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Abstract

In this paper, we present a convergence proof for an iterative procedure of local mode filtering. We formulate the local mode filtering as a
quadratic optimization problem based on the Legendre transform of convex function, from which two closed-form expressions at each iteration
step are derived for variables to be optimized. Those analytical solutions ensure that the value of objective function increases monotonically
with the progress of the iterative procedure. We also show experimental results using a grayscale image, which support our theoretical results
practically.
c⃝ 2021 The Korean Institute of Communications and Information Sciences (KICS). Publishing services by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Local mode filter is an edge-preserving smoothing filter,
which smooths small variations of a signal, while preserves
large ones like sharp edges in an image.

van de Weijer and van den Boomgaard [1] focused on the
local mode of a local histogram on an image, and proposed
an iterative method for finding the local mode. Kass and
Solomon [2] pointed out that the method is equivalent to the
restricted mean shift filtering by Barash and Comaniciu [3],
and proposed the closest-mode filter, which calculates a local
mode by searching for a zero crossing of the derivative of
smoothed local histogram. van den Boomgaard and van de
Weijer [4] showed the equivalence of local-mode finding,
robust estimation and mean-shift analysis by Comaniciu and
Meer [5], where the convergence properties of the mean shift
are proved. In contrast, Li et al. [6] presented counter examples
to them, and presented alternative proofs. Recently, Bao and
Yang [7] have used the term “closest-mode filter” to refer to
filters whose local histograms are constructed within Gaussian
weighted soft spatial windows. Lo [8] has published ImageJ
plugins for the mode filter and empirical null filter which are
available at GitHub repository (https://github.com/shermanlo7
7/oxwasp phd/tree/master/java).

∗ Corresponding author.
E-mail address: k-inoue@design.kyushu-u.ac.jp (K. Inoue).
Peer review under responsibility of The Korean Institute of Communica-

tions and Information Sciences (KICS).
ttps://doi.org/10.1016/j.icte.2021.02.008
405-9595/ c⃝ 2021 The Korean Institute of Communications and Information Sc
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
In this paper, we present a convergence proof for the
iterative procedure of local mode filtering. We formulate the
problem of finding local mode in local mode filtering as a
quadratic optimization problem based on the Legendre trans-
form of convex function [9]. From this formulation, we derive
closed-form expressions for updating variables, and prove the
convergence of the sequence of the updated variables.

The rest of this paper is organized as follows. Section 2
introduces the local mode filtering, and Section 3 briefly
summarizes the Legendre transform. Then Section 4 presents
a Legendre-transformed local mode filter, and shows an algo-
rithm for image processing. Section 5 shows the convergence
proof based on the discussion in the preceding sections. Sec-
tion 6 shows experimental results. Finally, Section 7 concludes
this paper.

2. Local mode filtering

Let I be an input image. Then the local mode filter [1] can
be formulated as follows:

J (p) = arg max
Jp

∑
q∈N (p)

wσs (p, q)wσr

(
I (q), Jp

)
, (1)

here J (p) denotes the pixel value at the position p on the
output image J , N (p) denotes a set of neighboring pixels to
p, and wσs (p, q) and wσr (I (q), Jp) denote the spatial domain
nd range kernels [10] defined by

wσs (p, q) = exp
(
−
∥p − q∥2

2

)
(2)
2σs
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σr

(
I (q), Jp

)
= exp

(
−
∥I (q)− Jp∥

2

2σ 2
r

)
, (3)

here σs and σr denote their standard deviations.
Let E(Jp) be the objective function in (1). Then a recur-

ence relation for computing the local mode J (p) is derived
rom the necessary condition for optimality

∂ E
∂ Jp
=

1
σ 2

r

∑
q∈N (p)

wσs (p, q)wσr

(
I (q), Jp

) (
I (q)− Jp

)
= 0

(4)

as follows:

J (t+1)
p =

∑
q∈N (p)

wσs (p, q)wσr

(
I (q), J (t)

p

)
I (q)

∑
q∈N (p)

wσs (p, q)wσr

(
I (q), J (t)

p

) , (5)

where the superscripts (t + 1) and (t) denote the numbers of
iterations for recurrent computation of (5). For t = 0, J (t)

p is
initialized as J (0)

p = I (p), and (5) is computed iteratively until
J (t)

p converges. Finally, the converged value of J (t+1)
p gives the

output J (p) in (1).

3. Legendre transform

In this section, we briefly summarize the Legendre trans-
form of a convex function [9] as a preparation for the next
section.

Let f (x) be a convex function satisfying f ′′(x) > 0. Then
the Legendre transform of f (x) is given by

g(s) = max
x
{sx − f (x)}, (6)

which is called the convex conjugate function of f (x). The
function sx − f (x) of variable x attains its maximum when
∂[sx − f (x)]/∂x = s − f ′(x) = 0 or

s = f ′(x), (7)

where f ′(x) is monotonically increasing and invertible. We
denote the inverse function as follows:

x(s) = ( f ′)−1(s). (8)

Substituting this for x in (6), we have

g(s) = sx(s)− f (x(s)). (9)

The Legendre transform of g(s) in (9) recovers f (x) as
ollows:

ax
s
{xs − g(s)} = max

s
{xs − sx(s)+ f (x(s))} (10)

= xs − sx + f (x) = f (x), (11)

where x(s) = x derived from ∂[xs − sx(s)+ f (x(s))]/∂s = 0
is substituted for x(s) in (10). Consequently, we have the
alternative expression of f (x) as follows:

f (x) = max
s
{xs − s( f ′)−1(s)+ f (( f ′)−1(s))}, (12)

where (8) is substituted for x(s) in (10).
 m
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Example. Let f (x) = exp(−x). Then (7) becomes s =
f ′(x) = − exp(−x), and therefore (8) is given by x(s) =
( f ′)−1(s) = − ln(−s), which is substituted for ( f ′)−1(s) in
(12), then we have

f (x) = max
s
{xs + s ln(−s)+ exp(ln(−s))}

= max
s
{s(x + ln(−s)− 1)}. (13)

rom ∂[s(x + ln(−s) − 1)]/∂s = x + ln(−s) = 0, we have
= − exp(−x), which is substituted for s in (13) to confirm

hat maxs{s(x + ln(−s)− 1)} = − exp(−x)(x + ln(exp(−x))−
) = exp(−x). ■

. Legendre-transformed local mode filter

Applying the above alternative expression in (12) or (13) to
he exponential function in (3), we can rewrite the maximiza-
ion problem in (1) as follows:

max
Jp,{sq }

∑
q∈N (p)

wσs (p, q)
[

sq

(
∥I (q)− Jp∥

2

2σ 2
r

+ ln(−sq )− 1
)]

,

(14)

where the variable sq is prepared for each q in N (p).
Let Ẽ(Jp, {sq}) be the objective function in (14). Then

Ẽ(Jp, {sq}) is a quadratic function of Jp for a fixed {sq}.
On the other hand, it is also a function of sq including
sq ln(−sq ) whose degree is less than 2. Therefore, we have
two analytically solvable necessary conditions for optimality
as follows:

∂ Ẽ
∂sq
= wσs (p, q)

(
∥I (q)− Jp∥

2

2σ 2
r

+ ln(−sq )
)
= 0, (15)

∂ Ẽ
∂ Jp
= −

1
σ 2

r

∑
q∈N (p)

wσs (p, q)sq
(
I (q)− Jp

)
= 0. (16)

rom (15), we have a closed-form expression for sq as follows:

q (Jp) = − exp
(
∥I (q)− Jp∥

2

2σ 2
r

)
= −wσr

(
I (q), Jp

)
(17)

or q in N (p). Therefore, for a fixed Jp = J (t)
p , we have

Ẽ
(
J (t)

p ,
{
s(t+1)

q

})
≥ Ẽ

(
J (t)

p ,
{
s(t)

q

})
, (18)

here s(t+1)
q = sq (J (t)

p ).
On the other hand, from (16), we have another closed-form

xpression for Jp as follows:

Jp({sq}) =

∑
q∈N (p)

wσs (p, q)sq I (q)

∑
q∈N (p)

wσs (p, q)sq

. (19)

herefore, for a fixed set {sq} = {s(t+1)
q }, we have

Ẽ
(
J (t+1)

p ,
{
s(t+1)

q

})
≥ Ẽ

(
J (t)

p ,
{
s(t+1)

q

})
, (20)

here J (t+1)
p = Jp({s(t+1)

q }).
The procedure of the above Legendre-transformed local
ode filtering is summarized in Algorithm 1.
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Algorithm 1 Legendre-transformed local mode filtering

Require: Input image I
Ensure: Output image J

1: for each pixel p in I do
2: Initialize t as t = 0
3: Initialize Jp as J (t)

p = I (p)
4: while J (t)

p is not convergent do
5: for each pixel q in N (p) do
6: Compute s(t+1)

q = sq (J (t)
p ) by (17)

7: end for
8: Compute J (t+1)

p = Jp({s(t+1)
q }) by (19)

9: t ← t + 1
10: end while
11: J (p)← J (t)

p
12: end for

5. Convergence proof

In this section, we prove that the sequence {J (t)
p }t=0,1,...

given by (5) converges to a solution to the problem (1).
Combining (18) and (20), we have

Ẽ
(
J (t+1)

p ,
{
s(t+1)

q

})
≥ Ẽ

(
J (t)

p ,
{
s(t+1)

q

})
≥ Ẽ

(
J (t)

p ,
{
s(t)

q

})
,

(21)

that is, the sequence {Ẽ(J (t)
p , {s(t)

q })}t=0,1,... is nondecreasing
and bounded above since wσs (p, q) ≤ 1 and

max
sq

{
sq

(
∥I (q)− Jp∥

2

2σ 2
r

+ ln(−sq )− 1
)}

= exp
(
−
∥I (q)− Jp∥

2

2σ 2
r

)
≤ 1. (22)

Substituting s(t+1)
q = sq (J (t)

p ) given by (17) for sq in (19), we
ave (5). Hence, the procedure of the Legendre-transformed
ocal mode filtering is equivalent to that of the original lo-
al mode filtering, and since Ẽ(J (t)

p , {s(t)
q }) = E(J (t)

p ), the
sequence {E(J (t)

p )}t=0,1,... is also nondecreasing and bounded
above. Therefore, it converges to the local maximum.

Here we would like to rewrite (5) as a gradient method as
follows:

J (t+1)
p = J (t)

p + α(t) ∂ E
∂ Jp

⏐⏐⏐⏐
Jp=J (t)

p

, (23)

where α(t) is given by

α(t)
=

σ 2
r

E
(

J (t)
p

) . (24)

After the convergence of {E(J (t)
p )}t=0,1,..., the necessary condi-

ion for optimality in (4) is satisfied. Substituting (4) into (23),
e have

J (t+1)
p = J (t)

p , (25)

hich means the convergence of {J (t)
} .
p t=0,1,...

447
Fig. 1. Input image of 256 by 256 pixels.

Fig. 2. Objective function at the center of white square in Fig. 1. The red
points illustrate the convergence to the local mode.

6. Experimental results

We have conducted experiments to confirm the above the-
oretical results. Fig. 1 shows an input grayscale image of
8-bit per pixel; each pixel has an integer in {0, 1 . . . , 255}.
The objective function in (1) at the center of a square region
marked out with white line on the upper right side of Fig. 1 is
shown in Fig. 2, where the vertical and horizontal axes denote
the function value and the pixel value, respectively. In this
example, we set σs = 5 and σr = 10, and N (p) is the set of
pixels in the square region with a side length of 6σs as shown
in Fig. 1. The value of the center pixel in the square region
is 66, which is near the valley floor in Fig. 2 as denoted by
the rightmost red point, from which, it climbs to the top of
the left peak or the local mode of this distribution. The loci
of updated pixel values and the corresponding values of the
objective function are shown with red points as well, which
demonstrates the convergence of the sequence to a local mode.
We judge the convergence when the condition (J (t+1)

p −J (t)
p )2 <

10−3 is satisfied.
Fig. 3 shows the values of the objective function and

its derivative, where the horizontal axis denotes the number
of iterations, and the left and right vertical axes denote the
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Fig. 3. The values of objective function and its derivative.

Fig. 4. Output image of local mode filtering.

objective function value and its derivative value, respectively.
These two vertical axes are related to two curves in this graph
by their colors, blue and red. The blue curve shows that the
objective function is monotonically increasing and bounded
above, and the red curve shows that the necessary condition
for optimality in (4) is eventually satisfied. To satisfy the exact
convergence condition (J (t+1)

p − J (t)
p )2
= 0, it took 59 iterations

in 0.5 s measured on a laptop computer.
448
Fig. 4 shows the output image of local mode filtering for
the input image in Fig. 1. All pixel values converged to the
corresponding local modes in a dozen times of iterations.

7. Conclusion

In this paper, we proved that the iterative procedure of local
mode filtering takes any initial values to their corresponding
local modes by using the Legendre transform of convex func-
tion. Experimental results demonstrated the convergence of
pixel values of a grayscale image to their local optima by the
local mode filtering procedure.
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