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Tubulanus tamias sp. nov. (Nemertea: Palaeonemertea) with
Two Different Types of Epidermal Eyes

Hiroshi Kajihara1*, Keiichi Kakui1, Hiroshi Yamasaki2, and Shimpei F. Hiruta1

1Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
2Faculty of Science, University of the Ryukyus, Senbaru 1,

Nishihara, Nakagami, Okinawa 903-0213, Japan

Based on specimens collected subtidally (~10 m in depth) in Tomioka Bay, Japan, we describe the 
palaeonemertean Tubulanus tamias sp. nov., which differs from all its congeners in body coloration. 
In molecular phylogenetic analyses based on partial sequences of the nuclear 18S and 28S rRNA 
genes and histone H3, as well as the mitochondrial 16S rRNA and cytochrome c oxidase subunit 
I genes, among selected palaeonemerteans, T. tamias nested with part of the congeners in 
Tubulanus, while the genus as currently diagnosed appears to be non-monophyletic. Molecular 
cloning detected polymorphism in 28S rDNA sequences in a single individual of T. tamias, indicat-
ing incomplete concerted evolution of multiple copies. Tubulanus tamias is peculiar among tubu-
lanids in having 9–10 pigment-cup eyes in the epidermis on either side of the head anterior to the 
cerebral sensory organs, and remarkably there are two types of eyes. The anterior 8–9 pairs of eyes, 
becoming larger from anterior to posterior, are completely embedded in the epidermis and proxi-
mally abutting the basement membrane; each pigment cup contains bundle of up to seven, rod-
shaped structure that resemble a rhabdomeric photoreceptor cell. In contrast, the posterior-most 
pair of eyes, larger than most of the anterior ones, have an optical cavity filled with long cilia and 
opening to the exterior, thus appearing to have ciliary-type photoreceptor cells. The size and 
arrangement of the eyes indicate that the posterior-most pair of eyes are the remnant of the larval 
(or juvenile) eyes.

Key words: ribbon worm, Anopla, Tubulanidae, ocellus, marine invertebrate, Amakusa

INTRODUCTION

The palaeonemertean genus Tubulanus Renier, 1804 con-
tains 34 valid species of marine, benthic forms (Fernández-
Álvarez and Anadón, 2013; Gibson, 2014) that often have 
characteristic body coloration. Four species have been 
reported from Japanese waters: T. capistratus (Coe, 1901); 
T. ezoensis Yamaoka, 1940; T. punctatus (Takakura, 1898); 
and T. roretzi Senz, 1997. Tubulanus lucidus Iwata, 1952 
has a mid-dorsal blood vessel, a character uncommon in 
Palaeonemertea s.str. (i.e., non-hubrechtellid forms that do 
not produce a pilidium larva); this species appears to belong 
to Hubrechtella or a related genus, rather than to Tubulanus
(Kajihara, 2007).

During a faunal survey around Tomioka, Kyushu, Japan, 
we collected specimens of an undescribed species of Tubu-
lanus having eyes. Of ~110 described species in Palaeone-
mertea s.str., this is the seventh species known to have 
definitive eyes. The main aims of this paper are (1) to 
describe the species from Tomioka as new to science, and 
(2) to infer the phylogenetic position of the species among 
other select palaeonemerteans for which sequences are 

available in GenBank. We discuss the possible developmen-
tal pattern of eyes in this species based on the observation 
of adult morphology. We sequenced part of the 16S, 18S, 
and 28S rDNA, as well as histone H3 and cytochrome c oxi-
dase subunit I (COI) genes to confirm the generic placement, 
and in the course of this analysis discovered polymorphism of 
28S rDNA sequences, which we also report here.

MATERIALS AND METHODS

Sampling and morphological observation
Three anterior fragments of nemerteans were obtained with a 

Smith-McIntire grab sampler on 25 November 2009 from muddy-
sand sediment at 9.7 m depth at Tomioka Bay (32°31′42″N, 
130°02′15″E), Kyushu, Japan, by the research boat Seriola of the 
Amakusa Marine Biological Laboratory, Kyushu University. The frag-
ments were anaesthetized in a MgCl2 solution isotonic to seawater; 
the posterior portions of the two of the fragments were fixed and pre-
served in 100% EtOH for DNA extraction. Fragments for histological 
observation were fixed in Bouin’s solution for 24 h and then pre-
served in 70% EtOH. They were dehydrated in 100% EtOH, cleared 
in xylene, embedded in paraffin wax (melting point 56–57°C), and 
sectioned at 9 or 14 μm thickness. Sections were stained using the 
Mallory trichrome method (Gibson, 1994). Terminology for morpho-
logical characters is based largely on Sundberg et al. (2009); the 
character matrix is available online as a supplementary file (Table 
S1). The ratio of the epidermal thickness to the body diameter in the 
brain and intestinal regions was calculated as the index E (b) and E
(i), respectively, following Kajihara (2006). Sections are deposited in 
the Hokkaido University Museum, Sapporo, Japan (ZIHU).
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DNA extraction, PCR amplification, sequencing
Total genomic DNA was extracted from the holotype and one 

of the paratypes of the new species by using a DNeasy Tissue Kit 
(Qiagen, Tokyo, Japan). PCR amplifications for 16S rRNA, 18S 
rRNA, H3, and COI genes were performed following the procedure 
described in Andrade et al. (2012). For 28S rRNA gene, about 2500 
bp (corresponding roughly to the D1 through D7 regions; Gillespie 
et al., 2006), was PCR-amplified using the primer pair 28S-01 (Kim 
et al., 2000) and 28S_3KR (Yamasaki et al., 2013) (Table 1) with a 
thermal cycler (iCycler, Bio-Rad Laboratories, Tokyo, Japan). PCR 
cycling conditions were 95°C for 1 min; 35 cycles of 95°C for 30 
sec, 50°C for 30 sec, and 72°C for 3 min; and 72°C for 7 min. Cycle 
sequencing was carried out with an ABI BigDye Terminator version 
3.1 Cycle Sequencing Kit using the primers listed in Table 1. As we 
detected two apparently polymorphic sites (one near the D2 region, 
the other between D7a and D7b), we designed specific primers 
(N28_06F, N28_15F, and N28_19R, Table 1) that 
bind sites outside the polymorphic sites. PCR prod-
ucts that included the two polymorphic sites were 
inserted in pGEM-T Easy Vector (Promega, Tokyo, 
Japan) and transformed into competent DH5α Escher-
ichia coli cells. Inserts were amplified from individual 
colonies by PCR using the M13 primer (Promega, 
Tokyo, Japan) to provide template for DNA sequenc-
ing. The sequences obtained have been deposited in 
the DNA Data Bank of Japan (DDBJ) under accession 
numbers AB854621–AB854624 and LC042091–
LC042094 (Tables 2, 3). For comparison, a 2419-base 
fragment of the 28S rDNA gene was sequenced from 
Tubulanus ezoensis (voucher specimen, ZIHU 4458; 
DDBJ AB854620; Table 2) collected on 11 July 2010 

at Daikoku-jima, Akkeshi, Hokkaido, Japan.

Phylogenetic analysis
To assess the phylogenetic position of the new species, a max-

imum-likelihood (ML) analysis and Bayesian inference (BI) were 
carried out using sequences from 20 palaeonemertean species 
(including the new species and T. ezoensis), as well as two brachi-
opod species as outgroups, which are available in public databases 
(Table 2). Sequences were aligned gene by gene by using 
MUSCLE (Edgar, 2004) implemented in MEGA ver. 5.2.2 (Tamura 
et al., 2011) with default settings. Alignment-ambiguous regions 
were removed by using BMGE ver. 1.1 (Criscuolo and Gribaldo, 
2010); the 16S, 18S, and 28S alignments were processed with the 
“-t DNA” option, while H3 and COI were processed with the “-t 
CODON” option. The lengths of the resulting sequence alignments 
were 1644 nt (18S), 1112 nt (28S), 327 nt (H3), 357 nt (16S), and 

Table 1. List of primers used in this study.

Name Direction Sequence (5′–3′) Source

28S-01 forward GACTACCCCCTGAATTTAAGCAT Kim et al. (2000)
28SR-01 reverse GACTCCTTGGTCCGTGTTTCAAG Kim et al. (2000)
28Sf forward TGGGACCCGAAAGATGGTG Luan et al. (2005)
28S_15R reverse CGATTAGTCTTTCGCCCCTA Yamasaki et al. (2013)
28S_16F forward CATCCGGTAAAGCGAATGAT present study
28S_2KF forward TTGGAATCCGCTAAGGAGTG Yamasaki et al. (2013)
28S_3KR reverse CCAATCCTTTTCCCGAAGTT Yamasaki et al. (2013)
N28_06F forward CGATCGAGGAAGACCGTAAATC present study
N28_15F forward GGACGAAGCCAGAGGAAACTC present study
N28_19R reverse CTTTTATGGTGTCCGATCAGC present study

Table 2. Taxa included in the phylogenetic analysis, with GenBank accession numbers and source.

Taxa 18S 28S H3 16S COI Source

Ingroup
Callinera grandis Bergendal, 1903 JF293067 HQ856881 JF277709 JF277570 HQ848626 Andrade et al. (2012)
Carinina ochracea Sundberg et al., 2009 JF293050 HQ856896 JF277753 JF277631 HQ848627 Andrade et al. (2012)
Carinina plecta Kajihara, 2006 EU495307 — — — EU489493 Sundberg et al. (2009)
Carinoma hamanako Kajihara et al., 2011 JF293047 HQ856863 JF277714 JF277600 HQ848628 Andrade et al. (2012)

Carinoma mutabile Griffin, 1898 — AJ436887 AJ436985 AJ436832 —
Thollesson and 
Norenburg (2003)

Carinoma tremaphoros Thompson, 1900 JF293049 HQ856865 JF277713 JF277602 HQ848630 Andrade et al. (2012)
Cephalothrix bipunctata Bürger, 1892 KF935279 KF935335 KF935391 KF935447 KF935501 Kvist et al. (2014)
Cephalothrix filiformis (Johnston, 1828) JF293054 HQ856842 JF277743 JF277594 HQ848616 Andrade et al. (2012)
Cephalothrix hongkongiensis Sundberg et al., 2003 JF293057 HQ856839 JF277739 JF277591 HQ848614 Andrade et al. (2012)
Cephalothrix rufifrons (Johnston, 1837) — HQ856841 JF277741 JF277592 HQ848604 Andrade et al. (2012)

Cephalothrix simula (Iwata, 1952) — AJ436891 AJ436988 AJ436836 AJ436945
Thollesson and 
Norenburg (2003)

Cephalothrix spiralis Coe, 1930 — AJ436892 AJ436989 AJ436837 AJ436946
Thollesson and 
Norenburg (2003)

Tubulanus annulatus (Montagu, 1804) JF293060 HQ856901 JF277717 JF277599 HQ848622 Andrade et al. (2012)
Tubulanus ezoensis Yamaoka, 1940 — AB854620 — — — present study
Tubulanus pellucidus (Coe, 1895) JF293062 HQ856900 JF277708 JF277595 HQ848625 Andrade et al. (2012)
Tubulanus polymorphus Renier, 1804 JF293061 HQ856899 JF277716 JF277598 HQ848621 Andrade et al. (2012)
Tubulanus punctatus (Takakura, 1898) JF293063 HQ856894 JF277748 JF277597 HQ848624 Andrade et al. (2012)

Tubulanus rhabdotus Corrêa, 1954 — AJ436894 AJ436990 AJ436839 AJ436948
Thollesson and 
Norenburg (2003)

Tubulanus sexlineatus (Griffin, 1898) JF293064 HQ856895 JF277747 JF277596 HQ848623 Andrade et al. (2012)
Tubulanus tamias sp. nov. (holotype) LC042092 AB854621 LC042094 LC042091 LC042093 present study

Outgroup

Novocrania anomala (Müller, 1776) DQ279934a DQ279949a JF509710b DQ280024a —
aGiribet et al. (2006); 
bAndrade et al. (2012)

Terebratalia transversa (Sowerby, 1846) JF509725 JF509729 JF509711 JF509720 JF509715 Andrade et al. (2012)
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657 nt (COI); the genes were concatenated for phy-
logenetic analyses by using MEGA ver. 5.2.2.

The ML analysis was conducted in RAxML ver. 
8 (Stamatakis, 2014) under the GTR+G model; for 
16S, 18S, and 28S, the data were partitioned by 
gene; for H3 and COI by codon position. Nodal sup-
port values were estimated by bootstrapping with 
1000 pseudoreplicates. RAxML was called as follows 
(except the options for input and output file names, as 
well as the partition file name): raxmlHPC-
PTHREADS-AVX -T 5 -f a -x 12345 -p 12345 -#1000 
-m GTRGAMMA.

BI was conducted by using MrBayes ver. 3.2.4 
(Ronquist and Huelsenbeck, 2003; Altekar et al., 
2004), with two independent Metropolis-coupled anal-
yses, each using four Markov chains of 10,000,000 
generations. Trees were sampled every 100 genera-
tions. Run convergence was assessed by using 
Tracer ver. 1.6 (Rambaut et al., 2014). The equilib-
rium samples (after 25% of burn-in) were used to 
generate a 50% majority-rule consensus tree. For BI, 
jModeltest2 (Darriba et al., 2012) was used to deter-
mine the most suitable substitution model for each 
gene partition under the Bayesian information crite-
rion, with the following settings: number of substitu-
tion schemes = 3; including models with equal/
unequal base frequencies (+F); including models 
with/without a proportion of invariable sites (+I); 
including models with/without rate variation among 
sites (+G) (nCat = 4); optimized free parameters (K) =
substitution parameters + 29 branch lengths + topol-
ogy; base tree for likelihood calculations = ML tree; 
tree topology search operation = NNI. The optimal 
models were K80 + I + G for 18S; and GTR + I + G 
for 16S, 28S, H3, and COI.

RESULTS

Taxonomy
Tubulanus tamias sp. nov.

(Figs. 1–6)

Material examined. Holotype, female, ZIHU 4430, 
serial transverse sections 9 μm thick, five slides. Allotype, 
male, ZIHU 4431, serial transverse sections, 14 μm thick, 
three slides. Paratype, sex unknown, ZIHU 4432, unsec-
tioned anterior body fragment, preserved in 70% EtOH.

Description. External features. Paratype largest among 
three body fragments observed, measuring about 10 mm 
long, 0.6 mm in wide; holotype 8 mm long; allotype 5 mm 
long. Body white in basement color, decorated with numer-

ous stripes and bands (Fig. 1A). Head demarcated from 
body, not wider than trunk, bluntly rounded anteriorly; white 
near anterior tip, posteriorly changing to olive color in a nar-
row, yellow transitional zone; with a dark olive mid-dorsal 
stripe. Black ocelli arranged in row on each side of head, 
from ventral margin near tip, postero-dorsally along lateral 
edge to dorso-lateral margin (Fig. 1B, C). Neck with dark 
orange ring completely encircling body; just posterior to 
neck ring, white mass visible in deeper portion of epidermis 
on both sides, corresponding to brain.

Body with seven olive-colored longitudinal stripes in 
deep epidermis, beginning close behind neck ring: three 
dorsal, single lateral on each side, and two ventral (Fig. 1D). 

Table 3. Nucleotides showing polymorphism and their positions in the aligned 2252-base sequences of 28S rDNA from the holotype 
(AB854621 and AB854622) and the paratype (AB854623 and AB854624) of Tubulanus tamias sp. nov. Alignment of the four 
sequences were carried out by CLUSTAL W (Thompson et al., 1994) implemented in MEGA v.5.2.2 (Tamura et al., 2011).

Sequence
Site

558 639 705 706 1605 1851 1852 1853 1870 1871 1873 1874 1877 1878

AB854621 (holotype) A T C G T G C T G C A A – –
AB854622 (holotype) A T – – T G C T A A C G A A
AB854623 (paratype) G C C G C G C T G C A A – –
AB854624 (paratype) G C C G C – – – G C A A – –
Type of variation: i, 
intra-individual; s, 
intra-specific

s s i i s i i i i i i i i i

Fig. 1. Tubulanus tamias sp. nov., photographs of living specimens. (A–C) Para-
type, ZIHU 4432. (D) Holotype, ZIHU 4430. (A) General appearance of the anterior 
end of the body fragment, showing the side organ. (B) Head, dorsal view. (C) Head, 
ventral view. (D) Posterior end of the body fragment, ventral view, showing the 
seven longitudinal stripes (“2” indicates the mid-dorsal stripe).



Tubulanus tamias with two types of eyes      599

In shallower epidermis, narrow, light brown, 
longitudinal line runs above mid-dorsal olive 
stripe; dark orange longitudinal lines run 
above dorsal and ventral olive stripes on 
both sides.

Dark brown bands present at more or 
less regular intervals in posterior portion of 
body, alternating thick and thin. Body tends 
to constrict at thick bands when worm con-
tracts. Side organs present at second band 
(Fig. 1A). The dark brown bands often inter-
rupt the longitudinal stripes.

Body wall. Epidermal non-cellular inclu-
sions absent. Epidermis of anterior body 
without intra-epithelial muscle fiber network. 
In brain region, thickness of epidermis/lateral 
body diameter > 0.1; E (b) = 0.11; E (i) = 
0.06. Dermis forms distinct zone between 
epidermis and body-wall circular muscle 
layer (Fig. 2A). Thickness of dermis less 
than half of epidermal height (Fig. 2A). 
Muscle processes (or radial muscles) extend 
into epidermis in cephalic region (Fig. 2A). 
Muscles organized in outer circular and inner 
longitudinal layers; diagonal muscles not 
found; inner circular muscle layer present 
around rhynchocoel and alimentary canal 
(Fig. 2B). Muscle cross between body-wall 
outer circular muscle layer and these “inner” 
circular muscles not found. Longitudinal 
muscle plate poorly developed between 
rhynchocoel and foregut, but posteriorly con-
spicuous between rhynchocoel and intestine 
(Fig. 2C). Transverse muscle fibers present 
above mouth (Fig. 2D). Parenchyma barely 
distinguishable, except as membranes 
enclosing various body organ systems.

Proboscis apparatus. Proboscis pore 
subterminal. Basophilic glandular cells pres-
ent in rhynchodaeum (Fig. 3A). Rhynchocoel 
musculature consists of circular muscles, 
except in brain region, where inner longitudi-
nal muscles also present (Fig. 2D); circular 
muscle layer not extremely thick posteriorly, 
but posterior rhynchocoel chamber (about 1 
mm in length) present (Fig. 3B–H). Rhynchocoel not reach-
ing hind end of body. Proboscis composed of three regions 
(anterior, middle, and posterior, in retracted state). Anterior 
region short (about 500 μm long), with epithelium largely 
consisting of acidophilic components (Figs. 2D, 4A), two 
proboscis nerves, circular muscle layer, longitudinal muscle 
layer, and thin endothelium; posteriorly increasing basophilic 
glandular cells in epithelium, gradually leading to main, 
middle region. Middle region with bilaterally symmetrical epi-
thelium (Fig. 4B), two proboscis nerves, circular and longitu-
dinal muscle layers, and delicate endothelium; epithelium 
consists predominantly of basophilic glandular cells, thicker 
laterally, thinner dorsally and ventrally; thin epithelium wider 
dorsally than ventrally, resulting in proboscis lumen (in 
retracted state) shaped like golf tee or narrowly pleated 
mushroom. Posterior region short, with epithelium contain-

ing acidophilic cells; proboscis nerves and circular muscles 
inconspicuous in light microscopy; with longitudinal muscles 
and thin endothelium (Fig. 4C); posteriorly leading to pro-
boscis retractor muscle (Fig. 3B). Pseudocnidae or probos-
cis armature not found.

Alimentary system. Mouth opens just behind brain. 
Esophagus absent. Stomach histologically not differentiated; 
gradually leading to intestine. Intestinal cecum absent. Intes-
tinal diverticula absent. Intestine with sphincters (Fig. 4D), 
up to 30 μm thick, probably corresponding to position of epi-
dermal constrictions arranged at regular intervals.

Circulatory system. Cephalic vasculature, forming blood 
lacunae in front of cerebral ganglia, consists of single main 
channel abutting rhynchodaeum on each side, sparsely con-
nected by dorsal commissures; main blood lacunar channel 
ventrally connected to each other just behind proboscis 

Fig. 2. Tubulanus tamias sp. nov., holotype, ZIHU 4430, photomicrographs of trans-
verse sections. (A) Brain region, showing muscle processes in epidermis (arrowheads). 
(B) Foregut region, showing circular muscle around foregut (arrowhead). (C) Anterior 
intestinal region, showing longitudinal muscle plate (arrowheads). (D) Mouth region, 
showing transverse muscle fibers above mouth, penetrating lateral vessel (large arrow-
head); small arrowheads indicate inner longitudinal muscles in the rhynchocoel wall.
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insertion, forming U-shape in cross section; 
posteriorly, U-shaped lacuna immediately 
branches to lateral vessel on each side just 
anterior to mouth; in brain region, transverse 
muscle fiber bundle frequently penetrates lat-
eral vessel (Fig. 2D); each lateral vessel 
extends further backward and abuts rhynchoc-
oel and alimentary canal. No muscle fibers 
found lateral-to-lateral vessel in light micros-
copy. Mid-dorsal vessel, vascular plexus in 
foregut region, and rhynchocoelic blood vessel 
all absent.

Nervous system. Cerebral ganglia and lat-
eral nerve cords situated between epidermal 
basement membrane and body-wall outer cir-
cular muscle layer. Single dorsal cerebral com-
missure (Fig. 4E), about 10 μm thick; ventral 
cerebral commissure 40 μm thick. Pair of nerve 
bundles (about 12 μm thick) extend medio-
anteriorly from anterior surface of ventral gan-
glia (Fig. 4E), running along proboscis insertion,
eventually reaching proboscis nerves. Cerebral 
ganglia with distinct outer neurilemma, but no 
inner neurilemma. No statocyst in brain. Four 
large nerves in head region absent. Single 
mid-dorsal nerve extends from dorsal cerebral 
commissure, running posteriorly between epi-
dermal basement membrane and body-wall 
outer circular muscle layer; occasionally 
extends nerve fibers innervating rhynchocoel 
wall. Posterior junction of lateral nerve cords 
unknown. No neurochord cells in brain or 
lateral nerve cords. Myofibrillae not found in 
lateral nerve cords. Pair of buccal nerves pres-
ent (Fig. 2D).

Sensory system. Nine to 10 pairs of epi-
dermal pigment-cup ocelli present on both 
sides of head anterior to cerebral organs. Two 
types of eyes: anterior eight to nine pairs of 
eyes abut connective tissue of basement mem-
brane proximally (Fig. 3A), each containing 
bundle of rod-shaped structures (up to seven 
per eye cup) (Fig. 5); the posterior-most pair of 
eyes situated near brain, distally within epider-
mis, with cavity of pigment cup densely ciliated 
and reaching exterior (Fig. 4F). Apical organ 
absent. Typical basophilic glands absent, but 
numerous basophilic glandular cells aggre-
gated in basal portion of epidermis and rhyn-

 

Fig. 3. Tubulanus tamias sp. nov., holotype, ZIHU 4430, photomicrographs of trans-
verse sections. (A) Precerebral region showing basophilic glandular cells in rhyncho-
daeum (black arrowheads) and basal portion of epidermis (white arrowhead). (B–H)
Serial sections of the region near nephridiopore and side organ, showing anterior tip 
of posterior rhynchocoel chamber (arrowheads).

Fig. 4. Tubulanus tamias sp. nov., holotype, ZIHU 
4430, photomicrographs of transverse sections. (A)
Anterior portion of proboscis with two nerves (arrow-
heads). (B) Middle main portion of proboscis with 
two nerves (arrowheads). (C) Posterior portion of 
proboscis. (D) Intestinal sphincter (arrowhead). (E)
Brain region, showing origin of proboscis nerves 
(arrowhead). (F) Epidermal eye. (G) Ciliated canal in 
epidermis (arrowhead).
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chodaeal epithelium (Fig. 3A). Cerebral sensory organ 
represented by short ciliated canal in epidermis closely 
behind brain (Fig. 4G). Side organ present on each side 
(Fig. 6A), just behind nephridiopore.

Excretory system. Excretory collecting tubule extends 
from middle stomach region to stomach–intestine junction, 
occasionally branched (or convoluted) (Fig. 6B), terminating 
in single nephridiopore on each side (Fig. 6C). No circular 
muscles found lateral to excretory canal. Nephridial gland 
absent. Glandular components in excretory tubules absent.

Reproductive system. Sexes separate. Single gonad 

situated dorsolaterally to intestine, arranged in row on each 
side. Testis simple, not bilobed (Fig. 6D). Gonoduct situated 
dorsally (Fig. 6E).

Etymology. The specific name is a noun in the nomina-
tive singular, after the name of the chipmunks genus, 
Tamias Illiger, 1811 (Rodentia: Sciuridae), alluding to the 
characteristic longitudinal stripes on the body.

Remarks. Tubulanus tamias sp. nov. differs from its 34 
congeners in body coloration and markings (Table S2). Only 
T. rhabdotus Corrêa, 1954 and T. frenatus (Coe, 1904) are 
similar to T. tamias in having a pale basement body color 
with both longitudinal and transverse dark markings. Tubu-
lanus tamias has seven stripes (three dorsal, a single lateral 
on each side, and two ventral), whereas T. frenatus has 
three (mid-dorsal and lateral) stripes and T. rhabdotus has 
only two (lateral). The pattern of stripes and rings is similar 
between T. tamias and T. cingulatus (Coe, 1904), but the 
ground color is pale and markings are dark in T. tamias, 
while the converse is the case in T. cingulatus.

Tubulanus roretzi Senz, 1997 was described based on 
fixed material collected in Japanese waters (details about 
the locality and habitat are not known). Body coloration in 
the living state in this species is thus unknown. In internal 
anatomy, however, T. roretzi clearly differs from T. tamias
because it has (1) a complete body-wall inner circular mus-
cle layer (vs incomplete in T. tamias), (2) muscle crosses 
between the body-wall inner and outer circular muscle lay-
ers both dorsally and ventrally (vs absent in T. tamias), and 
(3) rhynchocoel vessels (vs absent in T. tamias).

28S rDNA polymorphism
Two different haplotypes were detected 

in each of the holotype and one paratype for 
which sequences were determined (Table 3). 
Among the aligned 2252-base sequences, 
there were 14 variable sites, of which three 
varied only between the individuals, and 11 
varied within and between the individuals. In 
the holotype, this intra-individual variation 
was found at positions 705 and 706, and 
between 1870 and 1878 (the 5′ end of the 
aligned sequences is site 558 in Table 3), 
corresponding to the D2 and D7 regions 
(Gillespie et al., 2006), respectively. In the 
paratype, intra-individual variation occurred 
at positions 1851 to 1853 (D7 region).

Molecular phylogeny
Topologically, the resulting ML tree (Fig. 

7, ln L = −23771.502465) and BI tree (Fig. 
S1) were exactly the same, with T. tamias
appearing as sister to a well-supported clade 
(100% bootstrap value [BS], and 1.00 poste-
rior probability [PP]) formed by T. punctatus, 
T. sexlineatus (Griffin, 1898), and T. rhabdotus. 
The clade formed by T. tamias, T. punctatus, 
T. sexlineatus, and T. rhabdotus (with 99% 
BS and 1.00 PP) was sister to a poorly sup-
ported clade that includes Carinina plecta
Kajihara, 2006, Callinera grandis Bergendal, 
1903, and Tubulanus pellucidus (Coe, 1895), 

Fig. 5. Tubulanus tamias sp. nov., holotype, ZIHU 4430, photomi-
crograph of transverse section through epidermal ocellus, showing 
bundle of rod-shaped structures in the eye cup (arrowhead).

Fig. 6. Tubulanus tamias sp. nov., photomicrographs of transverse sections. (A–C, E)
Holotype, ZIHU 4430. (D) Allotype, ZIHU 4431. (A) Side organ. (B) Excretory collecting 
tubule. (C) Nephridiopore. (D) Testis. (E) Gonopore opening dorsally (arrowhead).
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with the latter two being sister to each other (87% BS, 0.99 
PP). These tubulanids formed a clade supported with 83% BS 
and 0.99 PP, which was sister to a strongly supported clade 
(100% BS, 1.00 PP) comprised of T. annulatus (Montagu, 
1804), T. ezoensis, and T. polymorphus Renier, 1804. While 
these tubulanids formed a well-supported clade (100% BS, 
1.00 PP), our results thus indicate that the genus Tubulanus
is non-monophyletic.

The six species of Cephalothrix included in the present 
analyses formed a monophyletic group (100% BS, 1.00 PP), 
which was sister to the aforementioned tubulanids, while the 
support values for the clade containing these two groups 
were low. This clade turned out to be sister to the tubulanid 
Carinina ochracea Sundberg et al., 2009, although its 
branch support was not significant. Our analyses thus failed 
to resolve the phylogenetic position of C. ochracea, but sug-
gested that the family Tubulanidae is unlikely to be mono-
phyletic.

DISCUSSION

28S rDNA polymorphism
To our knowledge, this study is the first to report intra-

individual polymorphism in 28S rDNA in the Metazoa, 
although Carranza et al. (1996) demonstrated such polymor-
phism in the 18S rDNA gene in a tricladid flatworm and 
attributed this to incomplete concerted evolution. Concerted 
evolution of repetitive DNA sequences homogenizes multiple 
copies of ribosomal genes in the genome so that they are 
identical (Elder and Turner, 1995; Liao, 1999). Sonnenberg

et al. (2007) analysed 230 fragments of the 
D1–D2 region of 28S rDNA among 158 species 
of animals belonging to Annelida, Mollusca, 
Arthropoda, Nematoda, and Chordata, and 
observed 15 fragments with a single ambiguous 
position, six fragments with two such positions, 
and four with three ambiguities. Sonnenberg et 
al. (2007) concluded that, on average, far fewer 
than 0.1% of the sequence positions surveyed 
were polymorphic but did not confirm actual 
intra-individual polymorphism by means such 
as molecular cloning. We cannot explain the 
incomplete concerted evolution observed in T. 
tamias, but if the tandem repeat units of the 
nuclear rDNA complex were located on two dif-
ferent chromosomes in this organism, this 
might have contributed to the intra-individual 
polymorphism.

Two different types of ocelli
Eyes are rare in palaeonemerteans. 

Among ~110 valid species in Palaeonemertea 
s. str., only the following six have been 
reported to have eyes: Cephalotrichella
signata (Hubrecht, 1879) (Wijnhoff, 1913); 
Carinesta tubulanoides Gibson, 1990; Cepha-
lotrichella alba Gibson and Sundberg, 1992; 
Balionemertes australiensis Sundberg et al., 
2003; Hubrechtia desiderata (Kennel, 1891) 
(Bürger, 1895); and Tubulanus riceae Ritger and 
Norenburg, 2006 (summarized in Chernyshev,
2011). The adult ocelli so far known in palae-

onemerteans are pigment-cup type, embedded in epidermis, 
basally abutting the basement membrane (Wijnhoff, 1913; 
Gibson, 1990; Gibson and Sundberg, 1992; Sundberg et al., 
2003; Ritger and Norenburg, 2006); however, previous liter-
ature does not mention about the structure of the photore-
ceptor in the optical cavity, thus it has been unknown 
whether it is of ciliated or rhabdomeric type. Döhren et al. 
(pers. comm.) however have recently found in TEM obser-
vations that the eyes in some palaeonemertean planuliform 
larvae are situated in the epidermis and composed of cili-
ated photoreceptor cells, although provisional eyes have 
never been reported in larvae of Tubulanus (Iwata, 1960; 
Norenburg and Stricker, 2002; Chernyshev, 2011).

In the present study, we illustrated that T. tamias pos-
sesses nine to ten pairs of epidermal, pigment-cup eyes, (1) 
the anterior eight to nine pairs of which are located in the 
base of the epidermis, resting upon the basement mem-
brane, with the optical cavity containing numerous, rod-
shaped structures that resemble rhabdomeric photoreceptor 
cells (Fig. 5), and that (2) the posterior-most pair are situ-
ated near the surface of the epidermis, with the optical cav-
ity opening to the exterior and filled with cilia (Fig. 4F). We 
speculate that (1) the anterior eyes are formed additively 
from posterior to anterior in the post-planuliform stage, and 
(2) the posterior-most pair are remnants of planuliform larval 
eyes, taking into account the evidences that (1) overall, the 
eyes become progressively smaller from posterior to ante-
rior, and (2) some of the epidermal eyes in palaeonemer-
tean planuliform larvae with ciliated photoreceptor cells have 

Fig. 7. Phylogeny resulting from a maximum-likelihood analysis (ln L = 
−23771.502465). Numbers near nodes indicate bootstrap support values (≥ 60%) 
and posterior probability in Bayesian analysis (≥ 0.95).
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optical cavities that are open to the exterior (Döhren et al., 
pers. comm.). In some other spiralian taxa, the larval eyes 
(with ciliary photoreceptors in some cases) precede adult 
eyes (with rhabdomeric photoreceptors), either degenerating 
or persisting to be modified into adult eyes; those kinds of 
transitions are known in Annelida (Holborow and Laverack, 
1972; Eakin and Hermans, 1988; Bartolomaeus, 1992a, 
1993; Blumer, 1997; Arendt et al., 2004) and Mollusca 
(Salvini-Plawen, 1980, 1982; Bartolomaeus, 1992b; Blumer, 
1996, 1998). The posterior-most pair of eyes in the adult 
Tubulanus tamias may also undergo such modification of 
larval eyes.

On the other hand, we cannot rule out the possibility that 
the posterior-most eyes in T. tamias may represent eyes of 
juvenile (instead of larval) stage, as Döhren and Bartolomaeus
(2007) reported that in the heteronemertean Lineus viridis
(Müller, 1774), the adult eyes are rhabdomeric, while the 
juvenile ones are ciliary. That no larva in Tubulanus has 
been reported to have eyes (Iwata, 1960; Norenburg and 
Stricker, 2002; Chernyshev, 2011) may come in favor of the 
possibility in which the posterior-most eyes in T. tamias are 
actually the juvenile eyes, instead of larval ones.

Non-monophyly of Tubulanus and Tubulanidae
As has been already indicated in Andrade et al. (2012) 

and Kvist et al. (2014), the genus Tubulanus is likely to be 
paraphyletic with respect to Callinera. In this paper, we 
could have established a new genus for the clade comprised 
of T. punctatus, T. rhabdotus, T sexlineatus, and T. tamias, 
and transferred T. pellucidus to Callinera, thereby made the 
name Tubulanus applied only to the clade containing its type 
species T. polymorphus. As the time being, however, we 
leave the systematic revision of Tubulanidae to future stud-
ies with expanded taxon sampling, placing our new species 
in Tubulanus, since it perfectly matches the traditional taxon 
concept of the genus.
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