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TWO OF KUNITA’S PAPERS ON STOCHASTIC FLOWS IN

EARLY 1980S

SETSUO TANIGUCHI*

Abstract. Two of Kunita’s papers in early 1980s on diffeomorphic property

of stochastic flows are revisited, and corresponding results by the author are
presented.

1. Introduction

H. Kunita wrote in his last book [6, p.109]:

The diffeomorphic property of maps x→ Xx
t received a lot of at-

tention around 1980. We refer Elworthy [K25], Malliavin [K78],
Bismut [K8], Le Jan [K75], Harris [K36], Ikeda-Watanabe [K41]
and Kunita [K59]. A method of proving the diffeomorphic prop-
erty is to approximate SDEs by a sequence of stochastic ordinary
differential equations. (Omission)

Kunita [K59] presented another method for proving the diffeo-
morphic property through a skillful use of the Kolmogorov-Totoki
theorem. In this monograph, we took another method by con-
structing a backward flow Ψ̌s,t(x) which satisfies Lemma 3.7.2. An
advantage of the new method is that it can be applied for proving
the diffeomorphic property of solutions of SDE on a manifold as
in Sect. 7.1. 1

While he referred his book [5] in 1990 as [K59], both methods cited in the second
paragraph were established by him in early 1980s; in 1981 ([3]) and in 1982 ([4]).

Recall that showing the diffeomorphic property consists of two ingredients: one
is proving the smoothness, and the other is proving the bijectivity. The above two
methods mentioned by him in the second paragraph were employed to show the
bijectivity. The first method was introduced in [3] and uses a homotopy theoretical
observation. The second one was used in [4] for the first time and takes advantage
of the newly introduced backward stochastic differential equation (SDE in short).
It should be remarked that the word “backward SDE” is completely different from
the one used in the recent contexts of the Mathematical Finance. In this paper,
we revisit both methods and present corresponding results by the author.
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The construction of this paper is as follows. In Section 2, we shall discuss the
homotopy theoretical approach. After reviewing Kunita’s result, we will present
the result by the author on stochastic flows of diffeomorphisms on bounded do-
mains in Rd. Section 3 is devoted to backward SDEs. In the section, we first recall
Kunita’s result and then give another application of backward SDEs to estimating
the Malliavin covariance.

2. A homotopy theoretical approach to surjectivity

2.1. The paper in 1981. In this subsection we give a brief review on a part of
Kunita’s result achieved in [3].

Take Lipschitz continuous Xj : Rd → Rd and continuous semi-martingales

{M j
t }t≥0 defined on a filtered complete probability space (Ω,F ,P, {Ft}t≥0), where

1 ≤ j ≤ r and the filtration {Ft}t≥0 satisfies that
⋂
ε>0 Ft+ε = Ft for t ≥ 0.

Denote by {N j
t }t≥0 and {Ajt}t≥0 the martingale part and the bounded variation

part of {M j
t }t≥0, respectively, and assume that

|Ajt −Ajs|+ |〈N j〉t − 〈N j〉s| ≤ |t− s| for s, t ∈ [0,∞), 1 ≤ j ≤ r,

where {〈N j〉t}t≥0 stands for the quadratic variation process of {N j
t }t≥0. Consider

the Itô type SDE on Rd:

dξt =

r∑
j=1

Xj(ξt)dM
j
t .

For x ∈ Rd, denote by {ξt(x)}t≥0 the solution with initial condition ξ0 = x. Kunita

showed that, for T > 0, p ≥ 2, and q ∈ R, there exist constants K
(1)
p,T , K

(2)
q,T , and

K
(3)
q,T such that

E[|ξt(x)− ξs(y)|p] ≤ K
(1)
p,T

(
|x− y|p + |t− s|p/2

)
, (2.1)

E[|ξt(x)− ξt(y)|q] ≤ K
(2)
q,T |x− y|q, (2.2)

E[(1 + |ξt(x)|2)q] ≤ K
(3)
q,T (1 + |x|2)q for s, t ∈ [0, T ], x, y ∈ Rd. (2.3)

Combined with the Kolmogorov-Totoki continuity theorem ([5]), he showed:

• (2.1) yields the continuity of the mapping (t, x) 7→ ξt(x).
• (2.2) implies the continuity of the mapping

[0,∞)×
(
(Rd × Rd) \ {(x, x) | x ∈ Rd}

)
3 (t, x, y) 7→ 1

|ξt(x)− ξt(y)|
,

from which the injectivity of x 7→ ξt(x) follows.
• (2.3) implies the continuity of the mapping

[0,∞)× R̂d 3 (t, x) 7→ ζt(x) =


1

1 + |ξt(x)|
if x ∈ Rd,

0 if x = ∞,
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where R̂d = Rd ∪{∞} is the one-point compactification of Rd. This yields
the continuity of the mapping

R̂d 3 x 7→ ξ̂t(x) =

{
ξt(x) if x ∈ Rd,
∞ if x = ∞.

Remember an elementary, homotopy theoretical fact that if a continuous
mapping ϕ : Sd → Sd is not surjective, where Sd is the d-dimensional unit

sphere, then it is homotopic to a constant mapping. Identifying R̂d with

Sd, we then see that ξ̂t : R̂d → R̂d is surjective. Since ∞ is invariant,
ξt : Rd → Rd is also surjective.

Consequently {ξt(·)}t≥0 determines a stochastic flow of homeomorphisms on Rd.

2.2. Flows on a bounded domain in Rd. Kunita continued to apply the same
method of using the homotopy theory to showing the surjectivity of stochastic flows
in his book [5] in 1990. In this subsection, we shall see the topological argument
is also applicable to stochastic flows of diffeomorphisms on bounded domains in
Rd ([9]).

LetD be a bounded domain in Rd with C∞-boundary, that is, for each boundary
point, there exist a neighborhood U and a function ϕ ∈ C∞(U) such that the
gradient ∇ϕ(x) 6= 0 for any x ∈ ∂D ∩ U and D ∩ U = {x ∈ U | ϕ(x) < 0}. Such
a ϕ is called a local defining function of ∂D. For C∞-vector fields V0, . . . , Vr with
compact supports, consider the Stratonovich type SDE

dξt =

r∑
j=1

Vj(ξt) ◦ dBjt + V0(ξt)dt,

where {Bt = (B1
t , . . . , B

r
t )}t≥0 is an r-dimensional Brownian motion on (Ω,F ,P).

Denote by {ξt(x)}t≥0 the solution with the initial condition ξ0(x) = x as before,
and by {ξt(·)}t≥0 the associated stochastic flow of diffeomorphisms on Rd.

Proposition 2.1. Assume that, for every neighborhood U of a boundary point
with a local defining function ϕ,

Vjϕ = 0 on ∂D ∩ U for 0 ≤ j ≤ r. (2.4)

Denote by ξt(·)|D the restriction of ξt(·) to D. Then, {ξt(·)|D}t≥0 determines a
stochastic flow of diffeomorphisms on D.

Proof. By the assumption (2.4), Vjs are all tangential to ∂D. Then, for any
connected component S of ∂D, ξt(·)|S is a submersion onto an open subset ξt(S)
of S. Since S is compact, so is ξt(S). In particular, ξt(S) is closed. Therefore,
ξt(S) = S, i.e., ξt(·)|S : S → S is surjective. Thus ∂D is an invariant set of ξt(·)
and hence {ξt(·)|D}t≥0 determines a stochastic flow of diffeomorphisms on D. □

3. Backward SDE

3.1. The paper in 1982. In this subsection we give a brief review on backward
SDEs introduced by Kunita in [4]. While he treated more general settings, we
shall review in the form, which is suitable for the use in the next subsection.
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Let M be a σ-compact d-dimensional C∞-manifold. Denote by X (M) the space
of all C∞-vector fields onM. GivenX0, . . . , Xr ∈ X (M), consider the Stratonovich
type SDE on M:

dξt =

r∑
j=1

Xj(ξt) ◦ dBjt +X0(ξt) ◦ dt, (3.1)

where {Bt = (B1
t , . . . , B

r
t )}t≥0 is an r-dimensional Brownian motion on (Ω,F ,P)

as in Subsection 2.1. For x ∈ M, denote by {ξs,t(x)}t≥s the solution of the SDE

(3.1) with ξs,s(x) = x. Suppose that under an imbedding of M into Rd′ , Xjs

extend to C∞
b -vector fields 2 on Rd′ . Then, the SDE (3.1) is exactly conservative,

i.e., P(τ(s, x) = ∞ for all x ∈ M) = 1 for every s ≥ 0, where τ(s, x) is the
explosion time of {ξs,t(x)}t≥s. Then {ξs,t}0≤s≤t determines a stochastic flow of
diffeomorphisms on M.

To see the surjectivity, Kunita introduced the backward stochastic integrals as

follows. Put F t
s = σ[{Bu −Bv ∈ A | s ≤ u, v ≤ t, A ∈ B(Rr)}]

P
, where B(Rr) is

the Borel σ-field of Rr. Given t > 0, for {F t
u}u≤t-predictable and continuous pro-

cess {f(u)}s≤u≤t with E[
∫ t
s
||f(u)|2du] < ∞, define the backward Itô integral∫ t

s
f(u)d̂Bju by ∫ t

s

f(u)d̂Bju = lim
|∆|→0

n−1∑
k=0

f(uk+1)(B
j
uk+1

−Bjuk
),

where ∆ = {s = u0 < u1 < · · · < un = t} and |∆| = maxk |uk+1 − uk|. If
{f(u)}s≤u≤t is a backward semi-martingale, then the backward Stratonovich

integral
∫ t
s
f(u) ◦ d̂Bju is also defined. Using the backward SDE, Kunita showed

the bijectivity of ξs,t as follows.

Theorem 3.1 ([4, Theorem 2]). Let ηs,t(x) be the unique solution of the backward
SDE:

d̂ηs,t(x) = X0(ηs,t(x))ds+

r∑
j=1

Xj(ηs,t(x)) ◦ d̂Bjs (3.2.13)

such that ηt,t(x) = x. Then ηs,t = ξ−1
s,t .

3.2. Malliavin calculus on manifolds. In this section, we will give another
application of inverse flow {ηs,t}s≤t. We first review on the Malliavin calculus
on manifolds by referencing and modifying the results in [10]. Take and fix a
Riemannian metric g on M.

Let T > 0, W be the space of continuous Rr-valued functions w on [0, T ] with
w(0) = 0, and µ be the Wiener measure on it. The Cameron-Martin subspace H
of W is the space of absolutely continuous h ∈ W with square integrable derivative
ḣ. The inner product of H is defined ty

〈h1, h2〉H =

∫ T

0

〈ḣ1(t), ḣ2(t)〉Rrdt for h1, h2 ∈ H,

2The subscript “b” of C∞
b means that derivatives of all orders are bounded.



AROUND 1980 5

where 〈·, ·〉Rr is the inner product of Rr. Denote by D∞ the space of all R-valued
Wiener functionals, which and whose H-derivatives of all orders are pth integral
for any p ∈ (1,∞). For definition, see [1, 7, 8]. The H-derivative of G ∈ D∞ is
denoted by DG.

A Wiener functional F : W → M is said to be in D∞
loc(M) if F ∗f := f(F ) ∈ D∞

for any f ∈ C∞
0 (M) 3 . For F ∈ D∞

loc(M) and µ-a.s. w ∈ W, define the linear
mapping (F∗)w from H to TF (w)M (≡the tangent space of M at F (w)) by

((F∗)wh)f = 〈D(F ∗f)(w), h〉H for h ∈ H and f ∈ C∞
0 (M).

(F∗)w is also called the H-derivative of F at w. Further, under the identification
between H and its dual space, the dual operator of (F∗)w determines a linear
operator (F∗)

†
w from T ∗

F (w)M (≡ the cotangent space of M at F (w)) to H.

The H-derivative (F∗)w and the composition (F∗)w(F∗)
†
w admit local expres-

sions as follows. Let (U ; (x1, . . . , xd)) be a local coordinate neighborhood of M,
i.e., U is an open subset of M and (x1, . . . , xd) is a local coordinate system on
U . For relatively compact open sets U1 and U2 with U1 ⊂ U2 ⊂ U2 ⊂ U , take
φi ∈ C∞

0 (M) such that φi(x) = xi on U2 and put F i = φi(F ) for 1 ≤ i ≤ d. Then
the H-derivative (F∗)w : H → TF (w)M is expressed as

(F∗)w =

d∑
i=1

〈DF i(w), · 〉H
( ∂

∂xi

)
F (w)

for µ-a.s. w ∈ {F ∈ U1}.

Hence the composition (F∗)w(F∗)
†
w satisfies

(F∗)w(F∗)
†
w

(
(dxi)F (w)

)
=

d∑
j=1

〈DF i(w), DF j(w)〉H
( ∂

∂xj

)
F (w)

(3.2)

for 1 ≤ i ≤ d and µ-a.s. w ∈ {F ∈ U1}.

Let lx : TxM → T ∗
xM be the identification of the two spaces via the Riemannian

metric g, i.e., (lx(u))(v) = gx(u, v) for u, v ∈ TxM. Then (F∗)w(F∗)
†
w ◦ lF (w)

determines a (1, 1)-tensor, and we can define det[(F∗)w(F∗)
†
w ◦ lF (w)].

Definition 3.2. Let M̃ be a σ-compact Riemannian manifold, O be an open

subset of M, and F̃ ∈ D∞
loc(M̃). F ∈ D∞

loc(M) is said to be non-degenerate on O

under the control of F̃ if it holds

1

det[(F∗)w(F∗)
†
w ◦ lF (w)]

1O(F )1K(F̃ ) ∈
⋂

p∈(1,∞)

Lp(µ) (3.3)

for any compact K ⊂ M̃.

For a local coordinate neighborhood (U ; (x1, . . . , xd)) with U ⊂ O as above, by
(3.2), it holds

det[(F∗)w(F∗)
†
w ◦ lF (w)] = det

((
〈DF i, DF j〉H

)
1≤i,j≤d

)
det gF (w)

3The subscript “0” of C∞
0 means that the support is compact.
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for µ-a.s. w ∈ {F ∈ U1}. Thus Definition 3.2 is an extension of the well-known
concept of non-degeneracy of Rr-valued Wiener functional G = (G1, . . . , Gd) ∈
(D∞)d to manifolds.

By using the dual operator D∗ of the H-derivative D, we can then show an
integration by parts formula associated with non-degenerate F ∈ D∞

loc(M).

Theorem 3.3. Suppose F ∈ D∞
loc(M) is non-degenerate on O under the control

of F̃ . For V ∈ X (M), put

KF [V ](w) =

{
[(F∗)

†
w ◦ lF (w) ◦ ((F∗)w(F∗)

†
w ◦ lF (w))

−1](V (F (w)) if F (w) ∈ O,

0 otherwise.

Let ϕ ∈ C∞
0 (O) and ψ ∈ C∞

0 (M̃). Then,

(1) ϕ(F )ψ(F̃ )KF [V ] ∈ D∞(H) (≡ the space of H-valued D∞-Wiener func-
tionals).

(2) Define ΦF,ϕ,ψ;V : D∞ → D∞ by

ΦF,ϕ,ψ;V (G) = D∗(Gϕ(F )ψ(F̃ )KF [V ]) for G ∈ D∞.

Then it holds∫
W
(V f)(F )ϕ(F )ψ(F̃ )Gdµ =

∫
W
f(F )ΦF,ϕ,ψ;V (G)dµ

for any f ∈ C∞
0 (M) and G ∈ D∞.

Observing

ΦF,ϕ,ψ;V (G) = ΦF,ϕ,ψ;V (G)1suppϕ(F )1suppψ(F̃ ),

where suppϕ is the support of ϕ, we can show

Corollary 3.4. Let F be as in Theorem 3.3. Take ϕ = {ϕi}i∈N ⊂ C∞
0 (O), ψ =

{ψi}i∈N ⊂ C∞
0 (M̃) such that ϕi+1 = 1 on suppϕi and ψi+1 = 1 on suppψi for

every i ∈ N. For {Vi}i∈N ⊂ X (M), define ΦF,ϕ,ψ;V1
= ΦF,ϕ1,ψ1;V1

and

ΦF,ϕ,ψ;V1,...,Vn
= ΦF,ϕn,ψn;Vn

◦ ΦF,ϕ,ψ;V1,...,Vn−1
for n ≥ 2.

Then it holds∫
W
(V1 · · ·Vnf)(F )ϕ1(F )ψ1(F̃ )Gdµ =

∫
W
f(F )ΦF,ϕ,ψ;V1,...,Vn

(G)dµ

for any f ∈ C∞
0 (M), G ∈ D∞, and n ∈ N.

The existence of smooth density function of F on O can be shown from the
above integration by parts formula.

Theorem 3.5. Let G ∈ D∞, F ∈ D∞
loc(M), and O is an open subset of M.

Suppose F is non-degenerate on O under the control of F̃ . Moreover, assume that
for every relatively compact open set U with U ⊂ O, there exists a compact subset

K ⊂ M̃ such that {F ∈ U} ⊂ {F̃ ∈ K}. Then there exists pF ;G ∈ C∞(O) such
that ∫

W
f(F )Gdµ =

∫
M
fpF ;Gdν for any f ∈ C∞

0 (O),

where ν is the volume measure on M.
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We now consider the sufficient condition for non-degeneracy. For the sake of
simplicity, we shall assume that M is compact. Let ξs,t(x) be as in Subsection 3.1.
Then ξ0,t(x) is in D∞

loc(M). Let ξ0,t(x)∗ be its H-derivative.
For a smooth mapping f from M to another C∞-manifold M′, denote by [f∗]x :

TxM → Tf(x)M′ its differential at x ∈ M. In particular, [ξ0,t∗]x and [ξ−1
0,s∗]x stands

for the derivatives at x of the smooth mappings ξ0,t(·) and ξ−1
0,s(·) from M to itself,

respectively. Then it holds

(ξ0,t(x)∗)h =

r∑
j=1

∫ t

0

[ξ0,t∗]x[ξ
−1
0,s∗]ξ0,s(x)Xj(ξ0,s(x))ḣ

j(s)ds

for h = (h1, . . . , hd) ∈ H. Hence we have

(ξ0,t(x)∗)(ξ0,t(x)∗)
† =

r∑
j=1

∫ t

0

{[ξ0,t∗]x[ξ−1
0,s∗]ξ0,s(x)Xj(ξ0,s(x))}⊗2ds. (3.4)

Put

A0(t, x) =

r∑
j=1

∫ t

0

{[ξ−1
0,s∗]ξ0,s(x)Xj(ξ0,s(x))}⊗2ds.

Due to the stochastic Taylor expansion coming out of the identity

[ξ−1
0,s∗]ξ0,s(x)X(ξ0,s(x)) =

r∑
j=1

∫ s

0

[ξ−1
0,u∗]ξ0,u(x)[Xj , X](ξ0,u(x)) ◦ dBj(u)

+

∫ s

0

[ξ−1
0,u∗]ξ0,u(x)[X0, X](ξ0,u(x))du for X ∈ X (M),

assuming a Hölmander type condition we can show the integrability of any order
of (det[A0(t, x)◦ lx])−1. For example, see [1, 8]. Due to the integrability of [ξ0,t∗]x,

we see that (3.3) holds with F = ξ0,t(x) without any control by F̃ .
We now proceed to an application of the inverse flow {ηs,t}s≤t in Theorem 3.1.

LetM′ be a σ-compact Riemann manifold and π : M → M′ be a proper submersion.
Put ζt(x) = π(ξ0,t(x)). Then ζt(x) ∈ D∞

loc(M′). By (3.4), we obtain

(ζt(x)∗)(ζt(x)∗)
† =

r∑
j=1

∫ t

0

{[π∗]ξ0,t(x)[ξ0,t∗]x[ξ
−1
0,s∗]ξ0,s(x)Xj(ξ0,s(x))}⊗2ds.

On account of the observation in the previous paragraph, one may expect that the

estimation of (ζt(x)∗)(ζt(x)∗)
† comes down to that of π∗A0(t, x)π

†
∗. This idea is

too näıve, since [ξ0,t∗]x stirs tangent spaces. However, using the inverse stochastic
flow, the idea works. In fact, the flow property implies that ξs,t ◦ ξ0,s = ξ0,t, and
hence that

ξ0,s = ηs,t ◦ ξ0,t.

This implies

[ξ−1
0,s∗]ξ0,sXj(ξ0,s(x)) = [ξ−1

0,t ∗]x[η
−1
s,t ∗]ξ0,s(x)Xj(ηs,t(ξ0,t(x))).
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Hence putting

Â0(t, x) =

r∑
j=1

∫ t

0

{[η−1
s,t ∗]ξ0,s(x)Xj(ηs,t(x))}⊗2ds,

we have
(ζt(x)∗)(ζt(x)∗)

† = πξ0,t(x)Â0(t, ξ0,t(x))π
†
ξ0,t(x)

.

Thus we come down to a similar estimation as that for A0(t, x), this time we need
to control ξ0,t(x) in addition. This argument works well, and we can conclude

Theorem 3.6 ([10]). Set A(0) = {X1, . . . , Xr}, A(n) = {[Xj , X] | 0 ≤ j ≤ r,X ∈
A(n−1)}, and A(∞) =

⋃∞
n=0 A(n). For x ∈ M, put

Ax =

{ n∑
i=1

aiAi(x)

∣∣∣∣ ai ∈ R, Ai ∈ A(∞), 1 ≤ i ≤ n, n ∈ N
}
.

Suppose that
[π∗]xAx = Tπ(x)M′ for any x ∈ M.

Then π(ξ0,t(x)) is non-degenerate on any open subset of M′ without any control of

F̃ . In particular, its distribution possesses a smooth density function with respect
to the volume measure on M′.

Remark 3.7. Let O(M) be the orthonormal frame bundle over M and π : O(M) →
M be the bundle projection. It is known ([1]) that the Brownian motion on M, the
diffusion process generated by the half of the Laplacian on M, is realized as the
projection π(ξ0,t(x)) of the solution {ξ0,t(x)}t≥0 of the SDE on O(M). More gener-
ally, diffusion processes generated by sub-Laplacians on sub-Riemannian manifolds
are realized as images of solutions of SDEs on principle bundles associated with
sub-Riemannian structure. For details, see [2]. In both cases, the above theorem
is applicable.

Acknowledgment. The author is grateful for useful comments by the reviewer,
in particular, the comment on the simplification of the proof of Proposition 2.1.

References

1. Ikeda, N. and Watanabe, S.: Stochastic differential equations and diffusion processes,
North Holland/Kodansha, Amsterdam/Tokyo, 1981.

2. Inahama, Y. and Taniguchi, S.: Heat trace asymptotics on equiregular sub-Riemannian

manifolds, J. Math. Soc. Japan, 72 (2020), 1049–1096.
3. Kunita, H.: On the decomposition of solutions of stochastic differential equations: in Sto-

chastic Integrals, Proceedings of the LMS Durham Symposium, July 7–17, 1980, Lecture

Notes in Math., 851, (1981) 213–255, Springer, Berlin.
4. Kunita, H.: On backward stochastic differential equations, Stochastics, 6 (1982), 293–313.

5. Kunita, H.: Stochastic flows and stochastic differential equations, Cambridge Univ. Press,
Cambridge, 1990.

6. Kunita, H.: Stochastic flows and jump-diffusions, Springer Nature Singapore Pte Ltd.,

Singapore, 2019.
7. Matsumoto, H. and Taniguchi, S.: Stochastic Analysis —Itô and Malliavin calculus in
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