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Abstract

Station-keeping and formation flying along a libration point orbit in the cir-

cular restricted three-body problem are considered. In order to deal with the

relative motion with respect to a reference trajectory, this paper extends our

previous study which derives the station-keeping controller based on the output

regulation theory. First the reference orbit of the chief satellite is represented

as the output of an autonomous system called exosystem, assuming the refer-

ence orbit is given by a truncated Fourier series. For the formation flying, the

relative trajectory of the deputy satellite with respect to the chief satellite is

also represented by the output of an exosystem. Then the reference signal to be

asymptotically tracked for the formation flying is obtained by the superposition

of the two exosystems. The proposed controllers are applied and verified for the

station-keeping and formation flying along a periodic orbit of the Sun-Earth L2

point.

Keywords: Station-keeping, Formation Flying, Output Regulation

1. Introduction

Libration points and bounded orbits around them in the circular restricted

three-body problem (CRTBP) have been given much attention for long time
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since they have attractive properties which the Keplerian motion does not

posses. In these decades, several space missions using periodic or quasi-periodic5

orbits around the collinear libration point have been conducted [1, 2, 3, 4, 5, 6,

7, 8, 9, 10]. The formation flying of multiple satellite around the libration point

also has significant space science applications such as deep space interferometry

which requires a number of telescopes to maintain formation with very high

accuracy [11]. However, the dynamics around the collinear libration point is10

highly unstable and hence effective methods of station-keeping and formation

flying are required to achieve desired missions [12, 13, 14].

Station-keeping and formation flying in the CRTBP have been studied by

many authors [15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Recently, based on the out-

put regulation theory of a linear system [25], a control law to realize formation15

flying and station-keeping was proposed [26, 27]. However, they utilized the

dynamics obtained via feedback linearization, and therefore the control costs

for large reference orbits become high due to the nonlinearity.

The purpose of this paper is to propose the station-keeping and formation

flying controllers based on the nonlinear output regulation theory [28, 29] as20

the extension of the works [26, 27] to deal with the relative motion with respect

to a reference trajectory. First, a Fourier series approximation is introduced

to describe a periodic or quasi-periodic orbit in the CRTBP. By using this ap-

proximation, a neutrally stable exosystem to describe a reference trajectory for

station-keeping is developed and the explicit solution to the nonlinear output25

regulation problem is derived. Then, the reference trajectory for formation fly-

ing based on the relative motion model is developed by superposing another

exosystem which describes a desired motion of the deputy satellite with respect

to the chief satellite. As numerical examples, the Sun-Earth CRTBP is con-

sidered and the station-keeping and formation flying along a Lyapunov orbit30

around the L2 point are demonstrated.
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2. Equations of Motion in CRTBP

In the CRTBP, the equations of motion in non-dimensional form [30] are

expressed as

X ′′ − 2Y ′ =
∂U

∂X
+ ux

Y ′′ + 2X ′ =
∂U

∂Y
+ uy (1)

Z ′′ =
∂U

∂Z
+ uz

where {X,Y, Z} is the rotating frame whose origin is the barycenter of the

system; the coordinates and time are normalized by the distance between the

two main bodies and by the period of the circular orbit respectively; (·)′ denotes

the differentiation of (·) with respect to non-dimensional time t; (ux, uy, uz) is

the control acceleration;

U =
1− µ

r1
+

µ

r2
+

1

2

(
X2 + Y 2

)
r1 =

√
(X + µ)2 + Y 2 + Z2

r2 =
√
(X − 1 + µ)2 + Y 2 + Z2

where µ = M2/(M1 + M2); and M1 and M2 are the masses of the two main

bodies with M1 > M2.

Equation (1) has libration points known as Lagrangian points Li satisfying

∂U

∂X
=

∂U

∂Y
=

∂U

∂Z
= 0 (2)

and the Lagrangian points are expressed as

L1 = (l1(µ), 0, 0), L2 = (l2(µ), 0, 0), L3 = (l3(µ), 0, 0)

L4 = (1/2− µ,
√
3/2, 0), L5 = (1/2− µ,−

√
3/2, 0)

where li(µ) are determined by setting Y = 0 and solving
∂U

∂X
= 0. To describe

the motion near a collinear libration point Li (i = 1, 2, 3), it is convenient to

use a coordinate system {x, y, z} with its origin at Li. Replacing {X,Y, Z} with
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{x+ li, y, z} and rewriting Eq. (1) in the state space form yields

x′ = f(x) +Bu (3)

where x =
[
rT r′

T
]T

, r =
[
x y z

]T
, u =

[
ux uy uz

]T
, B =[

O3 I3

]T
and

f(x) =

 r′

∇U(r) +Kr′

 , K =


0 2 0

−2 0 0

0 0 0


3. Nonlinear Output Regulation Problem35

The nonlinear output regulation theory is reviewed in this section. The

detailed description can be found in [28, 29].

The output regulation problem for a general nonlinear system is modeled by

ẋ = f(x,u,w) (4)

e = h(x,u,w) (5)

ẇ = s(w) (6)

where state x ∈ Rn, control input u ∈ Rm, exogenous signal w ∈ Rq and reg-

ulated output e ∈ Rr. Equation (4) is a plant, and the exogenous signal w

is generated by an external autonomous system (6), which is called an exosys-40

tem. Assuming that f : Rn × Rm × Rq → Rn, h : Rn × Rm × Rq → Rr and

s : Rq → Rq are Ck (k ≥ 2), and also that f(0,0,0) = 0, h(0,0,0) = 0 and

s(0) = 0. Moreover, the plant (4) and the exosystem (6) satisfy the following

assumptions: The pair
(

∂f
∂x (0,0,0),

∂f
∂u (0,0,0)

)
is stabilizable and the exosys-

tem (6) is neutrally stable, which are necessary conditions to solve the following45

local output regulation problem.

The local output regulation problem is to find a stabilizing feedback control

law such that e → 0 as time goes to infinity for any initial state in a vicinity

sufficiently close to (x(0),w(0)) = (0,0). This problem is solvable if and only if
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there exist mappings π(w) and c(w) with π(0) = 0 and c(0) = 0 which satisfy

the conditions [28]:

∂π(w)

∂w
s(w) = f(π(w), c(w),w) (7)

0 = h(π(w), c(w),w) (8)

These solvability conditions guarantee that the regulated output for the closed-

loop system consisting of Eqs. (4) and (6) tends to zero as time goes to infinity.

Equation (7) is the condition that the closed-loop composite system has a center

manifold x = π(w), and Eq. (8) implies that the regulated output for the system50

lying on the center manifold is zero.

Finally, an admissible feedback control law is given by

u = −F (x− π(w)) + c(w) (9)

where F is an arbitrary matrix such that
(

∂f
∂x (0,0,0)−

∂f
∂u (0,0,0)F

)
is stable.

4. Station-Keeping and Formation Flying Controller

In this section, the station-keeping and formation flying problems are formu-

lated as tracking problems and the output regulation theory is applied to solve55

the problems.

4.1. Station-Keeping Controller

The station-keeping on a libration point orbit is considered. Let x be

the state of a satellite, xC be the reference orbit, and xC
n be the n-th order

approximation of xC . Assuming that the projection of the reference trajec-

tory onto each coordinate is a periodic function, the position vector of xC
n ,
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rCn =
[
xC
n yCn zCn

]T
, is given by

xC
n (t) = aCx0 +

n∑
k=1

(aCxk cos kω
C
x t+ bCxk sin kω

C
x t)

yCn (t) = aCy0 +
n∑

k=1

(aCyk cos kω
C
y t+ bCyk sin kω

C
y t) (10)

zCn (t) = aCz0 +
n∑

k=1

(aCzk cos kω
C
z t+ bCzk sin kω

C
z t)

where ωC
x , ω

C
y , and ωC

z are angular frequencies of the reference orbit projected

onto each coordinate. In general, these frequencies are not the same values,

thereby Eq. (10) represents a quasi-periodic orbit. As a special case of ωC
x =60

ωC
y = ωC

z , Eq. (10) becomes a periodic orbit.

The exosystem generating the reference orbit (10) is expressed as a linear

state space form:

w′
n = Snwn, wn(0) = w0 (11)

where

wn =
[
wT

x,n wT
y,n wT

z,n

]T
∈ R3(2n+1) (12)

wj,n =
[
wj,0 wj,1 w̄j,1 wj,2 w̄j,2 · · · wj,n w̄j,n

]T
(j = x, y, z)

(13)

w0 =
[
wT

x0 wT
y0 wT

z0

]T
∈ R3(2n+1) (14)

wj0 =
[
aCj0 aCj1 bCj1 aCj2 bCj2 · · · aCjn bCjn

]T
(j = x, y, z) (15)

Sn = diag
[
ωC
x ωC

y ωC
z

]
⊗ diag

[
0 J 2J · · · nJ

]
∈ R3(2n+1)×3(2n+1)

(16)

J =

 0 1

−1 0

 (17)

and ⊗ denotes the Kronecker product. It should be noted that the solutions to
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the system of differential equations (11) are given by

wj,0(t) = aCj0 (k = 0)wj,k(t) = aCjk cos kω
C
j t+ bCjk sin kω

C
j t

w̄j,k(t) = −aCjk sin kω
C
j t+ bCjk cos kω

C
j t

(1 ≤ k ≤ n)

for j = x, y, z. Hence, the reference orbit (10) are expressed as the superposition

of wj,k as

xC
n (t) =

n∑
k=0

wx,k = Lnwx,n, yCn (t) =
n∑

k=0

wy,k = Lnwy,n, zCn (t) =
n∑

k=0

wz,k = Lnwz,n

(18)

where

Ln =
[
1 1 0 1 0 · · · 1 0

]
∈ R2n+1 (19)

and the output to regulate is defined as

e = r − rCn = r −Dnwn (20)

with Dn = I3 ⊗Ln ∈ R3×3(2n+1).

For Eqs. (3), (11) and (20), the mappings to solve Eq. (7) and (8) are ex-

plicitly given by

πn(wn) =

 Dn

DnSn

wn ≜ Πnwn (21)

cn(wn) = −∇U(Dnwn) + (DnSn −KDn)Snwn ≜ −∇U(Dnwn) + Γnwn

(22)

By replacing π(w) and c(w) in Eq. (9) by Eqs. (21) and (22), the controller

for the nth order problem is obtained as

uC = −F (x−Πnwn)−∇U(Dnwn) + Γnwn (23)

The controller (23) can achieve asymptotic tracking for the n-th order problem

for any initial state in a vicinity sufficiently close to (x(0),wn(0)) = (0,0).
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Figure 1: Formation Flying: the chief is orbiting a periodic orbit and the deputy is orbiting

around the chief.

Moreover, the station-keeping cost of control input evaluated in the absolute65

integral, i.e. L1 norm, can be made arbitrarily small by taking n sufficiently

large (See Appendix). The structure of the controller (23) can be understood

by dividing into two parts: a linear feedback term −F (x−Πnwn) and remaining

terms −∇U(Dnwn) + Γnwn. The latter part locally linearizes the system in

the vicinity of the reference orbit, and the linear feedback locally stabilizes the70

error system.

4.2. Formation Flying Controller

Let us consider the formation flying of two satellites as shown in Fig. 1: the

chief satellite on a libration point orbit and the deputy satellite orbiting around

the chief satellite. In the following, the formation flying controller for the deputy

satellite is derived. Let x be the state of the deputy satellite, xD = x− xC be

the reference orbit of the deputy satellite with respect to the chief satellite, and

xD
n be the n-th order approximation of xD. The relative position vector of xD

n ,
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rDn =
[
xD
n yDn zDn

]T
, is given by

xD
n (t) = aDx0 +

n∑
k=1

(aDxk cos kω
D
x t+ bDxk sin kω

D
x t)

yDn (t) = aDy0 +

n∑
k=1

(aDyk cos kω
D
y t+ bDyk sin kω

D
y t) (24)

zDn (t) = aDz0 +
n∑

k=1

(aDzk cos kω
D
z t+ bDzk sin kω

D
z t)

where aDjk, b
D
jk and ωD

j are the Fourier coefficients and the frequencies of the

reference orbit for the deputy satellite, respectively. Note that the Fourier series

(24) are used to represent an arbitrary order quasi-periodic orbit.75

Similar to the station-keeping problem, the exosystem generating Eq. (24)

is given by

v′
n = Snvn, vn(0) = v0 (25)

where

vn =
[
vT
x,n vT

y,n vT
z,n

]T
∈ R3(2n+1) (26)

vj,n =
[
vj,0 vj,1 v̄j,1 vj,2 v̄j,2 · · · vj,n v̄j,n

]T
(j = x, y, z) (27)

v0 =
[
vT
x0 vT

y0 vT
z0

]T
∈ R3(2n+1) (28)

vj0 =
[
aDj0 aDj1 bDj1 aDj2 bDj2 · · · aDjn bDjn

]T
(j = x, y, z) (29)

Sn = diag
[
ωD
x ωD

y ωD
z

]
⊗ diag

[
0 J 2J · · · nJ

]
∈ R3(2n+1)×3(2n+1)

(30)

Then, the reference orbit Eq. (24) are expressed as

xD
n (t) =

n∑
k=0

vx,k = Lnvx,n, yDn (t) =
n∑

k=0

vy,k = Lnvy,n, zDn (t) =
n∑

k=0

vz,k = Lnvz,n

(31)

The goal of the output regulation problem is asymptotic tracking of rCnc
+rDnd

,

where nc and nd denote the truncation order of reference orbit for the chief and

deputy satellites, respectively. Then, the exosystem generating the reference
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orbit rCnc
+ rDnd

of the deputy satellite with respect to Li is simply expressed as

the superposition of two exosystems Eqs. (11) and (25) as

y′ = Uy (32)

where y =
[
wT

nc
vT
nd

]T
∈ R6(nc+nd+1), U = diag

[
Snc Snd

]
∈ R6(nc+nd+1)

×6(nc+nd+1). The output to regulate is defined as

e = r −
(
rCnc

+ rDnd

)
= Cx− (Dncwnc +Dnd

vnd
) = Cx−Dy (33)

where D =
[
Dnc Dnd

]
∈ R3×6(nc+nd+1). Then, the mappings to solve

Eqs. (7) and (8) are explicitly given by

π(y) =

 D

DU

y ≜ Πy (34)

c(y) = −∇U(Dy) + (DU −KD)Uy ≜ −∇U(Dy) + Γy (35)

where Π ∈ R6×6(nc+nd+1) and Γ ∈ R3×6(nc+nd+1).

By replacing π(w) and c(w) in Eq. (9) by Eqs. (34) and (35), the controller

for formation flying is obtained as

uD = −F (x−Πy)−∇U(Dy) + Γy (36)

The controller (36) can achieve formation flying for any initial state in a vicin-

ity sufficiently close to (x(0),y(0)) = (0,0). Similar to the station-keeping

controller (23), the terms −∇U(Dy) + Γy in Eq. (36) locally linearize the

system in the vicinity of the reference orbit, and the linear feedback locally sta-80

bilizes the error system between the states of spacecraft and the reference orbit.

Further, setting vnd
= 0, Eq. (36) strictly accords with Eq. (23) and achieves

station-keeping along a (quasi-)periodic orbit generated by the exosignal wnc .

Therefore, the controller (36) is more general form than the station-keeping con-

troller (23) since it can be utilized for both station-keeping and formation flying.85

It should be noted that although the reference trajectory for formation flying is

simply expressed as the linear superposition, the formation flying controller (36)

10
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Figure 2: Pseudo-periodic orbit (n = 8).

derived by solving the nonlinear output regulation takes into account the non-

linear effect due to the difference between the position vectors of the chief and

deputy satellites.90

5. Simulation Results for Sun-Earth CRTBP

In this section, the control laws (23) and (36) are applied to the nonlinear

equations of motion (1) for the Sun-Earth CRTBP. First, station-keeping on

a Lyapunov orbit is considered to verify the controller (23). Then, formation

flying along the Lyapunov orbit is demonstrated by using the controller (36).

In the simulations, Lagrangian point is specified as L2. The period of the orbit

and the radius of the Sun-Earth system are set to be T0 = 365.26 days and

R0 = 1.4960 × 108 km, respectively. Then, other parameters are specified as

µ = 3.0542 × 10−6, l2 = 1.0101 and σ2 = 3.9393. The initial condition for a

Lyapunov orbit in the normalized units is given by

xC
0 =

[
−1.2770 0 0 0 7.6802 0

]T
× 10−3 (37)

and its period is T = 3.0843 (179.17 days).
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Table 1: Coefficients and frequencies of Fourier series (n = 1 · · · 8).

Parameter Value Parameter Value

aCx0 -2.6115e-04 aCy0 -2.9385e-15

aCx1 -1.1430e-03 aCy1 -3.7106e-15

bCx1 -3.4561e-15 bCy1 3.6035e-03

aCx2 1.1392e-04 aCy2 -1.8178e-15

bCx2 -3.0444e-15 bCy2 6.0876e-05

aCx3 1.1106e-05 aCy3 -9.4442e-16

bCx3 -2.4462e-15 bCy3 1.2130e-05

aCx4 1.8423e-06 aCy4 -4.8410e-16

bCx4 -2.0014e-15 bCy4 1.6546e-06

aCx5 2.9137e-07 aCy5 -2.8570e-16

bCx5 -1.6741e-15 bCy5 2.7980e-07

aCx6 5.0518e-08 aCy6 -2.0777e-16

bCx6 -1.4219e-15 bCy6 4.7852e-08

aCx7 8.9827e-09 aCy7 -1.7146e-16

bCx7 -1.2455e-15 bCy7 8.6109e-09

aCx8 1.6508e-09 aCy8 -1.3221e-16

bCx8 -1.1039e-15 bCy8 1.5858e-09

ωC
x 2.0372 ωC

y 2.0372

Note that the numerical solution with the initial condition (37) is not exactly

periodic, and that it would diverge within a few periods. To represent the

Lyapunov orbit in an analytical form, the time history of the position vector for95

one period is expanded in the Fourier series of order 8. The orbit approximated

by the truncated Fourier series with n = 8 is shown in Fig. 2 and it is referred

to as “pseudo-periodic orbit”. In addition, the coefficients and frequencies up

to n = 8 are shown in Table 1. The initial condition obtained for the pseudo-

periodic orbit xC
n (0) is slightly different from Eq. (37) due to the truncation100

error of Fourier series.
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The stabilizing feedback gain F for the feedback term in the derived con-

trollers (23) and (36) can be arbitrary chosen. Here, it is designed by the linear

quadratic regulator (LQR) theory as F = R−1BTP , where P is the solution

to the algebraic Ricatti equation

ATP + PA+Q− PBR−1BTP = O6

where Q = I6 and R = I3 in the following simulations.

5.1. Station-Keeping on Libration Orbits

The initial state of the spacecraft is set to L2 (i.e. x0 = 0) and the coeffi-

cients and frequencies up to n = 8 are used to obtain the exosystem. The trajec-105

tory controlled by Eq. (23) is shown in Fig. 3 and the time history of the control

input and its enlargement are shown in Fig. 4 and Fig. 5, respectively. Figure

3 shows that the controlled state asymptotically tracks the pseudo-periodic or-

bit. Moreover, it can be seen from Figs. 4 and 5 that the input gets smaller

as time passes and becomes periodic. This is because that the state xn ap-110

proaches Πnwn and the input u converges to −∇U(Πnwn)+Γnwn as t → ∞.

The results suggest that the domain of attraction is large enough to achieve

station-keeping along the Lyapunov orbit.

Two performance indices are considered: ∆V0 and ∆V1. The definition of

∆V0 is the L1 norm of the input until the time Tconv when the distance from

the reference trajectory becomes smaller than a specific value ε. Another index,

∆V1, is defined as the L1 norm of the input for one-period after time Tconv, that

is,

∆V0 =

∫ Tconv

0

|u(t)|dt (38)

∆V1 =

∫ Tconv+T

Tconv

|u(t)|dt (39)

Here, ∆V0 and ∆V1 evaluated for the truncation order n are shown in Figs. 6 and 7

respectively. Figures 6 and 7 show that ∆V0 approaches a specific value while115

∆V1 converges to zero as n increases. This is because the higher order approxi-

13
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Figure 3: Controlled trajectory (n = 8): the solid and dashed lines are the controlled trajectory

and the reference orbit, respectively.
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Figure 4: Time history of input (n = 8).
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Figure 5: Time history of input (n = 8) (enlargement).
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Figure 6: Relation between n and ∆V0 (ε = 1.0000× 10−7).

mation generates a closer orbit to the free motion, and hence, the control effort

for station-keeping approaches zero.

Next, we investigate the initial phase dependence on ∆V0 by exploiting the

analytic representation of the reference orbit. For this purpose, the phase dif-
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Figure 7: Relation between n and ∆V1 (ε = 1.0000× 10−7).

ference α is incorporated into a Fourier series representation Eq. (10) as

xC
n (t;α) = aCx0 +

n∑
k=1

[
ãxk(α) cos kω

C
x t+ b̃xk(α) sin kω

C
x t

]
yCn (t;α) = aCy0 +

n∑
k=1

[
ãyk(α) cos kω

C
y t+ b̃yk(α) sin kω

C
y t

]
(40)

zCn (t;α) = aCz0 +

n∑
k=1

[
ãzk(α) cos kω

C
z t+ b̃zk(α) sin kω

C
z t

]
where  ãjk

b̃jk

 =

 cos kα sin kα

− sin kα cos kα

 aCjk

bCjk

 , (j = x, y, z) (41)

The initial positions rCn (0;α) = Dnwn(0;α) for some α are shown in Fig. 8 and

the ∆V0 is evaluated as a function of α in Fig. 9. Figure 9 shows that the ∆V0120

strongly depends on the initial phase of the reference orbit (the minimum value

is 369.72 m/s at α = 294 deg and the maximum value is 548.90 m/s at α = 28

deg in this example).

5.2. Formation flying along a Lyapunov orbit

Formation flying along a Lyapunov orbit is demonstrated. Let us consider125

that a chief satellite is orbiting the Lyapunov orbit by the controller (23) and one
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Chief
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d
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Figure 10: Formation flying constellation: the chief and deputies are at the centroid and the

apexes of the regular tetrahedron, respectively.

or more deputy satellites fly in formation with the chief satellite. As examples,

we demonstrate two types of formation flying: regular tetrahedron constellation

and Lissajous-type formation flying. In the following examples, the pseudo

Lyapunov orbit shown in Fig. 2 is used as the chief’s reference orbit and deputy130

satellites are assumed to be initially on the same orbit.

First, the regular tetrahedron constellation is demonstrated. To form the

regular tetrahedron constellation as shown in Fig. 10, the chief and four deputies

are to be located at the centroid and the apexes of a regular tetrahedron, re-

spectively. Therefore, the position vectors of the deputies rDi (i = 1, 2, 3, 4)

are represented by 0th order Fourier series rDi
0 as:

rD1
0 =

[
0 0 d

]T
rD2
0 =

[
0

2
√
2

3
d −1

3
d

]T
rD3
0 =

[ √
6

3
d −

√
2

3
d −1

3
d

]T
rD4
0 =

[
−
√
6

3
d −

√
2

3
d −1

3
d

]T
where d is the distance between the chief and the deputies.

The controlled trajectories for d = 100 km are shown in Fig. 11. Figure

11(a) shows the trajectories of deputies with respect to the L2 and Fig. 11(b)
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Figure 11: Controlled trajectory for the regular tetrahedron constellation.

shows those with respect to the chief. In Fig. 11, all deputies asymptotically135

tracks the apexes of the regular tetrahedron. Note that the trajectories of the

deputies 2 to 4 almost overlap in Fig. 11(a).

Next, the Lissajous-type formation flying is demonstrated. Let us consider

that the deputy orbits the Lissajous orbit relative to the chief. As an example,

the deputy’s relative orbit is given by the 1-st order Fourier series as

rD1 =
[
r cosωDt r sin 2ωDt r cos

√
3ωDt

]T
where r denotes the amplitude of the deputy’s relative orbit projected onto each

relative coordinate.

Setting r = 100 km and ωD = ωC
x = 2.0372, the controlled trajectories of140

the chief and deputy are shown in Fig. 12. Figure 12(a) shows the trajectories

of the chief and deputy with respect to the L2 and Figs. 12(b) - 12(d) show

the trajectories of the deputy with respect to the chief. In Fig. 12, the deputy

successfully converges to the Lissajous orbit relative to the chief.

6. Conclusion145

Novel station-keeping and formation flying controllers in the circular re-

stricted three-body problem have been proposed based on the nonlinear output
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Figure 12: Controlled trajectory for Lissajous-type formation flying.

regulation theory. First the reference orbit of the chief is represented by the out-

put of an exosystem, assuming the reference orbit is represented by a truncated

Fourier series. Then the output regulation problem for nonlinear systems was150

explicitly solved. By the superposition of two exosystems, the formation flying

controller was also derived by solving a nonlinear output regulation problem.

The proposed station-keeping and formation flying controllers have been veri-

fied in numerical simulations for the Lyapunov orbit of the Sun-Earth L2 point.

When a natural orbit is used as a reference orbit and the truncation order is155

sufficiently large, the proposed station-keeping controller results in very small

control cost. Moreover, the examples of formation flying problems show that

the proposed controller can deal with various complex formation flying problem
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in one framework.

Appendix160

Relation between truncation order and total control input

First, it is shown that the state x becomes arbitrarily close to the given

reference trajectory xC by choosing sufficiently large n and t. The asymptotic

convergence of the output to zero (e → 0) implies |x(t)−xC
n (t)| → 0 as t → ∞.

From the inequality

|x(t)− xC(t)| ≤ |x(t)− xC
n (t)|+ |xC

n (t)− xC(t)| (.1)

and the property of the Fourier series approximation, |x(t) − xC(t)| → 0 for

sufficiently large n and t.

Next, it is shown that ∆V =
∫ t+T

t
|uC

n (t)|dt can be arbitrarily small by

choosing sufficiently large n and t where T is the period of the reference orbit.

From the factsΠnwn = xC
n and Γnwn = rCn

′′−KrCn
′
, Eq. (23) can be deformed

as

uC
n = −F (x− xC

n )−
[
∇U(rCn )−∇U(rC)

]
+
(
rCn

′′ − rC
′′)

+K
(
rCn

′ − rC
′)
(.2)

Then from the inequality

|uC
n | ≤ ∥F ∥|x− xC

n |+ |∇U(rCn )−∇U(rC)|+ |rC
′′
− rC

′′

n |+ ∥K∥|rC
′

n − rC
′
|

(.3)

|uC
n (t)| → 0 as |x(t)− xC(t)| → 0, where ∥(·)∥ denotes the matrix norm of (·).

Thus the performance index is arbitrarily close to the infimum, i.e., ∆V → 0165

for sufficiently large n and t.
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