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Abstract

Examples of weakly infeasible semidefinite programs are useful to
test whether semidefinite solvers can detect infeasibility. However,
finding non trivial such examples is notoriously difficult. This
note shows how to use Lasserre’s semidefinite programming relax-
ations for polynomial optimization in order to generate examples
of weakly infeasible semidefinite programs. Such examples could
be used to test whether a semidefinite solver can detect weak in-
feasibility. In addition, in this note, we generate weakly infeasible
semidefinite programs from an instance of polynomial optimiza-
tion with nonempty feasible region and solve them by semidefinite
solvers. Although all semidefinite programming relaxation prob-
lems are infeasible, we observe that semidefinite solvers do not
detect the infeasibility and that values returned by semidefinite
solvers are equal to the optimal value of the instance due to nu-
merical round-off errors.
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1. Introduction

Semidefinite program (SDP) is the problem of minimizing a linear function over the intersection of
the n-dimensional positive semidefinite cone and an affine space. Unlike linear program, SDP is one
of nonlinear optimization problems and it has two possible infeasibility, i.e., strongly infeasible and
weakly infeasible. The strong infeasibility is the same property as the infeasibility in linear program and
there exists a certificate for the infeasibility. For strongly infeasible SDP, some efficient algorithms for
detecting the infeasibility are proposed in [14, 7]. In contrast, the weak infeasibility is an asymptotic
property peculiar to nonlinear optimization. By adding a small perturbation in weakly infeasible SDP,
the perturbed SDP may become feasible. In addition, weakly infeasible SDPs do not have certificate
of the infeasibility. Consequently, it is very difficult to decide if the SDP is either feasible or infeasible
numerically because numerical errors, such as round-off errors, always occur in the computation of interior-
point methods.

The contribution of this note is to show that Lasserre’s SDP relaxation [3] cam be used to gener-
ate examples of weakly infeasible semidefinite programs. It is interesting that weakly infeasible SDP
problems can be obtained by applying Lasserre’s SDP relaxation into polynomial optimization problems
(POPs) because we seldom encounter weakly infeasible SDP problems in applications except for artificial
examples. We can use these SDP problems as one of sample problems when we measure performance of
algorithms for checking whether a given SDP is feasible or infeasible.

In this note, we solve these SDP problems obtained from this POP by the existing SDP solvers,
SeDuMi [12] and SDPA [1]. Interestingly, we observe that the optimal values of SDP relaxation with
higher relaxation order obtained by SeDuMi and SDPA coincide with the optimal value of the original
POP. This phenomenon is also presented in [2, 15]. In fact, the authors applied Lasserre’s SDP relaxation
into specific POPs, and then confirmed that the returned values are the exact optimal value of the POP
although SDP solvers cannot solve the resulting SDP relaxation problems correctly. In addition, by
choosing an appropriate parameter set of SDPA, we observe that SDPA can detect that at least primal
or dual is infeasible, while SeDuMi cannot.

The organization of this note is as follows: in Section 2, we give some facts on SDP, and Lasserre’s
SDP relaxation for POPs. We show in Section 3 that all SDP relaxation problems of POP (6) are weakly
infeasible. The numerical result for the SDP relaxation problems is given in Section 4. Discussion on
these SDP relaxation problems and the numerical result are given in Section 5.

1.1. Notation and symbols. For every finite set A, #(A) denotes the number of elements in A. Let
Nn be the set of n-dimensional nonnegative integer vectors. We define Nnr := {α ∈ Nn |

∑n
i=1 αi ≤ r}.

Let R[x] be the set of polynomials with n-dimensional real vector x. For every α ∈ Nn, xα denotes the
monomial xα1

1 · · ·xαn
n . For f ∈ R[x], let F be the set of exponentials α of monomials xα whose coefficients

fα are nonzero. Then we can write f(x) =
∑
α∈F fαx

α. We call F the support of f . The degree deg(f)

of f is the maximum value of |α| :=
∑n
i=1 αi over the support F . Rr[x] is the set of polynomials with

the degree up to r. Sn and Sn+ denote the sets of n×n symmetric matrices and n×n symmetric positive
semidefinite matrices, respectively. For A,B ∈ Sn, we define A •B =

∑n
i,j=1AijBij .

2. Preliminaries

For given C,A1, . . . , Am ∈ Sn and b ∈ Rm, SDP and its dual can be formulated as follows:

(Primal) θP := sup
X∈Sn+

{C •X | Aj •X = bj (j = 1, . . . ,m)}, (1)

(Dual) θD := inf
y∈Rm

bT y
∣∣∣∣∣∣
m∑
j=1

yjAj − C ∈ Sn+

 . (2)

It is well-known that the strong duality holds for SDPs (1) and (2).

Theorem 2.1. (Renegar [10, Theorem 3.2.6.]) θP = θD if either (1) or (2) has an interior feasible
solution.

SDP has two types of the infeasibility, i.e., strong infeasibility and weak infeasibility. We call ȳ a dual
improving ray if and only if ȳ satisfies bT ȳ < 0 and

∑m
j=1 ȳjAj ∈ Sn+. Clearly, SDP (1) is infeasible if
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there exists a dual improving ray ȳ. Indeed, if SDP (1) has a feasible solution X̃, then we have

0 > bT ȳ =

m∑
j=1

(
Aj • X̃

)
ȳj =

 m∑
j=1

ȳjAj

 • X̃ ≥ 0,

which is a contradiction. We say that SDP (1) is strongly infeasible if there exists a dual improving ray.
On the other hand, we say that SDP (1) is weakly infeasible if the feasible region of SDP (1) is empty
and for any ε > 0, there exists an X̄ ∈ Sn+ such that

|Aj • X̄ − bj | < ε for all j = 1. . . . ,m.

We remark that from Theorem 3.2.2 in [10], an infeasible SDP is either strongly infeasible or weakly
infeasible.
σ ∈ R[x] is a sum of squares if and only if σ =

∑`
j=1 gj(x)2 for some g1, . . . , g` ∈ R[x]. Σ and Σr denote

the sets of sum of squares and sum of squares with the degree up to 2r, respectively. It is well-known
that Σ is not equivalent to the set of nonnegative polynomials over Rn in general. See [5, 11] for more
details.

Let f1, . . . , fm ∈ R[x] and r̄ := max{ddeg(f)/2e, ddeg(f1)/2e, . . . , ddeg(fm)/2e}. For an integer r
satisfying r ≥ r̄, we set rj := r − ddeg(fj)/2e for all j = 1, . . . ,m. We define the sets M(f1, . . . , fm) and
Mr(f1, . . . , fm) as follows:

M(f1, . . . , fm) :=

σ0 +

m∑
j=1

σjfj

∣∣∣∣∣∣σ0, . . . , σm ∈ Σ

 ,

Mr(f1, . . . , fm) :=

σ0 +

m∑
j=1

σjfj

∣∣∣∣∣∣σ0 ∈ Σr, σj ∈ Σrj for all j = 1, . . . ,m

 ,

We remark that Mr(f1, . . . , fm) ⊆ M(f1, . . . , fm) for all r ≥ r̄. We call M(f1, . . . , fm) the quadratic
module generated by f1, . . . , fm. The quadratic module M(f1, . . . , fm) is said to be Archimedean if and
only if there exists N ∈ N for which N −

∑n
j=1 x

2
j ∈ M(f1, . . . , fm). For given f1, . . . , fm ∈ R[x], let

K := {x ∈ Rn | f1(x) ≥ 0, . . . , fm(x) ≥ 0}. The following theorem plays an essential role in asymptotic
behaviors of Lasserre’s SDP relaxation for POPs.

Theorem 2.2. (Putinar [9, Lemma 4.1]; see also Laurent [5, Theorem 3.20]) Assume that the quadratic
module M(f1, . . . , fm) is Archimedean. For any p ∈ R[x], if p > 0 over K, then p ∈M(f1, . . . , fm).

For given f, f1, . . . , fm ∈ R[x], we consider the POP:

f∗ := inf
x∈Rn
{f(x) | f1(x), . . . , fm(x) ≥ 0}. (3)

Let r be an integer with r ≥ r̄. POP (3) can obviously be reformulated as

f∗ = sup{ρ | f − ρ ≥ 0 on K},
where K = {x ∈ Rn | f1(x) ≥ 0, . . . , fm(x) ≥ 0}. By replacing the nonnegativity condition by a simpler
condition involving Mr(f1, . . . , fm), we can obtain the following problem by applying Lasserre’s SDP
relaxation into POP (3):

ρ∗r := sup {ρ |f − ρ ∈Mr(f1, . . . , fm)} (4)

We can rewrite (4) into SDP (1), equivalently. See [3, 5] for more details. We call (4) SDP relaxation
problem of POP (3) with relaxation order r in this note. Clearly, ρ∗r ≤ ρ∗r+1 ≤ f∗ for all r ≥ r̄ because
Σr ⊆ Σr+1. Lasserre showed in [3, Theorem 4.2] that the sequence {ρ∗r}∞r=r̄ converges to the f∗ if the
quadratic module M(f1, . . . , fm) is Archimedean.

For every z ∈ R#(Nn
2r), we define the #(Nnr )×#(Nnr ) symmetric matrices Lr(z) and the #(Nnrj )×#(Nnrj )

symmetric matrices Lrj (fjz) as follows:

Lr(z) := (zα+β)α,β∈Nn
r
, Lrj (fjz) :=

∑
γ∈Fj

(fj)γzα+β+γ


α,β∈Nn

rj

,
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where Fj is the support of fj for all j = 1, . . . ,m. Lr(z) and Lrj (fjz) are called the moment matrix and
localizing matrix, respectively. The following SDP is the dual of (4):

η∗r := inf
z∈R#(Nn2r)

∑
γ∈F

fγzγ

∣∣∣∣∣∣ z0 = 1, Lr(z) ∈ S#(Nn
r )

+ , Lrj (fjz) ∈ S
#(Nn

rj
)

+ for all j = 1, . . . ,m

 , (5)

where F is the support of f . From the weak duality of SDP, we have ρ∗r ≤ η∗r for all r ≥ r̄.

3. The weak infeasibility of the SDP relaxation problems

We consider POP (3) and let r̄ be as in Section 2.

Theorem 3.1. Let r ≥ r̄. Assume that deg(f) < 2r and that f − ρ 6∈ Mr(f1, . . . , fm) for all ρ ∈ R.
Then the resulting SDP relaxation problem (4) with relaxation order r is weakly infeasible.

To prove this theorem, we use the following lemma on the moment matrix. We give a proof of Lemma
3.2 in Appendix A.

Lemma 3.2. For y = (yα)α∈Nn
2r
∈ R#(Nn

2r). We assume that the moment matrix Lr(y) = (yα+β)α,β∈Nn
r

is positive semidefinite and y0 = 0. Then yα = 0 for all α ∈ Nn2r−1.

Proof of Theorem 3.1 : The SDP relaxation problem (4) is infeasible because of f − ρ 6∈ M(f1, . . . , fm)
for all ρ ∈ R. We suppose to the contrary that the SDP is strongly infeasible. Then the SDP has a dual
improving ray ỹ. From the definition of the improving ray, the (0, 0)-th element of the moment matrix
Lr(ỹ) is 0. Moreover, the moment matrix Lr(ỹ) must be positive semidefinite. It follows from Lemma
3.2 that ỹα = 0 for all α ∈ Nn2r−1. We have F ⊆ Nn2r−1 because of deg(f) < 2r. Therefore,

0 >
∑
γ∈F

fγ ỹγ =
∑

γ∈Nn
2r−1

fγ ỹγ = 0,

which is the contradiction. Hence, the SDP is weakly infeasible. �

We obtain the following corollary from Theorem 3.1.

Corollary 3.3. Assume that deg(f) < 2r̄ and that f − ρ 6∈ M(f1, . . . , fm) for all ρ ∈ R. Then all the
resulting SDP relaxation problems (4) with relaxation order r ≥ r̄ are weakly infeasible.

Now, we consider a POP whose optimal value f∗ is −∞. Then the POP satisfies f−ρ 6∈M(f1, . . . , fm)
for all ρ ∈ R. Indeed, if there exists ρ̂ ∈ R such that f−ρ̂ ∈M(f1, . . . , fm), then f∗ ≥ ρ̂, which contradicts
to f∗ = −∞. Moreover, from the definition of r̄, if r > r̄, then r > deg(f). Therefore, it follows from
Theorem 3.1 that the resulting SDP relaxation problem with r > r̄ is weakly infeasible.

We give another example satisfying the assumptions in Theorem 3.1 and Corollary 3.3. This is the
POP which we mentioned in Section 1. It should be noted that POP (6) is almost the same as a POP in
Example 6.3.1 in [8]. It is proved in Example 6.3.1 in [8] that the quadratic module associated with the
POP given in Example 6.3.1 is not Archimedean. We will show in Example 3.4 that POP (6) satisfies
the assumptions in Theorem 3.1 and Corollary 3.3 by using the same way as Example 6.3.1 in [8].

Example 3.4.

inf
x,y∈R

f(x, y) := −x− y

∣∣∣∣∣∣
f1(x, y) := x− 0.5 ≥ 0,
f2(x, y) := y − 0.5 ≥ 0,
f3(x, y) := 0.5− xy ≥ 0

 . (6)

The optimal value is −1.5 and the optimal solution is (x, y) = (1, 0.5), (0.5, 1). Clearly, the feasible
region of POP (6) has nonempty, compact and full-dimensional.

We show that all the SDP relaxation problems (4) for POP (6) are weakly infeasible by using Corollary
3.3. For POP (6), we have r̄ = 1 and thus deg(f) < 2r̄. We show that f−ρ 6∈M(f1, f2, f3). To this end,
we introduce some notation and symbols used in [8, Example 6.3.1]. We define a subset S of R[x1, . . . , xn]
as follows: 0 ∈ S and for all p ∈ R[x1, . . . , xn],

p ∈ S ⇔
{
pα > 0 and α 6≡ (1, . . . , 1) mod 2, or
pα < 0 and α ≡ (1, . . . , 1) mod 2,
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where pα is the coefficient of the largest monomial xα with the lexicographic order in p. It is not difficult
to prove the following properties:

1 ∈ S, S + S ⊆ S,ΣS := {σf | σ ∈ Σ, f ∈ S} ⊆ S,−1 6∈ S, S ∪ (−S) = R[x1, . . . , xn], S ∩ (−S) = {0}.
Because f1, f2, f3 ∈ S, it follows from these properties that M(f1, f2, f3) ⊆ S. On the other hand,

we have f − ρ ∈ −S for all ρ ∈ R, which implies f − ρ 6∈ M(f1, f2, f3) for all ρ ∈ R. Therefore from
Corollary 3.3, all SDP relaxation problems (4) with relaxation order r ≥ 1 obtained from POP (6) are
weakly infeasible. In addition, this example means that one can generate weakly infeasible SDP relaxation
problems by applying Lasserre’s SDP relaxation into POPs which satisfy f ∈ −S and f1, . . . , fm ∈ S.

Remark 3.5. The strong duality holds for all SDP relaxation problems in Example 3.4. Indeed, the
original POP (6) has an interior feasible solution. It follows from Theorem 4.2 in [3] that the dual of the
SDP relaxation problem with relaxation order r has an interior feasible solution for all r ≥ 1, and thus
the strong duality holds due to Theorem 2.1. This implies that the optimal values of duals of all SDP
relaxation problems are also −∞.

In addition, an assumption of Lasserre’s theorem [3, Theorem 4.2] on the asymptotic convergence of
the optimal values of SDP relaxation problems does not hold. Indeed, the quadratic module M(f1, f2, f3)
generated by f1, f2, f3 is not Archimedean because N − x2 − y2 ∈ −S for any N ∈ N. Therefore, we
cannot ensure theoretically that one can obtain the optimal value of POP (6) by applying Lasserre’s SDP
relaxation. However, as we will see in Section 4, we can obtain the optimal value by solving the SDP
relaxation problems with higher relaxation order by SeDuMi and SDPA.

It should be noted that if POP does not satisfy deg(f) < 2r in Theorem 3.1, then the resulting SDP
relaxation problem with relaxation order r may be strongly infeasible even if POP satisfies f − ρ 6∈
M(f1, . . . , fm) for all ρ ∈ R. We give such an example.

Example 3.6. For POP (6) in Example 3.4, we replace f(x, y) = −x − y by f(x, y) = −x2 − y2 and
apply Lasserre’s SDP relaxation with relaxation order r = 1 into the POP. Clearly, this POP does not
satisfy deg(f) < 2r although it satisfies f − ρ 6∈ M(f1, f2, f3) for all ρ ∈ R. Any dual improving ray
z̃ ∈ R6 for the resulting SDP relaxation problem (4) must satisfy

−z̃(2,0) − z̃(0,2) < 0, z̃(0,0) = 0,

 z̃(0,0) z̃(1,0) z̃(0,1)

z̃(1,0) z̃(2,0) z̃(1,1)

z̃(0,1) z̃(1,1) z̃(0,2)

 ∈ S3
+,−z̃(1,0),−z̃(0,1), z̃(1,1) ≥ 0,

where z̃ := (z̃(0,0), z̃(1,0), z̃(0,1), z̃(2,0), z̃(1,1), z̃(0,2))
T . It is easy to find such a vector. Indeed, the vector

z̃ = (0, 0, 1, 0, 1)T is an improving ray and thus the SDP relaxation problem (4) with relaxation order
r = 1 is strongly infeasible. In contrast, it follows from Corollary 3.3 that SDP relaxation problem (4)
with relaxation order r ≥ 2 are weakly infeasible.

Remark 3.7. For a given POP, if the quadratic module M(f1, . . . , fm) is Archimedean, then there exists
ρ̂ ∈ R such that f− ρ̂ ∈M(f1, . . . , fm). Indeed, because the quadratic module is Archimedean, there exists
N ∈ N for which N −

∑n
i=1 x

2
i ∈ M(f1, . . . , fm), which implies that the feasible region of the POP is

compact. For sufficiently small ρ̂, we have f − ρ̂ > 0 over the feasible region. Therefore it follows from
Theorem 2.2 that f − ρ̂ ∈M(f1, . . . , fm).

On the other hand, even if M(f1, . . . , fm) is not Archimedean, there may exist ρ ∈ R such that f −ρ ∈
M(f1, . . . , fm). Indeed, in Example 3.4, we replace f(x, y) = −x−y by f(x, y) = x+y. Then the quadratic
module is not Archimedean. But, we have f−1 = 1 ·(x−0.5)+1 ·(y−0.5)+0 ·(0.5−xy) ∈M(f1, . . . , fm).

4. The computation result

In this section, we solve SDP relaxation problems of POP (6) in Example 3.4 by SDP solvers, SeDuMi
[12] and SDPA [1]. We observe that (i) SeDuMi and SDPA cannot detect the infeasibility, and some
values returned by SeDuMi and SDPA are the almost same as the optimal value −1.5 of POP (6), (ii)
by choosing an appropriate parameter for SDPA, SDPA can detect that at least primal or dual SDPs
is infeasible. One of the reasons for (i) is numerical errors, such as round-off errors, in the practical
computation of primal-dual interior-point methods. In Section 5.2, we discuss the reason more in detail.

To solve the SDP relaxation problems of POP (6), we use a computer with 4 Intel Xeon 2.66 GHz cpus
and 8GB memory. Table 1 shows the numerical result by SeDuMi 1.21. Asterisks in the first column of
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Table 1 indicate that SeDuMi retunes the message “Run into numerical problems”. This implies that
SeDuMi terminates before it finds an accurate optimal solution for the SDP relaxation problems (4). In
Table 1, the second and the third columns show the optimal values of the SDP relaxation problems (4)
and its dual. The fourth to the ninth columns show DIMACS errors printed by SeDuMi. DIMCAS errors
are measures for the optimality on the obtained value and solution, and are defined in [6]. We see that
SeDuMi can not detect the infeasiblity and return the optimal value of POP (6) at r ≥ 3. Moreover,
we observe that the obtained solutions are very accurate because DIMACS errors for all SDP relaxation
problems are sufficiently small.

Table 1. The numerical results and DIMACS errors by SeDuMi.

r θP θD error 1 error 2 error 3 error 4 error 5 error 6

1* -5.0832606527e+07 -7.7672643211e+07 7.8e-09 0.0e+00 0.0e+00 0.0e+00 -2.1e-01 8.6e-01
2 -7.1309019292e+02 -7.6471569258e+02 5.7e-10 0.0e+00 0.0e+00 0.0e+00 -3.5e-02 2.9e-01
3* -1.4999999877e+00 -1.4999999933e+00 7.3e-09 0.0e+00 0.0e+00 3.0e-10 -1.4e-09 2.2e-08
4* -1.4999999932e+00 -1.4999999947e+00 2.9e-09 0.0e+00 0.0e+00 2.0e-10 -3.5e-10 8.8e-09
5 -1.4999999978e+00 -1.4999999984e+00 8.3e-10 0.0e+00 0.0e+00 5.4e-11 -1.3e-10 2.7e-09
6 -1.4999999967e+00 -1.4999999976e+00 1.2e-09 0.0e+00 0.0e+00 6.4e-11 -2.3e-10 3.7e-09
7 -1.4999999962e+00 -1.4999999967e+00 1.3e-09 0.0e+00 0.0e+00 7.7e-11 -1.2e-10 4.4e-09
8* -1.4999999946e+00 -1.4999999952e+00 1.7e-09 0.0e+00 0.0e+00 9.5e-11 -1.5e-10 6.1e-09
9 -1.4999999949e+00 -1.4999999955e+00 1.6e-09 0.0e+00 0.0e+00 7.8e-11 -1.3e-10 5.6e-09
10* -1.4999999509e+00 -1.4999999556e+00 1.5e-08 0.0e+00 0.0e+00 6.9e-10 -1.2e-09 5.1e-08

Table 2. The numerical results and DIMACS errors by SDPA.

r θP θD Status error 1 error 2 error 3 error 4 error 5 error 6

1 -2.4383121069e+04 -4.8766242118e+04 pFEAS 7.2e-06 0.0e+00 3.7e-17 1.1e-16 -3.3e-01 5.3e-16
2 -6.0086464934e+01 -6.3081102925e+01 pFEAS 4.3e-07 0.0e+00 3.3e-10 0.0e+00 -2.4e-02 1.5e-01
3 -1.5001158225e+00 -1.5001158225e+00 pdOPT 2.0e-09 0.0e+00 2.6e-12 0.0e+00 -5.6e-17 1.1e-04
4 -1.5000010834e+00 -1.4999981434e+00 pdFEAS 2.3e-10 0.0e+00 2.8e-12 0.0e+00 7.3e-07 1.6e-06
5 -1.5000003346e+00 -1.4999999009e+00 pdFEAS 2.1e-10 0.0e+00 2.0e-07 0.0e+00 1.1e-07 1.1e-06
6 -5.0000000000e+01 -0.0000000000e+00 noINFO 1.3e+02 2.1e-01 1.4e+02 0.0e+00 9.8e-01 6.7e+03
7 -1.5000003078e+00 -1.4999997780e+00 pdFEAS 1.4e-09 0.0e+00 2.4e-07 0.0e+00 1.3e-07 2.0e-06
8 -1.5000000904e+00 -1.4999999929e+00 pdOPT 6.8e-10 0.0e+00 3.3e-07 0.0e+00 2.4e-08 8.0e-07
9 -1.5000003952e+00 -1.4999995706e+00 pdFEAS 4.5e-08 0.0e+00 3.4e-07 0.0e+00 2.1e-07 4.4e-06
10 -1.6090094249e+00 -1.4203975957e+00 noINFO 2.0e-03 0.0e+00 1.2e-06 0.0e+00 4.7e-02 1.6e-01

Table 2 shows the numerical results by SDPA 7.3.4. In Table 2, the fourth column shows the status
of SDPA. Specially, “pdOPT” implies that SDPA solved the problem normally. At r = 6, SDPA fails
to obtain the accurate value and return “noINFO” because SDPA cannot execute the Cholesky decom-
position used in the interior-point method. The fifth to the tenth columns show the DIMACS errors by
SDPA. We see from Table 2 that SDPA does not detect the infeasibility and that the obtained optimal
values are approximately equal to −1.5. We remark that except for r = 3, 8, SDPA does not terminate
before it finds accurate solutions. The numerical behavior of SDPA for these SDP relaxation problems
are different form SeDuMi.

Moreover, we choose parameters for “Stable but Slow” described in the manual of SDPA and solve
SDP relaxation problems with relaxation order r = 1, . . . , 10. Table 3 shows the numerical results. We
observe that SDPA returns “pdINF” for r ≥ 5, which implies that SDPA detects that at least one of
primal and dual SDPs is infeasible for those SDP relaxation problems. Because those SDP relaxation
problems are weakly infeasible and its dual SDPs have an interior feasible point, due to Theorem 4.25 of
[13], primal-dual path-follwoing algorithms for self-dual embedding program can detect this infeasibility,
theoretically. Despite of the fact that the algorithm of SDPA is not primal-dual path-follwoing algorithm
for self-dual embedding program, SDPA detects the infeasibility.
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Table 3. The numerical results and DIMACS errors by SDPA with parameter “Stable but Slow”.

r θP θD Status error 1 error 2 error 3 error 4 error 5 error 6

1 -1.7064901829e+05 -1.8122348764e+05 pUNBD 9.0e-05 0.0e+00 0.0e+00 0.0e+00 -3.0e-02 2.0e+01
2 -1.8325109245e+02 -2.0240534758e+02 pdFEAS 4.2e-08 0.0e+00 9.6e-12 0.0e+00 -5.0e-02 2.7e-01
3 -1.5269996782e+00 -1.5269996782e+00 pdOPT 2.9e-10 0.0e+00 1.0e-08 0.0e+00 5.5e-17 1.2e-02
4 -1.5000001084e+00 -1.4999996657e+00 pdFEAS 3.7e-11 0.0e+00 8.9e-09 0.0e+00 1.1e-07 2.9e-07
5 -1.3502461494e+03 -1.3251763366e+00 pdINF 6.5e-05 0.0e+00 9.6e-06 0.0e+00 1.0e+00 2.4e+00
6 -1.7789380603e+03 -1.3347554750e+00 pdINF 2.2e-04 0.0e+00 2.2e-05 0.0e+00 1.0e+00 3.2e+00
7 -3.9122087504e+03 -1.3458138318e+00 pdINF 9.2e-04 0.0e+00 1.2e-04 0.0e+00 1.0e+00 4.5e+00
8 -5.0232346525e+03 -1.3514845881e+00 pdINF 3.4e-03 0.0e+00 2.4e-04 0.0e+00 1.0e+00 5.6e+00
9 -6.7273096807e+03 -1.3569571939e+00 pdINF 1.2e-02 0.0e+00 4.5e-04 0.0e+00 1.0e+00 6.6e+00
10 -1.0096490427e+04 -1.3627793996e+00 pdINF 3.1e-02 0.0e+00 9.1e-04 0.0e+00 1.0e+00 7.3e+00

5. Discussions

5.1. Weak infeasibility. We seldom see weakly infeasible SDP problems in applications except for
artificial examples. In this sense, it is interesting that weakly infeasible SDP problems can be obtained
by applying Lasserre’s SDP relaxation into POP (6).

As mentioned in [7], it is very difficult to detect the infeasibility of a weakly infeasible SDP problem
because the SDP become either feasible or infeasible by perturbing it. The weakly infeasible SDP problems
in Example 3.4 will be useful for measuring the performance of algorithms for detecting the infeasibility
of a given SDP. Indeed, by tuning parameters of SDPA, SDPA is successful in detecting the infeasibility
in Section 4.

5.2. Similar computational results. In [2, 15], we can see similar numerical behaviors of SeDuMi and
SDPA which we have seen in Section 4. In [2], the authors applied Lasserre’s SDP relaxation into the
following unconstrained POP:

f∗ := inf
{
f(x, y) := x4y2 + x2y4 − x2y2

∣∣(x, y) ∈ R2
}
, (7)

where f∗ = −1/27, and the objective function f − f∗ (called the dehomogenized Motzkin polynomial) is
nonnegative but not SOS. In the case of unconstrained POP, the condition in Corollary 3.3 is equivalent
to the f−ρ 6∈ Σ for all ρ ∈ R. Consequently, for r > 3, all SDP relaxation problems with relaxation order
r are weakly infeasible due to Corollary 3.3. Despite of this fact, it is reported in [2] that for those SDP
relaxation problems with higher relaxation order, the values returned by SDP solvers are the same as the
optimal value of POP (7). In [15], the authors deal with a simple one-dimensional POP. Unlike cases of
this note and [2], although all the resulting SDP relaxation problems are feasible, the values returned by
SDP solvers are incorrect but the same as the one-dimensional POP.

For the two POPs, the optimal values of the POPs are obtained by Lasserre’s SDP relaxation nu-
merically, while one cannot ensure the convergence of Lasserre’s SDP relaxation theoretically. Indeed,
f − f∗ is not SOS in the first POP and the quadratic module associated with the second POP is not
Archimedean. However, in [4], it is shown that for a unconstrained POP, by adding an SOS σ̃ with small
coefficients into the objective function f , the polynomial f + σ̃ − f∗ can be decomposed into an SOS.
This result implies that SDP solvers may return the optimal value of a unconstrained POP due to the
numerical error in the numerical computation. For the POP dealt with in [15], a similar result related to
this fact is given. Therefore, we obtain the following conjecture on Example 3.4 from these discussion:

Conjecture 5.1. Let f, f1, f2, f3 be as in Example 3.4. For any ε > 0, there exist r0 ∈ N and a
polynomial q ∈Mr0(f1, f2, f3) such that

f + εq − f∗ ∈M(f1, f2, f3).

This conjecture ensures that SDP solvers return the optimal value of POP (6) by choosing sufficiently
large relaxation order r. Moreover, one may be able to extend this conjecture into a POP with the
compact feasible region. The proof of this conjecture or giving a counterexample and the extension of
this conjecture into a general case are future works.
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Appendix A. A Proof of Lemma 3.2

We prove Lemma 3.2 by induction on r. In the case where r = 1, we obtain the following condition
from y0 = 0 and L1(y):

L1(y) =


0 ye1 . . . yen
ye1 y2e1 . . . ye1+en
...

...
. . .

...
yen ye1+en . . . y2en

 ∈ Sn+1
+ ,

where ei is the i-th standard vector. Clearly, it follows from this condition that yei = 0 for all i = 1, . . . , n.
This implies yα = 0 for all α ∈ Nn1 .

We assume that this lemma holds for r − 1. Because Lr(y) is positive semidefinite, the principal
submatirx Lr−1(y) of Lr(y) is also positive semidefinite, and thus yα = 0 for all α ∈ Nn2r−3. It is sufficient

to prove the two cases under the assumption Lr(y) ∈ S#(Nn

r )
+ and y0 = 0:

(i) α ∈ Nn2r−2 \ N
n
2r−3, yα = 0,

(ii) α ∈ Nn2r−1 \ N
n
2r−2, yα = 0.

For α in (i), there exist δ1 ∈ Nnr−2 and δ2 ∈ Nnr such that α = δ1 +δ2. Let β = 2δ1 and γ = 2δ2. From the
definition of Lr(y) and this decomposition of α, the following matrix is a principal submatrix of Lr(y):(

yβ yα
yα yγ

)
.

Thus, we obtain (
yβ yα
yα yγ

)
∈ S2

+.

On the other hand, yβ = 0 because β = 2δ1 ∈ Nn2r−4 ⊆ Nn2r−3. From this condition and yβ = 0, we obtain
y2
α ≤ yβyγ , and thus yα = 0.

For α in (ii), there exist δ1 ∈ Nnr−1 and δ2 ∈ Nnr such that α = δ1 +δ2. By applying the same argument
as (i), we can prove (ii). This completes the proof.
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