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ABSTRACT

This paper investigates the combination of optimal feedback control with the dynamical structure of the

three-body problem. The results provide new insights for the design of continuous low-thrust spacecraft

trajectories. Specifically we solve for the attracting set of an equilibrium point or a periodic orbit (repre-

sented as a fixed point) under optimal control with quadratic cost. The analysis reveals the relation between

the attractive set and original dynamics. In particular we find that the largest dimensions of the set are found

along the stable manifold and the least extent is along the left eigenvector of the unstable manifold. The

problem is worked out in detail analytically and we develop several proofs regarding the structure of the

attractive set for an optimal transfer. Our result is theoretical and developed for a linearized system, but can

be extended to nonlinear and more realistic situations.

1 Introduction

The stable and unstable manifold associated with a family of periodic orbits has been exploited for the

trajectory design in the three-body problem [1–4]. In simple terms, in order to realize transfer without

fuel expenditure, the spacecraft should be placed onto the stable manifold associated with the desired orbit.

Once the spacecraft is placed on the manifold, the natural dynamics steer the spacecraft into its final orbit.

The Genesis trajectory is known as an example of this kind of transfer [4]. The recent ARTEMIS mission

involved significant operations about the EarthMoonL1 andL2 points using dynamical structure of libration

point dynamics [5].

Recently, low-thrust propulsion has been studied together with multi-body systems. Due to the very

small accelerations often considered, the resulting trajectory designs often span long time periods. Due to
∗Associate Professor, Department of Aeronautics and Astronautics, mbando@aero.kyushu-u.ac.jp, Member AIAA.
†A. Richard Seebass Endowed Chair Professor, Aerospace Engineering Sciences, Fellow AIAA.
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this the use of continuous low-thrust in trajectory design can significantly increase the complexity of the

design process. Moreover, analytical theory is not generally available for the multi-body problem, while it

is well developed for the two-body problem. Despite these complications, low-thrust trajectory design in

multi-body systems has been extensively applied to transfers to the Moon [6–8], to Mars [9–11], to Venus

[12], to Near Earth Objects [13] and to the libration point orbits in the Sun-Earth and Earth-Moon systems

in [14, 15], although generally relying solely on numerical approach.

The application of optimal control for trajectory design has been extensively studied in the literature

[16]. For Keplerian dynamics, the optimal transfer problem related to the property called null controllable

with vanishing energy (NCVE) is studied in [17]. This is a property that any state of the system can be

steered to the origin with an arbitrarily small amount of control energy in the L2 (square integral) sense.

From a dynamical systems point of view, any state on the stable or center manifold can be controlled with

an arbitrarily small amount of control energy. For the three-body system, dynamical structures related

to optimal control have been studied in [18]. Attainable sets to incorporate low-thrust trajectory into the

invariant manifolds technique is proposed in [19].

This paper investigates the combination of optimal feedback control with the dynamical structure of the

three-body problem, using a quadratic acceleration cost. The set of all initial states which can reach the

desired state with a given optimal control cost forms an ellipsoid called the attractive set. We prove that the

attracting set of a general unstable equilibrium point or periodic orbit has a canonical structure that can be

described using the system dynamics, specifically using the unstable eigenvalue and eigenvectors. These

general results should hold for all astrodynamic systems and provide a systematic approach for optimal

rendezvous with an equilibrium point or periodic orbit using low-thrust.

For this study, we exclusively focus on a linearized system around the libration point and libration point

orbits, the former described by a linear time-invariant system and the latter by a time-periodic linear system.

The controllability grammian plays an important role in this context. In control theory, the representation

of input as quadratic forms involving the grammians is a classical result which arises in connection with

the solution of finding the control input which expends the least energy [20]. We start with an attractive set

of an equilibrium point in the linearized dynamics of the Hill’s approximation of the three-body problem

and then consider the attractive set of a periodic orbit. In particular we find that the largest dimensions of

the set are found along the stable manifold and the least extent is along the left eigenvector of the unstable

manifold. The problem is worked out in detail analytically and we develop several proofs regarding the

structure of the attractive set for an optimal transfer to an equilibrium point and a fixed point. Specifically,

we employ the positive definite solution of the differential Lyapunov equation and the difference Lyapunov

equation to solve the attractive set for the finite time interval.

The paper is structured as follows. We first review necessary items from optimal control theory in Sec.

2. Section 3 provides the main theoretical results. In Sec. 4, examples are given to demonstrate the main

results for a 1-DOF system, an equilibrium point in the Hill 3-Body problem, a Lyapunov orbit in the Hill

3-Body problem and a halo orbit in the Hill 3-Body problem. Section 5 gives closing remarks.
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2 General theory of optimal control

In this Section, the minimum fuel problem with fixed terminal state for a general linear time-varying system

is reviewed. By using the state transition matrix of the Hamiltonian system of the state and adjoint equations,

the optimal cost is explicitly expressed in a closed manner. Then the attractive set is introduced as the

contour of the optimal cost.

Optimal control problem for fixed terminal state

Consider the minimum fuel problem for a general linear time-varying system

ẋ = A(t)x +B(t)u, (1)

J =
1

2

∫ tf

t0

‖u‖2dt (2)

where x ∈ R
n is a state, u ∈ R

m is control, A(t) ∈ R
n × R

n and B(t) ∈ R
n × R

m. We assume that the

system is controllable and the control is unconstrained. The boundary conditions are given as

x(t0) = x0, x(tf ) = 0 (3)

Along the optimal trajectory, the state and adjoint follow the canonical equation and can be written as a

Hamiltonian system⎡
⎢⎣ ẋ

ṗ

⎤
⎥⎦ =

⎡
⎢⎣ A(t) −B(t)B(t)T

0 −A(t)T

⎤
⎥⎦
⎡
⎢⎣ x

p

⎤
⎥⎦ � AH

⎡
⎢⎣ x

p

⎤
⎥⎦ (4)

where p ∈ R
n is the adjoint vector. Introduce the state transition matrix that solves Eq. (4) as

Φ(t, t0) =

⎡
⎢⎣ φxx(t, t0) φxp(t, t0)

φpx(t, t0) φpp(t, t0)

⎤
⎥⎦ (5)

Then the optimal control is given by [21, 22]

u∗(t) = −BTφpp(t, t0)φ
−1
xp (tf , t0)φxx(tf , t0)x0 (6)

Optimal cost function and attractive set of optimal control

The optimal cost function J∗ is given by

J∗ =
1

2

∫ tf

t0

u∗T (t)u∗(t)dt =
1

2
xT
0 W

−1
c (tf , t0)x0 (7)

where

W−1
c (tf , t0) =

(∫ tf

t0

φT
pp(τ, t0)BBTφpp(τ, t0)dτ

)−1

(8)
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From the controllability of the system, Wc(t, t0) is positive-definite for t > 0, W−1
c can also be defined for

Wc > 0. Equation (7) forms an n-dimensional ellipsoid. If an initial state x0 lies inside the ellipsoid

E (c) = {x0 ∈ Rn|1
2
xT
0 W

−1
c (tf , t0)x0 ≤ c} (9)

then the cost of the trajectory is less than c. Therefore the ellipsoidal set E (c) represents the attractive

region associated with the optimal control (6) of cost J∗ ≤ c. The shape of the ellipsoid can be described

by the eigenvalues and eigenvectors of the controllability grammian Wc. From the relation [20]

λmin(W
−1
c (tf , t0))‖x0‖2 ≤ xT

0 W
−1
c (tf , t0)x0 ≤ λmax(W

−1
c (tf , t0))‖x0‖2 (10)

the largest distance of attractive set is defined by λmax(W
−1
c (tf , t0)) and the smallest one is is defined by

λmin(W
−1
c (tf , t0)).

Controllability Grammian

Wc(t, 0) in Eq.(8) is called the controllability grammian which is defined as

Wc(t, t0) =

∫ t

t0

φ(t0, τ)BBTφT (t0, τ)dτ (11)

for some 0 < t < ∞. The system is controllable in an interval [t0, t] if the controllability grammian

Wc(t0, t) is nonsingular. For the linear time-invariant system, it is reduced to

Wc(t, t0) =

∫ t

t0

eA(t0−τ)BBT eA
T (t0−τ)dτ (12)

and the pair (A,B) is controllable if and only if the matrix Wc(t0, t) is nonsingular, for any t > t0. The

controllability grammian can be obtained as the solution to the differential Lyapunov equation:

Ẇc(t) = A(t)Wc(t) +Wc(t)A
T (t) +BBT , Wc(t0) = 0 (13)

For the stable and controllable time invariant system, Wc(∞) = limt→∞ Wc(t, t0) exists and satisfies the

Lyapuonv equation:

0 = AWc(∞) +Wc(∞)AT +BBT (14)

As shown in Appendix B, the optimal cost function J∗ for a fixed point case is characterized by the

controllability grammian for a discrete system which is defined as:

Y (k) =
k−1∑
j=0

e−MTj

(∫ T

0

φT
pp(τ, 0)BBTφpp(τ, 0)dτ

)
e−MTTj (15)

The discrete system x(k+1) = Ax(k)+Bu(k) is controllable if and only if the matrix Y (k) is nonsingular

for any k > 0. The controllability grammian can be obtained as the solution to the difference Lyapunov

equation:

Y (k + 1) = AY (k)AT +BBT , Y (0) = 0 (16)

Suppose x(k + 1) = Ax(k) + Bu(k) is stable and controllable, then Y (∞) = limk→∞ Y (k) exists and

satisfies the Lyapuonv equation:

Y (∞) = AY (∞)AT +BBT (17)
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3 Main results

Theorem 3.1. The asymptotic form of the attractive set to an equilibrium point or a fixed point under

optimal control is completely defined by its left unstable eigenvectors and a term proportional to its unstable

eigenvalue.

We first consider the case of the attractive set to an equilibrium point. The following Lemmas allows us

to describe the attracting set of optimal control in terms of eigenstructure of the original dynamics.

Attractive set of a linear time-invariant system

Consider the optimal control problem for a general linear time-invariant system

ẋ = Ax +Bu, x(0) = x0, x(tf ) = 0 (18)

Define the linear transformation

x = Tz, zT =

[
zs zu zc

]

where T is the invertible matrix. Then Eq. (18) becomes

ż = Āz + B̄u, z(0) = T−1x0 (19)

where

Ā = T−1AT =

⎡
⎢⎢⎢⎢⎣

As 0

Au

0 Ac

⎤
⎥⎥⎥⎥⎦ , B̄ = T−1 =

⎡
⎢⎢⎢⎢⎣

Bs

Bu

Bc

⎤
⎥⎥⎥⎥⎦ (20)

where As, Au and Ac have eigenvalues with negative, positive and zero real parts respectively.

Let ui and vi (i = 1, · · ·n) be right and left (generalized) eigenvectors corresponding to eigenvalue λi

respectively. Then

T =

[
u1 · · · un

]
�
[

Us Uu Uc

]
, (21)

T−1 =

⎡
⎢⎢⎢⎢⎣

vT
1

...

vT
n

⎤
⎥⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎢⎣

V T
s

V T
u

V T
c

⎤
⎥⎥⎥⎥⎦ (22)

Note that the left and right eigenvectors are related to each other as

vT
i uj =

⎧⎪⎪⎨
⎪⎪⎩
1 i = j

0 i �= j

Then the following Lemma holds.
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Lemma 3.1. For a linear time-invariant system (18), W−1
c as tf goes to infinity becomes

W−1
c (∞) = T−T

⎡
⎢⎢⎢⎢⎣

0 0 0

0 W−1
uu 0

0 0 0

⎤
⎥⎥⎥⎥⎦T−1 (23)

where Wuu is solution to the Lyapunov equation:

(−Au)Wuu +Wuu(−AT
u ) +BuB

T
u = 0 (24)

Moreover, the eigenstructure of W−1
c is described as

W−1
c (∞) = VuW

−1
uu V T

u (25)

Proof. See Appendix A.

Attractive set of a linear time-periodic system

Next, we consider the attractive set of a give periodic orbit Γ. The linearization about Γ is defined as the

linear time-periodic system:

ẋ = A(t)x +Bu, x(0) = x0 (26)

where A(t) is T -periodic function of time t for all t ∈ R. From Floquet’s theorem [23], the state transition

matrix for one period φxx(T, 0) can be written in the form

φxx(T, 0) = eMT

where M is a constant matrix. From the symplecticity, φpp(T, 0) is given by

φpp(T, 0) = e−MTT

Let T be the transformation matrix such that T−1MT is a block diagonal form. Then we can define

Ā = T−1eMTT =

⎡
⎢⎢⎢⎢⎣

As 0

Au

0 Ac

⎤
⎥⎥⎥⎥⎦ , B̄ = T−1 =

⎡
⎢⎢⎢⎢⎣

Bs

Bu

Bc

⎤
⎥⎥⎥⎥⎦ (27)

where As, Au, and Ac has the characteristic exponents of Γ(t) with negative, positive and zero real parts.

Let ui and vi (i = 1, · · ·n) be right and left eigenvector of eigenvalue λi respectively. The right and left

eigenvectors corresponding to the eigenvalues of M can be defined as in the time-invariant case.

Lemma 3.2. For a linear time-periodic system (26), W−1
c as tf goes to infinity becomes

W−1
c (∞) = lim

k→∞
Y −1(k) = T−T

⎡
⎢⎢⎢⎢⎣

0 0 0

0 Y −1
uu 0

0 0 0

⎤
⎥⎥⎥⎥⎦T−1 (28)
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where Yu is solution to the Lyapunov equation:

A−1
u YuuA

−T
u +

(∫ T

0

φT
uu(τ, t0)BuB

T
u φuu(τ, t0)dτ

)
= 0 (29)

where Au is the unstable part of eMT and φuu is state transition matrix of the unstable subsystem. More-

over, the eigenstructure of W−1
c (∞) is described as

W−1
c (∞) = VuY

−1
uu V T

u (30)

Proof. See Appendix B.

The fundamental difference between Lemma 3.1 and Lemma 3.2 is that system is discrete-time in Lemma

3.2 rather than continuous time as in Lemma 3.1. The proof of Theorem 3.1 follows immediately from

Lemmas 3.1 and 3.2.

4 Applications

To illustrate the theory, a simple 1-DOF system is considered. Then specific examples of the attractive set

of optimal control about an equilibrium point and libration point orbits of Hill’s three-body problem are

studied.

4.1 Attractive set for 1-DOF system

To illustrate the behavior of the attractive set for stable and unstable systems, let us start from a 1-DOF

dynamical system

r̈ + αr = u (31)

where u is the scalar control input. This system can be described by three different types of motion de-

pending on the parameter α: if α > 0 motion is is oscillatory, if α = 0, it is rectilinear (degenerate), and if

α < 0, it is hyperbolic [24]. The state space form of (31) is given by

ẋ = Ax +Bu, x =

⎡
⎢⎣ r(t)

ṙ(t)

⎤
⎥⎦ , A =

⎡
⎢⎣ 0 1

−α 0

⎤
⎥⎦ , B =

⎡
⎢⎣ 0

1

⎤
⎥⎦ (32)

It can be easily confirmed that the pair (A,B) is controllable. Consider the minimum fuel performance

index:

J =
1

2

∫ tf

t0

u2dt

In the following, the explicit form of the attractive set of the optimal control (9) is found for each case.
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(i) Oscillatory Motion: α = ω2 > 0

The state transition matrix is explicitly given by

φxx(t) = eAt =

⎡
⎢⎣ cos(ωt) 1

ω sin(ωt)

−ω sin(ωt) cos(ωt)

⎤
⎥⎦ (33)

From the symplectic property of the state transition matrix of Hamiltonian system, φpp(t0, t) is given by

φpp(t0, t) = φ−T
xx . Therefore φpp is explicitly given by

φpp =

⎡
⎢⎣ cos(ωt) − 1

ω sin(ωt)

ω sin(ωt) cos(ωt)

⎤
⎥⎦

From Eq. (32), the grammian and the inverse of the grammian are obtained as

Wc(t) =

⎡
⎢⎣ 1

ω2

(
t
2 − sin(2ωt)

4ω

)
cos(2ωt)

4ω2

cos(2ωt)
4ω2

t
2 + sin(2ωt)

4ω

⎤
⎥⎦ , W−1

c (t) =

⎡
⎢⎣ 4ω3[2ωt+sin(2ωt)]

−1+4ω2t2 − 4ω2 cos(2ωt)
−1+4ω2t2

− 4ω2 cos(2ωt)
−1+4ω2t2

4ω[2ωt−sin(2ωt)]
−1+4ω2t2

⎤
⎥⎦

Now, consider the asymptotic behavior of W−1
c as as tf → ∞, which defines the attractive set for infinite

time problem. It can be seen that as t → ∞

lim
t→∞W−1

c (t) =

⎡
⎢⎣ 0 0

0 0

⎤
⎥⎦

This implies limt→∞ J∗ = 0 regardless of initial state and the attractive set is unbounded.

(ii) Degenerate Motion: α = 0

In a similar way, φxx and φpp are given by

φxx =

⎡
⎢⎣ 1 t

0 1

⎤
⎥⎦ , φpp =

⎡
⎢⎣ 1 0

−t 1

⎤
⎥⎦

Then, the grammian and the inverse of the grammian are obtained as

Wc(t) =

⎡
⎢⎣ t3

3 − t2

2

− t2

2 t

⎤
⎥⎦ , W−1

c (t) =

⎡
⎢⎣ 12

t3
6
t2

6
t2

4
t

⎤
⎥⎦

Therefore the attractive set for infinite time problem is defined by

lim
t→∞W−1

c (t) =

⎡
⎢⎣ 0 0

0 0

⎤
⎥⎦

For the degenerate case, the attractive set is unbounded as in the oscillatory case.
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(iii) Hyperbolic Motion: α = −λ2 < 0

For the hyperbolic case, consider the transformation:

x = Tz, Ā = T−1AT =

⎡
⎢⎣ −λ 0

0 λ

⎤
⎥⎦

The transformation matrix is given by

T =

⎡
⎢⎣ −1 1

λ λ

⎤
⎥⎦ �

[
u− u+

]

where u−, u+ correspond to stable and unstable eigenvectors. Moreover, the left eigenvectors of A are

given by

v− =
1

2

⎡
⎢⎣ −λ

1

⎤
⎥⎦ , v+ =

1

2

⎡
⎢⎣ λ

1

⎤
⎥⎦ (34)

Then φxx and φpp are given by

φ̄xx = e−ĀT t =

⎡
⎢⎣ e−λt 0

0 eλt

⎤
⎥⎦ , φ̄pp = e−ĀT t =

⎡
⎢⎣ eλt 0

0 e−λt

⎤
⎥⎦

Then, W̄c and W̄−1
c are obtained as

W̄c(t) =

⎡
⎢⎣ −1+e2λt

8λ
t
4

t
4 −−1+e2λt

8λ

⎤
⎥⎦ , W̄−1

c (t) =

⎡
⎢⎣ 8λ(−1+e2λt)

1+e4λt−2e2λt(1+2t2λ2)
− 16λ2te2λt

1+e4λt−2e2λt(1+2t2λ2)

− 16λ2te2λt

1+e4λt−2e2λt(1+2t2λ2)
8λe2tλ(−1+e2λt)

1+e4λt−2e2λt(1+2t2λ2)

⎤
⎥⎦

Now, consider the asymptotic behavior of W−1
c as as tf → ∞. It can be seen that as tf → ∞

lim
t→∞ W̄−1

c (t) =

⎡
⎢⎣ 0 0

0 8λ

⎤
⎥⎦

For the original system, the inverse of the grammian as t → ∞ becomes

lim
t→∞W−1

c (t) = T−T

⎡
⎢⎣ 0 0

0 8λ

⎤
⎥⎦T−1 = 2λ2

⎡
⎢⎣ λ 1

1 1
λ

⎤
⎥⎦

Therefore the optimal cost only depends on the unstable component of state zu:

J∗ =
1

2
xTW−1

c x =
1

2
zT W̄−1

c z = 4λz2u

The eigenvalues and corresponding (right) eigenvectors of W−1
c (∞) are obtained as

σ = 0, u =

⎡
⎢⎣ −1

λ

⎤
⎥⎦ , (35)

σ = 2λ(1 + λ2), u =

⎡
⎢⎣ λ

1

⎤
⎥⎦ (36)
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Thus the attractive set is unbounded along the stable eigenvector u− and the minimum extent is along the

left eigenvector of unstable manifold v+.

4.2 Hill three-body problem

Hill’s three-body problem is a simplification of the circular restricted three-body problem by assuming the

first body has a larger mass than the second one and the third one has negligible mass [25]. It is in general

a good model for approximating motion in the vicinity of the Earth for the spacecraft-Earth-Sun problem.

The equations of motion in normalized form are given by

Ẍ − 2Ẏ =
∂V

∂x
(37)

Ÿ + 2Ẋ =
∂V

∂y
(38)

Z̈ =
∂V

∂z
(39)

V =
μ

r
+
1

2
(3X2 − Z2), r =

√
X2 + Y 2 + Z2 (40)

where the coordinate system is centered on the second body [26]. The Hill problem has two equilibrium

solutions, the libration point located at X = ± (13)1/3, Y = Z = 0.

The linearized equation about the equilibrium points is given by

ẋ = Ax +Bu (41)

x =

[
X Y Z Ẋ Ẏ Ż

]T
, u =

[
uX uY uZ

]T

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

9 0 0 0 2 0

0 −3 0 −2 0 0

0 0 −4 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

The eigenvalues of A are given by

λ1,2 = ±
√
2
√
7 + 1 (43)

λ3,4 = ±j

√
2
√
7− 1 (44)

λ5,6 = ±2j (45)

The first four eigenvalues λ1,2 and λ3,4, correspond to the in-plane motion while the eigenvalues λ5,6

correspond to the out of plane motion. Note that the out-of-plane motion is decoupled in the linearized

equation and consists only of periodic motions while the in-plane motion consists of a stable, an unstable

and a center manifold.
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4.2.1 Attractive set of equilibrium point

For the planar motion of Eq. (41), the attractive set of optimal control to transfer to the equilibrium point is

considered. Consider the transformation

x = Tz, zT =

[
zs zu zc1 zc2

]
Then the in-plane motion of Eq. (41) becomes

ż = Āz + B̄u, z(0) = T−1x0, z(tf ) = 0 (46)

where

Ā = T−1AT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−λ 0

λ

0 −ω

0 ω 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, B̄ = T−1B (47)

λ =

√
2
√
7 + 1, ω =

√
2
√
7− 1 (48)

The attractive set to transfer to the origin was computed by Lyapunov difference equation (13) over a time

interval [0, tf ] in nondimensional time. We choose to plot attractive sets in the plane of intersection of

the stable and unstable eigenvectors with the x-axis aligned with the left unstable eigenvector and y-axis

with the right stable eigenvector. This new manifold coordinates (Xm-Ym) is shown in Fig. 1. Figure 2

shows the projection of attractive sets into X-Y plane for the finite time (tf = 15, 30, 100) and infinite

time case, respectively. Each line represents the surface of the attractive sets with the same cost. As the

time of flight increases, the attractive region becomes larger and finally becomes unbounded along the right

stable eigenvector as is developed analytically in Section 2. From Lemma 3.1, the limit of the inverse of the

grammian exists and given by

W̄−1
c (∞) = T TW−1

c (∞)T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 p−1 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(49)

where p is solution to the scalar Lyapunov equation:

(−λ)p+ p(−λ) + b2b
T
2 = 0 (50)

and is given by p = b2b
T
2 /2λ, hence p−1 = 2λ/b2b

T
2 ≈ 13.467. Then, W−1

c (∞) is expressed in terms of

the unstable eigenvalue λ and the left unstable eigenvector v+ associated with A as

W−1
c (∞) = p−1v+v

T
+

Figure 3 illustrates the optimal trajectories projected into Xm-Ym plane for tf = 5, 1000 respectively. For

the long time duration case, the optimal control is known to be extremely sensitive to the numerical error.

Therefore, the transient behavior of W−1
c (t, 0) is ignored and the constant feedback gain is used in the

simulation. Figure 4 shows the corresponding trajectories in the manifold coordinates.
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Fig. 1: New coordinate system: the left stable eigenvector is perpendicular to the right unstable eigenvector

in the full 6-D space but not in the current projection.
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Fig. 2: Attractive set of L2 point for different times of flight.
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Fig. 3: Optimal trajectories for different times of flight.
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Fig. 4: Optimal trajectories for different times of flight in the manifold coordinates.
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4.2.2 Attractive set of a fixed point: Lyapunov orbit case

Next, the optimal control problem to transfer to a periodic orbit in the vicinity of the libration point is

considered. In this case, the attractive set is defined as the set of all initial states in which the optimal control

can drive the state to the desired point on the final periodic orbit. In this example, we consider a planar

periodic orbit solution of the Hill’s problem. The particular Lyapunov orbit is given by the normalized

initial condition

xref (0) =

[
0.7000 0.0000 −0.3979 0.0000 −0.04449 0.0000

]T

and its period is T = 3.0332. Figure 5 shows this Lyapunov orbit. This orbit is unstable with characteristic

exponents σ = ±2.0121.

The linearized equation along xref is given by

ẋ = A(t)x +Bu (51)

where

A(t) =

⎡
⎢⎣ 0 I

∂2V
∂2r 2J

⎤
⎥⎦
x=xref

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3 + 3X2

r5 − 1
r3

3XY
r5

3XZ
r5 0 2 0

3XY
r5

3Y 2

r5 − 1
r3

3Y Z
r5 −2 0 0

3XZ
r5

3Y Z
r5 −1 + 3Z2

r5 − 1
r3 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x=xref

Note that A(t) is T -periodic function of time.
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Fig. 5: Lyapunov orbit.
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As shown in Appendix B, the grammian Wc(t, 0) can be divided into two part: the grammian from t = 0

to t = kT , and the grammian from t = kT to tf . For simplicity, we assume that the desired state is on the

same Poincaré section of the initial state, i.e., tf = kfT . From Lemma 3.2, W−1
c as kf → ∞ is given by

lim
t→∞W−1

c (t, 0) = lim
k→∞

Y −1(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 p−1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(52)

where p ≈ 27.86 is solution to the Lyapunov equation:

(eσT )2p+

(∫ T

0

φT
11(τ, t0)B1B

T
1 φ11(τ, t0)dτ

)
= 0 (53)

where σ is the unstable characteristic exponent of the Lyapunov orbit. The attractive set for the finite-time

problem is obtained by solving the difference Lyapunov equation (16) over [0, kf ] and approaches the limit

which is analytically predicted in Eq. (52). In the manifold coordinates, the attractive region becomes

larger and finally becomes unbounded along the right stable eigenvector as in the previous example. Figure

6 illustrates the optimal trajectories projected into Xm-Ym plane for tf = 5T, 50T respectively. As in

the equilibrium case, optimal control is very sensitive to numerical error for the long time duration case.

Therefore, the transient behavior of W−1
c (t, 0) is ignored and the periodic feedback gain is used in the

simulation. Figure 7 (a) and 7 (b) show the corresponding trajectories in the manifold coordinates for

Fig. 6. In the manifold coordinates, the optimal trajectories first approach the Ym-axis (stable manifold)

and the converges to the origin along Ym-axis. Figure 7 (c) and 7 (d) show the trajectories for increasing

kf . It is interesting to note that the point to intersect Ym-axis converges to a certain point which is the limit

point for the first iteration in the infinite time case as

z(T ) = eMT z(0)− eMT

(∫ T

0

φ−T
pp (τ, 0)BBTφpp(τ, 0)dτ

)
Y −1(∞)z(0)

=

⎡
⎢⎢⎢⎢⎣

eσsT zs(0)

0

eσcT zc(0)

⎤
⎥⎥⎥⎥⎦

15



0.67 0.68 0.69 0.7 0.71 0.72
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

X

Y

(a) tf = 5T

0.67 0.68 0.69 0.7 0.71 0.72
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

X

Y

(b) tf = 50T

Fig. 6: Optimal trajectories.
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(c) kf = 1000.
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(d) kf = 10000.

Fig. 7: Optimally controlled trajectories projected into the manifold coordinates: the solid red, dotted green,

solid green, and dotted red lines are aligned with right stable, right unstable, left unstable and left stable

eigenvectors.
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4.2.3 Attractive set of a fixed point: the halo orbit case

The attractive set for the three-dimensional periodic orbit called halo orbit is now considered. Halo orbits

are found by continuation from their bifurcation from planar Lyapunov orbits [26]. The particular halo orbit

is given by the normalized initial condition

xref (0) =

[
0.7406 0.0000 0.0000 0.0000 −0.8509 0.0000

]T

and its period is T = 3.0461. Figure 8 depicts this halo orbit in 3-dimensional position space, projection

into X − Y plane, Y − Z plane and X −Z plane. This halo orbit has one pair of hyperbolic characteristic

exponents σ = ±6.5918 and a four dimensional center manifold.

Then W̄−1
c as t → ∞ becomes

lim
t→∞ W̄−1

c (t, 0) = lim
k→∞

Ȳ −1(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 p−1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(54)

where p ≈ 16.563 is the solution to the Lyapunov equation:

(eσT )2p+

(∫ T

0

φT
11(τ, t0)B1B

T
1 φ11(τ, t0)dτ

)
= 0 (55)

where σ is the unstable characteristic exponent of the halo orbit. The attractive set for the finite-time

problem is obtained by solving the difference Lyapunov equation (16) over [0, kf ] and approaches the limit

which is analytically predicted in Eq. (52). In the manifold coordinates, the attractive region becomes larger

and finally become unbounded along the right stable eigenvector as in the previous examples. Figure 9

shows the eigenvalues of Y (k) as a function of log(kf ). From Fig. 9, it can be confirmed that λ2 converges

to a constant (≈ 16) while the other eigenvalues converges to zero. The optimal controlled trajectory is

shown in Figs. 10 and 11 where kf = 5(tf = 5T ) and kf = 1000(tf = 1000T ) respectively. As in

the Lyapunov orbit case, the transient behavior of W−1
c (t, 0) is ignored and the periodic feedback gain is

used in the simulation. Figure 12 shows the optimally controlled trajectory in the manifold coordinates for

kf = 5, 100, 1000, 10000. One can find that the optimally controlled trajectories are similar to those of the

Lyapunov orbit case in the manifold coordinates.

The linear control laws were also tested in the full nonlinear equations of motion (37)-(39). Figure

13 shows that for short-time (kf = 10) the linear results would drive the trajectory to the periodic orbit,

clearly following the dynamical structure For long-term iterates (kf = 1000) the instability of the problem

overpowers the weak thrusting, and the trajectory controlled with the linear control law eventually diverges

(fixes are available but were not applied).
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Fig. 8: Halo orbit.
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Fig. 10: Optimal controlled trajectory for tf = 5T .
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Fig. 11: Optimal controlled trajectory for tf = 1000T .
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(c) kf = 1000.
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(d) kf = 10000.

Fig. 12: Optimally controlled trajectories projected into the manifold coordinates: the solid red, dotted

green, solid green, and dotted red lines are aligned with right stable, right unstable, left unstable and left

stable eigenvectors.
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(b) kf = 1000.

Fig. 13: Optimally controlled trajectories projected into the manifold coordinates for the full nonlinear

equations of motion. Note kf = 100 converges and kf = 1000 diverges from the orbit eventually.
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5 Conclusions

This paper presents the basic properties of the attractive set of optimal feedback control to dynamical

systems in astrodynamics problems. The combination of optimal feedback control with the dynamical

structure of the three-body problem yields a direct relation between the attractive set and the dynamical

structure of the original system. In particular we find that the largest dimensions of the set are found along

the stable manifold and the least extent is along the left eigenvector of the unstable manifold. A simple

1-DOF system is used to illustrate the theory. Then we demonstrate the theory through optimal transfer

problem in Hill’s three-body problem. This approach enables a new class of missions, whose solutions

are not obtainable neither through the patched-conics method nor through the classic invariant manifolds

technique. Knowledge of this relationship has the potential to be very useful in determining initial guesses

and control laws for these optimization algorithms.

Appendix A: Proof of Lemma 3.1

Consider the transformation

x = Tz, zT =

[
zu zs zc

]

Ā = T−1AT =

⎡
⎢⎢⎢⎢⎣

Au 0

As

0 Ac

⎤
⎥⎥⎥⎥⎦ , B̄ = T−1B

Note that the order of submatrices are different from Eq. (19). By using the new variable z, the optimal cost

is given by

J∗ =
1

2
xT
0 W

−1
c x0

=
1

2
zT0 (T

TW−1
c (t)T )z0

=
1

2
zT0 W̄

−1
c (t)z0 (56)

where

W̄−1
c (t) = T TW−1

c (t)T

=

(∫ t

t0

(T−1e−AtT )T−1BBTT−T (T T e−AT tT−T )dt

)−1

=

(∫ t

t0

e−ĀtB̄B̄T e−ĀT tdt

)−1

(57)
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Now consider W̄−1
c (t) =

(∫ t

t0

e−ĀtB̄B̄T e−ĀT tdt

)−1

when t → ∞. It can be found that W̄c is the

controllability grammian of (−Ā, B̄). Since the system (A, B) is controllable, W̄c(t) is positive definite for

t > 0. Moreover, W̄c(t) is the solution of the following differential equation

˙̄Wc = (−Ā)W̄c + W̄c(−ĀT ) + B̄B̄T , W̄c(0) = 0 (58)

If we define

(−Ā) =

⎡
⎢⎣ A1 0

0 A2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−Au 0 0

0 −As 0

0 0 −Ac

⎤
⎥⎥⎥⎥⎦ , B̄ =

⎡
⎢⎣ B1

B2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Bu

Bs

Bc

⎤
⎥⎥⎥⎥⎦

W̄c(t) =

⎡
⎢⎣ W11 W12

W21 W22

⎤
⎥⎦

then Eq. (58) is decomposed into

Ẇ11 = A1W11 +W11A
T
1 +B1B

T
1 , W̄11(0) = 0 (59)

Ẇ12 = A1W12 +W12A
T
2 +B1B

T
2 , W̄12(0) = 0 (60)

Ẇ22 = A2W22 +W22A
T
2 +B2B

T
2 , W̄22(0) = 0 (61)

Note thatA1 andA2 are stable and unstable submatrix of−Ā. Since W̄c(t) =

(∫ t

t0

e−ĀtB̄B̄T e−ĀT tdt

)
≥

0 is symmetric, W12(t) = W21(t). The inverse of W̄c(t) is given by

W̄−1
c (t) =

⎡
⎢⎣ W−1

11 +W−1
11 W12S

−1W21W
−1
11 −W−1

11 W12Z
−1
22

−Z−1
22 W21W

−1
11 S−1

⎤
⎥⎦ �

⎡
⎢⎣ W−1

11 + Z11 −Z12

−Z21 Z22

⎤
⎥⎦

S � W22 −W21W
−1
11 W12

In the following, we verify Z11, Z12, Z22 → 0 as t → ∞.

(i) Z22(t)

It is clear that S(t) > 0 since Wc(t) and W−1
c (t) are positive definite for t > 0. Moreover, from Eq. (64) -

(61), the following equation is obtained

Ṡ =
d

dt
(W22 −W21W

−1
11 W12)

= Ẇ22 − Ẇ21W
−1
11 W12 −W21Ẇ

−1
11 W12 −W21W

−1
11 Ẇ12

= A2S + SA2 + (W21W
−1
11 B1 −B2)(W21W

−1
11 B1 −B2)

T (62)

Therefore Ṡ ≥ 0.Moreover, from the relation

Ṡ−1 = −S−1 Ṡ S−1 < 0 (63)

it follows that Z22(t) = S−1(t) → 0 as t → ∞.
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(ii) Z12(t), Z21(t)

From Eq. (64) - (61), the following equation is obtained

Ż21 =− [AT
2 + Z22(W21W

−1
11 B1 −B2)(W21W

−1
11 B1 −B2)

T
]
Z21 − Z21(A1 +B1B

T
1 W

−1
11 )

+ Z22B2B
T
1 W

−1
11 (64)

When t is sufficiently large, Z22 → 0 and Eq. (64) becomes

Ż21 ≈ −AT
2 Z21 − Z21(A1 +B1B

T
1 W

−1
11 ) (65)

Now, we show (A1 +B1B
T
1 W

−1
11 ) in Eq. (65) is positive definite. From Eq. (64), it follows that

Ẇ11 = A1W11 +W11A
T
1 +B1B

T
1 > 0

⇒ Ẇ−1
11 = −W−1

11 (A1W11 +W11A
T
1 + B1B

T
1 )W

−1
11

= −W−1
11 A1 −AT

1 W
−1
11 +W−1

11 B1B
T
1 W

−1
11

= −W−1
11 (A1 +B1B

T
1 W

−1
11 )− (A1 +B1B

T
1 W

−1
11 )TW−1

11 +W−1
11 B1B

T
1 W

−1
11 < 0

From the inequality of the last equation and W−1
11 > 0, A1 +B1B

T
1 W

−1
11 > 0. Therefore, Z21, Z12 → 0.

(iii) Z11(t)

From Eq. (64) - (61), the following equation is obtained

Ż11 =− (A1 +B1B
T
1 W

−1
11 )TZ11 − Z11(A1 +B1B

T
1 W

−1
11 ) + Z12B2B

T
1 W

−1
11 +W−1

11 B1B
T
2 Z21

− Z12(W21W
−1
11 B1 −B2)(W21W

−1
11 B1 −B2)

TZ21 (66)

When t is sufficiently large, Z12, Z21 → 0 and Eq. (66) becomes

Ż11 ≈ −(A1 +B1B
T
1 W

−1
11 )TZ11 − Z11(A1 +B1B

T
1 W

−1
11 ) < 0 (67)

Since A1 +B1B
T
1 W

−1
11 > 0, Z11(t) → 0.

From (i)-(iii), we can see that

lim
t→∞ W̄−1

c (t) =

⎡
⎢⎣ W−1

11 0

0 0

⎤
⎥⎦ (68)

where W11 is solution to the Lyapunov equation:

AT
1 W11 +W11A1 +B1B

T
1 = 0 (69)

Finally, we have

lim
t→∞ W̄−1

c (t) = W̄−1
c (∞) =

⎡
⎢⎢⎢⎢⎣

0 0 0

0 W−1
uu 0

0 0 0

⎤
⎥⎥⎥⎥⎦ (70)

by rearranging the column vectors of transformation matrix T .
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(vi) Eigenstructure of W−1
c

W̄−1
c (∞) = T TW−1

c (∞)T =

⎡
⎢⎢⎢⎢⎣

0 0 0

0 W−1
uu 0

0 0 0

⎤
⎥⎥⎥⎥⎦ (71)

Let ui and vi (i = 1, · · ·n) be the right and left eigenvector corresponding to the eigenvalue λi respec-

tively as defined in Eqs. (21) and (22). By substituting Eqs. (21) and (22) into (71), we have

W−1
c (∞) = T−T

⎡
⎢⎢⎢⎢⎣

0 0 0

0 W−1
uu 0

0 0 0

⎤
⎥⎥⎥⎥⎦T−1 = T−T

⎡
⎢⎢⎢⎢⎣

0

W−1
uu Vu

0

⎤
⎥⎥⎥⎥⎦ =

[
Vs Vu Vc

]
⎡
⎢⎢⎢⎢⎣

0

W−1
uu Vu

0

⎤
⎥⎥⎥⎥⎦

= VuW
−1
uu V T

u (72)

Appendix B: Proof of Lemma 3.2

Assume t0 = 0, kT ≤ tf ≤ (k + 1)T . By application of Floquet’s theorem [23], there exist a constant

matrix M such that φxx(T, 0) = eMT . Then

Wc(tf , 0) =

∫ tf

0

φT
pp(τ, 0)BBTφpp(τ, 0)dτ

+

∫ kT

(k−1)T

φT
pp(τ, 0)BBTφpp(τ, 0)dτ +

∫ t

kT

φT
pp(τ, 0)BBTφpp(τ, 0)dτ

=

∫ T

0

φT
pp(τ, 0)BBTφpp(τ, 0)dτ + e−MT

(∫ T

0

φT
pp(τ, 0)BBTφpp(τ, 0)dτ

)
e−MTT + · · ·

+ e−MT (k−1)

(∫ T

0

φT
pp(τ, 0)BBTφpp(τ, 0)dτ

)
e−MTT (k−1) +

∫ tf

kT

φT
pp(τ, 0)BBTφpp(τ, 0)dτ

=

k−1∑
j=0

e−MTj

(∫ T

0

φT
pp(τ, 0)BBTφpp(τ, 0)dτ

)
e−MTTj +

∫ tf

kT

φT
pp(τ, 0)BBTφpp(τ, 0)dτ

Replacing

eMT → A

e−MTT → A−T(∫ T

0

φT
pp(τ, 0)BBTφpp(τ, 0)dτ

)
→ BBT

k−1∑
j=0

e−MTj

(∫ T

0

φT
pp(τ, 0)BBTφpp(τ, 0)dτ

)
e−MTTj → Y (k)

and setting tf = kT then Y (k) satisfies the Lyapunov difference equation

Y (k + 1) = A−1Y (k)A−T +BBT (73)
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This is easily verified by

Y (k + 1) =

k∑
j=1

(A−1)jBBT (A−T )j +BBT

= A−1

⎛
⎝k−1∑

j=0

(A−1)jBBT (A−T )j

⎞
⎠A−T +BBT

= A−1Y (k)A−T +BBT

For k → ∞, Y (∞) =

∞∑
j=0

(A−1)jBBT (A−T )j satisfies the Lyapunov equation

Y (∞) = A−1Y (∞)A−T +BBT

If we set

(Ā−1) =

⎡
⎢⎣ A1 0

0 A2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

A−1
u 0 0

0 A−1
s 0

0 0 A−1
c

⎤
⎥⎥⎥⎥⎦ , B̄ =

⎡
⎢⎣ B1

B2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Bu

Bs

Bc

⎤
⎥⎥⎥⎥⎦ ,

Y (k) =

⎡
⎢⎣ Y11 Y12

Y21 Y22

⎤
⎥⎦

where Au, As and Ac have the characteristic exponents with positive, negative and zero real parts respec-

tively. Note that the order of submatrices are different from Eq. (19). Since Y (k) =

k−1∑
j=0

AjBBT (AT )j ≥ 0

is symmetric, Y12 = Y21. Then Eq. (16) becomes

Y11(k + 1) = A1Y11(k)A
T
1 +B1B

T
1 , Y11(0) = 0 (74)

Y12(k + 1) = A1Y12(k)A
T
2 +B1B

T
2 , Y12(0) = 0 (75)

Y22(k + 1) = A2Y22(k)A
T
2 +B2B

T
2 , Y22(0) = 0 (76)

Inverse of Y (k) is given by

Y −1(k) =

⎡
⎢⎣ Y −1

11 + Y −1
11 Y12S

−1Y21Y
−1
11 −Y −1

11 Y12S
−1

−S−1Y21Y
−1
11 S−1

⎤
⎥⎦

S � Y22 − Y21Y
−1
11 Y12

After some matrix manipulation, we can obtain

S(k + 1) =A2S(k)A
T
2 + (B2 −A2Y21(k)Y

−1
11 (k)A−1

1 B1)X(B2 −A2Y12(k)Y
−1
11 (k)A−1

1 B1)
T

X � (I +BT
1 A

−T
1 Y −1

11 (k)A−1
1 B1)

−1 > 0
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Since λ(A2) ≥ 1, S(k) > 0 is monotone increasing and this implies S(k)−1 > 0 is monotone decreasing.

Therefore S(k) → 0 as k → ∞. It also follows that Y12, Y21 → 0. Finally, Y (k)−1 as k → ∞ becomes

lim
k→∞

Y −1(k) =

⎡
⎢⎣ Y −1

11 0

0 0

⎤
⎥⎦ (77)

where Y11 is solution to the Lyapunov equation:

A−1
1 Y11A

−T
1 +

(∫ T

0

φT
11(τ, t0)B1B

T
1 φ11(τ, t0)dτ

)
= 0 (78)

where A1 has unstable the characteristic exponents of eMT and φ11 is the state transition matrix of unstable

subsystem. The rest of the lemma can be proved similarly to the proof of Lemma 3.1.
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