 eK1

)
(2.1.5)
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The partition function is calculated by the trace of a matrix product.

Z = Tr (v1 ⊗ · · · ⊗ vN)
M (2.1.6)

Using the Pauli matrix, each vj is represented as

vj =eK1 Îj + e−K1 τ̂xj . (2.1.7)

The Îj is an identity operator. The Pauli matrices are

τ̂xj =

(
0 1
1 0

)
, τ̂ yj =

(
0 −i
i 0

)
, τ̂ zj =

(
1 0
0 −1

)
, (2.1.8)

which satisfy the commutation relations

[
τ̂ kj , τ̂

l
j′

]
=2iδjj′

3∑
m=1

ϵklmτ̂
m
j , (2.1.9){

τ̂ kj , τ̂
l
j

}
=2δklÎ . (2.1.10)

Here, we denote the Pauli matrix by τ̂ ji to avoid the confusion with the classical variables

σ already introduced. Because
(
τ̂ ji
)2

= Î, the following equation is satisfied :

exp
(
aτ̂ i
)
= cosh a

(
Î + τ̂ i tanh a

)
, (2.1.11)

which is easily checked by performing the Taylor expansion. Then the transfer matrix
vj is written as an exponential function of Pauli operator,

vj = (2 sinh 2K1)
1/2 exp

(
K∗

1 τ̂
x
j

)
, (2.1.12)

where K∗
1 is defined by

tanhK∗
1 ≡ e−2K1 . (2.1.13)

Summing over j, we obtain

V ≡v1 ⊗ · · · ⊗ vN

=(2 sinh 2K1)
N/2 exp

(
K∗

1

N∑
j

τ̂xj

)
(2.1.14)

Next, we consider the second term in thethe Hamiltonian Eq.(2.1.1). Before treating
the interaction between two spins, we deal with the case where an external field exists,
Hh = h

∑
σi,j, The transfer matrix for Hh is

w′
j =

(
eh 0
0 e−h

)
=exp

(
hτ̂ zj
)
. (2.1.15)
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Then the transfer matrix for the interaction term ( K2

∑
σi,jσi,j+1 ) becomes

wj =exp
(
K2τ̂

z
j τ̂

z
j+1

)
(2.1.16)

Summing over j, we obtain

W ≡
j∏
N

wj = exp

(
K2

N∑
j

τ̂ zj τ̂
z
j+1

)
. (2.1.17)

We arrive at the transfer matrix form of the partition function

Z =Tr (VW )M (2.1.18)

= (2 sinh 2K1)
N/2 exp

(
K∗

1

N∑
j

τ̂xj

)
exp

(
K2

N∑
j

τ̂ zj τ̂
z
j+1

)
. (2.1.19)

We try to bring the two sum in the exponent of V and W into one exponent. We use
the Campbell-Baker-Hausdorff formula

exp (A) exp (B) = exp

(
A+B +

1

2
[A,B] +

1

12
[A− B, [A,B]] + · · ·

)
. (2.1.20)

In this case, the two operators do not commute, that is ,[
K∗

1

N∑
j

τ̂xj , K2

N∑
j

τ̂ zj τ̂
z
j+1

]
̸= 0. (2.1.21)

If taking the limit

K∗
1K2 → 0, (2.1.22)

we obtain the quantum-classical correspondence

V1V2 =(2 sinh 2K1)
N/2 exp

(
K∗

1

N∑
j

τ̂xj +K2

N∑
j

τ̂ zj τ̂
z
j+1.

)
. (2.1.23)

To maintain the dimensionality, we need a constraint for the ratio

γ ≡ K∗
1

K2

= finite. (2.1.24)

In 2D classical Ising language, this limit corresponds to the anisotropy limit in directions
of interaction

K1 → ∞, K2 → 0, (2.1.25)

which can be easily calculated from Eq.(2.1.13).
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2.2 Transverse Field Ising model

We obtain a transverse Field quantum Ising (TFI) model Eq.(2.1.23),

Ĥ = −γ
2

N∑
j=1

σ̂x
j −

N−1∑
j=1

σ̂z
j σ̂

z
j+1 + gσ̂z

N σ̂
z
1. (2.2.1)

The σ̂i
j’s are the Pauli matrices (i = x, y, z). Settling g = 1 (−1) corresponds to

imposing a periodic (an anti-periodic) BC. This model has a translational (σ̂j → σ̂j+1)
symmetry for g = 1 and spin reversal (σ̂z → −σ̂z) symmetry. If the transverse field is
dominant (γ → ∞), there is no interaction, and a unique ground state is a disordered
state

(|↑⟩+ |↓⟩) (|↑⟩+ |↓⟩) · · · .

The spin reversal symmetry is Ux
π = (−1)N . If there is no transverse field (γ = 0),

ground states are doubly degenerate

|↑↑↑↑ · · ·⟩ , |↓↓↓↓ · · ·⟩ ,

which break the spin reversal symmetry. The phase transition occurs in an intermediate
region (0 < γ <∞). We derive the transition point, using a duality.

2.2.1 Duality

The Ising model has the Kramers-Wannier duality [16], that relates a order phase to
a disorder phase. The conventional duality transformation [17] for the TFI model is only
valid in a bulk. But, at a boundary, the extra terms appear, which make it impossible
to demonstrate a duality for a finite system. Evans and Levis [18] introduced a duality
transformation for fermion operators. Utilizing this, we improve the duality for spin
operators, which enable one to treat boundary conditions and symmetry of eigenstates
for a finite system. We define the duality transformation for σ̂z

j

σ̂z
j = iτ̂ z1

j∏
k=1

τ̂xk . (2.2.2)

The τ̂ is a Pauli operator. In the bulk, for 1 ≤ j < N , we obtain

σ̂z
j σ̂

z
j+1 = τ̂xj+1, (2.2.3)

but at the boundary, j = N ,

σ̂z
N σ̂

z
1 =

( ∏
1≤j≤N

τ̂xj

)
τ̂x1

=τ̂x1U
x
π (τ) . (2.2.4)
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Here, Ux
π (τ) is a π-rotation operator about x-axis for all τ spin operator, in other word,

a spin reversal operator.
The duality transformation for σ̂x

j for 1 ≤ j < N is

σ̂x
j = τ̂ zj τ̂

z
j+1, (2.2.5)

and for j = N ,

σ̂x
N = τ̂ zN τ̂

z
1U

x
π (τ) . (2.2.6)

The operator τ̂ satisfies the commutation relation of Pauli operators, Eqs.(2.1.9) and
(2.1.10). The Hamiltonian becomes

Ĥ = γ

(
−

N−1∑
j=1

τ̂ zj τ̂
z
j+1 − τ̂ zN τ̂

z
1U

x
π (τ)−

N∑
j=2

1

γ
τ̂xj − g

1

γ
τ̂x1U

x
π (τ)

)
. (2.2.7)

From Eq.(2.2.5) and Eq.(2.2.6) , we notice that

Ux
π (σ) =

N∏
j=1

σ̂x
j ,

=

(
N−1∏
j=1

τ̂ zj τ̂
z
j+1

)
τ̂ zN τ̂

z
1U

x
π (τ) ,

=Ux
π (τ) , (2.2.8)

and thus the spin reversal symmetry is unchanged after duality transformation. For
example, we describe the case of N = 2n (n = 1, 2, · · · ), g = 1.

• In the subspace of Ux
π (σ) = 1,

After the duality transformation, the Hamiltonian becomes periodic BC ( τ̂ zN+1 =
τ̂ z1 ),

Ĥ = γ

(
−

N−1∑
j=1

τ̂ zj τ̂
z
j+1 − τ̂ zN τ̂

z
1 −

N∑
j=2

1

γ
τ̂xj − 1

γ
τ̂x1

)
. (2.2.9)

Then, the eigenvalue for σ and τ are related as

E (g = 1, Ux
π = 1, γ) = γE (g = 1, Ux

π = 1, 1/γ) . (2.2.10)

This equation corresponds to a relation between high temperature and low tem-
perature phase in the classical 2D Ising model. Assuming the uniqueness of the
phase transition point, it occurs at a self-dual point (γ = 1), that agrees with the
exact solution by Onsager [13].
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• In the subspace of Ux
π (σ) = −1,

we obtain the following Hamiltonian,

Ĥ = γ

(
−

N−1∑
j=1

τ̂ zj τ̂
z
j+1 + τ̂ zN τ̂

z
1 −

N∑
j=2

1

γ
τ̂xj +

1

γ
τ̂x1

)
. (2.2.11)

By operating π-rotation for the 1st spin about the z-axis, ûz ≡π exp
(
iπ
2
(τ̂ z1 − 1)

)
,

we obtain the TFI Hamiltonian with an anti-periodic BC (τ̂ zN+1 = −τ̂ z1 )

ûz1Ĥ (ûz1)
−1 = γ

(
−

N−1∑
j=1

τ̂ zj τ̂
z
j+1 + τ̂ zN τ̂

z
1 −

N∑
j=2

1

γ
τ̂xj − 1

γ
τ̂x1

)
. (2.2.12)

The ûz1 anti-commutates with the spin reversal operator,

Ûx
π û

z
1 = −ûz1Ûx

π . (2.2.13)

By operating to the eigenstate of the Hamiltonian, Eq.(2.2.11),

Ûx
π û

z
1 |Ux

π = −1⟩ =− ûz1Û
x
π |Ux

π = −1⟩
=ûz1 |Ux

π = −1⟩ . (2.2.14)

the exp (iπτ̂ z1 ) changes the spin reversal symmetry,

ûz1 |Ux
π = −1⟩ = |Ux

π = 1⟩ . (2.2.15)

We do not write the detailed calculations for the other cases, but summarize the results
in Table.2.1.

For σ̂ For τ̂
Ux
π = 1 Periodic Ux

π = 1 Periodic
Ux
π = −1 Periodic Ux

π = 1 Anti-periodic
Ux
π = 1 Anti-periodic Ux

π = −1 Periodic
Ux
π = −1 Anti-periodic Ux

π = −1 Anti-periodic

Table 2.1: The duality for different BC’s.

The 2nd and 3rd rows of Table.2.1 show that the energies of Ux
π = −1 for periodic

BC and of Ux
π = 1 for anti-periodic BC cross at the transition point.

2.2.2 Exact solution

We can also verify the energy crossing ,Eq.(2.2.10), from the exact solution of the
TFI model. We review shortly the exact solution for periodic [14][15] and anti-periodic

12



BCs [19]. We perform the Jordan-Wigner transformation and the Fourier transforma-
tion for the Pauli operators. For convenience, we rotate all spin by π/2 around y-axis,
and the Hamiltonian reads

Ĥ =− γ

N∑
j

σ̂z
j −

N∑
j

σ̂x
j σ̂

x
j+1,

=− γ
N∑
j

σ̂z
j −

N∑
j

(
σ̂+
j + σ̂−

j

) (
σ̂+
j+1 + σ̂−

j+1

)
. (2.2.16)

Here, we introduce the ladder operators, σ̂± = σ̂x ± iσ̂y. The Jordan-Wigner transfor-
mation is

σ̂+
j =exp

(
iπ

j−1∑
l=1

â†l âl

)
â†j, (2.2.17)

σ̂z
j =− 1 + 2â†j âj, (2.2.18)

where âj, â
†
j are fermion creation and anti-creation operators. In the bulk,

σ̂+
j σ̂

−
j+1 = â†j âj+1, (2.2.19)

σ̂+
j σ̂

+
j+1 = â†j â

†
j+1, (2.2.20)

but at the boundary,

σ̂+
N σ̂

−
1 = − (−1)M̂ â†N â1, (2.2.21)

(M̂ =
∑N

j â
†
j âj). Performing the Fourier transformation

âj =
1√
N

∑
k

eiknâk, (2.2.22)

the Hamiltonian becomes

Ĥ =
k∑(

â†k − âk

)(
â†k+1 + âk+1

)
+ γ

k∑(
â†kâk −

1

2

)
. (2.2.23)

The summation of k in the Fourier transformation depends on the total number and
BC of fermions. If the periodic BC is imposed for the spin operator (σ̂N+1 = σ̂1),

• when M =even,
the BC of the fermion operator is the anti-periodic

âN+1 = −â1. (2.2.24)

Then, the summation is taken over k = (2n− 1)π/N for −N
2
+ 1 ≤ n ≤ N

2
.
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• When M =odd,
the BC of the fermion operator is the periodic

âN+1 = â1. (2.2.25)

Then, the summation is taken over k = 2nπ/N for −N
2
+ 1 ≤ n ≤ N

2
.

For the anti-periodic BC of spin operator (σ̂N+1 = −σ̂1), the relation between M and
the summation of k becomes inverted. In this thesis, we omit a complete calculation
and utilize a resulting energy-spectrum. The ground-state energy for periodic BC is

EP
0 = −

2N−1∑
m=0(odd)

[
(1− γ)2 + 4γ sin2

(mπ
2N

)] 1
2
, (2.2.26)

for anti-periodic BC

EAP
0 = −

2N−2∑
m=0(even)

[
(1− γ)2 + 4γ sin2

(mπ
2N

)] 1
2
. (2.2.27)

The first excited state energy for periodic BC is

EP
1 = 2 (γ − 1)−

2N−1∑
m=0(even)

[
(1− γ)2 + 4γ sin2

(mπ
2N

)] 1
2
. (2.2.28)

From Eq.(2.2.27) and Eq.(2.2.28), we obtain the energy-crossing equation

EP
1 = EAP

0 + 2 (γ − 1) . (2.2.29)

The two energies with different BCs cross at the transition point (γ = 1) with no FSC,
which agrees with the result from the duality transformation. In our method, we carry
out the extension of the equation of the energy-crossing (Eq.(2.2.29)) to the BA XXZ
model. In the next section, we confirm that the same energy-crossing occurs in 2D Ising
universality class.

2.3 Free Fermion Field Theory

We verify the energy crossing from the conformal field theory (CFT). By taking the
continuous limit, the critical 2D Ising model is described by free fermion field (Appendix
B),

S =
1

8π

∫
dzdz̄

(
ψ(z)∂̄ψ(z) + ¯ψ(z)∂ ¯ψ(z)

)
, (2.3.1)
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where ∂ = ∂
∂z
, ∂̄ = ∂

∂z̄
. The fermion field has the anti-commutation relation {ψ(z), ψ(z′)} =

δ(z − z′). The ψ is a primary field that satisfies

⟨ψ(z)ψ(w)⟩ = 1

z − w
. (2.3.2)

The mode expansion is

iψ(z) =
∑
k

ψkz
−k− 1

2 . (2.3.3)

Inverting Eq.(2.3.3)), we get

ψn =

∮
dz

2πi
zn−1/2iψ(z). (2.3.4)

The modes have anti-commutation relation,

{ψn, ψm} = i2
[∮

dz

2πi
,

∮
dw

2πi

]
zn−1/2wm−1/2ψ(z)ψ(w)

= −
∮

dw

2πi
wm−1/2

∮
dz

2πi
zn−1/2 −1

z − w

=

∮
dw

2πi
wm−1/2wn−1/2 = δn,m. (2.3.5)

If the summation is taken over half-odd integers (k ∈ Z+ 1
2
), the field has periodic BC,

ψ(e2πiz) = ψ(z), ψ̄(e2πiz̄) = ψ̄(z̄), (2.3.6)

which correspond to g = 1 in the TFI model Eq.(2.2.1). If taken integers (k ∈ Z), the
field has anti-periodic BC,

ψ(e2πiz) = −ψ(z), ψ̄(e2πiz̄) = −ψ̄(z̄), (2.3.7)

which yields g = 1.
In general, the excitation energy relates to the scaling dimension xn of the scaling

operators of the theory,

En − E0 =
2π

L
(xn +O(1/L)) . (2.3.8)

From operator product expansion for anti-periodic BC (Appendix C.2), the scaling
dimension x is 1/8,

EAP
0 − EP

0 =
2π

L

(
1

8
+O(1/L)

)
. (2.3.9)

For periodic BC, the scaling dimension of the 1-st excited energy has a same value,

EP
1 − EP

0 =
2π

L

(
1

8
+O(1/L)

)
. (2.3.10)

Therefore, the energies for the two BCs cross at the transition point,

EP
1 = EAP

0 +O(1/L). (2.3.11)
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2.4 Bond-Alternating XXZ chain

In this section, we introduce suitable BCs of the BA XXZ model and propose a new
method to calculate a 2D Ising universality class transition point.

2.4.1 Boundary Conditions

To demonstrate analogous energy-crossing in the BA XXZ model, we introduce
two types of twisted boundary conditions. One is a z-axis twisted boundary condition
(zTBC)

Sx
N+1 = −Sx

1 , S
y
N+1 = −Sy

1 , S
z
N+1 = Sz

1 . (2.4.1)

The spin rotational symmetry and spin reversal symmetry are conserved, but the trans-
lational symmetry is broken. The other is a y-axis twisted boundary condition (yTBC)

Sx
N+1 = −Sx

1 , S
y
N+1 = Sy

1 , S
z
N+1 = −Sz

1 . (2.4.2)

The spin reversal symmetry is conserved, but the translational symmetry and spin
rotational symmetry are broken. However, the Hamiltonian is invariant under the spin
π-rotation

Û z
θ = exp (iπ

∑
j

Ŝz
j ) (2.4.3)

whose eigenvalue is a parity of magnetization

PM = exp (iπM) = (−1)M . (2.4.4)

The translational symmetry is broken by yTBC. Instead, the Hamiltonian has the
following twist translation symmetry, as follows. By π-rotation for the N -th spin around
y-axis, the twisted boundary is shifted to the bond between the N -th and N − 1-th
sites.

eiπŜ
y
N Ĥ(eiπŜ

y
N )−1 = · · ·+ (1 + δ)

(
−Ŝx

N−1Ŝ
x
N + Ŝy

N−1Ŝ
y
N −∆Ŝz

N−1Ŝ
z
N

)
+ (1− δ)

(
Ŝx
N Ŝ

x
1 + Ŝy

N Ŝ
y
1 +∆Ŝz

N Ŝ
z
1

)
. (2.4.5)

Then, operating the one-site translation, we obtain the original Hamiltonian

T̂Re
iπŜy

N Ĥ(T̂Re
iπŜy

N )−1 = Ĥ (2.4.6)
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2.4.2 Anisotropic Limit for S=1/2

In the anisotropic limit, the S=1/2 BA XXZ model (Eq.(1.2.1)) is identical to the
TFI model [20]. The zTBC and yTBC correspond to g = ±1 of the TFI model,
respectively. Separating the Hamiltonian (Eq.(1.2.1)) to even and odd bonds,

Ĥ = β

N/2∑
j

(
Ŝx
2jŜ

x
2j+1 + Ŝy

2jŜ
y
2j+1 +∆Ŝz

2jŜ
z
2j+1

)

+

N/2∑
j

(
Ŝx
2j−1Ŝ

x
2j + Ŝy

2j−1Ŝ
y
2j +∆Ŝz

2j−1Ŝ
z
2j

)
. (2.4.7)

We have defined the prefactor β = 1−δ
1+δ

. We firstly start with PBC. We take the
anisotropic limit ∆ → ∞ with a constraint ∆β ∼ O(1). In this constraint, the bond-
alternating parameter becomes infinitesimal, β → 0. The largest contributions are the
divergent term, H0 ≡

∑
∆Ŝz

2j−1Ŝ
z
2j, which is regard as an unperturbed Hamiltonian.

This unperturbed Hamiltonian is composed of N/2 isolated two spins ĥj = Ŝz
2j−1Ŝ

z
2j,

whose ground-state is

|↑2j−1↓2j⟩ = |↑j⟩′ ,
|↓2j−1↑2j⟩ = |↓j⟩′ .

(2.4.8)

We regard this two state as effective spin states. The effective states and operators are
denoted by ′. Therefore, the ground-state of H0 is the 2

N/2-fold degenerate. To the first
order, the effective Hamiltonian becomes

Ĥ1 =

N/2∑
j

(
β∆Ŝz

2jŜ
z
2j+1

)
+

N/2∑
j

(
Ŝx
2j−1Ŝ

x
2j + Ŝy

2j−1Ŝ
y
2j

)

=

N/2∑
j

(
β∆Ŝz

2jŜ
z
2j+1

)
+

1

2

N/2∑
j

(
Ŝ+
2j−1Ŝ

−
2j + Ŝ−

2j−1Ŝ
+
2j

)
. (2.4.9)

The quantum states defined in Eq.(2.4.8) satisfy

Ŝz
2j |↑j⟩

′ = −1

2
|↑j⟩′ , (2.4.10)

Ŝz
2j |↓j⟩

′ =
1

2
|↓j⟩′ , (2.4.11)

Ŝz
2j+1 |↑j+1⟩′ =

1

2
|↑j+1⟩′ , (2.4.12)

Ŝz
2j+1 |↓j+1⟩′ = −1

2
|↓j+1⟩′ . (2.4.13)
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So, the first terms are regarded as −Ŝ ′z
j Ŝ

′z
j+1 in the effective space. For the second

term, the quantum states satisfy

Ŝ+
2j−1Ŝ

−
2j |↓j⟩

′ = |↑j⟩′ , (2.4.14)

Ŝ−
2j−1Ŝ

+
2j |↑j⟩

′ = |↓j⟩′ . (2.4.15)

Therefore, the second term, 1
2

(
Ŝ+
2j−1Ŝ

−
2j + Ŝ−

2j−1Ŝ
+
2j

)
is regarded as 1

2

(
Ŝ ′+

j + Ŝ ′−
j

)
= Ŝ ′x

j

in the effective space. The total effective Hamiltonian becomes

Ĥ ′ =

N/2∑
j

(
−β∆Ŝ ′z

j Ŝ
′z
j+1 + Ŝ ′x

j

)
. (2.4.16)

By operating exp (iπ
∑N/2

i Ŝ ′z
j), the effective Hamiltonian becomes the TFI model,

Ĥ ′ = β∆

N/2∑
j

(
−Ŝ ′z

j Ŝ
′z
j+1 −

1

β∆
Ŝ ′x

j

)
, (2.4.17)

In zTBC, boundary terms are

−Ŝx
N Ŝ

x
1 − Ŝy

N Ŝ
y
1 + Ŝz

N Ŝ
z
1 . (2.4.18)

Because the x,y terms on 2j,2j+1-bond vanish in the anisotropic limit, the zTBC cor-
respond to the periodic BC, g = 1. In yTBC, the boundary terms are

−Ŝx
N Ŝ

x
1 + Ŝy

N Ŝ
y
1 − Ŝz

N Ŝ
z
1 . (2.4.19)

The effect of yTBC survives after taking the limit. The z-direction term remains,
−β∆Ŝz

N Ŝ
z
1 The yTBC corresponds to the anti-periodic BC g = −1. The relation of BC

is summarized in Table.2.2.

BA XXZ anisotropy limit→ TFI
PBC periodic
zTBC periodic
yTBC anti-periodic

Table 2.2: The correspondence of each BC

For S>1/2, the above perturbative discussion can be applied (Appendix D).

2.4.3 Method to Calculate the Transition Point

In the BA XXZ model, PBC and zTBC correspond to periodic BC of the TFI model.
The yTBC correspond to anti-periodic BC. Since the energy crossing happens with
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periodic and anti-periodic BCs, we can calculate the transition point by two methods.
One is using PBC and yTBC :

EPBC
0 (M = 0, U y

π) = EyTBC
0 (M,U y

π) (2.4.20)

named yTBC-PBC method. The other is using zTBC and yTBC :

EzTBC
0 (M = 0, U y

π) = EyTBC
0 (M,U y

π) (2.4.21)

named yTBC-zTBC method. We can distinguish different phase by quantum numbers
M,U y

π , explained in Chap. 4.

2.4.4 Finite Size Correction

In general, there is an FSC in our methods, Eq.(2.4.20) and Eq.(2.4.21) in a region
in 1 < ∆ <∞, but vanishes on the anisotropic limit ∆ → ∞. In the anisotropic limit,
the zTBC and PBC of the BA XXZ model become periodic BC of the TFI model, and
the yTBC becomes anti-periodic BC (Sec 2.4.2). So,our methods become identical to
Eq.(2.2.29), that has no FSC for arbitrary spins. The larger ∆ is, the smaller the FSC
becomes.

Moreover, the FSC vanishes at the AT point. On the self dual line (δ = 0), the
Hamiltonian with zTBC becomes

Ĥ =
L−1∑
j

(
Ŝx
j Ŝ

x
j+1 + Ŝy

j Ŝ
y
j+1 +∆Ŝz

j Ŝ
z
j+1

)
−Ŝx

LŜ
x
1 − Ŝy

LŜ
y
1 +∆Ŝz

LŜ
z
1 . (2.4.22)

We define π spin rotation at j site about z-axis as ûzj = exp (iπŜz
j ). Since the Hamilto-

nian (Eq.(2.4.22)) is invariant under T̂Rû
z
L (proved in Sec 2.4.1),

T̂Rû
z
LĤ |Uy

π⟩ = ĤT̂Rû
z
L |Uy

π⟩ . (2.4.23)

The commutation relation between Ûy
π and ûzL is

Ûy
π û

z
L =exp (iπ

∑
j

Ŝy
j ) exp (iπŜ

z
L)

= exp (−iπŜz
L) exp (iπ

∑
j

Ŝy
j )

= exp (−2iπŜz
L)û

z
LÛ

y
π . (2.4.24)

When S is a half-integer, the eigenvalue of Ŝz
L is a half-integer, which yields

Ûy
π û

z
L = −ûzLÛy

π . (2.4.25)
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So,

Ûy
π T̂Rû

z
L |Uy

π = 1⟩ =− T̂Rû
z
LÛ

y
π |Uy

π = 1⟩
=− T̂Rû

z
L |Uy

π = 1⟩
≡ − |Uy

π = −1⟩ . (2.4.26)

Consequently, |Uy
π = 1⟩ and |Uy

π = −1⟩ are degenerate for an arbitrary system-size N ,
that is

EzTBC
0 (L,M = 0, U y

π = −1) = EzTBC
0 (L,M = 0, U y

π = 1), (2.4.27)

as one can see in Fig.4.1(a) at δ = 0. And, at AT point, the isotropy makes the zTBC
and yTBC identical. We replace the RHS of Eq.(2.4.27) by yTBC. The spin reversal Uy

π

is replaced by the parity of magnetization PM (recall Eq.(2.4.4)). Eq.(2.4.27) becomes

EzTBC
0 (L,M = 0, U y

π = −1) = EyTBC
0 (L,M = even). (2.4.28)

The absence of FSC in AT point gives the small FSC near AT point for an integer spin.
The numerical results are presented in Chap. 4.

20



Chapter 3

2D Gaussian Universality Class

In this chapter, firstly, we discuss a free boson on a conformal field theory. Next, the
BA XXZ model is transformed to a phase Hamiltonian by a bosonization method. The
phase Hamiltonian has a free boson term and the others that break a U(1) symmetry.
At last, by a perturbative renormalization calculation, it is certified that energies in the
zTBC cross at a Gaussian universality transition point. The same discussion for the
yTBC is a future task.

3.1 Free Boson Field theory

The action of a free boson field theory is

Ĥ =

∫
∂ϕ(z, z̄)∂̄ϕ(z, z̄), (3.1.1)

in other word, called a 2D Gaussian model. From the equations of motion

∂∂̄ϕ(z, z̄) = 0, ∂̄∂ϕ(z, z̄) = 0, (3.1.2)

we can decompose ϕ(z, z̄) into holomorphic and anti-holomorphic parts

ϕ(z, z̄) =
1

2
(φ(z) + φ̄(z̄)) . (3.1.3)

The field φ(z) is not a primary operator, but its derivative is a primary,

∂φ(z)∂φ(w) = − 1

(z − w)2
+ · · · . (3.1.4)

The mode expansion of the primary field is

i∂φ(z) =
∑
n

anz
−n−1 (3.1.5)
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From the Noether theorem, the stress-energy tensor is expressed as

T (z) = −1

2
: ∂φ(z)∂φ(z) :, (3.1.6)

where :: means a normal ordering. From the operator product expansion (OPE) of the
stress-energy tensor,

T (z)T (w) =
1/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ regularparts, (3.1.7)

the central charge is c = 1. The OPE of the T (z) and ∂φ(z) is

T (z)∂φ(w) =
1

(z − w)2
∂φ(w) +

1

z − w
∂∂φ(w) + reg, (3.1.8)

which means that ∂φ(w) is the primary field that has the conformal dimension (1, 0).
The vertex operator is defined as

Vα(z) =: eiαφ(z ) : (3.1.9)

This field is primary and conformal weight is

h(α) = α2 (3.1.10)

From Appendix C.3, OPE of the vertex operators and ∂φ(z) is

∂φ(z)V−α(w) =
α

(z − w)
Vα(w) + regularparts. (3.1.11)

The OPE of the vertex operators and the stress-energy tensor is

T (z)V−α(w) =
α2/2

(z − w)2
Vα(w) +

1

(z − w)
∂wVα(w) + regularparts. (3.1.12)

The OPE of the vertex operators is

Vα(z)V−α(w) =
1

(z − w)2α
2V−α(w). (3.1.13)

3.2 Bosonization

For S=1/2, the spin Hamiltonian (Eq.(1.2.1)) can be transformed to the following
phase Hamiltonian [21] [22] (Appendix E)

Ĥ =

∫
dx
[
A (∇θ(x))2 + Cp(x)2 − B cos θ(x) +D cos 2θ(x)

]
. (3.2.1)
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The p is the momentum density conjugate to θ

[θ (x) , p (x′)] = iδ (x− x′) . (3.2.2)

The constants A,B,C,D are evaluated as

A =
Ja

8π

(
1 +

3∆

π

)
, (3.2.3)

C = 2πJa

(
1− ∆

π

)
, (3.2.4)

B =
Jδ

a
, (3.2.5)

D =
π2∆J

8a
. (3.2.6)

When B = 0, D = 0, Eq.(3.2.1) is the Gaussian model.

3.3 Around the Gaussian fixed point

We shortly review a perturbative renormalization calculation by Kitazawa[8]. We
consider the perturbation around the Gaussian fixed point

H = H0 + λ

∫ L

0

dxO1. (3.3.1)

Here, H0 =
∫
dx(∇θ)2. The H0 is the Gaussian fixed point Hamiltonian and O1 is the

scaling operator that has scaling dimension x1. Up to the first order perturbation, the
excitation energies are [24]

En − E0 =
2π

L

(
xn + 2πλCn1n

(
2π

L

)x1−2
)
. (3.3.2)

The xn is scaling dimension of the operator On. The Cn1n is the coefficient of the
operator product expansion (OPE),

O1(z, z̄)On(0, 0) = Cn1n

(α
z

)h1
(α
z̄

)h̄1

On(0, 0) + · · · , (3.3.3)

h1 and h̄1 are the conformal weight of O1. In the zTBC, we consider the following
operators [8]

O1 =
√
2 cos

√
2θ, (3.3.4)

Oe
1/2 =

√
2 cos

1√
2
θ, (3.3.5)

Oo
1/2 =

√
2 sin

1√
2
θ (3.3.6)
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Using the OPE of the vertex operators Eq.(3.1.13), we can calculate the OPE of Oe
1/2

,Oo
1/2 and O1

O1(z, z̄)Oe
1/2(0, 0) =

√
2

2

(α
z

)K/4 (α
z̄

)K/4

Oe
1/2(0, 0) + · · · , (3.3.7)

O1(z, z̄)Oo
1/2(0, 0) = −

√
2

2

(α
z

)K/4 (α
z̄

)K/4

Oo
1/2(0, 0) + · · · , (3.3.8)

where K = (B/A)1/2. From Eq.(3.3.2), the excitation energies are

E1(π)− E0(0) =
2π

L

(
K

8
+ 2πλ

√
2

2

(
2π

L

)K/2−2

+ · · ·

)
, (3.3.9)

E2(π)− E0(0) =
2π

L

(
K

8
− 2πλ

√
2

2

(
2π

L

)K/2−2

+ · · · .

)
(3.3.10)

Then, the two energies are crossing at the transition point, λ = 0.
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Chapter 4

Numerical Calculation

We numerically study the 2D Ising and the 2D Gaussian universality transition
points of the BA XXZ model for S=1/2,1,3/2

Ĥ(δ,∆) =
N∑
j

[
1− (−1)jδ

] (
Ŝx
j Ŝ

x
j+1 + Ŝy

j Ŝ
y
j+1 +∆Ŝz

j Ŝ
z
j+1

)
. (1.2.1)

Using our method, we can calculate transition points near a multicritical point with
a small FSC. The energy is calculated by the exact diagonalization using Lanczos
method[25] (see Appendix F).

4.1 S = 1/2

In this section, the numerical results for S=1/2 are shown. The transition lines are
calculated by the proposed method. Critical exponents are also calculated. The value
of numerical result corresponds to the 2D Ising type precisely.

4.1.1 Phase diagram

The 2D Gaussian transition line is δ = 0 (∆ ≤ 1), that can be obtained exactly[8].
We numerically calculate the 2D Ising transition line, with yTBC-PBCmethod (Eq.(2.4.20))
and yTBC-zTBC method (Eq.(2.4.21)). To search the energy crossing point, we are
fixing ∆ and varying δ (Fig.4.1(a)). The phase diagram is shown in Fig.4.2(a). The
2D Gaussian universality transition line bifurcates into the two 2D Ising universality
transition lines at (∆ = 1, δ = 0). The AT point, ∆ = 1, δ = 0, is a BKT transition
point where the correlation length diverges singularly. In large ∆, the size dependence is
small (Fig.4.3(a)). The value of crossing points δc almost converge even in the finite-size
numerical calculations. Near the AT point, two 2D Ising universality transition lines
are exceedingly close. This effect makes the FSC bigger in the yTBC-PBC method,
but still small in the yTBC-zTBC method (Fig.4.3(b)). The value δc(∞) is obtained
by an extrapolation. We set the fitting function δc(N) = a exp (−N/b) + δc(∞), with a
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and b being fitting constants. To measure the FSC when ∆ approaches the AT point,
we calculate a variation of crossing point, D(N1, N2) ≡ |δc(N1)− δc(N2)|. In Fig.4.4,
D(24, 22) is shown. The two methods are identical in ∆ → ∞. Near the AT point,
the size dependence is much smaller in yTBC-zTBC method than yTBC-PBC method.
From another point of view, the slope of size dependence is positive in yTBC-zTBC
method and negative in yTBC-PBC method. So, we can determine the error bar using
the numerical results for the largest system, shown in Fig.4.2(b).
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Figure 4.1: (a): The energy spectrum for ∆ = 2.0, N = 14. The value of each energy
E minus EPBC

0 , denoted by ∆E, is plotted. ⃝ is EPBC
1 , × is EzTBC

1 , + is EyTBC
0 .
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Figure 4.2: (a): The phase diagram using the data of N=24. The 2D Gaussian transition
line is exactly obtained, and the 2D Ising transition lines are calculated by yTBC-zTBC
method. (b): The enlarged view of (a) near the AT point with the error bar. The error
range is smaller in larger ∆.
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Figure 4.3: (a),(b): The FSC of a crossing point δc to a inverse system size 1/N
respectively for ∆ = 4.0, 1.5. The ◦ and × are the results of the yTBC-zTBC and
yTBC-PBC method. Solid lines show the extrapolation.
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Figure 4.4: (b): The variation of the FSC, D(N1 = 24, N2 = 22). The ◦ and × are
yTBC-zTBC and yTBC-PBC method.
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4.1.2 Critical exponent

To confirm the universality class of the resulting transition point, we calculate crit-
ical exponents, scaling dimensions and a central charge.

PBC — The scaling behavior of the ground state is related to central charge c, [23]

E0(M = 0, U y
π = (−1)N/2 , N) = Nϵ∞ − πvc

6N
, (4.1.1)

where ϵ∞ is the ground-state energy density for N = ∞ and v is the spin wave velocity.
The scaling dimension xn is calculated by excited energy, [24]

En(M = 0, N)− E0(M = 0, N) =
xn2πv

N
. (4.1.2)

The spin wave velocity is calculated numerically

v =
E(M = 0, U y

π = − (−1)N/2 , q = 2π/N)− E0(M = 0, U y
π = − (−1)N/2 , q = 0)

2π/N
.

(4.1.3)

The numerical result of the central charge is shown in Fig.4.5. Far from AT point,∆ =
4.0, the extrapolated value of c is 0.500143, which is close to the expected value c = 1/2.
Because Eq.(4.1.1) and Eq.(4.1.2) are affected from the multicritical point directly, the
value of c has larger FSC near the AT point, ∆ = 1.5. The scaling dimensions xn
are shown in Fig.4.6. The expective values are x1 = 1/8 and x2 = 1. The values of
scaling dimension have larger FSC near the AT point. The size dependence of x2 is not
monotonous, that makes the extrapolation difficult.
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Figure 4.5: The central charge of the resulting transition point. The +,×,⊙ are
respectively ∆ = 4.0, 2.0, 1.7
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Figure 4.6: The scaling dimension of the resulting transition point. The +,×,⊙ are
respectively ∆ = 4.0, 2.0, 1.7
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zTBC — Because the zTBC of the S=1/2 BA XXZ chain corresponds to the periodic
BC of the 2D Ising model (Sec 2.4.2), an expective value of scaling dimensions are
x1 = 1/8, x2 = 1 The numerical results are shown in Fig.4.7. The result has a close
value to expected value of periodic Ising model.
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Figure 4.7: The scaling dimension +,×,⊙ are respectively ∆ = 4.0, 2.0, 1.7.
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yTBC — Since the yTBC corresponds to the anti-periodic BC of the 2D Ising model
(Sec 2.4.2), the expective value of scaling dimensions are x1 = 1/8, x2 = 1/2. In the
calculation of the critical exponent in the yTBC, we use the energies that have an even
magnetization, M =even, since the ground state in the anisotropic limit, Eq.(2.4.8),
has an even magnetization. The numerical results are shown in Fig.4.8. The result has
a close value to expected value of anti-periodic Ising model.
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Figure 4.8: The scaling dimension +,×,⊙ are respectively ∆ = 4.0, 2.0, 1.7
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4.2 S = 1

Haldane[9] predicted about the energy gap of the Heisenberg chain for integer and
half-odd integer spin. The integer spin has gapless ground-state. The half-odd integer
spin has gapped ground-state. This prediction has been verified by many researches
numerically [26] [27] and analytically [6] [28].

A valence bond solid (VBS) state, defined later, has a different quantum number
depending on the BC. We can determine a boundary between different VBS phases.
The S=1 spin can take Sz = 1, 0,−1 states, so the dimension of the Hilbert space is
3N . The numerical calculation is restricted to a smaller system than S=1/2. By our
method, we obtain a phase diagram with a small FSC.

4.2.1 Valence Bond Solid

In the isolated case, δ = 1, the ground-state is exactly a singlet of S=1 spin. And,
the Heisenberg point, ∆ = 1, δ = 0, belongs to a Haldane phase according to his
conjecture. These phase are called a VBS phase. The difference of each phase is a
pairing of a singlet of divided S=1/2 spins. The S=1 spin can be divided into two
S=1/2 spins. There are a few ways to take the singlet pairing of the divided S=1/2
spins (Fig.4.9 (a)(b)(c)). The VBS state with PBC can be written[29][30] by Schwinger
bosons representation,

|S,m, PBC⟩ =
(
a†Nb

†
1 − b†Na

†
1

)S−m

×
N/2−1∏
j=1

(
a†2j−1b

†
2j − b†2j−1a

†
2j

)S+m

×
(
a†2jb

†
2j+1 − b†2ja

†
2j+1

)S−m

×
(
a†N−1b

†
N − b†N−1a

†
N

)S+m

|0⟩ , (4.2.1)

where −S ≤ m ≤ S, and a†j (b†j) creates the S = 1/2 ↑ (↓) spin at the j-th site.
The |0⟩ is a state where no spin exist. The spin reversal symmetry of this state is
Uy
π = (−1)SN−S+m. The dimer1, Haldane and dimer2 state are |S = 1,m = 1, 0,−1⟩

respectively. Under the zTBC, the m-VBS state changes[31] to

|S,m, zTBC⟩ =
(
a†Nb

†
1 + b†Na

†
1

)S−m

×
N/2−1∏
j=1

(
a†2j−1b

†
2j − b†2j−1a

†
2j

)S+m

×
(
a†2jb

†
2j+1 − b†2ja

†
2j+1

)S−m

×
(
a†N−1b

†
N − b†N−1a

†
N

)S+m

|0⟩ , (4.2.2)
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that has Uy
π = (−1)SN−S+m. Under the yTBC, the m-VBS state changes to

|S,m, yTBC⟩ =
(
a†Na

†
1 + b†Nb

†
1

)S−m

×
N/2−1∏
j=1

(
a†2j−1b

†
2j − b†2j−1a

†
2j

)S+m

×
(
a†2jb

†
2j+1 − b†2ja

†
2j+1

)S−m

×
(
a†N−1b

†
N − b†N−1a

†
N

)S+m

|0⟩ , (4.2.3)

that has Uy
π = (−1)SN−S+m. Only the first factor

(
a†Na

†
1 + b†Nb

†
1

)S−m

changes the parity

of the magnetization,(
a†Na

†
1 + b†Nb

†
1

)
|M = even, odd⟩ = |M = odd, even⟩ . (4.2.4)

Therefore, if S − m is even (odd), the VBS state |S,m, yTBC⟩ has even (odd) mag-
netization. The quantum numbers for each BC are summarized in Table.4.1. We can
determine the phase boundary of the VBS phase by the parity of the magnetizaton in
yTBC.

dimer1 Haldane dimer2
PBC (0,-1) (0,-1) (0,-1)
zTBC (0,1) (0,-1) (0,1)
yTBC (even,1) (odd,-1) (even,1)

Table 4.1: Quantum number (M ,Uy
π) for S = 1.

4.2.2 Phase diagram

For S=1, the disorder phases are dimer1, dimer2 and Haldane phase. The transition
between Néel phase and disorder phase is the 2D Ising universality class. The transition
between different disorder phases is the 2D Gaussian universality class. The phase
diagram is shown in Fig.4.9(d). Because the yTBC and zTBC become identical at the
isotropic point, numerical results of 2D Ising and 2D Gaussian for a finite system size
transition lines cross exactly.
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Figure 4.9: (a),(b),(c) : The VBS state for S=1 taking the different singlet pairing.
Respectively dimer1, Haldane and dimer2 state. Dashed lines denote the boundary. (d)
: The phase diagram for S=1. The numerical result agree with the Haldane conjecture.
The transition line between dimer1,2 and Néel belongs to the 2D Ising universality.
And, the one between dimer1 and dimer2 is the 2D Gaussian universality.

2D Ising universality

The size dependence for Dimer-Néel transition is shown in Fig.4.10. Similar to
the case for S=1/2, the yTBC-zTBC method has a smaller FSC than the yTBC-PBC
method. The size dependence for Haldane-Néel transition is shown in Fig.4.11. The
case for δ = 0 is widely studied. The 2D Ising transition point was calculated by several
researches [32, 33, 34, 35]. Our result is ∆c = 1.1856 ± 0.0002, highly accurate than
those of previous researches.
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Figure 4.10: (a),(b): The FSC of a crossing point δc for a S=1 dimer-Néel transition
to a inverse system size 1/N respectively for ∆ = 2.0, 1.1. The ◦ and + are the result
of the yTBC-zTBC and yTBC-PBC method. Solid line shows the extrapolation.
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Figure 4.11: (a),(b): The FSC of a crossing point ∆c for a S=1 Haldane-Néel transition
to a inverse system size 1/N respectively for δ = 0, 0.25. Here, we are fixing δ and
varying ∆. The ◦ and + are the result of the yTBC-zTBC and yTBC-PBC method.
Solid line shows the extrapolation.
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2D Gaussian universality

The size dependence for Dimer1-Haldane transition is shown in Fig.4.12. Far from
AT point, the resulting δc using yTBC decrease to system size N and zTBC increase-
Fig.4.12(a). But, getting closer At point, the sign of the slope changes Fig.4.12(b). So,
we can not proceed the extrapolation.

 0.257

 0.2575

 0.258

 0.2585

 0.259

 0.2595

 0.26

 0  0.02  0.04  0.06  0.08  0.1  0.12

δ
c

1/L

(a)

 0.23

 0.231

 0.232

 0.233

 0.234

 0.235

 0.236

 0.237

 0.238

 0.239

 0  0.02  0.04  0.06  0.08  0.1  0.12

δ
c

1/L

(b)

Figure 4.12: (a),(b): The FSC of a crossing point δc for a S=1 dimer1-dimer2 transition
to a inverse system size 1/L respectively for ∆ = 0.9, 0.1. The ◦ and × are the result
using yTBC and zTBC respectively.
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4.3 S = 3/2

For S=3/2, there are more types of the VBS phase, depending on the singlet pairing
of divided S=1/2 spins. In a similar way to the case of S=1/2 and 1, we calculate a
transition point and can obtain a phase diagram with a small FSC.

4.3.1 Phase Diagram

The S=3/2 spin can be divided to three S=1/2 spins. There are m=±3/2,±1/2 VBS
phase. The strength of the bond-alternation determine the singlet pair. For the strong
bond-alternating case, all the S=1/2 spins take singlet pairing in 2j,2j+1 bond, m=3/2.
The bond-alternation become smaller, the one of the singlet pair takes in 2j-1,2j bond,
m=1/2. The quantum numbers for each BC are summarized in Table.4.2.

M=3/2 M=1/2 M=-1/2 M=3/2
PBC (0,-1) (0,-1) (0,-1) (0,-1)
zTBC (0,1) (0,-1) (0,1) (0,-1)
yTBC (even,1) (odd,-1) (even,1) (odd,-1)

Table 4.2: Quantum number (M ,P ) for S = 3/2.

The phase diagram is shown in Fig.4.13(e). The transition line between m=1/2 and
m=-1/2 phase is exactly obtained[12], δ = 0.
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The phase diagram is shown in Fig.4.13(e).
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Figure 4.13: (a),(b),(c) : The VBS states taking the different singlet pairing. Dashed
lines denote the bond between the N-th and 1st sites. (d) : The phase diagram

2D Ising universality

For S=3/2, we can calculate only for small system size, up to N=12. The size
dependence for m=3/2-Néel transition are shown in Fig.4.14. The size dependence for
m=3/2-Néel transition are shown in Fig.4.15.
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Figure 4.14: (a),(b): The FSC of a crossing point δc for a S=3/2 m=3/2-Néel transition
to a inverse system size 1/N respectively for ∆ = 2.0, 1.1. The ◦ and + are the result
of the yTBC-zTBC and yTBC-PBC method.
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Figure 4.15: (a),(b): The FSC of a crossing point δc for a S=3/2 m=1/2-Néel transition
to a inverse system size 1/N respectively for δ = 0.1, 0.4. The ◦ and + are the result
of the yTBC-zTBC and yTBC-PBC method.
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2D Gaussian universality

The size dependence for m=3/2-m=1/2 transition is shown in Fig.4.16. The sign of
slope changes and we can not proceed the extrapolation. the m=1/2-m=-1/2 transition
is exactly calculated to be δ = 0.
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Figure 4.16: (a),(b): The FSC of a crossing point δc for a S=3/2 dimer1-dimer2
transition to a inverse system size 1/N respectively for ∆ = 0.9, 0.1. The ◦ and × are
the results using yTBC and zTBC, respectively.
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Chapter 5

Conclusion

We propose a new method to numerically calculate transition points that belong
to a 2D Ising universality and a 2D Gaussian universality. We improve the duality
transformation of the TFI model, that enable one to treat the boundary conditions
and the symmetry of the excited states for a finite system. The energies in periodic
and anti-periodic BC cross at the transition point for a finite system. To consider
a continuum limit, we discuss a conformal field theory of a free fermion. In the BA
XXZ chain, we propose two methods, the yTBC-PBC method (Eq.(2.4.20)) and the
yTBC-zTBC method (Eq.(2.4.21)). By anisotropic limit, since the BA XXZ chain is
identical to the TFI model, both methods have no FSC. In the AT multicritical point,
the yTBC-zTBC method has no FSC, that enables an accurate calculation near the AT
multicritical point. We actually calculate the 2D Ising universality transition lines of
S=1/2, 1, 3/2 BA XXZ model. As expected, the yTBC-zTBC method has a small FSC
near the multicritical point. To confirm the universality class, the central charge and
scaling dimensions are calculated. The results are consistent with a 2D Ising model.

Also, we calculate a 2D Gaussian universality transition point using the yTBC. We
can distinguish each phase by the parity of magnetization. The numerical results using
the yTBC is consistent with the results using the zTBC. The perturbative renormal-
ization calculation for the yTBC is a future task.

We expect that our method can be applied to other quantum spin models.
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Appendix A

Correspondence to Ashkin-Teller
model

A.1 1D Quantum Ashkin-Teller model

The 1D quantum Ashkin-Teller model is composed of the interacting two TFI mod-
els

Ĥ = −β
N∑
j

(
σ̂z
j σ̂

z
j+1 + τ̂ zj σ̂

z
j+1 + λσ̂z

j σ̂
z
j+1τ̂

z
j τ̂

z
j+1

)
−

N∑
j

(
σ̂x
j + τ̂xj + λσ̂x

j τ̂
x
j

)
, (A.1.1)

σ̂j and τ̂j are Pauli matrix on different chain. We show correspondence of the BA XXZ
model. Dividing the strong bond and weak bond,

Ĥ =
N∑
j

(
Ŝx
2j−1Ŝ

x
2j + Ŝy

2j−1Ŝ
y
2j +∆Ŝz

2j−1Ŝ
z
2j

)
+ β

j∑
N

(
Ŝx
2jŜ

x
2j+1 + Ŝy

2jŜ
y
2j+1 +∆Ŝz

2jŜ
z
2j+1

)
, (A.1.2)

β = 1−δ
1+δ

and constant factor is ignored. Operating the π rotation operator around the

z-axis on even sites, Ĝ = exp
(
iπ
∑N

j Ŝ
z
2j

)
,

ĜĤĜ−1 =−
j∑
L

(
Ŝx
2j−1Ŝ

x
2j + Ŝy

2j−1Ŝ
y
2j − λŜz

2j−1Ŝ
z
2j

)
− β

j∑
L

(
Ŝx
2jŜ

x
2j+1 + Ŝy

2jŜ
y
2j+1 − λŜz

2jŜ
z
2j+1.

)
(A.1.3)
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π
2
-rotating all spins around x-axis, K̂ = exp

(
−iπ
2

∑α
2L Ŝ

x
α

)
,

(
K̂Ĝ

)
Ĥ
(
K̂Ĝ

)−1

=−
j∑
L

(
Ŝx
2j−1Ŝ

x
2j + Ŝz

2j−1Ŝ
z
2j − λŜy

2j−1Ŝ
y
2j

)
− β

j∑
L

(
Ŝx
2jŜ

x
2j+1 + Ŝz

2jŜ
z
2j+1 − λŜy

2jŜ
y
2j+1

)
(A.1.4)

Using iŜy
j = −Ŝx

j Ŝ
y
j ,(

K̂Ĝ
)
Ĥ
(
K̂Ĝ

)−1

=−
j∑
L

(
Ŝx
2j−1Ŝ

x
2j + Ŝz

2j−1Ŝ
z
2j − λŜx

2j−1Ŝ
x
2jŜ

z
2j−1Ŝ

z
2j

)
− β

j∑
L

(
Ŝx
2jŜ

x
2j+1 + Ŝz

2jŜ
z
2j+1 − λŜx

2jŜ
x
2j+1Ŝ

z
2jŜ

z
2j+1

)
(A.1.5)

We define the duality transformation

Ŝx
α =σ̂z

α−1/2σ̂
z
α+1/2 (A.1.6)

Ŝz
j =

N∏
i=j

σ̂x
i+1/2 (A.1.7)

and

Ŝx
1 =σ̂z

3/2. (A.1.8)

The Hamiltonian becomes

(K̂Ĝ)Ĥ(K̂Ĝ)−1 = −β
j=1∑
N

(
σ̂z
2j−1/2σ̂

z
2j+3/2 + σ̂x

2j+1/2 + λσ̂z
2j−1/2σ̂

z
2j+1/2σ̂

z
2j+3/2

)
−

L∑
j=1

(
σ̂z
2j−3/2σ̂

z
2j+1/2 + σ̂x

2j−1/2 + λσ̂z
2j−3/2σ̂

z
2j−1/2σ̂

z
2j+1/2

)
(A.1.9)

Replacing the index j → 1
2

(
j + 1

2

)
and rewriting the spins on half-odd sites by τ̂

=− β

j=1∑
N

(
σ̂z
j σ̂

z
j+1 + τ̂xj+1/2 + λσ̂z

j τ̂
z
j+1/2σ̂

z
j+1

)
−

L∑
j=1

(
τ̂ zj−1/2τ̂

z
j+1/2 + σ̂x

j + λτ̂ zj−1/2σ̂
z
j τ̂

z
j+1/2

)
(A.1.10)

Finally, taking the duality transformation only to τ̂, we obtain the 1D Ashkin-Teller
model Hamiltonian Eq.(A.1.1).

49



Appendix B

Field Thoeory of Ising model

B.1 Continuous Limit

Operating π-rotation to the spin around the x-axis

Ĥ = −
N∑
j=0

(
σ̂x
j σ̂

x
j+1 − γσ̂z

j

)
. (B.1.1)

We transform this Hamiltonian to the spin-less Fermion, performing the Jordan-Wigner
transformation,

σ̂+
i = exp

(
iπ

i−1∑
j=1

â†j âj

)
â†i , (B.1.2)

σ̂+
1 = −â†1, (B.1.3)

σ̂z
i = −1 + 2â†i âi. (B.1.4)

The Hamiltonian is , neglecting the constant term,

Ĥ = −
∑
j

[
â†j âj+1 − âj â

†
j+1 + â†j â

†
j+1 − âj âj+1 − 2γâ†j âj

]
. (B.1.5)

Fourier transformation

âj =
1√
N

∑
k

exp (iajk)âk. (B.1.6)

The Hamiltonian

Ĥ =−
∑
k

[(
exp (ika)â†kâk − exp (−ika)âkâ†k + exp (−ika)â†−kâ

†
k − exp (ika)â−kâk

)
− 2γâ†kâk

]
(B.1.7)

=−
∑
k

(
2 (−γ + cos (ka)) â†kâk + i sin (ka)

(
â†−kâ

†
k + â−kâk

))
(B.1.8)
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Taking the continuum limit, the continuum fermion field

Ψ(xj) =
1√
a
âj, (B.1.9)

whose commutation relation is

[Ψ(x),Ψ(x′)] = δ(x− x′). (B.1.10)

Fourier transformation

âk =

∫
dx

exp (−ikx)√
Na

Ψ(x) (B.1.11)

Ψ(x) =
∑
k

exp (ikx)√
Na

âk (B.1.12)

In the vicinity of the transition point (γ = 1), focus on ka≪ 1,

Ĥ = 2 (γ − 1)

∫
dxΨ†(x)Ψ(x) + a

∫
dx
(
Ψ†(x)∂xΨ

†(x)−Ψ(x)∂xΨ(x)
)

(B.1.13)

In spin-less Fermion operators, the periodic boundary condition (g = 1) leads

âN+1 = â1. (B.1.14)

The BC of continuum field is

Ψ(L) = Ψ(0),Ψ†(L) = Ψ†(0). (B.1.15)

The anti-periodic boundary condition (g = −1) leads

âN+1 = −â1, (B.1.16)

Ψ(L) = −Ψ(0),Ψ†(L) = −Ψ†(0) (B.1.17)
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Appendix C

Conformal Filed Theory

C.1 Conformal Transformation

We review the conformal field theory. By the infinitesimal transformation (ϵ << 1),

rµ → r′µ = rµ + ϵfµ(r), (C.1.1)

the flat metric,

ds2 = drµdrµ, (C.1.2)

transforms to

ds′2 = ds2 + ϵ(∂µfν + ∂νfµ)drµdrν . (C.1.3)

The conformal transformation is

∂µfν + ∂νfµ =
2

d
δµν∂λfλ, (C.1.4)

such fµ is called conformal Killing vector. Eq.(C.1.3) becomes

ds′2 =

(
1 + ϵ

2

d
∂λfλ

)
ds2. (C.1.5)

The conformal transformation preserve the angle between two vectors, r · r′/(rr′). In
general, the form of f(x) that satisfy the Eq.(C.1.4) is,

(translation)

fµ = cµ, (C.1.6)

(rotation)

fµ = wµνrν , wµν = −wνµ, (C.1.7)
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(dilatation)

fµ = arµ, (C.1.8)

(special conformal transformation)

fµ = cµr
2 − 2c · rrµ. (C.1.9)

We show that the special conformal transformation satisfies Eq.(C.1.4). (The others is
easy to calculate.)

∂νfµ =2cµrη∂νrη − 2cηrµ∂νrη − 2c · r∂νrµ
=2cµrν − 2cνrµ − 2c · rδνµ

∂µfν + ∂µfν =− 4c · rδνµ
∂µfµ =2cµrη∂µrη − 2cηrµ∂µrη − 2c · r∂µrµ

=− 2dc · r

For d = 2, Eq.(C.1.4) becomes Cauchy-Riemann Equation

∂1ϵ1 = ∂2ϵ2 (C.1.10)

∂1ϵ2 = −∂2ϵ1. (C.1.11)

Using z = x1 + ix2, z̄ = x1 − ix2, ϵ = ϵ1 + iϵ2, ϵ̄ = ϵ1 − iϵ2,

∂z̄ϵ = 0, ∂z ϵ̄ = 0 (C.1.12)

ds′2 =
∂f

∂z

∂f̄

∂z̄
dzdz̄ (C.1.13)

The infinitesimal transformations become

z′ = z + ϵn(z), z̄′ = z̄ + ϵ̄n(z̄), (C.1.14)

where

ϵn(z) = −zn+1, ϵ̄n(z̄) = −z̄n+1. (C.1.15)

The generators,

ln = −zn+1∂z, l̄n = −z̄n+1∂z̄, (C.1.16)

construct the Lie algebra,

[lm, ln] = (m− n)lm+n, [l̄m, l̄n] = (m− n)l̄m+n, [lm, l̄n] = 0. (C.1.17)

53



C.2 Free Fermion

By taking continuous limit, the critical 2D Ising model is described by free fermion,

S =
1

8π

∫
dzdz̄

(
ψ∂̄ψ + ψ̄∂ψ̄

)
(C.2.1)

The short distance singularities are

ψ(z)ψ(w) = − 1

z − w
, ψ̄(z̄)ψ̄(w̄) = − 1

z̄ − w̄
(C.2.2)

The mode expansion is

iψ(z) =
∑

ψnz
−n−1/2, (C.2.3)

n is integers or half-integers, depending on BC. When n ∈ Z + 1
2
,

ψ(e2πiz) = +ψ(z). (P ) (C.2.4)

When n ∈ Z,

ψ(e2πiz) = −ψ(z). (A) (C.2.5)

The stress-energy tensor is

T (z) = −1

2
: ψ(z)∂ψ(w) : . (C.2.6)

The OPE of T (z) and ψ(z) is

−1

2
: ψ(z)∂ψ(z) : ψ(w) =− 1

2
⟨ψ(z)ψ(w)⟩∂ψ(z) + 1

2
ψ(z)⟨∂ψ(z)ψ(w)⟩

=
1

2

1

z − w
∂ψ(z) +

1

2

1

(z − w)2
ψ(z)

=
1

2

1

z − w
(∂ψ(w) + · · ·)

+
1

2

1

(z − w)2
(ψ(w) + (z − w) ∂ψ(w) + · · ·)

=
1

2

1

(z − w)2
ψ(w) +

1

z − w
∂ψ(w) + · · · .

(C.2.7)

Thus, the primary field ψ(z) has a conformal weight h = 1/2. The OPE of the stress-
energy tensors is

T (z)T (w) =
1/4

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
T (w). (C.2.8)
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Thus, the central charge is c = 1/2.
We calculate the 2-point correlation function in Periodic (P),

⟨ψ(z)ψ(w)⟩P = −

〈
∞∑

n=1/2

ψnz
−n−1/2

∞∑
m=1/2

ψmw
−m−1/2

〉
P

= −
∞∑

n=1/2

z−n−1/2w−n−1/2 = −1

z

∞∑
n=0

(w
z

)n
=

−1

z − w
. (C.2.9)

For Anti-Periodic case, we introduce the twist operator σ(w),

ψ(z)σ(w) ∼ (z − w)−1/2µ(w) + · · · (C.2.10)

The field µ has the same conformal weight as the field σ.

⟨ψ(z)ψ(w)⟩A ≡ ⟨0| σ(∞)ψ(z)ψ(w)σ(0) |0⟩

= −

〈
∞∑
n=0

ψnz
−n−1/2

∞∑
m=0

ψmw
−m−1/2

〉
A

= −
∞∑
n=1

z−n−1/2w−n−1/2 − 1

2
√
zw

= − 1√
zw

(
w

z − w
+

1

2

)
= −

√
z
w
+
√

w
z

2(z − w)
(C.2.11)

The stress-energy tensor is

T (z) = lim
z→w

1

2

(
ψ(z)∂wψ(w) +

1

(z − w)2

)
(C.2.12)

From Eq.(C.2.11), ϵ = z − w

⟨T (z)⟩A = lim
z→w

1

2

(
⟨ψ(z)∂wψ(w)⟩A +

1

(z − w)2

)
= lim

z→w

1

2

(
−
√

z
w
+
√

w
z

2(z − w)2
+

1

4w3/2z1/2
+

1

(z − w)2

)

= lim
ϵ→0

1

2

(
−1

2

(
1 + ϵ

w

)1/2
+
(
1 + ϵ

w

)−1/2

ϵ2
+

1

ϵ2

)
+

1

8

1

w2

= lim
ϵ→0

1

2

(
−
1 + 1

2
ϵ
w
− 1

2!·4

(
ϵ
w

)2
+ · · ·+ 1− 1

2
ϵ
w
+ 3

2!·4

(
ϵ
w

)2 − · · ·
2ϵ2

+
1

ϵ2

)
+

1

8

1

w2

=
1

16w2
(C.2.13)
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Comparing with the operator product

T (w)σ(0) |0⟩ ∼ hσσ(0)

z2
|0⟩+ · · · , (C.2.14)

we find that hσ = 1
16
.

C.3 Free Boson

The action for the free boson field theory is

Ĥ =

∫
∂ϕ(z, z̄)∂̄ϕ(z, z̄). (3.1.1)

The OPE of the vertex operator and ∂φ(z) is

∂φ(z)Vα(w) =
∞∑
n=0

(iα)n

n!
∂φ(z) : φ(w)n :

=
1

z − w

∞∑
n=1

(iα)n

(n− 1)!
: φ(w)n−1 :

=− iα
V−α(w)

z − w
(C.3.1)

The OPE of the vertex operator and stress-energy tensor T (z) =: ∂φ(z)∂φ(z) : is

T (z)V−α(w) =
∞∑
n=0

(iα)n

n!
: ∂φ(z)∂φ(z) :: φ(w)n :

=− 1

4

1

(z − w)2

∞∑
n=0

(iα)n

(n− 2)!
: φ(w)n−2 :

+
1

z − w

∞∑
n=0

(iα)n

n!
: ∂φ(z)φ(w)n−1 :

=
α2/2

(z − w)2
Vα(w) +

1

(z − w)
∂wVα(w). (C.3.2)
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The OPE of the vertex operators is

Vα(z)Vβ(w) =
∞∑
n,m

1

n!m!
: (αψ(z))n :: (αψ(z))m :

=
∞∑
n,m

1

n!m!
(α)n (β)m ⟨ψ(z)ψ(w)⟩nψ(w)m−n m!

(m− n)!

=
∞∑
n,l

1

n!
(⟨ψ(z)ψ(w)⟩αβ)n (β)l ψ(w)l 1

l!

= exp (αβ⟨ψ(z)ψ(w)⟩) exp (βψ(w))
= (z − w)−αβ Vβ(w). (C.3.3)
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Appendix D

Anisotropic Limit

D.1 S=1

We derive an effective Hamiltonian for S=1 BA XXZ chain in the anisotropic limit.
The non-perturbative Hamiltonian is

H0 =

N/2∑
j=1

∆Ŝz
2j−1Ŝ

z
2j, (D.1.1)

=

N/2∑
j=1

ĥj. (D.1.2)

The eigenstate and eigenenergies of the two-spin Hamiltonian ĥj = ∆Ŝz
2j−1Ŝ

z
2j are

|1⟩2j−1 |−12j⟩ , E0 = −∆, (D.1.3)

|−1⟩2j−1 |1⟩2j , E0 = −∆, (D.1.4)

|0⟩2j−1 |0⟩2j , E1 = 0, (D.1.5)

... (D.1.6)

The higher excited state are omitted because of no effect to the following calculation.
We regard the lowest state as the effective S=1/2 spin state,

|↑j⟩′ = |1⟩2j−1 |−1⟩2j , (D.1.7)

|↓j⟩′ = |−1⟩2j−1 |1⟩2j . (D.1.8)

The perturbative Hamiltonian is

Ĥ ′ =

N/2∑
j

(
β∆Ŝz

2jŜ
z
2j+1

)
+

1

2

N/2∑
j

(
Ŝ+
2j−1Ŝ

−
2j + Ŝ−

2j−1Ŝ
+
2j

)
. (D.1.9)

58



• First-order perturbation
Similar to the S = 1/2 case, the z-direction term operates as

Ŝz
2jŜ

z
2j+1 |↑j↑j+1⟩′ = − |↑j↑j+1⟩′ . (D.1.10)

In the effective space, we get Ŝz
2jŜ

z
2j+1 → −4Ŝ ′z

j Ŝ
′z
j+1. The x, y-direction have no

effect because the lowest state is not generated,

Ŝ+
2j−1Ŝ

−
2j |↑⟩

′
j = |0⟩2j−1 |0⟩2j . (D.1.11)

• Second-order perturbation
The operators that make the excited state |0⟩ |0⟩ are only x,y-direction terms.

Ŝ+
2j−1Ŝ

−
2j |↓⟩

′
j = 2 |0⟩2j−1 |0⟩2j , (D.1.12)

Ŝ−
2j−1Ŝ

+
2j |↑⟩

′
j = 2 |0⟩2j−1 |0⟩2j , (D.1.13)

here we use Ŝ± |l,m⟩ =
√
l(l + 1)−m(m± 1) |l,m± 1⟩. Thus, we obtain four

terms that have non-zero matrix element in second order perturbation.

⟨↓|′j Ŝ
−
2j−1Ŝ

+
2j |0⟩2j−1 |0⟩2j ⟨0|2j−1 ⟨0|2j Ŝ

+
2j−1Ŝ

−
2j |↓⟩

′
j = 4, (D.1.14)

⟨↑|′j Ŝ
−
2j−1Ŝ

+
2j |0⟩2j−1 |0⟩2j ⟨0|2j−1 ⟨0|2j Ŝ

+
2j−1Ŝ

−
2j |↑⟩

′
j = 4. (D.1.15)

These terms are constant terms in the effective space. The other two terms are

⟨↑|′j Ŝ
+
2j−1Ŝ

−
2j |0⟩2j−1 |0⟩2j ⟨0|2j−1 ⟨0|2j Ŝ

+
2j−1Ŝ

−
2j |↓⟩

′
j = 4, (D.1.16)

⟨↓|′j Ŝ
−
2j−1Ŝ

+
2j |0⟩2j−1 |0⟩2j ⟨0|2j−1 ⟨0|2j Ŝ

−
2j−1Ŝ

+
2j |↑⟩

′
j = 4. (D.1.17)

These terms operate as 4Ŝ ′+
j and 4Ŝ ′−

j .

Then, we obtain the effective Hamiltonian

Ĥ =

N/2∑
j=1

(
−4β∆Ŝ ′z

j Ŝ
′z
j+1 + 2Ŝ ′x

j + 1
)

(D.1.18)

D.2 S=3/2

We derive an effective Hamiltonian for S=3/2 BA XXZ chain in the anisotropic
limit. The non-perturbative Hamiltonian is

H0 =

N/2∑
j=1

∆Ŝz
2j−1Ŝ

z
2j, (D.2.1)

=

N/2∑
j=1

ĥj. (D.2.2)
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The eigenstate and eigenenergies of the two-spin Hamiltonian ĥj = ∆Ŝz
2j−1Ŝ

z
2j are

|3
2
⟩
2j−1

|−3

22j
⟩ , E0 = −9

4
∆, (D.2.3)

|−3

2
⟩
2j−1

|3
2
⟩
2j
, E0 = −9

4
∆, (D.2.4)

|1
2
⟩
2j−1

|−1

2
⟩
2j
, E1 = −1

4
∆, (D.2.5)

|−1

2
⟩
2j−1

|1
2
⟩
2j
, E1 = −1

4
∆, (D.2.6)

... (D.2.7)

The higher excited state are omitted because of no effect to the following calculation.
We regard the lowest state as the effective S=1/2 spin state,

|↑j⟩′ = |3
2
⟩
2j−1

|−3

2
⟩
2j
, (D.2.8)

|↓j⟩′ = |−3

2
⟩
2j−1

|3
2
⟩
2j
. (D.2.9)

The perturbative Hamiltonian is

Ĥ ′ =

N/2∑
j

(
β∆Ŝz

2jŜ
z
2j+1

)
+

1

2

N/2∑
j

(
Ŝ+
2j−1Ŝ

−
2j + Ŝ−

2j−1Ŝ
+
2j

)
. (D.2.10)

• First-order perturbation
Similar to the S = 1

2
case, the z-direction term operates as

Ŝz
2jŜ

z
2j+1 |↑j↑j+1⟩′ = −9

4
|↑j↑j+1⟩′ . (D.2.11)

In the effective space, we get Ŝz
2jŜ

z
2j+1 → −9Ŝ ′z

j Ŝ
′z
j+1. Same as the S=1 case, the

x, y-direction have no effect because the lowest state is not generated.

• Second-order perturbation
Only constant term remains.

⟨↓|′j Ŝ
−
2j−1Ŝ

+
2j |−

1

2
⟩
2j−1

|1
2
⟩
2j
⟨−1

2
|
2j−1

⟨1
2
|
2j
Ŝ+
2j−1Ŝ

−
2j |↓⟩

′
j = 9, (D.2.12)

⟨↑|′j Ŝ
+
2j−1Ŝ

−
2j |−

1

2
⟩
2j−1

|1
2
⟩
2j
⟨−1

2
|
2j−1

⟨1
2
|
2j
Ŝ−
2j−1Ŝ

+
2j |↑⟩

′
j = 9. (D.2.13)

• Third-order perturbation

⟨↓|′j Ŝ
−
2j−1Ŝ

+
2j |−

1

2
⟩
2j−1

|1
2
⟩
2j
⟨−1

2
|
2j−1

⟨1
2
|
2j
Ŝ−
2j−1Ŝ

+
2j |

1

2
⟩
2j−1

|−1

2
⟩
2j
⟨1
2
|
2j−1

⟨−1

2
|
2j
Ŝ−
2j−1Ŝ

+
2j |↑⟩

′
j

=36 (D.2.14)

These terms operate as 36Ŝ+
j and 36Ŝ−

j .
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Then, we obtain the effective Hamiltonian

Ĥ =

N/2∑
j=1

(
−9β∆Ŝz

j Ŝ
z
j+1 +

9

2
Ŝx
j + 9

)
(D.2.15)
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Appendix E

Bosonization

E.1 XXZ chain

We review the bosonization method [21] [22] for the XXZ chain

Ĥ0 =J
N∑
i

[
1

2

(
Ŝ+
i Ŝ

−
i+1 + Ŝ−

i Ŝ
+
i+1

)
+∆Ŝz

i Ŝ
z
i+1

]
(E.1.1)

The spin operators obey the mixed set of commutation relation,[
Ŝ+
i , Ŝ

−
i

]
(E.1.2)

When imposing zTBC, the boundary term becomes

−1

2

(
Ŝ+
i Ŝ

−
i+1 + Ŝ−

i Ŝ
+
i+1

)
+∆Ŝz

i Ŝ
z
i+1 (E.1.3)

When yTBC,

−1

2

(
Ŝ+
i Ŝ

+
i+1 + Ŝ−

i Ŝ
−
i+1

)
−∆Ŝz

i Ŝ
z
i+1 (E.1.4)

We perform the Jordan-Wigner transformation,

Ŝ+
i = exp

(
−iπ

i−1∑
j=1

â†j âj

)
â†i , (E.1.5)

Ŝ+
1 = −â†1, (E.1.6)

Ŝz
i = −1

2
+ â†i âi, (E.1.7)

Ŝ+
i Ŝ

−
i+1 = â†i âi+1, (E.1.8)

Ŝ−
i Ŝ

+
i+1 = −âiâ†i+1, (E.1.9)

Ŝ+
i Ŝ

+
i+1 = â†i â

†
i+1, (E.1.10)

Ŝ−
i Ŝ

−
i+1 = −âiâi+1. (E.1.11)
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The commutators of fermionic operator are{
â†k, â

†
k′

}
= {âk, âk′} = 0 (E.1.12){

â†k, âk′
}
=δkk′ (E.1.13)[

â†k, âk′
]
=2â†kâk′ − δkk′ . (E.1.14)

We define the total number operator

M̂ =
N∑
j

â†j âj (E.1.15)

In boundary,

Ŝ+
N Ŝ

−
1 =− exp

(
−iπ

N−1∑
j

â†j âj

)
â†N â1 (E.1.16)

=− (−1)M̂ â†N â1 (E.1.17)

Ŝ−
N Ŝ

+
1 =(−1)M̂ âN â

†
1 (E.1.18)

Ŝ+
N Ŝ

+
1 =− (−1)M̂ â†N â

†
1 (E.1.19)

Ŝ−
N Ŝ

−
1 =(−1)M̂ âN â1 (E.1.20)

The Hamiltonian becomes

Ĥ =
J

2

N−1∑
i

(
â†i âi+1 − âiâ

†
i+1

)
+ J∆

N−1∑
i

(
−1

2
+ â†i âi

)(
−1

2
+ â†i+1âi+1

)
+ (boundary term).

(E.1.21)

In PBC, boundary term is

J

2
(−1)M̂

(
−â†N â1 + âN â

†
1

)
+ J∆

(
−1

2
+ â†N âN

)(
−1

2
+ â†1â1

)
(E.1.22)

When the number of fermion is even, the fermion operator obey the anti-periodic bound-
ary condition

âN+1 = −â1, â†N+1 = −â†1 (E.1.23)

When the number of fermion is odd, the fermion operator obey the periodic boundary
condition

âN+1 = â1, â
†
N+1 = â†1 (E.1.24)
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Because of the translational invariance, we perform the Fourier transformation

âj =
1√
N

∑
k

exp (ijk)âk. (E.1.25)

When fermion number is even,

âN+1 =− â1 (E.1.26)

k =
π(2n− 1)

N
(−N

2
+ 1 ≥ n ≥ N

2
) (E.1.27)

When fermion particle number is odd,

âN+1 =â1 (E.1.28)

k =
2πn

N
(−N

2
+ 1 ≥ n ≥ N

2
) (E.1.29)

a is the lattice spacing.∑
j

â†j âj+1 =
1

N

∑
j

∑
k,k′

exp (iaj (−k + k′) + iak′)â†kâk′ (E.1.30)

=
∑
k

exp (iak)â†kâk (E.1.31)

âN â1 =
1

N

∑
kk′

(
− (−1)M̂

)
exp (iak′)âkâk′ (E.1.32)

â†N â
†
1 =

1

N

∑
kk′

(
− (−1)M̂

)
exp (−iak′)â†kâ

†
k′ (E.1.33)

The z-direction term is∑
j

â†j âj =
∑
k

â†kâk (E.1.34)

∑
j

â†j âj â
†
j+1âj+1 =

1

N2

∑
j

∑
k1,k2,k3,k4

â†k1 âk2 â
†
k3
âk4

exp (ij (−k1 + k2 − k3 + k4) + i(−k3 + k4)). (E.1.35)

The non-vanishing terms are −k1 + k2 − k3 + k4 = 2πn (n = 0,±1). Rename the wave
number as k = k2, k

′ = k4, q = −k3 + k4 − πn

=
1

N

∑
kk′q

cos (q)â†k+qâ
†
k′−qâk′ âk −

1

N

∑
kk′q

cos (q)â†k+q±πâ
†
k′−q±πâk′ âk, (E.1.36)
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q is taken in π
N

≥ q ≥ π − π
N

when number is even or 2π
N

≥ q ≥ π when number is odd.
The XY terms are∑

j

(
â†j âj+1 − âj â

†
j+1

)
=
∑
k

(exp (ik) + exp (−ik)) â†kâk (E.1.37)

=
∑
k

2 cos (k)â†kâk (E.1.38)

1

N

∑
j

exp (ij (k − k′)) = δkk′ (E.1.39)

ϵ(k) = J (cos k −∆) (E.1.40)

V (q) = J∆cos q (E.1.41)

The Hamiltonian becomes

Ĥ =
∑
k

ϵ(k)â†kâk +
1

N

∑
kk′q

V (q)â†k+qâ
†
k′−qâk′ âk −

1

N

∑
kk′q

V (q)â†k+q±G/2â
†
k′−q±G/2âk′ âk.

(E.1.42)

When ∆ = 0, the ground state is occupied in −π
2
< k < π

2
. Only considering the

low-lying excited states, we introduce â1,k (â2,k) operators that have positive (negative)
group velocity.

âj = exp
(
i
π

2
j
)
â1,j = exp

(
−iπ

2
j
)
â2,j (E.1.43)

Using boson density operators

ρ1(k) =
∑
p

â†1,p+kâ1,p (E.1.44)

ρ2(k) =
∑
p

â†2,p+kâ2,p, (E.1.45)

the Hamiltonian is

Ĥ0 =
2πJ

N

∑
q>0

(ρ̂1(q)ρ̂2(−q) + ρ̂2(q)ρ̂2(−q))

+
J∆

N

∑
q

(ρ̂1(q)ρ̂1(−q) + ρ̂2(q)ρ̂2(−q) + 4ρ̂1(q)ρ̂2(−q)) (E.1.46)

The commutation relation of boson density operators is

[ρ1(−p), ρ1(p′)] = [ρ2(−p), ρ2(p′)] =
pL

2π
δp,p′ . (E.1.47)
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This can be checked by the evaluation of the vacuum expectation value [37]

⟨0| [ρ1(−p), ρ1(p)] |0⟩ =
pL

2π
(E.1.48)

Using the following variables

θ±(x) = i
∑
q ̸=0

(ρ1(q)± ρ2(q))Aq(x), (E.1.49)

Aq(x) =
2π

Lq
exp

(
−α
2
|q| − iqx

)
, (E.1.50)

θ(x) = θ+(x), (E.1.51)

p(x) = − 1

4π
∇θ−(x), (E.1.52)

we obtain the phase Hamiltonian

Ĥ =

∫
dx
[
A (∇θ)2 + Cp2 − B cos θ +D cos 2θ

]
, (E.1.53)

where p is the momentum density conjugate to θ

[θ (x) , p (x′)] = iδ (x− x′) (E.1.54)

The constants A,B,C and D are

A =
Ja

8π

(
1 +

3∆

π

)
, C = 2πJa

(
1− ∆

π

)
, (E.1.55)

B =
Jδ

a
,D =

π2∆J

8a
. (E.1.56)

E.2 Boundary Condition

In this section, we consider the BC of the phase field θ. The spin operators Ŝ are
related to fermion field operators ψ as

Ŝ−(x) = (2s)−1/2 [ψ1(x) + ψ2(x)] exp (−N̂(x)), (E.2.1)

Ŝ+(x) =
[
Ŝ−(x)

]†
, (E.2.2)

= (2s)−1/2
[
ψ†
1(x) + ψ†

2(x)
]
exp (−N̂(x)), (E.2.3)

Ŝz(x) =ρ̂1(x) + ρ̂2(x) + ψ†
1(x)ψ2(x) + ψ†

2(x)ψ1(x). (E.2.4)
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N is defined as

N̂(x) =iπ

∫ x−s/2

0

dy [ρ̂1(y) + ρ̂2(y)] , (E.2.5)

ρ̂1(x) = (N)
3
2 â†1,j â1,j. (E.2.6)

The phase field θ is related to the fermion operators as

ψ1(x) =
1√
2πα

exp

[
ikFx−

1

2i
(θ+(x) + θ−(x))

]
(E.2.7)

ψ2(x) =
1√
2πα

exp

[
−ikFx+

1

2i
(θ+(x)− θ−(x))

]
(E.2.8)

In continuum limit, spin operators in the zTBC become

Ŝ+(L) = −Ŝ+(0), Ŝ−(L) = −Ŝ−(0), Ŝz(L) = Ŝz(0). (E.2.9)

From the above relations, the zTBC of fermion field operators is

ψ1(L) = −ψ1(0), ψ
†
1(L) = −ψ†

1(0) (E.2.10)

ψ2(L) = −ψ2(0), ψ
†
2(L) = −ψ†

2(0) (E.2.11)

Then, the boundary condition of phase field in the zTBC is

θ+(L) =θ+(0) + 2π (E.2.12)

θ−(L) =θ−(0) (E.2.13)

The yTBC in continuum spin operators

Ŝ+(L) = −Ŝ−(0), Ŝ−(L) = −Ŝ+(0), Ŝz(L) = −Ŝz(0) (E.2.14)

correspond to the following BC of fermion field operators

ψ1(L) = −ψ†
1(0), ψ

†
1(L) = −ψ1(0)

ψ2(L) = −ψ†
2(0), ψ

†
2(L) = −ψ2(0)

. (E.2.15)

The boundary condition of the phase field in yTBC is

θ+(L) =− θ+(0) + 2π (E.2.16)

θ−(L) =− θ−(0). (E.2.17)
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Appendix F

Lanczos Method

F.1 Tridiagozalization

The Lanczos method is the tridiagonalization method of the hermitian Hamiltonian
Ĥ. The eigenvalue of the tridiagonalized matrix B can be calculated by bisection
method.

The Hamiltonian can be tridiagonalized by unitary matrix P,

B =P−1ĤP, (F.1.1)

=



α1 β1 0
β1 α2 β2

β2 α3 β3
. . . . . . . . .

βn−2 αn−1 βn−1

0 βn−1 αn


(F.1.2)

We define the j-th column of P as the vector uj,

P = [u1, u2, · · · , un] (F.1.3)

From the orthogonality of P,

uTi uj = δi,j (F.1.4)

From ĤP = PB,

Ĥu1 = α1u1 + β1u2,

Ĥu2 = β1u1 + α2u2 + β2u3,
· · ·

Ĥuk = βk−1uk−1 + αkuk + βkuk+1,
· · ·

Ĥun = βn−1un−1 + αnun.

(F.1.5)
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Multiplying uTk ,

αk = uTk Ĥuk. (F.1.6)

vk+1 ≡ βkuk+1 = Ĥuk − βk−1uk−1 − αkuk (F.1.7)
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