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Abstract

In this paper, we propose a numerical method to verify multiple
eigenvalues for elliptic eigenvalue problems. We calculate error bounds
for approximations of multiple eigenvalues and base functions of the
corresponding invariant subspaces. For matrix eigenvalue problems,
Rump [1] recently proposed a validated numerical method to compute
multiple eigenvalues. In this paper, we extend his formulation to el-
liptic eigenvalue problems, combining it with a method developed by
one of the authors [2].

1 Introduction

A method is proposed to enclose the eigenvalues and eigenfunctions for the
elliptic eigenvalue problems by using the numerical verification method for
nonlinear elliptic problems. But the method can only be applied to the simple
eigenvalues according to the verification principle. Namely, applying the
method for multiple eigenvalues leads to a singularity due to the multiplicity.
For the matrix eigenvalue problems, a method to compute the error bounds
for the approximations of multiple or nearly multiple eigenvalues, and to
verify a basis of the corresponding invariant subspaces was proposed in [1].
In this paper, we try to extend this formulation to the elliptic eigenvalue
problems. In order to attain our present purpose, we use the basic idea same
as in the numerical verification method for elliptic problems. We formulate
the multiple eigenvalue problem for elliptic operator as a system of nonlinear
elliptic boundary value problem with respect to the eigenvalues and the base



functions of the corresponding invariant subspace. Then, by applying a kind
of set valued Newton’s method, we enclose those quantities in computer.

We use an approximation subspace to compute the finite dimensional part
of the problem, and by using the constructive error estimates we enclose the
infinite dimensional part. In the present case, we adopt the spectral method
based on the Fourier series expansion and the explicit a priori error estimates.

In the following section, we describe the basic formulation of the problem
and the actual computational procedures for selfadjoint case.

Our method enables us not only to enclose eigenvalues but also to verify
a basis of the corresponding invariant subspaces.

2 Formulation of the problem

We define Q as a bounded convex domain in R2. Let H™(Q2) denote the
L2-Sobolev space of order m on § for an integer m, and we define H} =
H{(Q) = {v € HY(Q)]v = 0 on 99} and the inner product on H} as <
u,v >m= (Vu, Vo)pe for u,v € Hy(Q), where (-,-)1, represents the inner
product on L?(£2). Next, let S, be a finite dimensional subspace of H},
and let {¢}i=1..n be a basis in Sp. Let Py : H}(2) — S), denote the H}
-projection defined by

(Vu, V)2 = (VPyu, Vo) e for all v €Sy,

We basically consider the elliptic eigenvalue problem of the following self-
adjoint type

—Au+qu = I n ()
u = 0 on 0N

where ¢ € L®(R2).

First we calculate approximate spectrum of (1), and then compute the
error bounds for the multiple eigenvalues and cnclose a basis of the corre-
sponding invariant subspace around the approximate solutions.

For matrix eigenvalue problems, Rump [1] shows that error bounds for
k-fold computed eigenvalues and the approximate basis of corresponding in-
varient subspace of » X m matrix A are calculated by verifing Y, M which
satisfy the equation AY =Y M, where Y is an n X k matrix and M a k x k
matrix, respectively.
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Therefore, in order to extend the method in [1] to the elliptic eigenvalue
problem, we transform (1) to the eigen-equation of the form:

(—A+q)Y =YM, (2)

miy; ... Mip
where Y = (y17y2a"'ayn)a and M = :

mnl 0 mnn

n
and the righthand side of (2) is interpreted as (Y M); = > mjiy;, (1 < ¢ < n)
j=1
and n is the potential multiplicity, and y; € Hg, and m;; € R.

Then, note that each eigenvalue of M is also the eigenvalue of (1). Here
{yi}i=1..n 1s a basis of the corresponding invarient subspace if they are lin-
early independent. In this paper, since we try to verify multiple eigen-
values with associated base functions of the corresponding invarient sub-
space, when a concerned eigenvalue ) is a potential n-fold eigenvalue, tak-
ing the space V = (H})" x (R)*, and we’ll verify (Y, M) € V satisfing
(2). We define the inner product on V, for wy = (yi,--+,yp, 71, *,Tn2) and
Wy = (y?a T y'r2u S1,°7 7 3n2)1 as below

< W, W >=<L y%,y% >Hé +- 4+ < y,ll,y,zz >Hé +7181 + -+ Tp28p2.
And for V; = (S,)™ x (R)™ we define the projection P, : V — V; by
Ph(ula""unarla'°'arn2) = (Phlula"';Phlun),rh'”)’rn2)

where u; € H},(1<i<n)and r; € R,(1 < j <n?).
Let A* € R,y € S, (1 < i < n) be appropriately approximate solu-
tions of (1) or (2). We now suppose, for each i, that y! is represented as

N
yh = Zcijqu, c;; € R. Then, for each i, let ¢; be the base function whose
=1
coefficient takes the maximal value in {|cii|, -+, |cin|}-
Thus, we obtain the normalized eigenvalue problem of the form :
( mn ... MTMyn
(_A_I—Q)(yl:y?)ayn) = (ylny,"‘,yn) )
) Mp1 ... Mpn (3)

(i, ;) = (UMd;), 1<i,5<n,
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which is considered as a kind of the nonlinear system, with respect to y; and
mj of elliptic equations.
3 Transformation to the fixed point form

We set y; = y' + i and my; = mly +my; in (3) with mf = M, ml = 0(i # 7).
Then ¢; and 7;; correspond to the errors of the approximate solutions y?

and m?j, respectively. We’ll verify y; and m;; satisfing (3) by enclosing 7
and m;;. We can rewrite (3) for w = (%1, -, Yn, M11," * -, Mn), as follows.

[ —AF = fi(w) = (mfy +7n — @)y + (mhy + M)y + - -
+(mpy + M) + YR + - A My + 5,

| —An = falw) = (Ml + M) + (mb, + mMan)je + - - (4)
_ +(mby + Moan — Q)T + PRyt + -+ + Myl + 03,
(i, 05) = 0, (1<4,5<n),

where we defined the residual error v}, for each 1 <7 < n, by
vo = Ay + (Mg — QU + Myt + may + -+ Moy
Here we assumed that S, C Hi N H2. Using the map on V
Fw) = ( Kfi(w), -+, K fa(w), W01 + 1, 61), -+ s T + Gs 6a) )s - (5)

where K is the solution operator for the Poisson equation with the homoge-
neous boundary condition, we have the fixed point equation

w = F(w). (6)

Now, we decompose (6) into the finite dimensional part and the infinite one
as follows:

{ Pow = PyF(w),
(I-P)w = (- PB)F(w).

Next, we use a Newton-like method for the finite dimensional part as
below

Nh(w) = W — [I — PhF’(O)],jl(wh - PhF(w))
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and we define T'(w) := Nj(w)+ (I — P,) F(w). Then, the following eqivalence
relation holds.
w=T(w) < w=F(w).

In what follows, for the sake of simplicity, but without loss of generality,
we consider only the case of n =2, i.e., two-fold eigenvalue.

We use Banach’s fixed point theorem to verify the solution of w = T'(w).
We try to find a set W, referred as a ’candidate set’, which satisfies the
condition of the fixed point theorem.

We decompose a candidate set as W = W, & W, where W, C V}, , and
W, C Vit. Here, Vi is the orthogonal complement of Vj, in the space V. We
consider the candidate set of the form,

Wi, = ZW@, Z Widi, Wani1, Want2, Wanis, Wan4),
=1 i=N+1

W, = ([a] [8],0,0,0,0), where for o € R*,[e] = {v € S | |[v]ly3 < o},
with intervals, W; = [-W;, W], (1 <i < 2N +4),

where Si denote the orthogonal complement of S, in Hj.
Let T' be the Fréchet derivative of T. Then the verification condition by
using the Banach fixed point theorem is conceptually described as

T(0) + T' (W)W C W.

Here,
TWYW :={veV |v=T(0)w, &,weW}.

We now present a computable verification condition.

Let denote (I — P,)T(0) and (I — P,)T'(W)W by T,(0) and T (W)W,
respectively and, for an element w); = (wy,ws,0,0,0,0) € Vit set (w); :=
Wy, T = O 1. And for an element &, € Vj or a set &, C V}, of the form

Q) = ZA bs, Z Aidi, Aant1, 0 Aavpa), we set (Bp); = A (1 <6 <
ti=N+1
2N + 4) whlch is sometimes called a coefficient vector for ®,. Then, we try

to find the 2NV + 6 dimensional vectors Y, Z, whose components Y; > 0 and
Z; > 0,(1 <1< 2N + 6), satisfying
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(BT(0)); € Vs
I(TLO)1llg < Yawss

8
ITL0))al g < Yanso ®)
and
(BT"(W)W); C Z;
WTLWIW iy < Zonys (9)
I(TLW)W)2llhz < Zonss
where V; = [-Y, Y2 = [-Z;,Z;),(1 < 1 < 2N + 4), and for a set

®, define ||®|| 3 = sup ||| 3. Furthermore, we define
ped

OW)={veV | (Pw)<Yi+2,1<i<2N+4,
(I = Pa)v)illay < Yan+s + Zonas,
I((Z = Pa)v)e|lz < Yanie + Zon+s }-

Then, we can present the verification conditions as follows

Theorem 1. If ©(W) C W holds, for a candidate set W in (6), namely,
for Y; and Z; satisfying (8) and (9),

Yi+Z; <W;, 1<i1<2N+6

hold, where Won.s5 = a, Wanie6 = 0B, then there exists a solution to (6) in
O(W). Moreover, this solution is unique within the set W.



4 Numerical examples

Example 1:
We considered the following problem.

{ —Au+sin(z)sin(y)y = I in £,

v = 0 ond, Q=(0,7)x(0,n). (10)

We consider the following finite-dimensional subspace, (M = 11) in Lemma
1,
Sy = span{2/msin(iz) sin(jy) | 1 < 14,7 < 11}.
Let A, € Rand y, € Sy, be the Galerkin approximate solutions of (10) defined
by
(Vyn, Vo) + (sin(z) sin(y)yn, v) = (Anyn,v) for all v € Sj.

M A2A3 A Ashe

Y

Figure 1: approximate eigenvalues.

We numerically determined approximate eigenvalues for (10). The first
eigenvalue was found to be A\; =~ 2.71513 . This is seen to be simple. The
second and third eigenvalues were found to be Ay, = 5.572374582086 and
A3 &~ 5.572374582086 . These eigenvalues are depicted in Figure 1. The
numerically determined approximate eigenfunctions y} and y? are illustrated
in Figures 2 and 3, respectively.

These two eigenvalues seemed to be two-fold or clustered eigenvalues.
Therefore, we verified them and the basis of the corresponding invariant
subspace around the approximate solutions using the algorithm described in
the previous section.

The normalized eigen-equation in question is the following.

[(Ca+ 9w = @ (),
) (yl,@) (w1, :1)7

(y2, Qzl) = (3/3, dil):

(v é2) = (s o),
\ (y27 2) = (yg3¢2)
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Figure 2: Approximate eigenfunction y?.
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Figure 3: Approximate eigenfunction 2.




Here, &i is taken to be the base function described in Section 2.1. Then, as
discussed in Section 2.2, we set y; = ' +7; and my; = ml+mg (1 < 4,5 < 2)
with ml = 5.572374582086, mf; = 0 (i # j).
The verification results are as follows.

First, the residual errors obtained are |[v}||., = 0.00489 and |[v3|., =
0.00489. Equations (11) and (12) give the error bounds of the finite-dimensional
part of the error from the base functions, i.e., the coefficient vector of Py %;
(¢ = 1,2) in the corresponding invariant subspaces. (13) gives the Hj error

bounds of the infinite-dimensional part, i.e., (I — Py;)%; (2 = 1,2):

max(|(Y + Z);

| 0.0905 x 10~%, 1< j <112 (11)
max(|(Y + Z);]

)
) = 01071 x107%, 11241<j<2x11% (12)

H

a = 3.6023 x 1074,

B = 4.3229 x 1074, (13)

The elements of the matrix M = (m;;) were enclosed as described in (14).
The eigenvalues of M were enclosed by using Gerschgorin circles as given in
(15): In this example, verification succeeded after 4 iterations , and we used
the value 0.1 for the inflation parameter ¢ in the algorithm.

myy € 5.5724 + [—0.2217,0.2217] x 1074,
mig € [""02550,02550] X 10_4,

ma; € [—0.2217,0.2217] x 1074, (14)
Moy € 5.5724 + [—0.2550,0.2550] x 107*.
A2, Az € 5.5724 + [—0.4767,0.4767) x 107*. (15)

We next numeirally determined the fourth eigenvalue to be Ay ~ 8.4581
45330119 and found that it is simple. Then we attempt to verify two eigen-
values A5 and Ag to be close together. Approximate solutions of As and Ag
were 10.524940396607 and 10.584986363725, respectively. In this verification
procedure, we used the finite dimensional subspace such as

Sy, = span{2/n sin(iz)sin(jy) | 1 < 14,5 < 8}. (16)

The verification results are as follows. The residual errors are ||vi|| = 0.01339,
and ||v3]] = 0.01622.Equations(17) and (18) give the error bounds of the
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finite-dimensional part of the base functions, i.e., the coefficient vector of
P%; (1=1,2,) in the corresponding invariant subspaces. (19) gives the H}
error bounds of the infinite-dimensional part, i.e., (I — Py1)%; (¢ = 1,2).

max(|(Y + Z);|) = 0.0567 x 1075, 1< <8? (17)
max(|(Y + Z);]) = 0.1032x 107, 82 +1<j<2x8%,  (18)

a = 0.0020,
B = 0.0036.

The eigenvalues of M were enclosed by using Gerschgorin circles as fol-

lows. In this case verification succeeded after 5 iterations with inflation
parameter d=0.1. As seen in (21) and (22), we were able to enclose two
distinct eigenvalues. However, note that when we attempted to verify As and
¢ separately as two simple eigenvalues, applying a method similar to that
in [2] with the same approximation space Sy, the verification failed.
In the application of the present algorithm, the condition number of the ma-
trix used there, was 121.51. Contrastingly using the method for simple eigen-
values, this quantity became as large as ~ 3 x 103. This fact demonstrates
the difference between the performances of the two enclosure methods.

(19)

my; € 10.584986363725 + [~0.2117,0.2117] x 1073,
mys € [—0.3745,0.3745] x 1073,

ma1 € [~0.2053,0.2053] x 1073, (20)
Mo € 10.524940396607 + [—0.3632,0.3632] x 1073

As € 10.524940396607 + [—0.5685, 0.5685] x 107°. (21)
As € 10.584986363725 + [—0.5862, 0.5862] x 107. (22)
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