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1 Introduction

There exists various works related to modeling of time series generation in diverse fields, such as
prices and demnads of production goods. Among them, works are shown for modeling where the
time series includes jump diffusion processes, and these works have been successfully applied to
the optimisation of stock exchanges[1]-[5].

Conventional works related to modeling of occurrence of jumps in time series have two serious
problems; firstly jumps are defined as stochastic phenomena independent from the value of time
series, and secondary occurrence of jumps are assumed to be well known and then used for the
optimization.

For the first problem we use the model where the jumps are induced if the value of time
series rise (fall) relatively larger then the probability of jumps become larger. The models were
successfully applied to the optimal operations of power plants and the optimal valuation of option
prices of production/sales of goods. We especially focus on the time lag when the value of time
series returns to the previous level of time series after the occurrence of jumps so that we analyze
more realistic cases[6]-[9].

For the second problem, we use the forecast of fractal time series which we earlier proposed so
that we can extract jumps by comparing difference between time series and forecasts[10]-[12]. In
the reduction of optimization of production and allocation of investment, we use models based on
the stochastic dynamics programming.

The procedure to optimize the investment is summarized as follows. Based on the forecast of
fractal time series, we find the occurrence of jumps by comparing the diagram of probability map.
Namely, if we expect the future price exceeds a threshold, we decide to change the allocation of
fund so that we can increase the profit (if price rises), or can decrease the loss (if price falls). We
then get better profit compared to ordinary investment where no relocation of fund is exercised. As
applications, we show the optimal allocation of investment for production/sales model of goods[6]-
[9].

1



－34－

経　済　学　研　究　　第88巻　第５・６合併号

In Section 2 we treat modeling of time series generation including jumps. Section 3 shows the
estimation of occurrence of jumps using the fractal forecast, In Section 4 we show the description
of optimal investment.

Here we extend the simple time series model based on the Brownian motion to the cases in
which time series includes jumps.

2 Modeling of time series generation including jumps

2.1 Time series model including jumps

Here we extend the simple time series model based on the Brownian motions to the cases time
series include jumps[6]-[9].

We assume that the price process P(t) basically follow to the Brownian motion, but several
fluctuations are imposed such as the sudden rise of value (called as upward jump) , or the sudden
fall of value (called as downward jump). For explanation we used the words defined as the start of
jumps as ”go” process in upward of downward jumps, and also the start of the returning process
to the previous level before jump as the ”back” process.

In the time range dt, price process P (t) follows as

dP = (J1 − P )λgodt+ (J2 − P )λbackdt

+(K1 − P )γgodt+ (K2 − P )γbackd+ σPω (1)

where ω is the derivative of the Brownian motion.
The first and second term in the right hand side of the equation means the occurrence of the

upward jump and the returning process to the pervious value of P(t), in the same way, the third
and fourth terms means the occurrence of the downward jump and the returning process to the
previous value of P(t). Terms describing these processes are defined as follows. Firstly, λgo, λback

are the probability of occurrence of ”go” and ”back” process in unit time span. Two values J1, J2
are the range of these two fluctuation assumed to be follow normal distributions N(a, s) having
the mean value a, and the standard deviation s. namely J1 ∼ N(a11, s11), J2 ∼ N(a12, s12).

In the downward jumps, the values γgo, γback are the probability of ”go” and ”back” process of
jumps for unit of time, and the values K1,K2 correspond to the size of these fluctuations, Namely,
K1 ∼ N(a21, s21),K2 ∼ N(a22, s22).

The probability of occurrence for beginning of jumps, and also the start of two processes ”go,
back” denoted as λgo(P ), λback(P ), γgo(P ), γback(P ) are defined as simple piecewise linear function
as shown in Fig.1. The reason to take simple forms of functions comes from the fact that we have
no serious changes of the results even by using more complicated forms.

Fig.1 shows the probability of occurrence of jumps (upward and Downward) as the functions
of P(T). As is seen, probabilities λgo(P ), λback(P ) are changed at the threshold values (such as
DT11), and the besides the transition areas these values are constant (such as θ11).

The effects of changes of parameters are explained as follows. The mean value a11 of normal
distribution determine the size of jumps, and the probabilities of occurrence of jumps θ11(θ21)
define the number of jumps, If these values are large, jumps are generated more often. Similarly,

2



－35－

Estimation of Occurrence of Jumps in Time Series Models Including Jump Diffusion Processes and Their Applications to Optimal Portfolio Formations

Figure 1: Probabilities of upward and downward jumps λgo, λback,γgo, γback (Upper:upward,
Lower:downward)

the probabilities θ12(θ22) determine the time necessary to return the time series back to the previous
level. If theses values are small, the time series takes longer time to return previous levels.

Fig.2 shows examples of occurrence of upward and downward jumps.
Now we must note that if the probability θ12 and θ22 are low, the time become larger necessary

for the time series to return to previous level before the occurrence of jumps, namely the ’back’
process happens slowly and need more time to return to previous level. In these cases, the time
series maintains the same higher level in the upward jumps (lower level in the downward jumps)
for longer time. The duration time affects the optimization of investment. Fig.3 shows examples
of slow ’back’ process returning to previous level.

2.2 Two way application of time series models

We use the underlying time series model to two cases of optimal problems, namely, the optimal
production and the optimal portfolio (two way applications). In the first optimality problem, we
observe a relevant length of behavior of price changes of products, and decide the allocation of
resources (such as capital). Therefore the integration of profit (value) is utilized for the decision.
On the other hand, in the second optimality problem like securities investment, we observe only
small range of time (such as from time t to t+dt), and then we change the allocation among them
(securities). In this case we do not need the integration of price process, and use the price change
itself described in the equation. Hereafter, we describe the optimality problem, and move to the
second problem.
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Figure 2: Example of upward and downward jumps (Upper:upward jumps, Lower:downward
jumps))

Figure 3: Examples of slow ’back’ process returning to previous level (Left:upward jumps,
Right:downward jumps)
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3 Estimation of occurrence of jumps using the fractal fore-
cast

3.1 Forecast of fractal time series

As described above, we introduce the time series model where the model of jump occurrence.
Namely, if the time series rise (fall) over the ordinary levels, then we notify that the beginning of
jumps are found. However, there exist two problems, usage of detection of jumps and the forecast
(detection) of jumps. In works describing the time series model including jump processes, we
found that the occurrence of jumps are known a priori. The value functions are evaluated under
assumption that time series have several jumps at known location. The assumption postulate that
the jumps last a time span and the policy postulate known jumps are effective. However, in real
world, we usually cannot know the appearance of jump, and don’t have confidence in that these
are jumps.

Then, we use our proposed method to detect the jumps in the time series. We summarize the
method of forecast of fractal time series(Brownian motion) as follows.

In conventional works, we demonstrated extractions of jump diffusion processes by using the
multi state fuzzy inference systems. However, we need many computation time to identify the
fuzzy system and we restrict to fractal time series, then we use the simple method to detect the
jumps in fractal time series. we show only outline of the method.

Firstly we estimate the impulse response function hij from the original fractional time series.
Here, we assume that Ts < t < Te, and define T1 = Te − Ts. And we also define b = aD, a = T2/T1

where D is the fractal dimension. Then we have following successive approximation for the range
0 < t < T2.

y(t) = b−1

∫ bt0

0

h(
t

b
,
t− τ

b
)x(τ)dτ (2)

Namely, in the range Ts < t < Te where the range is extended a times, we find b pieces of
fractal figures, and then it is possible to get the above expressions. Namely, we observe b pieces of
fractal figures in Ts < t < Te in the expanded time range by a times in this range. We also have
next expression.

Now, we discuss the usage of forecast to detect jumps in investment.
(Step 1) Time series forecast
Based on the forecast of fractal time series, we have the estimation of future value of P + dP

(denoted as P̂ (t+ dt)).
(Step 2) Estimation of occurrence of jumps
We compare the estimation P̂ (t + dt) with the diagram of probability map shown in Fig.1.

We decide the jump will be induced if P̂ (t + dt) > Pr where Pr is a value of P in the diagram
corresponds to the probability θ11/3 (upward jump). Similarly, in case of downward jump, we check
whether P̂ (t + dt) < Pr where Pr is a value of P in the diagram corresponds to the probability
θ21/3.

(Step 3) Change of allocation)

5
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If the jump is expected, then we decide to change the allocation of fund (x1, x2, ..., xN ), so that
we can increase the profit (if price rises), or can decrease the loss (if price falls). Then, we get
better profit compared to ordinary investment where no reallocation of fund is exercised.

4 Description of optimal investments

4.1 Partial differential equations describing optimal production

Under the assumption of price change stated above, we derive a set of partial differential equations
(PDF) giving optima investment. We assume that we invest total fund F proportional to the profit
Vi obtained from ith product (i = 1, 2, ..., N). Originally, we must formulize total optimization
including N products, but by iterative approximations, we reduce the problem into an optimization
including only two products. Because, in the total optimization, we at first select two products and
the allocation to other products are fixed, then to optimize the profit for two products. Then, in
the next step, we select another two products, and trace the same procedure to these new products.
After sufficient time of iterations, we can get almost optimal allocation of fund to all N products.

We assume x1, x2 are the allocation of F to two products, and impose restriction xL < xi < xH .
The demands for two products are denoted as D1, D2, and they are sold in the amount x1D1, x2D2.
The allocations xi are given by xi = Vi/(V1 + V2). where Vi is the expected profits obtained from
ith product.

The expected profits from products are given as follows(see Appendix A). However, for sim-
plicity, we omit the subject i and Di = 1 in the reduction.

V =

∫ T

t

exp{−ρ(t− τ)}Pdτ (3)

By dividing the time span into two parts and by applying the Ito Lemma, then we obtain
following partial differential equation. The solution for the equation give the profit V .

0 = L(V ) + P +

2∑
k=1

E[V
(+,P )
k − V ]λk(P ) (4)

+
2∑

k=1

E[V
(−,P )
k − V ]γk(P ) (5)

L(V ) = Vt + 0.5σ2VPP − ρV (6)

where subjects k = 1, 2 correspond to ”go, back” processes and V
(+,P )
k V

(−,P )
k are the value of

V when upward or downward jumps occur in P . We denote

VP = ∂V/∂P, VPP = ∂V 2/∂P 2. (7)

In general, the form of the equation is complicated and is hard to get analytical solution, then
we apply successive numerical solutions based on finite difference equations. Important thing is
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the contributions (deviations) terms in equations given by jumps are only estimation based on the
forecast using fractal. If we find by the forecast a kind of rise or fall of price, then we include
corresponding them in PDFs.

4.2 Optimal portfolio of several securities

In case of portfolio selection of securities we simplify the scheme while we only need to see the
prices in the next time point t+ dt. If the jump is expected by using the method described above,
then we estimate the price in the next time point as

P + dP = P + E[(J1 − P )λgodt+ (J2 − P )λbackdt

+(K1 − P )γgodt+ (K2 − P )γbackd+ σPω] (8)

We have

P + dP = [J1λgo + J2λback +K1γgo +K2γback]dt (9)

These terms are easily evaluated by using probability distributions (we use only one term
depending on the upward/downward jump and ’go’/’back’ process).

5 Applications

5.1 Applications to optimal production

We show the comparison of rewards between two cases in the optimization of investment depending
on the usage of forecast of occurrence of jumps. Namely, one of them is defined as the investment
without consideration about jumps (called as Case N) delivering reward RN , and another case
includes forecast and the usage of effects of jumps (Case Y) and its reward (RY ). In the simulation
studies we define the ration r as follows

r = RY /RN (10)

Parameters used in the model are changed in the following rages.
a11 = 200 ∼ 1500, s11 = 50 ∼ 200, a12 = 150 ∼ 250, s12 = 2 ∼ 20.
θ11 = 0.01 ∼ 0.05, θ12 = 0.30 ∼ 0.85.
a21 = 30 ∼ 100, s21 = 3 ∼ 15, a22 = 70 ∼ 120, s22 = 3 ∼ 12.
θ21 = 0.01 ∼ 0.05, θ22 = 0.3 ∼ 0.85.
On the other hand, for simplicity, we carry out our simulation studies when the following

parameters are fixed to constant values.
σ = 0.2, PT11 = 450, PT12 = 300, PT21 = 100, PT22 = 50. And the initial value of P (t) is

150(P (0) = 0).
We change only one parameter in a range to study the effects to optimal investment. Then

we give the ordinary (standard) value of parameters as follows. We examine the effects of one

7

Table 2: Change of ratio r depending on θ11(Upper:upward jump) and θ21(Lower:downward jump)

θ11 0.01 0.02 0.03 0.04 0.05
r 1.647 2.295 2.943 3.591 4.239
a21 0.01 0.02 0.03 0.04 0.05
r 1.028 1.057 1.085 1.114 1.142

Table 3: Change of ratio r depending on θ12(Upper:upward jump) and θ22(Lower:downward jump)

θ12 0.3 0.4 0.5 0.6 0.7 0.8
r 4.394 3.295 2.636 2.197 1.883 1.647
θ22 0.3 0.4 0.5 0.6 0.7 0.8
r 2.705 2.112 1.67 1.382 1.175 1.021

probability of jumps. We also see remarkable effects of low probability used for the returning
process (’back’ process) after the occurrence of jumps. Distinct advantage of portfolio using forecast
is found over ordinary investment without changing the weight among securities.

6 Conclusion

We have shown the estimation of occurrence of jumps in time series models including jump diffusion
processes and their applications. For future works we will extend the model to make more applicable
to optimal portfolio of securities.
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parameter on the optimal investment by changing the focused parameter in a range while keeping
other parameters to theses standard values.

a11 = 700, s11 = 100, a12 = 200, s12 = 10, θ11 = 0.01, θ12 = 0.85, a21 = 30, s21 = 10, a22 =
100, s22 = 10, θ21 = 0.04, θ22 = 0.85.

We also assume that we are facing to the optimal investment (allocation of production) among
ten products. Each time series of prices of these products include similar jump processes superposed
on fractal time series. Then, we evaluate the effects of forecast of jumps and calculate the profit
including terms contributed from jumps by comparing the cases without forecast. Then, we have
the ratio r = RY /RN as mentioned above.

Even though there are various aspects of simulation results, however followings are easily ex-
pected from the first consideration.

(Case 1) Jump size
If the size of jumps is relatively large, the effects of forecast of jumps increase the effects of

optimal allocation of investment.
(Case 2) Probability of occurrence of jumps
In the same way, if the probability of jump occurrence is large the effects of forecast of jumps

increase the result of optimization.
(Case 3) Time to return to previous levels
On the other hand, the effects of the parameter θ12, θ22 defining the time to return to previous

levels are not self-evident. Namely, if the time needed to return the time series to the previous level
at the end of jumps is long, the changed allocation of investment is kept longer, and the effects
last longer.

At first, we quickly summarize the simulation results for Case 1, Fig.4 shows the change of
the ratio r depending on the parameter a11 (used for upward jump, left figure) and a21 (used for
downward jump , right figure), respectively. In the same way, for Case 2, in Fig.5 we show the
change of the ratio r depending on the parameter θ11 (used for upward jump, left figure) and θ21
(used for downward jump right figure), respectively.

As is seen from the results, in Case 1 the ration r monotonically increases (decreases) for upward
jumps (for downward jumps) along the change of parameter. We notify that in cases of occurrence
of downward jumps, if a11 is smaller then the gap between current value and the next value of P
becomes larger.

In the same way, the ratio r increases for upward and downward jumps along the change of
parameter. Then it is clear that the size of jump and the occurrence probability of jumps affect
direct the ratio r, and we find the advantage of time series forecast on optimal production.

Then, we show the simulation study for Case 3. In Fig.6, we summarize the results of effects
of parameters θ12 (for upward jump), and θ22 for downward jump) on the ratio r.

As shown in the figures, the probability of occurrence of ’back’ jumps becomes smaller, then the
ratio r becomes larger, since the time series remains around the same level, it then emphasizes the
discrepancy between ordinary allocation considering no jumps and our adaptive allocation using
forecast. The time to be needed for returning previous levels of the time series becomes longer,
the optimal investment dominates on ordinary allocation.
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Figure 4: Change of ratio r depending on a11(Left:upward jump) and a21(Right:downward jump)

Figure 5: Change of ratio r depending on θ11(Left:upward jump) and θ21(Right:downward jump)
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Figure 6: Change of ratio r depending on θ12(Left:upward jump) and θ22(Right:downward jump)

5.2 Applications to optimal portfolio

Then we apply the same forecast method of time series to optimize the portfolio of securities.
Simply say, we change the weight of investment to securities depending on the future price, and
especially we increase the weight of security expected to have higher price. However, the framework
of the allocation of investment to each security is the same as treated in previous section for
the production of goods. We also see many resemble characteristics in the treatment of optimal
portfolio to the optimal production. Then, we simply summarize the simulation results in the
following. To emphasize the effects to forecast the occurrence of jumps, we compare the value of
investment only at the time point where jumps occur, and ignore the time points where a time
series has no jumps and the same result is obtained between investment with and without forecast.
Table 1 shows the change of ratio r related to the size of jumps depending on a11 (upward jump)
and a21(downward jump). Table 2 is the range of ratio r related to the probability of occurrence of
jumps depending on θ11(upward jump) and θ21(downward jump). Table 3 denotes the Change of
ratio r related to the probability of occurrence of ’back’ process in jumps depending on θ12(upward
jump) and θ22(downward jump).

Table 1: Change of ratio r depending on a11 (Upper:upward jump) and a21(Lower:downward jump)

a11 200 500 700 1000 1300
r 1.009 1.322 1.647 2.177 2.694
a21 30 50 70 90 100
r 1.068 1.045 1.028 1.015 1.010

As is seen from the results, similar characteristics is found in tables like optimal productions in
previous section. The value of r increases depending on the size of jumps and also the occurrence
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the contributions (deviations) terms in equations given by jumps are only estimation based on the
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corresponding them in PDFs.
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We have
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depending on the upward/downward jump and ’go’/’back’ process).
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parameters are fixed to constant values.
σ = 0.2, PT11 = 450, PT12 = 300, PT21 = 100, PT22 = 50. And the initial value of P (t) is

150(P (0) = 0).
We change only one parameter in a range to study the effects to optimal investment. Then

we give the ordinary (standard) value of parameters as follows. We examine the effects of one
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probability of jumps. We also see remarkable effects of low probability used for the returning
process (’back’ process) after the occurrence of jumps. Distinct advantage of portfolio using forecast
is found over ordinary investment without changing the weight among securities.
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Appendix A. Reduction of optimal production

For simplicity, we suppose at first the time series includes only upward jump. By dividing the
range of integration t ∼ T in equation (3) into two parts as t ∼ t + dt and t + dt ∼ T , then we
have following transfomed equation,

V = E[

∫ t+dt

t

Pe−ρ(τ−t)dτ +

∫ T

t+dt

Pe−ρ(τ−t)dτ ]

Sine the second term on the right hand side of equation can be expressed in the same form as the
first term by shifting the time scale with dt, then we have following expression.

V = E[

∫ t+dt

t

Pe−ρ(τ−t)dτ +

∫ T

t+dt

Pe−ρ(τ−t)V (P + dt)dτ ]

Next, we transform the term V (t+ dt) by using the Ito’s Lemma then we have the expression.

0 = P + L(V )dt+

2∑
k=1

E[V
(+,P )
k − V ]λkdt

L(V ) = Vt +
1

2
σ2VPP − ρV

Here, the subject k correspond to go and back process of the occurrence of jump, and V
(+,P )
k is the

value of V if jumps occurred. The evaluation is the value of function when the jumps occurred,
and we take expectations. By removing terms decreasing fasted than dt, and also dividing terms
by dt, then we have finally the equation above.

Since we have the relation P + dP = P + (Jk − P ) = Jk + ..., we calculate E[V
(+,P )
k − P ]

approximately as

∫ ∞

−∞
V (P = Jk)rkdJk

where Jk is the variable for normal distribution Nk(., .), and rk is the variable for the standard
normal probability distribution corresponds to Nk(., .). We replace the value of V at t by the value
at t + dt (known value) based on the solution process for the PDF using finite difference done in
the backward manner from t = T to t = 0.
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