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Abstract

The orbit determination and maintenance are always required for space missions

due to the existence of uncertainties. In an unstable orbit dynamics environ-

ment, such as libration point orbits in the restricted three-body problem, the

performance of orbit determination and maintenance will be severely influenced

by the unstable characteristics. This paper proposes an integrated approach for

orbit determination and maintenance for spacecraft subject to an unstable dy-

namics environment. X-ray pulsar navigation is introduced to determine the or-

bit of spacecraft under the unstable dynamics environment. Then a new orbital

maintenance strategy is proposed for libration point orbits mission, exploiting

the effect of the hyperbolic instability of libration point orbits. Simulation re-

sults for the Earth-Moon L2 halo orbit present the effectiveness of the integrated

approach.

Keywords: Orbit determination, Orbit maintenance, Libration point orbits,

X-ray pulsar navigation, Orbit uncertainty

1. Introduction

Spacecraft navigation concerns how to decrease the orbit uncertainty and

obtain accurate orbit prediction in order to increase the success rate of space

mission [1, 2]. This paper investigates the spacecraft navigation in an unstable

dynamics environment in terms of the distribution of orbit uncertainty. In a
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stable dynamics environment, for example the classic two-body problem, the

growth of orbit uncertainty is along the downtrack direction of the orbit, that

is along the direction of the local velocity [3]. Nevertheless, the conclusion is

entirely different in the unstable dynamics environment. Scheeres studied the

dynamics of orbit uncertainties in the Sun-Earth system and the simulation re-

sults presented that the orbit uncertainties are stretched out along the direction

of unstable manifold of local orbit in the phase space [4, 5]. Scheeres further

theoretically demonstrated that unstable manifold controls the distribution of

orbit uncertainty in a 1-DOF unstable system [6].

Although conventional spacecraft navigation has been successfully applied to

the past the Sun-Earth libration-point missions [7, 8], the spacecraft navigation

in the Earth-Moon system seems more difficult since the instability in Sun-Earth

system is weak enough for the Sun-Earth system [9]. In [10], influences of the

unstable dynamics to the performance of orbit determination is studied. In [4],

the ground tracking method is used to determine the spacecraft’s orbit and it

is indicated that the distribution of orbit uncertainty will be greatly changed

after the ground tracking measurements are incorporated into. Based on the

local dynamics, some basic ideas are proposed in [5] and [6] by optimizing the

measurement time to increase the measurement efficiency.

In contrast to past studies, this paper introduces the X-ray pulsar naviga-

tion (XNAV) for orbit determination [11] in an unstable orbital environment,

instead of using the conventional ground tracking method. XNAV is a newly de-

veloped spacecraft autonomous navigation technique, owning lots of advantages

for deep space exploration [12, 13]. By incorporating XNAV measurements into

Kalman filter architecture, the online autonomous navigation can be realized

[14]. However, most of the literatures on XNAV concerned how to increase the

performance in the stable trajectory and only a few applied XNAV to unstable

orbital environment [15, 16].

Libration point orbits are proved to be suitable for space science experimen-

t, however, instability of the libration point orbits will cause the spacecraft to

drift far away from the nominal one [17]. Hence, the stationkeeping maneuver
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is required to maintain the spacecraft near the nominal trajectory. Farquhar

[18] first introduced the stationkeeping problem for libration-point mission and

proposed several strategies for near-periodic orbits about the collinear points.

The famous International Sun-Earth Explorer-3 (ISEE-3) successfully applied

the stationkeeping method for about 3.5 years [19]. After that, various differ-

ent types of stationkeeping methods were proposed, including the target point

method [20, 21] and Floquet mode method [22, 17]. In the target point method,

target points are selected along the nominal trajectory on different discrete time

epochs and the maintenance maneuver is performed to force the spacecraft to

be close to these target points. A weighted cost function is introduced for min-

imizing the total maneuver cost. On the other hand, the Floquet mode method

is proposed based on the dynamical systems theory and Floquet modes. The

unstable component is approximated by the eigenvector associated with unsta-

ble eigenvalue of the monodromy matrix. Then maintenance maneuver can be

computed to make the projection of the error onto the unstable direction be

zero, meaning that the error will not diverge along this direction. Some other

stationkeeping strategies are also proposed [23]. However, these strategies have

similar principle that is to eliminate the error along unstable component of the

monodromy matrix and use the actual state to compute the maneuver.

In this paper, the Earth-Moon circular restricted three-body problem is con-

sidered, which preserves the essential nature of the unstable dynamics in astro-

dynamic problem [24] and the uncertainties are incorporated to the dynamics

model. Then XNAV is applied for the orbit determination and stationkeeping

maneuver is designed to maintain the spacecraft in the vicinity of the reference

orbit. Spacecraft’s position and velocity are estimated by the Kalman filter

[25]. The estimated error and the corresponding covariance matrix are used to

describe the distribution of orbit uncertainty. Considering the X-ray source is

widely distributed in the whole universe, it is possible to carry out orbit de-

termination with measurements of multiple different X-ray pulsars. It is shown

that different pulsars show different orbit-determination performance, which is

closely related to the local unstable dynamics.
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The covariance-based orbit maintenance approach is proposed to overcome

the instability of monodromy matrix approach when the estimated state is de-

viated from the actual state. Moreover, compared with the monodromy matrix

approach and the Floquet mode approach, the covariance matrix is output by

the orbit-determination filter with the state estimations, meaning the compu-

tational time of monodromy matrix can be saved.

The remainder of this paper is organized as follows. Section 2 presents

the spacecraft dynamics model in the rotating and inertial frames, respectively.

Section 3 gives the Orbit determination with X-ray pulsar navigation. Section 4

presents the covariance-based orbit maintenance algorithm. Section 5 presents

the numerical simulation and analysis for the integrated orbit determination

and maintenance approach. Followed by conclusions is in Section 6.

2. Dynamics Model

As an unstable dynamics environment, the motion of spacecraft in the Earth-

Moon restricted-circular three-body problem is considered. The dynamics model

is defined in the Earth-Moon barycenter synodic frame, which is normalized

under the following assumptions: 1) the total mass of the Earth and Moon is 1;

2) the gravitational constant is 1; 3) the distance between the Earth and Moon

is 1. Thus, the normalized dynamics model is expressed as [26]

ẍ− 2ωẏ =
∂U

∂x

ÿ − 2ωẋ =
∂U

∂y

z̈ =
∂U

∂z

(1)

where

U =
ω2

2

(
x2 + y2

)
+

1− µ
r1

+
µ

r2
,

(x, y, z) is the position of the spacecraft, r1 and r2 are the distance of the

spacecraft with respect to the Earth and Moon, µ is the gravitational constant

of the Earth-Moon system and ω is the rotating speed of the Earth-Moon system.
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Equation (1) is usually used for theoretical analysis and trajectory design,

however, is inappropriate for orbit determination with XNAV because XNAV

theory is defined in the inertial frame. Consequently, the other dynamics model

in the Earth-center inertial frame is also described as following
ẍ = −µE

r3 x+ µM

(
x−xm

r3sm
− xm

r3m

)
ÿ = −µE

r3 y + µM

(
y−ym
r3sm

− ym
r3m

)
z̈ = −µE

r3 z + µM

(
z−zm
r3sm

− zm
r3m

) (2)

where (x, y, z) and (xm, ym, zm) are positions of the spacecraft and Moon in the

inertial coordinate respectively, and µE and µM are the gravitational constant

of the Earth and Moon respectively. The other variables are defined as

r =
√
x2 + y2 + z2,

rm =
√
x2m + y2m + z2m,

rsm =

√
(x− xm)

2
+ (y − ym)

2
+ (z − zm)

2
.

Equation (2) can be rewritten in the form of first order of differential equation

as

Ẋ (t) = f̃ [X (t) , t] =



ẋ

ẏ

ż

−µE

r3 x+ µM

(
x−xm

r3sm
− xm

r3m

)
−µE

r3 y + µM

(
y−ym
r3sm

− ym
r3m

)
−µE

r3 z + µM

(
z−zm
r3sm

− zm
r3m

)


(3)

where X = [x, y, z, ẋ, ẏ, ż]
T

. The solution of Eq. (3) can be approximated with

2nd-order accuracy as

X (t) =X (t0) + (t− t0) f̃ [X (t0) , t0] +
(t− t0)

2

2
F [X (t0) , t0] f̃ [X (t0) , t0]

+O(t− t0)
2

(4)

where

F [X (t0) , t0] =
∂f̃ [X (t) , t]

∂X (t)

∣∣∣∣∣
t=t0

(5)
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Thus, the discrete form of Eq. (3) is geivne by the nonlinear differential equation

Xk = f [Xk−1, k − 1] +Wk−1 (6)

where

f [Xk−1, k − 1] = Xk−1 + T · f̃ [Xk−1] +
T 2

2
· f̃ [Xk−1] · F (Xk−1) +Wk−1,

and Wk−1 is the process noise sequence and T = tk − tk−1.

3. Orbit Determination with X-ray Pulsar Navigation

3.1. Extended Kalman filter

The classical extended Kalman filter (EKF) algorithm [27] is adopted to

determine the spacecraft’s orbit and the corresponding covariance, for the ad-

vantages of simple algorithm structure and small amount of computation.

The EKF consists of time update and measurement update as

X̂k,k−1 = f
(
X̂k−1,k−1

)
(7)

Pk,k−1 = Φk,k−1Pk−1,k−1ΦTk,k−1 +Qk−1 (8)

Kk = Pk,k−1H
T
k

[
HkPk,k−1H

T
k +Rk

]−1
(9)

X̂k,k = X̂k,k−1 +Kk [Zk − h (Xk,k−1)] (10)

Pk,k = [I −KkHk]Pk,k−1 (11)

where X̂k,k is the state estimations and Pk|k is the corresponding covariance,

f (·) and h (·) are the dynamics model and measurement model, respectively,

Hk is the measurement matrix, Qk−1 is the process noise matrix and Rk is

the measurement noise matrix, Zk is the actual measurements, and Φk,k−1 is
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the state transition matrix, which is computed by integrating the following

differential equations

Φ̇ (t, t0) = A (t) Φ (t, t0) ,Φ (t0, t0) =I (12)

A (t) =
∂f (X, t)

∂X (t)
(13)

In general, the state and covariance are propagated forward to the epoch of

the next measurements by Eqs. (7) and (8), and then they are updated with

measurement input by Eqs. (10) and (11). Unfortunately, the interval between

two neighbor XNAV measurements is very long, and one-step propagation in a

long interval will degrade the state and covariance predictions. Therefore, the

time update of the state and covariance will be performed in a shorter interval

until the next measurement updating epoch.

3.2. X-ray pulsar navigation

3.2.1. Measurement Model

The time of arrival (TOA) of the photons emitted by the X-ray pulsar is

used for the orbit determination. The X-ray photons are detected by the sensor

mounted on the spacecraft, and after the photons are accumulated for a period,

TOA at the spacecraft can be directly estimated on the basis of epoch folding

technique. The difference of TOA at two spacecrafts is used as the measurements

in XNAV. In general, one spacecraft is set at the solar system barycenter (SSB)

and TOA at SSB is computed by the pulse timing model. Therefore, TOA at

the other spacecraft is modeled as [28]

tSC =tSSB +
n · r
c

+
2µs
c3

ln

∣∣∣∣n · r + r

n · b+ b
+ 1

∣∣∣∣
+

1

2cD0

[
(n · r)2 − r2 + 2 (n · b) (n · r)− 2 (b · r)

]
+ δt

(14)

where tSC and tSSB are the TOA at the spacecraft and SSB, respectively, n is

the direction of the pulsar, r is the position of the spacecraft with respect to

SSB, c is the speed of the light, µs is the gravitational constant of the Sun, b is
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the position of SSB with respect to the Sun, D0 is the distance from the pulsar

to the Earth, and δt is the measurement error, resulting from the modelling

error, clock error, etc.

Generally, difference of TOAs at the spacecraft and SSB is used for mea-

surement model construction as

h [X (t) , t] =
[
c
(
t1SC − t1SSB

)
, c
(
t2SC − t2SSB

)
, ..., c (tmSC − tmSSB)

]T
(15)

where tiSC and tiSSB are the TOA of i-th pulsar at the spacecraft and SSB,

respectively, and m is the number of simultaneously observed pulsars. Accord-

ingly, the meausurement model of XNAV is expressed as

Zk = h [Xk, k] + Vk (16)

where Vk is the measurement noise sequence. For EKF, the corresponding mea-

surement matrix is defined as

Hk =
∂h [X, t]

∂X

∣∣∣∣
t=tk

(17)

3.2.2. Accuracy Model

The performance of XNAV mostly depends on the TOA accuracy that is

theoretically determined by the SNR of the pulse profile. Generally, SNR of the

pulse signal is expressed as [29]

SNR =
Np
σN

=
FXpf

√
Aτ√

[BX + FX (1− pf )]W/P + FXpf
(18)

where Np is the pulse signal component of photon-counting, σN is the mea-

surement standard deviation of pulse signal, FX and BX are radial fluxes of

the X-ray photons and X-ray background radiation flux, respectively, A is the

area of the X-ray sensor, pf is the pulse flux ratio, W is the pulse width, P is

the pulse period, and τ is the accumulating time of X-ray photons. Then the

accuracy of TOA is expressed as

σTOA =
0.5W

SNR
(19)
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Therefore, the ranging measurement accuracy along the line of sight to the X-ray

pulsar can be expressed as

σrange = cσTOA (20)

4. Orbit Maintenance Algorithm

4.1. Review of Monodromy-Based Approach

Given the error between the nominal trajectory and the actual one defined

as

δXk =

 δr

δv

 = XN
k −Xk (21)

where XN
k and Xk are the state on the nominal trajectory and actual one for

the k-th epoch, respectively. Then Xk can be expressed as

δXk =

6∑
i=1

ciei (22)

where ei are the eigenvector of the monodromy matrix, which is determined by

the state transition matrix for one period of halo orbit. The six eigenvectors are

sorted in three different pairs by the corresponding eigenvalue as [30]

λ1 > 1, λ2 < 1, λ1λ2 = 1

λ3 = λ4 = 1

λ5 = λ∗6, |λ5| = |λ6|

(23)

According to the dynamical system theory, δXk will be stretched along the

unstable component and the actual trajectory will depart from the nominal one.

In fact,

MnδXk = Mn
6∑
i=1

ciei

=

6∑
i=1

ciM
nei

=

6∑
i=1

ciλ
n
i ei → c1λ

n
1 e1 (n→∞)

(24)
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where M is the monodromy matrix.

To eliminate the unstable component of δXk, an impulsive velocity correction

∆v should be added to satisfy

δXk +

 0

∆v

 =

6∑
i=2

diei (25)

To simplify the expression for ∆v, the matrix of eigenvectors is divided into four

block matrices as

[e1, e2, e3, e4, e5, e6] =

 S11 S12

S21 S22

 (26)

where Sij is 3×3 matrix. Then solution of ∆v is given as

∆v=
(
S21 − S22

(
S−112 S11

))


0

d2

d3

+ S22

(
S−112 δr

)
− δv (27)

In Eq. (27), ∆v is determined by two free variables d2 and d3. Therefore, |∆v|

can be minimized by seeking the extremum of the quadratic polynomial of ∆v2.

The specific procedure can be found in [31].

4.2. Covariance-based approach

According to [5, 6], the extremal extensions of a linear deviation δXk is

considered. To maximize the 2-norm of δXk, the Lagrangian is introduced as

L = δXT
k δXk − λ

(
δXT

k P
−1
k,k−1δXk − p

)
(28)

where λ is the Lagrange multiplier, Pk,k−1 is the covariance matrix without

measurement update and δXk is assumed to lie on the surface of probability

ellipsoid

δXkP
−1
k,k−1δX

T
k = p (29)

where p is an arbitrary positive real number.

Solving for the extremum of L leads the following extremal condition

[Pk,k−1 − λI] δXk = 0 (30)
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It means it is most probably that the growth of δXk is along the direction

of eigenvector associated with the maximum eigenvalue of covariance matrix

Pk,k−1.

If the motion about a periodic orbit (or equilibrium point) is considered,

then the limiting uncertainty directions are aligned with the unstable manifold

as shown in [4]. Therefore, it is reasonable to say that the divergent direction

can be determined by the maximum eigenvector of Pk,k−1, being equivalent to

the unstable eigenvector of monodromy matrix.

Based on this observation, the covariance-based orbit maintenance strategy

is proposed. Similarly, the error can be expressed with another set of base as

δXk =

6∑
i=1

c̄iēi (31)

where ēi is the eigenvector of covariance matrix defined by

Pkēi = λ̄iēi (32)

It should be noted that the properties of eigenvalues in Eq. (23) do not hold

for λ̄i, and all λ̄i are positive real value since Pk is a real symmetric matrix.

Therefore, the direction of maximum δXk is determined by the eigenvector cor-

responding the maximum eigenvalue. Here, λ̄1 denotes the maximum eigenvalue

and the corresponding eigenvector is ē1.

With the maneuver correction, the coefficient of ē1 should be zero, expressed

as

δXk +

 0

∆v̄

 =

6∑
i=2

d̄iēi (33)

The subsequent procedure is the same as that of monodromy-based approach.

5. Simulation and analysis

5.1. Nominal Trajectory

Computation of the nominal orbit about the Earth-Moon L2 starts from the

third-order analytical solution in [32]. However, the analytical solution cannot
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Figure 1: Trajectory in Earth center synodic frame for 12 revolutions (about 180 days).
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Figure 2: Trajectory in Earth center inertial frame for 12 revolutions (about 180 days).

provide the accurate initial guess for orbit propagation. Therefore, differential

correction method is applied to correct the analytical solution [33]. The differ-

ential correction method utilizes the property that halo orbits are symmetrical

with respect to the x-z plane. That is to say, the initial and finishing vector

in every half period should be perpendicular to the x-z plane. Based on this

property, the corrected initial state can be computed through multiple itera-

tions. By propagating from the corrected initial guess, a nominal halo orbit

in CRTBP is obtained, and then transformed into the Earth centered inertial

frame by rotation and scaling to obtain the nominal trajectory in Earth cen-

ter inertial frame. Replication of one revolution in CRTBP for multiple times

provides the long-term nominal trajectory. Figures 1 and 2 show the nominal
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trajectory about the Earth-Moon L2 in the Earth centered synodic and inertial

frame, respectively.

5.2. Results for orbit determination

5.2.1. Orbit determination without measurements

To investigate the distribution of the orbit uncertainty, the relationship be-

tween directions of the estimated error, the maximum orbit uncertainty and the

unstable manifold is investigated. The estimated error is computed by compar-

ing the nominal orbit with the estimated one. The maximum orbit uncertainty

is defined by the maximum eigenvector of the covariance matrix. The direction

of unstable manifold of a periodic orbit is locally approximated by the eigen-

vector associated with the unstable eigenvalue of the monodromy matrix. It

is worth mentioning that the state transition matrix is defined in the rotating

frame. Hence the frame transformation is applied to maintain the consistent

frame with the maximum orbit uncertainty.

Figures 3 and 4 show the projection of direction of estimated error and the

maximum orbit uncertainty onto the direction of the unstable manifold and

downtrack, respectively. It is clear that the projection onto the direction of the

unstable manifold will approach one after a certain period, meaning that the

direction of estimated error and maximum orbit uncertainty are aligned with

the direction of the unstable manifold.

Figure 4, on the other hand , shows that in the unstable dynamics environ-

ment, the estimated error and orbit uncertainty are not directly related to the

geometry of local orbit. Instead, the unstable manifold controls the evaluation

of the estimated error and orbit uncertainty in the long term. The large devi-

ation of the estimated trajectory from the nominal trajectory shown in Fig. 5

explains the phenomenon that the projection in the end phase (after 25 days)

of Fig. 3 does not hold one. It is indicated that this conclusion only holds when

the estimated trajectory remains near the nominal one.
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Figure 3: Projection onto direction of unstable manifold.
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Figure 4: Projection onto downtrack direction.
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5.2.2. Orbit determination with XNAV measurements

This section investigates the effect of the XNAV measurements on the orbit

uncertainty under unstable dynamics environment. Orbit determination is per-

formed with measurements of each single pulsar. Parameters of pulsars used in

the simulation are given in Table 1, and the corresponding measurement noise

is computed by Eqs. (18) - (20). Other parameters in the simulation are set

as: the area of X-ray detector is 1 m2; the background radiation flux is 0.005

ph/cm2·s−1; The speed of light is 2.99792457×108 m·s−1; the gravity constant

is 6.67310-11 N·m2·kg−2; the mass of the Earth and Moon are 5.974×1024 kg

and 7.348×1022 kg, respectively; the distance from the Earth to the Moon is

3.844×108 m.

Figures 6 to 9 show the projection of the directions of the estimated error and

the maximum orbit uncertainty onto the direction of the unstable manifold with

measurement updating time of 4 hours and 48 hours for B1937+21 and B1509-

58, respectively. From Figs. 6 to 9, some common features can be observed. The

projection tends to increase in the absence of XNAV measurements, especially

in the case of longer measurement updating time, being consistent with the

conclusion shown in the previous section. However, after the measurement

update, the value decreases sharply. It indicates that both the estimated error

and the orbit uncertainty along the unstable direction decrease, that is to say,

the orbit along this direction is well determined. Figure 10 gives the angle

between the direction of the unstable manifold and the pulsar line-of-sight. By

comparing with Figs. 6 to 9, it can be easily found that when the angle is close

to 90 deg, the effect of measurements is not clear. However, when the pulsar

line-of-sight approaches the direction of the unstable manifold, the projection

decreases more sharply. Particularly in Fig. 9, the orbit uncertainty does not

decrease significantly after measurements because the line-of-sight of B1509-58

is almost orthogonal to the direction of unstable manifold. It can provide the

indicator of judging the measurement efficiency and the criteria to select the

better observations to increase the navigation performance (see [34]).
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Under the circumstance of different measurement updating time, for exam-

ple in Fig. 6 and 7, the blue line decreases more sharply after the measurement

update than the red line. This is due to the difference of measurement accura-

cy, that more accurate measurements can decrease the orbit uncertainty more

effectively. Another interesting phenomenon is observed, for example as in the

red line shown in Fig. 7. When the simulation time is on Day 3 and Day 17, the

projection increases after the measurement update, which is contrary to other

results. It is found from Fig. 10 that the angle of Day 3 and Day 17 is 90 deg,

meaning the unstable manifold and pulsar line-of-sight are orthogonal to each

other. Hence this phenomenon explains that the projection is very sensitive to

the process noise, causing the adverse effect on the results.
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Figure 6: Projection of the estimated error onto the unstable manifold using B1937+21.

0 5 10 15 20 25 30

Time (day)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

je
ct

io
n 

on
to

 d
ire

tio
n 

of
 u

ns
ta

bl
e 

m
an

ifo
ld 4-hour measurement update

48-hour measurement update

Figure 7: Projection of the maximum orbit uncertainty onto the unstable manifold using

B1937+21.
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Figure 8: Projection of the estimated error onto the unstable manifold using B1509-58.
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Figure 9: Projection of the maximum orbit uncertainty onto the unstable manifold using

B1509-58.
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Figure 10: Angle between the direction of the unstable manifold and the pulsar line-of-sight.
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5.3. Results for orbit maintenance

This section demonstrates the effectiveness of proposed covariance-based or-

bit maintenance approach. The duration of the nominal trajectory is 180 days

(12 periods in synodic frame). The initial orbit derivation follows zero-mean

normal distribution with σx = σy = σz = 1 km and σẋ = σẏ = σż = 1 cm/s. In

contrast to the previous simulation, measurement update is performed with ob-

servations of B1937+21, B1821-24 and B0531+21 simultaneously. Under above

simulation conditions, Monte Carlo simulation is performed for 20 trials.

For the monodromy-based orbit maintenance, the measurement update and

maintenance maneuver are performed every 1 hour and 7.5 days, respectively.

Figure 11 shows actual trajectory of one of 20 trials. As it is clearly seen, the

trajectory is remained near the nominal trajectory for 10 periods (about 150

days) and then diverges away from the nominal trajectory. Figure 12 gives the

average maneuver cost of 20 trials. The similar conclusion can be found that

the cost increases sharply after 150 days.

For comparison, Fig. 13 shows the results without initial derivation and

orbit-determination error. The actual trajectory is almost the same as the

nominal one and the total cost is just 9.49×10−5 m/s. It is concluded the

monodromy-based approach is sensitive to the orbit and measurement uncer-

tainties.
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Figure 11: Actual trajectory in synodic frame with the monodromy-based orbit maintenance.
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Figure 12: Average cost of each maneuver for 20 trials.
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Figure 13: Actual trajectory in synodic frame with the monodromy-based orbit maintenance

without initial derivation and orbit-determination error.

Next, the results for the covariance-based approach are shown. The statistic

results is summarized in Table 2, where Intom and Intmp denote the interval

between the execution of neighbour maneuvers and measurement update, δvtotal

is the total cost of maintenance maneuvers, and Ave and Range are the mean

and range of δvtotal among 20 times simulation. In the cases of 4-hour and

6-hour intervals of maneuvers, the average cost is almost the same. However,

according to the range of the maneuver cost, results with 4-hour interval is

more stable than that with 6-hour interval. On the other hand, if the maneuver

interval is fixed, interval of measurements seems to have no effect on the results.

Unexpectedly, the total cost is clearly increased when maneuver interval rises

to 12 hours. Results arbitrarily chosen from 20 trials with 12-hour maneuver
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Table 2: Statistic results of covariance-based orbit maintenance

Intom Intmp
δvtotal

Ave Range

4 hours
2 hours 2.449 m/s 2.014-3.629 m/s

4 hours 2.534 m/s 2.144-3.433 m/s

6 hours

2 hours 2.481 m/s 1.779-4.198 m/s

3 hours 2.519 m/s 1.719-4.484 m/s

6 hours 2.460 m/s 1.564-3.930 m/s

12 hours

2 hours 16.587 m/s 2.085-36.795 m/s

3 hours 18.554 m/s 3.486-43.538 m/s

6 hours 12.925 m/s 1.714-51.062 m/s

12 hours 15.933 m/s 3.625-41.982 m/s

interval and 2-hour measurement maneuver are shown in Figs. 14 and 15.

The actual trajectory is still near the nominal one, however, the cost for each

maneuver is increased over time. It is possible that actual trajectory diverges far

away from the nominal one in the future. The opposite results, shown in Figs.

16 and 17 with 4-hour maneuver interval and 2-hour, are stable during the whole

period. Therefore, the results verifies that the covariance-based approach with

smaller maneuver interval has stronger adaptivity to the orbit and measurement

uncertainties with smaller cost, while the monodromy-based approach cannot

accommodate uncertainties.
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Figure 14: Actual trajectory in synodic frame (Intom = 12 hours and Intmp = 2 hours).
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Figure 15: Cost of each maneuver (Intom = 12 hours and Intmp = 2 hours).
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Figure 16: Actual trajectory in synodic frame (Intom = 4 hours and Intmp = 2 hours).
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Figure 17: Cost of each maneuver (Intom = 4 hours and Intmp = 2 hours).
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6. Conclusions

This paper investigates the integrated orbit determination and orbit mainte-

nance approach for spacecraft in unstable dynamics environments. In contrast

to the case in the stable dynamics environment, the distribution of orbit un-

certainty in the unstable dynamics environment is dominated by the unstable

manifold. When the XNAV measurements are included into orbit determina-

tion, measurement from different pulsars show different measurement efficiency,

which is closely related to the unstable manifold. Then a new orbital main-

tenance strategy is proposed using the limiting direction of uncertainty. The

maintenance maneuver is designed to force the projection of the derivation from

the nominal trajectory onto the unstable direction to be zero so that the deriva-

tion converges to zero, instead of being stretched along the unstable direction.

By integration with the orbit determination, the covariance matrix is directly

obtained by the filter and the computation of monodromy matrix is not re-

quired. Simulation results show the spacecraft can be remained in the vicinity

of the nominal trajectory with the covariance-based orbit maintenance approach.

The future work includes validation of the integrated orbit determination and

maintenance approach in more realistic environment, e.g. under the ephemeris

model.
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