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Abstract

In this paper, we propose a numerical method to verify multiple

eigenvalues for elliptic eigenvalue problems. We calculate error bounds

for approximations of multiple eigenvalues and base functions of the

corresponding invariant subspaces. For matrix eigenvalue problems,

Rump m recently proposed a validated numerical method to compute
multiple eigenvalues. In this paper, we extend his formulation to el-

liptic eigenvalue problems, combining it with a method developed by

one of the authors囲.

1　Introduction

A method is proposed to enclose the eigenvalues and eigenfunctions for the

elliptic eigenvalue problems by using the numerical verification method for

nonlinear elliptic problems. But the method can only be applied to the simple

eigenvalues according to the verification principle. Namely, applying the

method for multiple eigenvalues leads to a singularity due to the multiplicity.

For the matrix eigenvalue problems, a method to compute the error bounds

for the approximations of multiple or nearly multiple eigenvalues, and to

verify a basis of the corresponding invariant subspaces was proposed in [1J.

In this paper, we try to extend this formulation to the elliptic eigenvalue

problems. In order to attain our present purpose, we use the basic idea same

as in the numerical verification method for elliptic problems. We formulate

the multiple eigenvalue problem for elliptic operator as a system of nonlinear

elliptic boundary value problem with respect to the eigenvalues and the base
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functions of the corresponding invariant subspace. Then, by applying a kind 

of set valued Newton's method, we enclose those quantities in computer. 
We use an approxirnation subspace to compute the finite dimensional part 
of the problem, and by using the constructive error estimates we enclose the 
infinite dimensional part. In the present case, we adopt the spectral method 
based on the Fourier series expansion and the explicit a priori error estirnates. 
In the following section, we describe the basic formulation of the problem 
and the actual computational procedures for selfadjoint case. 
Our method enables us not only to enclose eigenvalues but also to verify 
a basis of the corresponding invariant subspaces. 

2 Formulation of the problem 

We define n as a bounded convex domain in R竺 LetH呵n)denote the 
£2-Sobolev space of order m on n for an integer m, and we define HJ三
H即）三 {vEが (n)Iv == 0 on an} and the inner product on HJ as < 
u, V >HJ三（▽u,▽v)L2for u, v E HJ(n), where (・,・）£2represents the inner 
product onび(n). Next, let Sh be a finite dimensional subspace of Rふ
and let仇｝i=l…N be a basis in sh. Let Phi : ~即） →品 denotethe HJ 
-projection defined by 

（▽u，▽v)L2 =（▽Ph1u,▽v)L2 for all V Esh. 

We basically consider the elliptic eigenvalue problen1 of the following self-
adjoint type 

where q E L00(f2). 

｛玉＋qu=Au in Q, 
U = 0 on8Q (1) 

First we calculate approximate spectrurn of (1), and then compute the 
error bounds for the multiple eigenvalues and enclose a basis of the corre-
sponding invariant subspace around the approximate solutions. 
For matrix eigenvalue problerns, Rump [1] shows that error bounds for 
k-fold computed eigenvalues and the approximate basis of corresponding in-
varient subspace of n x n matrix A are calculated by verifing Y, M which 
satisfy the equation AY == Y M, where Y is an n x k rnatrix and M a k x k 
matrix, respectively. 
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Therefore, in order to extend the method in [1] to the elliptic eigenvalue

problem, we transform (1) to the eigen-equation of the form:

(-A+q)Y-YM,

/mil

(:mnl
whereY- {yuy2,・・・,yn), andM-

(2)

n

and the righthand side of (2) is interpreted as (YM)i ≡ ∑rrijiVj, (1 ≦ i ≦ n)
j-1

and n is the potential multiplicity, arid yi ∈ Hn, and mv ∈ R・

Then, note that each eigenvalue of 〟 is also the eigenvalue of (1). Here

{yi}i=i-n is a basis of the corresponding invarient subspace if they are lin-

early independent. In this paper, since we try to verify multiple eigen-

values with associated base functions of the corresponding invarient sub-

space, when a concerned eigenvalue A is a potential n-fold eigenvalue, tak-

ing the space V ≡ (#。T x (R)n , and we'll verify (Y,M) ∈ V satis丘ng

(2). We define the inner product on V, for w¥ - (y¥,・・・,y,よ,T¥: - ,'/v) and

^2-(yh'-iU孟jSi;- ,5n2), asbelow

<wi,w2 >-< 2/},2/? >#i +-+ < yま,y孟>/fl +nsl+-+rn2Sn2.

And for Vh ≡ (ShY x (R)n we definethe projection Ph : V ⇒ ^ by

Ph(ui,・・・,un:n,・・・,rn2) - (Phlui,・・・,Phiun,ri,・・・,rn2)

wherem∈#o¥U≦i≦n)and　∈-R,(l≦j≦n2).
Let入㌢ ∈ RiVl ∈ Sh (1 ≦ i ≦ n) be appropriately approximate solu-

tions of (1) or (2). We now suppose, for each i, that y¥ is represented as
〃

yF - ∑dj(f)jJ-) Wj ∈ R. Then, for each i, let fa be the base function whose
l=1

coefficient takes the maximal value in {|qi CiN¥}>

Thus, we obtain the normalized eigenvalue problem of the form

(-A+q)(2/1,2/2,''・,Vn) - (yl,2/2,・・・,Vn)

(viAj) - (y告<pi), 1≦i,j≦n,
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which is considered as a kind of the nonlinear systern, with respect to Yi and 

mij of elliptic equations. 

3 Transformation to the fixed point form 

We set防＝ yf疇 andmij == mt＋両 in(3) with rnt ==.Xf, mt == 0(i # j). 
Then砧and呵 correspondto -the errors of the approximate -solutions yf 
and mt, respectively. We'll verify Yi and rrlij satisfing (3) by enclosing伍
and叩． Wecan rewrite (3) for w == (Y1, ・ ・ ・喜郷，・・・，元五）， asfollows. 

ー△祈三 f1(w)

ー△盃三 fn(w)

(Yi,む）

(mぶ＋向i-q)祈＋ （rrふ＋応i)妬＋…
+(m出＋和i)砿＋醐Y? ＋・・・＋元泣I~+ Vふ

(m位＋可n)祈＋ （m似＋裔n)妬＋・・・
+(m似＋元五一 q)盃＋応砂f ＋・・・＋元五y~ ＋喝
0, (1 ~ i,j:::; n), 

where we defined the residual error v0, for each 1 ~ i ~ n, by 

vi==△yf + (mt―q)yf + m髯＋ rn髯＋・・・＋叫y~.

Here we assumed that sh C HJ n H乞Usingthe map on V 

(4) 

F(w)三 (Kf1(w),・ ・ ・, Kfn(w), mii +（妬，釘），・・・，元五十（釦，心））， （5) 

where K is the solution operator for the Poisson equation with the hornoge-

neous boundary condition, we have the fixed point equation 

w = F(w). (6) 

Now, we decompose (6) into the finite dimensional part and the infinite one 
as follows: 

｛凡w=P江(W)，
(I -P砂w=（I -P砂F('山）．

Next, we use a Newton-like method for the finite dimensional part as 

below 

芯(w):== Whー [I-P江'(0)犀(Wh-P江(w)).
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and we define T(w) :- Nh(w)-¥- (I-Ph)F(w). Then, the following eqivalence
relation holds.

w-T(w) <^w-F{w).

In what follows, for the sake of simplicity, but without loss of generality,

we consider only the case of n - 2, i.e., two-fold eigenvalue.

We use Banach's fixed point theorem to verify the solution of w - T(w).

We try to丘rid a set W, referred as a 'candidate set', which satisfies the

condition of the fixed point theorem.

We decompose a candidate set as W - Wh eWj_, where Wh ⊂ Vh , and

WァC VJp. Here, V^- is the orthogonal complement of Vh in the space V. We

consider the candidate set of the form,

〃　　　2〃

wh --(∑Wi¢i, ∑瑚¢ W2tf+1,W2tf+2,WW3,W2iV+4),
i=l    i=N+l

Wァ-(回,[/?],0,0,0,0),whereforα∈R+,回=〈V∈Sir　酬Hol ≦α}, (7)
withintervals,瑚-トWuWh (1 ≦i ≦ 2iV+4),

where Sfc denote the orthogonal complement of Sh in Hq.

Let T be the Frechet derivative of T. Then the verification condition by

using the Banach丘xed point theorem is conceptually described as

T(O)+T(W)Wc W.

Here,

T(W)W:-{v∈V Iv-T'(w)w, w,w∈W).

We now present a computable verification condition.

Let denote (/ - Ph)T(0) and (/ - Ph)T'{W)W by 71(0) and T'ァ(W)W,

respectively and, for an element w⊥ - (1^1,^2,0,0,0,0) ∈ Vf, set (w⊥)* =-

W{,i - 0,1. And for an element ◎h ∈ V/i or a set ◎h C Vh of the form
〃　　　2〃

◎h - (∑Ai<t>i　∑・ Ai¢ -42N+1,・・',A2n+a), weset (S/サ)* -Ai,(1 ≦ i ≦
t=l    i-N+1

2N + 4), which is sometimes called a coefficient vector for ◎h. Then, we try

to find the 2N + 6 dimensional vectors Y.Z, whose components Y{ > 0 andノ

Zi ≧ 0,(1 ≦ i ≦ 27V+6), satisfying
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(PhT(O)), ∈ yi

UTj.(O)h¥¥ォi ≦ K2N+5
10

〃2

F

h

H

一

F
l
n
u

0
川
U

h
H

I
"
H
相
　
川
U ≦ Y2N十6

{PhT'{W)W)i C Zi

¥¥ {T'ァ(W)W)
1

Ik ≦ '2JV+5
10

月2朔押固
(

≦ '2JV+6

(8)

(9)

and

where^-ト*i?*ij>%i-トZi,Zi],(1≦i≦2N-f4),andforaset

◎,define剰Hd≡Sup目刺H¥.Furthermore,wedefine

4)∈中

e(w)-{v∈VI(PkV)i≦Yi+Zul≦i≦27V+4,

[I-Ph)v)i¥U≦^2N+5+-^2iV+55

||((/-PAサ2|U≦^2JV+6+Z2N+6}蝣

Then,wecanpresenttheverificationconditionsasfollows

Theorem1.//0(W)⊂Wholds,foracandidatesefWin(6),namely,

forYiandZ¥saまisfying(8)and(9),

Yi+Zi≦m,1
11≦i≦2N+6

hold,whereW2N+5-αW2N+6-βthenthereexistsasolutionto(6)in

Q(W).Moreover,thissolutionisuniquewithinまhese舌W.
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4 Numerical examples 

Example 1: 
We considered the following problem. 

{―△u+sin(x)sin(y)u = Au in Q, 
U == 0 on an, n = (0, 7r) X (0, 7r). (10) 

We consider the following finite-dimensional subspace, (N = 11) in Lennna 
1, 

品＝ span{ 2 / 1r sin (ix) sin (j y) I 1 ~ i, j ~ 11}. 

Letふ ERand Yh E Sh be the Galerkin approximate solutions of (10) defined 
by 

（▽Yh,▽v) + (sin(x) sin(y)yh, v) = (AhYh, v) for all v E Sh. 

入1 入2入3 入4 入ふ

Figure 1: approximate eigenvalues. 

We numerically deterrnined approxirnate eigenvalues for (10). The first 

eigenvalue was found to be ふ~ 2. 71513. This is seen to be simple. The 
second and third eigenvalues were found to be入2~ 5.572374582086 and 
入3 ~ 5.57237 4582086. These eigenvalues are depicted in Figure 1. The 

numerically determined approximate eigenfunctions Yh and y~ are illustrated 
in Figures 2 and 3, respectively. 
These two eigenvalues seerned to be two-fold or clustered eigenvalues. 
Therefore, we verified them and the basis of the corresponding invariant 

subspace around the approxirnate solutions using the algorithrn described in 

the previous section. 

The norrnalized eigen-equation in question is the following. 

(―△ +q)（翡ぬ）
～ 

(Y1，む）
伽，む）
伽，釦）
伽，命）

伽，ぬ）（加1,m12 

(yf'が），

m21, m22)， 

(yg，免1)'
(yf'む），
(yク，必）．
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Figure 2: Approximate eigenfunction y空.

Figure 3: Approximate eigenfunction yj.

-56-



Here,<f>iistakentobethebasefunctiondescribedinSection2.1.Then,as

discussedinSection2.2,wesetyi-yク+ijiandmy-my-+77iij(i≦i,i≦2)

with魂-5.572374582086,m」--0(i≠j)・

Theverificationresultsareasfollows.

First,theresidualerrorsobtainedare冊‖L2-0.00489and¥¥vf'5U*-

0.00489.Equations(ll)and(12)givetheerrorboundsofthefinite-dimensional

partoftheerrorfromthebasefunctions,i.e.,thecoefficientvectorofPhiVi

(i-1,2)inthecorrespondinginvariantsubspaces.(13)givestheH^error

boundsoftheinfinite-dimensionalpart,i.e.,(/-Phi)否(i-l,2:

max(|(y+Z)J-|) -　0.0905×10-4　≦j≦11*,　　　(ll)

max(¥(Y+Z)j¥) -　0.1071×10-4 ll'+1≦j≦2×II2, (12)

α-3.6023× 10-4

β-4.3229× 10-4
(13

The elements of the matrix M - (m^) were enclosed as described in (14).
The eigenvalues of 〟 were enclosed by using Gerschgorin circles as given in

(15): In this example, veri丘cation succeeded after 4 iterations , and we used

the value 0.1 for the in月ation parameter 6 in the algorithm.

mll ∈ 5.5724+ト0.2217,0.2217] × 10-4

m12 ∈ト0.2550,0.2550] × 10-4

m21 ∈ト0.2217,0.2217] × 10-4

m22 ∈ 5.5724 +ト0.2550,0.2550] × 10-4

人。,人3 ∈ 5.5724+ [-0.4767,0.4767] × 10~4.

(14)

(15)

We next numeirally determined the fourth eigenvalue to be A　8.4581

45330119 and found that it is simple. Then we attempt to verify two eigen-

values A and人6 to be close together. Approximate solutions of A and A6

were 10.524940396607 and 10.584986363725, respectively. In this veri丘cation

procedure, we used the finite dimensional subspace such as

Sh - span{2/7TSin(Z∬)sia{jy) I 1 ≦ i,i ≦ 8}.　　　(16)

The verification results are as follows. The residual errors are両　- 0.01339,
and ‖vo2日- 0.01622.Equations(17) and (18) give the error bounds of the
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finite-dimensional part of the base functions, i.e., the coefficient vector of

Ph¥Vi (ォ- 1, 2,) in the corresponding invariant subspaces. (19) gives the H^

error bounds of the infinite-dimensional part, i.e., (/ - PhijVi (i - 1, 2).

max{¥(Y+Z)j¥) -　0.0567×

2

8

<
一ISl

<
一

1
3

01

(17

max{¥(Y+Z)j¥) -　0.1032×10~　8*+l≦j≦2×r, (is)

α- 0.0020,

β - 0.0036.
19

The eigenvalues of M were enclosed by using Gerschgorin circles as fol-
lows. In this case verification succeeded after 5 iterations with inflation

parameter ♂-0.1. As seen in (21) and (22), we were able to enclose two

distinct eigenvalues. However, note that when we attempted to verify A5 and

A6 separately as two simple eigenvalues, applying a method similar to that

in [2] with the same approximation space 5^, the verification failed.

In the application of the present algorithm, the condition number of the ma-

trix used there, was 121.51. Contrastingly using the methocHor simple eigen-

values, this quantity became as large asォ3 × 10. This fact demonstrates

the difference between the performances of the two enclosure methods.

mll ∈ 10.584986363725 +ト0.2117,0.2117] × 10-3

m12 ∈ト0.3745,0.3745] × 10-3

m21 ∈ -0.2053,0.2053] × 10-3

m22 ∈ 10.524940396607+ト0.3632,0.3632] × 10-3

人5 ∈ 10.524940396607+ト0.5685,0.5685] × 10-

人6 ∈ 10.584986363725 + [-0.5862, 0.5862] × 10-3

(20)
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