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Abstract

A determinantal point process (DPP) is an ensemble of random nonnegative-integer-valued
Radon measures = on a space S with measure A\, whose correlation functions are all given by
determinants specified by an integral kernel K called the correlation kernel. We consider a pair
of Hilbert spaces, Hy, £ = 1,2, which are assumed to be realized as L?-spaces, L2(Sy, \¢), £ = 1,2,
and introduce a bounded linear operator W : H; — Hs and its adjoint W* : Hy, — H;. We show
that if W is a partial isometry of locally Hilbert—Schmidt class, then we have a unique DPP
(21, K1, A1) associated with W*W. In addition, if W* is also of locally Hilbert—Schmidt class,
then we have a unique pair of DPPs, (Z, Ky, A¢), £ = 1,2. We also give a practical framework
which makes W and W* satisfy the above conditions. Our framework to construct pairs of
DPPs implies useful duality relations between DPPs making pairs. For a correlation kernel of a
given DPP our formula can provide plural different expressions, which reveal different aspects
of the DPP. In order to demonstrate these advantages of our framework as well as to show that
the class of DPPs obtained by this method is large enough to study universal structures in a
variety of DPPs, we report plenty of examples of DPPs in one-, two-, and higher-dimensional
spaces S, where several types of weak convergence from finite DPPs to infinite DPPs are given.
One-parameter (d € N) series of infinite DPPs on S = R? and C? are discussed, which we call
the Euclidean and the Heisenberg families of DPPs, respectively, following the terminologies of
Zelditch.
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1 Introduction

Let S be a base space, which is a locally compact Hausdorff space with countable base, and A be
a Radon measure on S. The configuration space over S is given by the set of nonnegative-integer-
valued Radon measures;

Conf(S) =< ¢ = Zémi cxj €5, §(A) < oo for all bounded set A C S

Conf(S) is equipped with the topological Borel o-fields with respect to the vague topology, we
say &n,m € N:={1,2,...} converges to £ in the vague topology, if fs x)&p(dz) — fs )é(dx),
Vf € C(5), where C.(S5) is the set of all continuous real-valued functions with compact support A
point process on S is a Conf(S)-valued random variable = = Z(+,w) on a probability space (2, F, P).
=({z}) € {0,1} for any point = € S, then the point process is said to be simple.

Assume that Aj,7 = 1,...,m, m € N are disjoint bounded sets in S and k; € Ny :=
{0,1,...},7 = 1,...,m satisfy Z;n:1 kj = n € Ng. A symmetric measure A" on S™ is called
the n-th correlation measure, if it satisfies

m

© | [y 2| =0 x4,

where if Z(A;) — k; < 0, we interpret Z(A;)!/(Z(A;) — k;)! = 0. If A™ is absolutely continuous with
respect to the n-product measure A®", the Radon-Nikodym derivative p"(z1,...,x,) is called the
n-point correlation function with respect to the background measure A;

N'(dxy - - dxy) = p"(21, . .., ) A" (dy - - - dyy).
Determinantal point process (DPP) is defined as follows [40], 53], 58, 54, 55], 28], [29].
Definition 1.1 A simple point process = on (S,\) is said to be a determinantal point process

(DPP) with correlation kernel K : S x S — C if it has correlation functions {p"}nen, and they are
given by

pt(z1,...,xn) = det [K(zj,xp)] for everyn €N, and x1,...,2, € 5. (1.1)
1<j,k<n

The triplet (=, K, \(dz)) denotes the DPP; = € Conf(S), specified by the correlation kernel K with
respect to the measure A\(dzx).

If the integral projection operator K on L?(S,\) with a kernel K is of rank N € N, then the
number of points is N a.s. If N < oo (resp. N = 00), we call the system a finite DPP (resp. an
infinite DPP). The density of points with respect to the background measure A(dx) is given by

p(x) = pl(x) = K (2,).
The DPP is negatively correlated as shown by

2 . ") = de K(xax) K(.%',.%'/)
p°(z,2") = det K(z',z) K2,z

= K(z,2)K(2',2') — |K(x,2")* < p(z)p(z), z,2' €8, (1.2)



provided that K is Hermitian.

Let H be a separable Hilbert space. For linear operators A, B on H, we say that A is positive
definite and write A > O if (Af, f)g > 0 for any f € H, and write A > B if A— B > O. The
operator A*A is positive definite and it admits a unique positive-definite square-root v .A*A which
is denoted by |A|. Let {¢p}n>1 be an orthonormal basis of H. For A > O, we define the trace of
A by

o0
Tr A= (Apn, én)n,
n=1
which does not depend on the choice of an orthonormal basis. A bounded linear operator A is said
to be of trace class or a trace class operator if the trace norm ||A||; := Tr|.A| is finite. The trace
Tr A is defined whenever ||Al|; < oo.

Now, we consider the case H = L?(S, \). For a compact set A C S, the projection from L?(S, \)
to the space of all functions vanishing outside A A-a.e. is denoted by Pa. Py is the operation of
multiplication of the indicator function 15 of the set A; 1x(z) = 1 if z € A, and 15(x) = 0
otherwise. We say that a bounded linear operator A on L2(S,\) is of locally trace class or a locally
trace class operator, if the restriction of A to each compact subset A is of trace class; that is,

| Aplll < oo with Ap :=Ppr AP, for any compact set A C S.

The totality of locally trace class operators on L?(S, \) is denoted by Zj 10¢(S, A). It is known that
(53], 58|, 541 5], if K € T 10c(S,A) and O < I < I, where I is the identity operator, then we have
a unique DPP on S with the determinantal correlation functions (ILI]) with respect to A and the
correlation kernel K is given by the Hermitian integral kernel for K (see Section 2] below).

In the present paper, we consider the case in which

Kf=f forall fe (kerK)* C L%(S,\).

Here (ker ) denotes the orthogonal complement of the kernel space of K. That is, K is an
orthogonal projection. By definition, it is obvious that the condition O < K < [ is satisfied. The
purpose of the present paper is to propose a useful method to provide orthogonal projections K and
DPPs whose correlation kernels are given by the Hermitian integral kernels of K, K (z,2),z,2' € S.

We consider a pair of Hilbert spaces, Hy, ¢ = 1,2, which are assumed to be realized as L?-spaces,
L?(Sp, \o), £ =1,2. We introduce a bounded linear operator W and its adjoint W*,

W:Hl —>H2, wr :HQ—)Hl. (13)

Then, we have the following basic existence theorem of DPP via a partial isometry W of locally
Hilbert—Schmidt class.

Theorem 1.2 Assume that W : L?>(S1, 1) — L?(S2, \2) is a partial isometry of locally Hilbert—
Schmidt class. Then, there exists a unique DPP (21, Kg,, A1) on S with

Kg, (z,2') = i W (y, z)W (y,2") Aa(dy), (1.4)

where W admits a measurable kernel W : Sy x §1 — C such that ¥q € L%OC(Sl, A1) with Uq(x) :=
W, 2)llL2(55,00) (@ € S1).



The definitions of partial isometries, locally Hilbert-Schmidt operators, and L2 (S, \) will be given
in Section 2221 There we will show basic properties of them and Theorem [[2] will be concluded
from the well-known existence theorem of DPP [53] 58, 54, [55] (Theorem 2.T]).

We assume that

(i) W is a partial isometry,
(ii)  both W and W* are locally Hilbert—Schmidt operators.

Under the assumption (i), the adjoint W* is also a partial isometry. If two conditions (i) and (ii)
are satisfied, by Theorem [[L2] we have a unique pair of DPPs, (24, Ky, \¢), £ = 1,2, where the
correlation kernel K (resp. K3) is given by the integral kernel of W*W (resp. WW*) (Theorem
24) as in (L4]). We give a practical framework which makes W and W* satisfy the above two
assumptions (Corollaries and [2.10]).

One of the advantages of our framework is that the obtained pairs of DPPs satisfy useful duality
relations, which will be reported in Sections 2.4l B.1.2] T4l As mentioned above, one of a pair
of DPPs discussed here is associated with a Hilbert space H; having an orthogonal projection Xy,
and ICp is given in the form Ky = W*W. This equality can be regarded as a decomposition formula
of K1 by a product of an operator W and its dual W* acting as ([L3]) provided that another Hilbert
space Ho is chosen. We note the fact that for a given DPP associated with H; and Ky, choice
of Hy is not unique. As demonstrated in Sections L.T.IHA.T.3] using the Ginibre DPPs on C, such
multivalency in our framework can give plural different expressions for one correlation kernel K;
and they will help us to study different aspects of the DPP which we consider.

In order to demonstrate the class of DPPs obtained by our framework is large enough to study
a variety of DPPs and universal structures behind them, we show plenty of examples of DPPs in
one- and two-dimensional spaces. In particular, we use the symbols of classical and affine roots
systems (e.g., Ax_1, By, Cn, Dy, N € N) to classify finite DPPs. Several types of weak convergence
theorems of finite DPPs to infinite DPPs are given. We will show that in the one-dimensional space,
there are three universal DPPs with an infinite number of points specified by the correlation kernels,

sin(z — 2’ | I
Ksinc(x’x/) = 7r((x _ x/)) - % /1 elV(x ’ )dry? x’x/ € R,
. . 1
(1/2) _sin(z —2')  sin(z4+a2) 1 ] )
KBessel(x7x,) T 7'('(.%' _ 1./) B 7.‘.(1. + 1./) - ; . Sln("}/.%') Sln(’)’x/)dq/a 1’,1'/ S [07 00)7
. . 1
(—1/2) __sin(z —2') | sin(z+2’) 1
Ky Jp (@) = g + e — B cos(yx) cos(ya)dy, w2 €[0,00),

where i := y/—1. Kgnc is usually called the sine kernel in random matrix theory [43], but it shall
be called the sinc kernel. K(1/2)1 and K](3 Y2) are special cases of the Bessel kernels K]g) v E

Besse essel essel’

(—1,00) with indices v = 1/2 and —1/2, respectively [21]. Note that Kgne(x,z') = {K(1/2 (x,2")+

Bessel
K](ggslsg) (x,2")}/2, x,2’ € [0,00). Corresponding to the threefold of DPPs with the correlation
K(1/2) K12)

Bessel) K Beseel » We also show the three universal DPPs on C, whose correlation

kernels, Kginc,



kernels are given by

> ( )2n+1
KGlmbre(x .%') - smh(xm = Z:: ( "+ 1)|7
o (@)
KC[})inibre(xP%',) = COSh($1J) ( n)' ) 1’,1'/ € (C,
n=0 ’

where 2/ denotes the complex conjugate of 2. KGlnlbre is known as the correlation kernel of the
Ginibre ensemble in random matrix theory [23], 2], and KGlmbre and K&, were studied in [34].
Note that K& ..(7,7') = K&, i,0o(@,2) + K& 1,0 (7,2"), ,2" € C.

Our method to generate DPPs is also valid in higher dimensional spaces. We will state that
the DPP with the sinc kernel Kg;y is the lowest-dimensional (d = 1) example of the one-parameter
(d € N) family of DPPs on R?, whose correlation kernels are given by

inibre

(d) 1 Jap(llz — 2'ga)
KEuclid(w7m) . (27T)d/2 HCC . CCIHd/2
R

1 B
= — r@Edy, z 2 € R
(2ﬂ_)d /]B?d ) ) )

with respect to the Lebesgue measures of R, A(dz) = dz, where J, is the Bessel function of the
first kind, || — 2'||ga is the Euclidean distance between x and 2’ in R?, and B¢ is the unit ball in R?
centered at the origin. We also claim that the Ginibre ensemble is the lowest-dimensional example
(d = 1) of another one-parameter (d € N) family of DPPs on C¢, whose correlation kernel is given
by B

K9 (z,2') = e"", z,2/ € CY,

Heisenberg
where the background measure A is assumed to be the d-dimensional complex normal distribution.
We call these two families of DPPs the Fuclidean family of DPPs and the Heisenberg family of
DPPs, respectively, following the terminologies by Zelditch [66]. See also [14], 57, (67 [1§].

The paper is organized as follows. In Section 2] we give main theorems which enable us to
generate DPPs. Sections Bl and @ are devoted to a variety of examples of DPPs obtained by
our framework for the one-dimensional and the two-dimensional spaces, respectively. Examples
in spaces with arbitrary dimensions d € N are given in Section B We list out open problems in
Section [6l Appendices[Aland [(]are used to explain useful multivariate functions and determinantal
formulas associated with the classical and the affine root systems, respectively. The definitions and
basic properties of the Jacobi theta functions are summarized in Appendix [Bl

2 Main Theorems

2.1 Existence theorem of DPPs

We recall the existence theorem for DPPs. Let (S, \) be a o-finite measure space. We assume that
K € T116c(S, A). If, in addition, K > O, then it admits a Hermitian integral kernel K (z,z’) such
that (cf. [22])



(i) 1<de;€t< [K(zj,z)] > 0 for A*"-a.e. (z1,...,x,) with every n € N,
_j? —n

(ii) Ky = K(a') € L*(S,\) for \-a.e. 2/,
(i) TrKy = [, K(z,2)\(dz), A C S and

T (PAK™Py) = / (K KM 2 sy AMde'), V€ (2.3, ).
A

This is based on the fact that every positive definite trace class operator has the form B*B of a
Hilbert—Schmidt operator B together with a similar idea of the proof of Proposition 2.3 mentioned
below.

Theorem 2.1 ([53} 58, 54, [55]) Assume that K € Z; 10c(S,A) and O < K < I. Then there exists
a unique DPP (E,K,\) on S.

If €K € Ti110c(S,A) is a projection onto a closed subspace H C L?(S,)\), one has the DPP
associated with K and A, or one may say the DPP associated with the subspace H. This situation
often appears in the setting of reproducing kernel Hilbert space [9]. Let F = F(S) be a Hilbert
space of complex functions on S with inner product (-,-)r. A function K (z,z’) on S x S is said to
be a reproducing kernel of F if

1. For every 2’ € S, the function K(-,z’) belongs to F.

2. The function K (z,z') has reproducing kernel property; that is, for any f € F,
f@) = (f(), K(.a")F.

A reproducing kernel of F is unique if exists, and it exists if and only if the point evaluation map
F 3> f— f(z) € Cis bounded for every x € S. The Moore-Aronszajn theorem states that if a
kernel K (-,-) on S x S is positive definite in the sense that for any n > 1, z1,...,z, € S, the matrix
(K(7j,7k))jke{1,...,n} 18 positive definite, then there exists a unique Hilbert space Hy of functions
with inner product in which K(x,z’) is a reproducing kernel [9]. If Hy is realized in L2(S, \) for
some measure A, the kernel K (x,z’) defines a projection onto Hp.

2.2 Partial isometries, locally Hilbert—Schmidt operators, and DPPs

First we recall the notion of partial isometries between Hilbert spaces [25] 26]. Let Hy, ¢ = 1,2 be
separable Hilbert spaces with inner products (-, -)y,. For a bounded linear operator W : H; — Ho,
the adjoint of W is defined as the operator W* : Ho, — H7, such that

WS, 9, = (fAW*g)r, forall f € Hy and g € Ho. (2.1)
A linear operator W is called an isometry if
IW Sl = [ fllm,  for all f e Hi.

The kernel space of W is denoted as ker W and its orthogonal complement is written as (ker W)=.
A linear operator W is called a partial isometry, if

Wl = ||fllm,  for all f € (ker W)L



For the partial isometry W, (ker )/V)l is called the initial space and the range of W, ranW, is called
the final space. By the definition @), [Wf3, = W W), = (fLWWS)m,. As is suggested
from this equality, we have the following fact for partial isometries. Although this might be known,
we give a proof below.

Lemma 2.2 Let Hy and Hy be separable Hilbert spaces and W : Hy — Hs be a bounded operator.
Then, the following are equivalent.

(i) W is a partial isometry.
(i)  W*W is a projection on Hy, which acts as the identity on (ker W)*.
(i) W=WWmw.

Moreover, W is a partial isometry if and only if so is W*.

Proof When H; = Ho, this fact is well-known (cf. [25]). If we apply it to H = H; & Hy and

W : H — H defined by
—~ O O
””‘(mzcﬁ’

the assertion is followed by verifying WW = W*W & 0, WW* = 0 & WW* and

——— [ 0 0
WW W—(Ww*w o>'

We note that the conditions (i), (ii) and (iii) above, and the conditions (i)’, (ii)’ and (iii)’
obtained by applying Lemma to the adjoint W* : Hy — H; are all equivalent.

Assumption 1 W is a partial isometry.

By Lemma 22] under Assumption 1, W* is also a partial isometry and hence the operator
WHW (resp. WIWW*) is the projection onto the initial space of W (resp. the final space of W).

Now we assume that H; and Hj are realized as L?-spaces, L?(S1, A1) and L?(Sa, \2), respec-
tively.

A bounded linear operator A : L?(S1, A1) — L?(S2, \o) is a Hilbert-Schmidt operator if Hilbert—
Schmidt norm is finite; || Al|%g = Tr(A*A) < oco. We say that A is a locally Hilbert-Schmidt
operator or of locally Hilbert—Schmidt class, if APy is a Hilbert—Schmidt operator for any compact
set A C S. It is known as the kernel theorem that every Hilbert-Schmidt operator A : L2(Sy, A1) —
L?(Ss,\o) is defined as an integral operator with kernel A € L?(S; x S2, A1 ® X2) (cf. Theorem
12.6.2 [10]). In Proposition 2.3 we prove a local version of the kernel theorem.

We put the second assumption.

Assumption 2 (i) W is a locally Hilbert—Schmidt operator, and (ii) W* is a locally Hilbert—
Schmidt operator.

We note that for any compact set Ay C S;, the operator WPy, is of Hilbert-Schmidt class if
and only if the operator Py, W*WPy, is of trace class since

WP, lfis = T (WP, WPy, ) = T (P, WWPy, ) < oo,

7



Therefore, Assumption 2 (i) (resp. Assumption 2 (ii)) is equivalent to the following Assumption 2’
(i) (resp. Assumption 2’ (ii)), which guarantees the existence of DPP associated with W*W (resp.

Assumption 2’ (1) W*W € 1—17100(51,)\1) and (ii) WW* e IL]OC(SQ,)\Q).

Given a measure space (S, ), if f € L?(A, \) for all compact subsets A of S, then f is said to
be locally L?-integrable. The set of all such functions is denoted by LIQOC(S, A). By this definition
if Paf € L*(S,\) for any compact set A C S, then f € L2 (S,\). The following proposition is a
local version of the kernel theorem for Hilbert—Schmidt operators.

Proposition 2.3 Suppose Assumption 2 (i) holds. Then, W is regarded as an integral operator
associated with a kernel W : Sy x S1 — C;

WIhHly) = ; W(y,z)f(x)Ai(dz), f e L*(S1, M), (2.2)

such that U1 € L}, (S1, A1), where y(z) == W (-, 2)| 12(5, 1,), ¢ € St

loc

Proof From Assumption 2 (i) and the kernel theorem for Hilbert—Schmidt operators (cf. Theorem
12.6.2 [10]), for each compact set A C Sp, there exists a kernel Wy € L?(S3 x S1, Ao ® A1) such that

WP f(y) = i Wiy, ) f(x) A1 (dx).
1
Since WPAf(y) = 0 for all f € L?(S1, A1) whose support is contained in A®, Wy (y,z) = 0 on
Sy x A° for Ay ® Aj-a.e.(y,x). We take two compact sets A and A’ with A € A’ C S;. For any
f € L?(S1, \1) whose support is contained in A, we see that WPy, f = WPy Paf = WPaf. Hence,
for any A Cc A C 5y,

War(y,x)1p(z) = Wia(y,x) on Sy x Sp for As ® Aj-a.e.(y, x).

2
loc

From this consistency, we can define W (y,x) € L (S2 X S1, A2 ® A1) so that for any compact set
A C Sy,

Wy, z) = W(y,z)1x(xz) on Sy x Sy for Ay ® Aj-a.e.(y,x). (2.3)
Since Wy € L?(S3 x S1, 2 ® A1), by (23), [W (-, 2)1a (@) 22(55,00) = Y1(2)1a(7) is finite A\-a.e.z,
and also W11, € L?(S1,\1). This means that Uy € L2 (S1,\;). This completes the proof. g

loc

From Proposition 2.3 under Assumption 2 (ii), the dual operator W* also admits an integral
kernel W* : S1 x Sy — C such that Wy € L2 (S2, \2), where Ws(y) := IW*(Co)ll2(si,00), Y € Sa
It is easy to see that W*(x,y) = W(y,z) for A\ ® Ag-a.e.(z,y). Then

Wa)(e) = | Wpx)gw)a(dy). g€ L*(S2, o). (24)
Following (2.2]) and (2.4]), we have
WWf)(x) = | Ks(z,a)f(@)Ai(da’), feL*(S1,M),

S1
(WW*g)(y)=/S Ks,(y,¥)9(y" ) Aa(dy'), g € L*(Sa,A2),



with the integral kernels,

Kg, (:C,:C/) = o W(y,:c)W(y,:C/))\Q(dy) = <W("x/)’W("x»LQ(Sg,)\g)a

Ks,(y,y') = i Wy, x)W (', 2) M (dx) = (W (y, ), W(y', ) r2(s1,0)- (2.5)

We see that Kg, (2/,2) = Kg, (z,2) and Kg,(y',y) = Ks,(y,9).

Under Assumptions 1 and 2 (i), we obtain Theorem in Introduction as an immediate con-
sequence of the well-known existence theorem of DPP (Theorem [2.T]). We also state the following
theorem to emphasize duality of DPPs, and it is a starting-point for our discussion in the present

paper.

Theorem 2.4 Under Assumptions 1 and 2, associated with W*W and WW?*, there exists a unique
pair of DPPs; (21, Kg,, A1 (dx)) on Sy and (22, Kg,, A2(dy)) on Sa. The correlation kernels Kg,,{ =
1,2 are Hermitian and given by ([2.5]).

Note that the densities of the DPPs, (21, Kg,, A1(dz)) and (Eq, Kg,, A2(dy)), are given by

p@) = K@) = [ W.)holdy) = W2,y o€ S
2

p2(y) = Ks,(y,y) = g W (y, 2) *Ai(dz) = W (y, 725, 0) ¥ E So
1

with respect to the background measures Aj(dz) and Ay(dy), respectively.

We say that a pair of DPPs (21, Kg,, A\1(dz)) on S1 and (23, Kg,, A2(dy)) on Ss is associated
with W. One of the advantages of our framework is that the obtained pairs of DPPs satisfy useful
duality relations, which will be reported in Sections 2.4] B.1.2, and 1.4l Now we concentrate on
one of a pair of DPPs constructed in our framework, (21, Kg,,A1). The correlation kernel Kg, is
given by the first equation of (ZF), which is an integral kernel for f € L2(S1,\;). We can regard
this equation as a decomposition formula of Kg, by a product of W and W. Since W is an integral
kernel for an isometry L2(S1,\1) — L2(S2,\2), as a matter of course, it depends on a choice of
another Hilbert space L?(S2, \2). We note that a given DPP, (21, Kg,, A1), choice of L?(S, \2) is
not unique. Such multivalency gives plural different expressions for one correlation kernel Kg, and
they reveal different aspects of the DPP as demonstrated in Sections A.T.THA.1T.3]

2.3 Basic properties of DPPs

For v = (vV, ..., 0@) e R y = (yD),... y@) e R? d € N, the inner product of them is given by

vy = yv = 2221 v@y(@ and |[v]? := v-v. When S € C% d € N, z € S has d complex components;
T = (x(l), . ,x(d)) with (@ = Rz(® 4+ i3z(®, ¢ = 1,...,d. In order to describe clearly such a
complex structure, we set zg = Rz, ..., Rz@) € R4, 21 = (32, ..., 3z@) € RY, and write

x = xr+izy in this paper. The Lebesgue measure is written as dx = dxgdxr := ngl ARz dS (@)
The complex conjugate of x = zr +ixy is defined as T = xr —iz1. For o = g +ix1, 2’ = o +iz] €
C?, we use the Hermitian inner product,

x-2 = (vR +ix1) - (2 —ix]) = (2R - R + 21 7)) —i(oR - ) — 21 2R)



and define

2> =2 -% = |zr|? + |21}, 2 €C%

For (2, K, A(dx)) defined on S = R, S = C%, or on a space having appropriate periodicities or
symmetries, we write Z =) y dx; and introduce the following operations.

(Shift) For u € S, §,= = 3, 6x;—u,

SuK(z,2") = K(x +u, 2’ +u),
and SyA(dz) = AMu + dx). We write (S,Z, S, K, SyA(dx)) simply as S, (

w(E, K, \(dx)).
(Dilatation) For ¢ > 0, we set coZ := > d.x

/
coK(z,2) =K (%, %) , x,2 €cS:={cx:xeS},
and c o \(dz) := A(dz/c). We define co (2, K, A(dz)) := (co E,co K, co A(dx)).
Moreover, we also consider the following operations.

(Square root) For (Z,K,\(dz)) on S = [0,00), we put =(1/2

K(z2,2/%), and X2 (dz) :== (Ao v?
= (=02 K

= Z] 5\/X_]’ K(1/2>(l"l‘/) =

)(dz), where v(z) = /z. We define (2, K, A(dx)){1/2)

1/2) \(1/2) (dz)) on [0, 00).

(Gauge transformation) For non-vanishing v : S — C, a gauge transformation of K by wu is
defined as

K(z,2') = Ky(z,2") = u(@)K (z,2 )u(z') "
In particular, when u : S — U(1), the U(1)-gauge transformation of K is given by

K(z,2") = Ky(z,2") = u(z)K (z, 2" )u(z’).

We will use the following basic properties of DPP.

[Gauge invariance| For any u : S — C, a gauge transformation does not change the probability
law of DPP;

(2. K. Mdo)) 2 (2, K, A(da)).

[Measure change] For a measurable function g : S — [0, 00)

(2, K (2,2'), o)A dx)) "2 (2, /9@ K (,2)v/g(@), Adz)).

(2.6)
[Mapping and scaling] For a one-to-one measurable mapping h : S — S, if we set
8= Zah o R(,a!) = K (2),h 2 (y)),  A(de) i= (Ao h~Y)(da),
then (2, K /)\\(dx)) is a DPP on S. In particular, when h(z) =z —u,u € S, (E,I?,X(dm)) =
Su(E, K, \(dx)), when h(x) = cx,c > 0, (E,K,\(dz)) = co

(5, K A(dz)), and when h(z) =

10



Vz for § = [0,00), (E,K,A(dz)) = (B, K,\dz))"/2 . If coA(dz) = ¢ I\(dz), then (Z0)
with g(x) = ¢ > 0 gives

co (2, K, \(dz)) () (coE, K¢ A(dx)), ¢>0,

with

1 x
Ko = Gk (7).

where the base space is given by ¢S.

We will give some limit theorems for DPPs in this paper. Consider a DPP which depends on
a continuous parameter, or a series of DPPs labeled by a discrete parameter (e.g., the number
of points N € N), and describe the system by (=, Kp, \p(dx)) with the continuous or discrete
parameter p. If (£, Kp, \p(dz)) converges to a DPP, (2, K, A(dzx)), as p — oo, weakly in the vague
topology, we write this limit theorem as (2, Kp, A, (dx)) "=%° (2, K, A(dz)). The weak convergence
of DPPs is verified by the uniform convergence of the kernel K,, — K on each compact set C' C Sx S
[54].
2.4 Duality relations

For f € C.(S), the Laplace transform of the probability measure P for a point process = is defined
as

] = [exp ( / f@)a(dm)ﬂ . (27)

For the DPP, (2, K, A(dz)), this is given by the Fredholm determinant on L?(S,\) [56],

Pl (—1)"/ . i1 )y yen
Pet 1) =1 U [ e (Gl [[0 - o0 o),

Lemma 2.5 Between two DPPs, (21,Kg,,A1(dz)) on S1 and (E2,Kg,, A2(dy)) on Sa, given by
Theorem 24, the following equality holds with an arbitrary parameter o € C,

Det [I Kg,| = Det [I Ks.,]. 2.8
LQ(S?,)q)[ + Sl] LQ(SS,)\Q)I: + a SQ] ( )

Proof  We recall that if AB and B.A are trace class operators on a Hilbert space H then [56]

Det[I + BA] = Det[I 4+ AB]. (2.9)
H H

Now we have A : Hy — Hy and B : Hy — H; between two Hilbert spaces H; and Hs. Let A and
B be two operators on Hy & Ho defined by

= (50) 506 9)

Then, AB and BA are diagonal operators O & AB and BA & O, respectively, and hence also they
are trace class operators. By applying (2.9) to A and B with H := H; @ Hs, we obtain

Det[I + BA] = Det[I + AB].
H1 H2

11



Consequently, taking A = /aW, B = \/JaW*, H; = L?(S1,1), and Hy = L?(S5, \o) yields (Z). g
For Ay C Sp, € =1,2, let
W — (A2) .y (A1) x
W= Pp,WPr,, Kg = WPLW, Kg, ' = WPy W™ (2.10)

They admit the following integral kernels,

Wy, x) = 15, (y)W (y, 2)14, (v),

Kol = | W e W, )ha(dy),
2

Ko W)= | W Wi o) (dr). (211)
1

Using Lemma 23] the following theorem is proved.

Theorem 2.6 Let (EgAQ),Kg:Q),)\l(dx)) and (EgAl),Kgsl),)\Q(dy)) be DPPs associated with the
kernels Kéi‘?) and Kg:l) giwven by (2.11)), respectively. Then, E§A2)(A1) (law) EgAl)(Ag), i.e.,

(=" (A1) = m) = P(2,") (A2) =m), Vm € No.
Proof As a special case of (2.7)) with f(z) = 15, (z)log z for = = EgAQ), z € C, we have the equality,

=(A2)
By (M)| (1 _ (A2)
E [Z 1 ] LQPS'?:GM)[I (1 Z)PAJCSI Pyl (2.12)

where ICEQ/IQ) is defined by (2.I0). Here LHS is the moment generating function of E§A2)(A1) and

RHS gives its Fredholm determinantal expression. By replacing W by W and letting a = —(1 — 2)
in the proof of Lemma 23] we obtain the equality,

Det [I—(1— KA)py 1= Det [I—(1— cAp 1
LQ(S?,)\l)[ ( Z)PAI S1 PAI] L2(SS,)\2)[ ( Z)PAQ So PAQ]

(A7)
Through (Z12) and the similar equality for E [252 ' (A2)], we obtain the corresponding equivalence

between the moment generating functions of E§A2)(A1) and EgAl)(Ag), and hence the statement of
the proposition is proved.

Examples of duality relations will be given in Sections and £.1.4l1 Theorem was used
to analyze hyperuniformity [62] of the Heisenberg family of DPPs in [42].

2.5 Orthonormal functions and correlation kernels

In addition to L?(S¢, \¢), £ = 1,2, we introduce L?(I',v) as a parameter space for functions in
L2(Sg, M), = 1,2. Assume that there are two families of measurable functions {¢;(z,v) : = €
S1,7 € T} and {¢2(y,v) : y € So,v € '} such that two bounded operators Uy : L%(S¢, A¢) —
L?(T',v) given by

Uef)() = g Ye(@,7) f(x)Ae(d), €=1,2,

12



are well-defined. Then, their adjoints U} : L*(T,v) — L?(Sy, A¢), £ = 1,2 are given by

WU F)() = /F o) F(y)v(d).

A typical example of U is the Fourier transform, i.e., 11 (z,7) = 7. In this case, for any =, the
function 1 (-,7) is not in L*(R,dr). Now we define W : L%(S1,\1) — L?(S2, \2) by W = UsUy,

Wh)(y) = / ol ) U ) () (). (2.13)

Let It be an identity in L?(T',v). We can see the following.

Lemma 2.7 If U] = Ir for £ = 1,2, then both W and W* are partial isometries.
Proof By the assumption, we see that
WWW = (Usth) (Ui Usz)Usth) = UsUy = V.
From Lemma 2.2 W is a partial isometry. By symmetry, the assertion for W* also follows.

We note that W*W = UjU; and WIW* = UsU>. Hence, U, ¢ = 1,2 are also partial isometries.
In addition, W*W is a locally trace class operator if and only if so is UjU;. Therefore, W is of
locally Hilbert—Schmidt class if and only if so is U;.

Now we rewrite the condition for U; to be of locally Hilbert—Schmidt class in terms of the
function ¢y (z,7),z € S1,v € T.

Lemma 2.8 Let ¥y (x) := [[¢1(2,)||p2(r,), T € S1 and assume that ¥y € L% (S1,A\1). Then, the
operator Uy is of locally Hilbert—Schmidt class.

Proof For a compact set A C S1, we see that

|PAUTULPA f ()| =

14 (2) / v () | @A) f () (de)

S1

< 10 (@) (2) /S 14 (2') Ty (o)) £ (o) M (d')

S PaVL(@)|[PAY 1 225y a) IPAfl 22¢51,00)-

By Fubini’s theorem, we have

PAUTUPAf(z) = | Ai(da')f(a') (/F 1A($)¢1($,7)1A(€U')¢1($’,W)V(d7)>

S1

and hence

e PalRs = T (PatzhPa) = | Ai(de)1a(x) ( /F wl(x,wﬁu(dw) = [PA%1 1325, ) < 00
1

This completes the proof. g
Now we put the following.

Assumption 3 For ¢/ =1,2,

13



0) ULy = Ir,
(i) Wy € L}, (Se, Ae), where Wy(z) := [[9e(z, )l 2(r,)s * € St

loc

Assumption 3(i) can be rephrased as the following orthonormality relations:

(e (5 7)s e (N L2y aV(dy) = 6(y =2 )dy, ~,7' €T, £=1,2.

We often use these relations below.

The following is immediately obtained as a corollary of Theorem [2.4]

Corollary 2.9 Let W = UsU; as in the above. We assume Assumption 3. Then, there exists a
unique pair of DPPs; (21, Kg,, A\1(dx)) on S1 and (Z2,Kg,, \2(dy)) on Sy. Here the correlation
kernels Kg,,{ = 1,2 are given by

K, (x’x/) = /le(xa'Y)wl(xlaW)V(dry) = (Y1 (=, ')’wl(xla ')>L2(I‘,zx)a
Ks,(y,y') = j{(wz(y,v)da(y’wv)V(dwd = (a(y, ), V2 (¥, ) L2 0)- (2.14)

In particular, the densities of the DPPs are given by pi(x) = Kg,(z,7) = Vy(x)%,2 € S1 and
p2(y) = Ks,(y,y) = Wa(y)?,y € Sy with respect to the background measures A\i(dz) and Aa(dy),
respectively.

Remark 1 Consider the symmetric case such that L2(S1,\1) = L?(S2,A2) =: L%(S,\), ¢ =
o =, v=Ap, I' € S. In this case, W = U*U with

Up)() = /S P f(@)A(de).

Then Kg, = Kg, =W =: K is given by
K(z,2") = / (x, )Y, y)A(dy). (2.15)
r
This is Hermitian; K(2/,x) = K (z,2’), and satisfies the reproducing property

K(a') = /S K (i, O K (¢, 2 )AdC).

Now we consider a simplified version of the preceding setting. Let I' C Sy and v = Ao|p. We
define Us : L%(So, N2) — L%(T,v) as the restriction onto I', and then its adjoint U3 is given by
UsF)(y) = F(y) for y € T, and by 0 for y € So \ I'. We write the extension F' = Ui F for
F € L3(T,v). It is obvious that Usids = It and hence Us is a partial isometry.

For I" C Sy, we assume that there is a family of measurable functions {1 (z,y) : x € S1,y € T'}

such that a bounded operator U; : L?(S1, A1) — L?(T,v) given by

(MﬁW%=SdM%wﬂ@MM@ (veTl)
is well-defined.

Assumption 3’
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() i =Ir,
loc

(ii) \Ill c L2 (517)\1)7 where \Ifl(.%') = Hl/)l(m', -)”L2(F7y), x € Sl.

Assumption 3’(i) can be rephrased as the following orthonormality relation:

(015 9), 01 (Y ) 2 s A2 (dy) = 6y —y')dy,  y,y' €T.

Now we define W : L2(S1, A1) — L?(Sa, A2) by W = Ul as before. In this case, we have

W) = 1r(y) /S () (@) (de),

and hence

It follows from Assumption 3’ that W is a partial isometry. Corollary 2.9]is reduced to the following.

Corollary 2.10 Let W = UsU; as in the above. We assume Assumption 3’. Then there exists a
unique DPP, (2, K, 1) on Sy with the correlation kernel

Kg, (z,2") = Awl(x7y)¢1(w’7y)Az(dy) = (Y1(z,-), 912, ) 20 ng)- (2.17)
In particular, the density of the DPP is given by p1(x) = Kg, (z,2) = ¥i(z)?,x € Sy with respect
to the background measures \i(dx).
Proof The proof is the same as before.

Remark 2 The correlation kernel (2.I7) is the same as the correlation kernel (215 shown in
Remark 1 in the symmetric case, L?(S1, A1) = L?(S2, A2) and 11 = 19, of the pair of DPPs given
by Corollary 2.9

2.6 Weyl-Heisenberg ensembles of DPPs

The family of DPPs given by Corollary 210 is a generalization of the class of DPPs called the
Weyl-Heisenberg ensembles studied by Abreu et al. [I, 3, 2]. For d € N, let

Sy =C% Sy=T=R%

with the Lebesgue measures A (dz) = derdry, Ao(dy) = dy, where x = xg + izy with zg, 21 € R%
We consider the case that 11 in the setting (216 of W is given of the form

U1 (x,y) = 1 (xR + iz, y) = Gy — zR)e”™ ™ with G € L*(RY, dzg), (2.18)

where y - 21 denotes the inner product in R%. In this setting, since ¥y (z) = 1Gl 2R g T € ce,
Assumption 3’(ii) is satisfied. Also, we have

(W15 9), 01y ) p2esia) = /]Rd dzr G(y — 2r)G(Y — l“R)/ day 2 —y)ar

Rd
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Since [pq €™ *dx = §(y),y € R?, the above is equal to [|G||3, (R4 dog) d(y — v'). Hence, the norm

Gl 2R do) must be 1 for Assumption 3'(i). Therefore, in thls setting (2.I8]), Assumption 3 will
be reduced to the following.

Assumption 4 The function G in (ZIR) has norm 1 in L?(R%, dag).

Under the setting 2.16) with T' = R? and (ZI8)), if Assumption 4 is satisfied, then the operator
W and the correlation kernel Kg, are written as

Wwuf)(y) = ) Gy — zr)e 2™ f(zg + ixy)derdry, f € L*(CY dzrdar),
C

Wivng)(z) = » G(y — zr)e”™ ™ g(y)dy, g€ L*(R% dy),

Kwn(z,2') = [ Gy —2r)Gy — af)e* v @D gy, (2.19)
]Rd

for (z,2') = (xR + iz1, 7k + i) € C? x C% The second formula in (ZI9) is regarded as the
short-time Fourier transform of g € L?(R%, dy) with respect to a window function G € L*(R?, dxg)
[24]. The formulas (2.19) define the Weyl-Heisenberg ensemble of DPP, (2, Kw, drrday), studied
n 1,18, 2.

Proposition 2.11 Under Assumption 4, the Weyl-Heisenberg class of DPPs specified by the win-
dow function G € L*(R?,dxR) is a special case of the family of DPPs given by Corollary 210, in
which T = R4, S; = C%, \(dx) = dardzr, \o(dy) = dy, and vy in 2I0) is given of the form
218).

3 Examples in One-dimensional Spaces

3.1 Finite DPPs in R associated with classical orthonormal polynomials
3.1.1 Classical orthonormal polynomials and DPPs

Let S; = Sy = R. Assume that we have two sets of orthonormal functions {¢y, }nen, and {¢, }nen,
with respect to the measures A1 and Ag, respectively,

<<pna(Pm>L2(]R,)\1) = /R(Pn(x)ﬁpm(x))\l(dx) = Onm,
<¢n7 ¢m>L2(R,)\2) = /R(ﬁn(y)(bm(y))ﬂ(dy) = Opm, n,m € No. (3.1)

Then for an arbitrary but fixed N € N, we set I' = {0,1,...,N — 1} C N, wl( ) = @4(-),
Pa(-,v) = ¢4(), v € T', and consider ?*(T) as L?(T",v) in the setting of Sectlon We see that

fR llo.(x ||g2(r)>‘1(d$) Z HSDnHL2 RA) = N and fR o (y Hg2(r))‘2(dy) Z ||¢””L2(]R o)
N. Hence Assumption 3 is satlsﬁed for any N € N. Then the integral kernel for W defined by

213 is given by




By Corollary [20] we have a pair of DPPs on R, (Z1, KéN), A1(dz)) and (E2,K(;N), A2(dy)), where
the correlation kernels are given by

N-1
KM (2,2') Z en(@)on@), KL wy) =D on1)on¥), (3:2)
n=0

respectively. Here N gives the number of points for each DPPs. If we can use the three-term
relations in {py, }nen, OF {@Pn}nen,, B2) can be written in the Christoffel-Darboux form (see, for
instance, Proposition 5.1.3 in [21]). As a matter of course, if we have three or more than three,
say M distinct sets of orthonormal functions satisfying Assumption 3 with a common I'; then by
applying Corollary 2.9] to every pair of them, we will obtain M distinct finite DPPs. See examples
given in Sections (3.2 3.3] B.5] 3] 141

Even if we have only one set of orthonormal functions, for example, only the first one {¢y, }nen,
in (31]), we can obtain a DPP (labeled by the number of particles N € N) following Corollary 210l
In such a case, we set

W (n,2) = ¢n(@)1r(n) (3.3)

with I' = {0,1,..., N — 1} for (216). Then we have a DPP, (=, KéN), A1(dx)). See examples given
in Sections £2] B.1], and

Remark 3 If I is a finite set, || < oo, and the parameter space is given by ¢?(I'), Assump-

tion 3(ii) (resp. Assumption 3’(ii)) is concluded from 3(i) (resp. 3’(i)) as shown below. Since

U(z)? = H(p.(x)HgQ(F) =Y ner len (@), © € S, we have [ U(2)?A(dz) =, cp Hcan%Q(S’)\). Then,

if {¢ntnea are normalized, the above integral is equal to || < oo. This implies ¥ € L2(S,\) C
IOC(S A). See finite DPPs given in Sections 3.2 B.3] [4.2] [£.3] A4,

Now we give classical examples of DPPs associated with real-valued orthonormal polynomials.
Let AN(m,02)(dz) denote the normal distribution,

1
)\N(m,o.Q) (dx) = \/2_—

o

e_(x_m)Q/(QUQ)dx, meR, o>0,
and )\p(a,b)(dy) do the Gamma distribution,
b a—1_—b
Ar(ap) (dY) == Wy e 1) (y)dy, a>0, b>0,

with the Gamma function I'(z) := [;~ v te “du, Rz > 0. We set

2

1 —x
Al(d(E) = AN(071/2)(d$) = 76 dx,

™
1
and
1
A2(dy) = Ap41,1)(dy) = myye_yl[o,oo)(y)dy,
T T
6ul) = 8(0) = \/ R 0w, nem, (35)
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with parameter v € (—1,00). Here {H,,(z)}nen, are the Hermite polynomials,

2 dn 2
Hy(z) = (=1)"e* —e @
() i= (— e’ e

Ve s

=n! — N 3.6
"kzzo Min—2k) @ "Cho (36)

where [a] denotes the largest integer not greater than a € R, and {L,(f) () }nen, are the Laguerre
polynomials,

Lg’) (z) := i.x_Vexﬁ(xn—f—ue—x)

(V +k+ 1)n—k

(n — k)Ik! (-2)", neNo, ve(-loo) (3.7)

k=0

where (o), .= a(a+1)---(a+n—-1)=T(a+n)/T'(a), n € N, (a)g := 1. The correlation kernels
B2) are written in the Christoffel-Darbouz form as,

no_ /
KEM(z,2') = KN (0,4") = /%w(%)w—l(x) pn(z )@N—l(x)’ o2 R,

Hermite x— 1!

and

K(;N) (y’ y/) = Kl(,l;,é\l/;irre(y7 y,)

(v) (V) (v) (v)
_ N(N—i—l/)qu (y)¢N (y)_j (y )N 1(?/)’ y,y'e[O,oo).

When z = 2/ or y = 3/, we make sense of the above formulas by using L’Hopital’s rule. The former
is called the Hermite kernel and the latter is the Laguerre kernel.

By definition, for a finite DPP (=, K, A\(dz)) with N points in S, the probability density with re-
spect to AN (dxy - - dxn) is given by pN (z1,...,2n) = det1<jp<n[K (zj, 21)], & = (21,...,2N) €
SN . Using the Vandermonde determinantal formula, detlgj,kSN(zifl) = [l1<j<r<n(2k—25), which
is also given as the type An_1 of Weyl denominator formula (AJ]) in Appendix[Al we can verify that
the probability densities of the DPPs (E,Kgggmite,)\N(o,l/Q) (dr)) and (2 Kﬁfg)uerre,)\p(wm)(dy))
with respect to the Lebesgue measures dax = vazl dzr; and dy = vazl dy; are given as

N

() 1 LR N
pHermite($) (N) H (xlc - xj) e %, xzeRY,
ZHermite 1<j<k<N (=1

N
v,N 1 v o—
Plimene® = —or— LI we—u)?[[wre ™ v>-1, yel,), (38

ZLaguerre 1<j<k<N /=1
(N) (v,N)
with the normalization constants Ztermite &N and ZLa suerre:

The DPP (Z, Kg;?mite, AN(0,1/2)(dy)) describes the eigenvalue distribution of N x N Hermitian
random matrices in the Gaussian unitary ensemble (GUE). When v € Ny, the DPP (E, K (N)

Laguerre’
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Arw +171)(dx)) describes the distribution of the nonnegative square roots of eigenvalues of MTM,
where M is (N +v) x N complex random matrix in the chiral Gaussian ensemble (chGUE) and M
is its Hermitian conjugate. The probability density (B8.8) can be extended to any v € (—1,00) and
it is called the complexr Laguerre ensemble or the compler Wishart ensemble. Many other examples
of one-dimensional DPPs are given as eigenvalue ensembles of Hermitian random matrices in the
literature of random matrix theory (see, for instance, [43], 211, 36]).

3.1.2 Duality relations between DPPs in continuous and discrete spaces

We consider the simplified setting (B3]) of W with I' = Ny. If we set Ay = [r,00) C S1 =R,r € R
and Ap ={0,1,...,N —1} C Sy =T =Ny, N € N in (2II]), we obtain

N-1
0,1,...,N—1
Kﬂg’ o }(m,x') = E on(T)on(z"), x,2 €R,
n=0

o0

Kgéoo)(n,n/) :/ on()n ()A1(dz), n,n" € Nj. (3.9)

T

When A (dx) and {¢n tnen, are given by ([B3.4) or by (8.5, the kernels (3.9]) are given by
KDHermite*(r) (n7n/) = (ﬂ2n+n’n!n/!)—1/2/ Hn(m)Hn/(x)e_xde

/!2n+n’+2)71/2677~2 n+1(T)Hn’ (T) - Hn(T)Hn/+1(T)

bl
n—n'

= —(mnln

and, provided r > 0,

K / nln’! 1/2 OOL(”) L(V) Ve,
DLaguerre*(r,l/+1)(n7n) - <P(n+y—|— 1)P(n’—|—y+ 1)> /T n (1’) n (.%')1’ e €T

_ il Vo B LD ) - B L o)
Fn+v+1)I'(n +v+1) n—n'

)

with the convention that L(_Vl) (r) = 0, respectively (see Propositions 3.3 and 3.4 in [I5]). Borodin and
Olshanski called the correlation kernels KDHermite+(r) and KDLaguerre+(r,u +1) the discrete Hermite
kernel and the discrete Laguerre kernel, respectively [15]. Theorem gives

PEOt N o0)) = m) = PEP({0,1,...,N —1}) =m), Vm € N, (3.10)

where LHS denotes the probability that the number of points in the interval [r,00) is m for the
N-point continuous DPP on R such as (Z1, Kg;?mite, AN(0,1/2)(dx)) or (Z1, Kﬁgg)uerre, Ar(w41,1)(dT)),
v € (—1,00), while RHS does the probability that the number of points in {0,1,..., N —1} is m for
the discrete DPP on Ny such as (Z2, Kpgermite* () O (22, Kpraguerret (rp+1)), ¥ € (—1,00). The
duality between continuous and discrete ensembles of Borodin and Olshanski (Theorem 3.7 in [15])
is a special case with m = 0 of the equality (3.10).

3.2 Finite DPPs in intervals related with classical root systems

Let N € N and consider the four types of classical root systems denoted by Ax_1, By, Cn, and
Dy (see Appendix [A]). We set SAN-1 = Sl = [0,27), the unit circle, with a uniform measure
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MN-1(dg) = Ap,2m(dz) = dz/(27), and SEN = [0, 7], the upper half-circle, with AN (dz) =
A[o,n](dﬂf) :=dz /7 for Ry = By, Cn, Dy.
For a fixed N € N, we introduce the four sets of functions {¢ZV}¥_ | on S~ defined as

e—i(NAN—l—QJAN—l(n))x/Q, Ry = An_1,
en (@) := { sin [V — 275 (n))z/2], Ry = By, Cw,
cos [(./\/DN - 2JDN(n))m/2], Ry = Dy,

where
N, Ry = An_1,
2N —1 Ry =B
NEN = ’ NN (3.11)
2(N + 1), Ry = Cy,
2(N —1), Ry = Dy.
and
n—1/2, Ry = An-1,
JEN(n) :={n—1, Ry = By, Dy, (3.12)

n, Ry = Cy.
It is easy to verify that they satisfy the following orthonormality relations,

An-1  An-1
{en™om ) L2(S1 A any) = Onms

<(,0§N,@£N>L2([077T]7>\[0’ﬂ) :5nma RN :BN,CN,DN, if n,mec {1,...,N}.
We put I' = {1,...,N}, N € N and L?(T',v) = ¢*T). By the argument given in Remark 3 in
Section BTl Assumption 3 is verified, and hence Corollary 29 gives the four types of DPPs;

(E,KAN—I,)\[OQ,T)(dx)) on S', and (E,KRN,)\[OJ}(dx)) on [0,7], Ry = By, Cn, Dy, with the cor-
relation kernels,

N
K (a,2') =Y o (2)0n™ (2/)
n=1

sin{N(z — 2')/2} B
sin{(z — 2')/2} ’ ' By = An-1,

1 [sin{N(z —a')} sin{N(z+2')} Ry — B

2 [sin{(x —2’)/2} sin{(z+2')/2}]’ ’
- 1 [sin{(2N + 1)(z —2')/2}  sin{(2N +1)(= —|—:c’)/2}} Ry = Cx

2| sin{(xz — 2’)/2} sin{(z + 2')/2} ’ ’

1 [sin{(2N — 1)(z —2")/2}  sin{(@N —1)(z +2')/2} B

2| so{@—a)2] T s+ )2 } By =Dy

By Lemma [AJ]in Appendix [Al the probability densities for these finite DPPs with respect to

20



the Lebesgue measures, dx = H;V: 1 dx; are given as

1 Tk — T,
An_ _ 2 Lk J N
pAN-1(z) = AT H sin” ———, @€ [0,27m)"Y,
1<j<k<N
N
1 — . .
pPN(z) = 7 BN By 1<—£<N (Sin2 il 5 Y gin2 Tk ;— x]> HsinQ %, x e [0,7]V,
<j<k< =
Cn . 1 Lo T —Xj . o T+ Xy N .. 2 0 N
p“(x) = Zon H sin 5 sin 5 Hsm xg, x € [0,7]",
1<j<k<N =1
1 Lo T —Tj . o Tt X;
pDN(m):m H (sm2 k2 I sin? k2 j), x € 0,7V,
1<j<k<N

with the normalization constants Z7n.

The DPP, (E,KANfl,)\[O,QW)(dx)) is known as the circular unitary ensemble (CUE) in ran-
dom matrix theory (see Section 11.8 in [43]). These four types of DPPs, (E,KANfl,)\[OQW) (dz)),
(2, K Ry Ajo,7] (dz)), Ry = By, Cn, Dy are realized as the eigenvalue distributions of random ma-
trices in the classical groups, U(N), SO(2N + 1), Sp(N), and SO(2N), respectively. (See Section
2.3 ¢) in [58] and Section 5.5 in [21].)

3.3 Finite DPPs in intervals related with affine root systems

We define the following four types of functions;

04(0, 2,7) := ¥y (o7 4 2;7),

)
@B(U, 2,T) = 62””191(07' +2z;7) — 6_2””191(07' —2z;7),
@C(U, 2,T) = 62””192(07' +2z;7) — 6_2””192(07' —2z;7),
0P (0, 2,7) := ™%y (o7 + 2;7) + e T2y (0T — 2;7), (3.13)

forc e R,z€ C,7 €e H:= {2z € C: Sz > 0}, where ¥, (v;7), u = 1,2 are the Jacobi theta functions.
See Appendix [B] for definitions and the basic properties of the Jacobi theta functions.

Here we consider the seven types of irreducible reduced affine root systems Ry = An—_1, Bn,
BY;, Cn, C¥, BCy, Dy, N € N [}, 51] (see Appendix [C). We put S4¥-1 = S! = [0,27) with
AN=1(dx) = A 2m) (da), and SN = [0, 7] with AV (dx) = A - (dx) for Ry = By, By, Cn, CY,
BCpN, Dy. We assume that 7 € H is pure imaginary, that is,

7 =137 € 14(0, 00).
For a fixed N € N, we define the seven sets of functions {@ZV (z;7)}Y_; on SEN as

1 JEN (n T
PEN (337 1= L @H(AN) < /\/R(N)’NRNﬁ’T> ,
mi™ (7)

where

A, if Ry = ANfl,

B, if Ry = By, BY,

C,  if Ry = Cy, CY, BCy,
D, if Ry = Dy,

(3.14)
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N, Ry = An-_1,
2N — 1, Ry = B,
2N Ry = BY.. CY
NRN _ ’ N N> ~N> (3.15)

2(N + 1), Ry = Cly,
2N +1, Ry = BCy,
2(N — 1)7 Ry = Dy,
n—1/2, RN:AN—DCA]\CW

JEN(n) :={n—1, Ry = By, BY, Dy, (3.16)

n, Ry = Cn,BCy,
and we set

miN- Y1) i= 95(2J4N -1 ()7 JNAN-1.27) ne{l,...,N},
mBEN (1) := 209 (2T (n)r NN 27), ne{l,...,N}, for Ry = Cy, Cyx, BCn,

(1) = ’ for Ry = By, BY,
i (7) {2792(2JRN( N INEN.27), med2,3,... N}, N T UNEN
4192(0, ) n = 1,
mPN (7) 1= { 205(20P8 ()7 NN 27), ne{2,3,...,N — 1},
(

499(2(N — 1)1 /NPN:27), n=N.

For N € N, the following orthonormality relations can be proved as a special case of Lemma
2.1 in [33],

An_ An_
(on™ (1) om0 T)) 281 Mg y) = Onms
<80§N(',T),SDﬁN(',T)>L2([o,n],A[0,ﬂ) = 0um, RN = Bn, By, Cn, Cy, BCn, Dy,
n,mel :={1,...,N}.

By the argument given in Remark 3 in Section B.1.1l Assumption 3 is verified, and hence Corollary
2.9 gives the seven types of DPPs, (2, KI'N \fiN (dx)) with the correlation kernels,

KRN (z,2) ng (x;7 gpn N(z';7), Ry = An_1,Bn,BY,Cn,CY,BCnN,Ry.

Thanks to the Macdonald denominator formula proved by Rosengren and Schlosser [51] (see (3.1)
with (3.2) in [33] in the present notations), the probability densities for these finite DPPs with
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respect to the Lebesgue measure, dx = H;V: , dzxj are given as follows,

N
71 Yj. T An_1 (T, T . .
ZANA(T) o Z o’ NAN-1 w <%, m) , if N is even,

i=1
An_1 9
pr (x) = N
_ L T Avo (T T R
ZANfl(T) 193 ]Zl %7 NANfl W N-1 <%, N_AN*I) 5 lf N 1S Odd,

x € [0,2m)N,

y &L S [Oaﬂ-]N) RN: BN,B]\\/U CN)C]\\/faBCNaDNa

T Y

where W~ are the Macdonald denominators given by (C) in Appendix [Cl and Z#~ (1) are the
normalization constants. By the properties (B.3) and (B.6]) of the Jacobi theta functions, it is easy
to verify the following,

— -AN_ (law) — An_
S27r/N(‘:‘7KTN 17)‘[0,27r)) = (‘:‘7KTN 17)‘[0,27r))7

PN (0) =0, Ry = By, Cy, BCy,
prN(0) = pf¥(m) =0, Ry = By, Cn.

In [33], it was proved that these seven types of DPPs are realized as the particle configurations
at the middle time t = ¢, /2 of the noncolliding Brownian bridges in time duration [0, t,], provided
t, = 4737 > 0, whose initial configurations at ¢ = 0 and final configurations at ¢ = ¢, are fixed to
be specially chosen configurations depending on the types Ry, N € N.

As &1 — o0, the temporal inhomogeneity in such noncolliding Brownian bridges vanishes. Asso-

ciated with such limit transitions, the following degeneracies are observed in the weak convergence
of DPPs from the seven types of affine root systems to the four types of classical root systems,

(E, KfI\PI ) )‘[O,Qﬂ) (dx)) \Sgoo (E’ KAN71 ) )‘[O,Qﬂ) (dx))a

(Ea KDNa )‘[O,ﬂ (dx)) \YSOO (E’ KDN, >‘[0,7r] (dx))’ (317)

where the DPPs, (2, KAN—l,)\[O,%)) and (Z, KB~ Ajo,]), Bn = By, Cn, Dy were given in Section
. 2)

3.4 Infinite DPPs in R associated with classical orthonormal functions

Here we give examples of infinite DPPs obtained by Corollary 210l
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(i) DPP with the sinc kernel : We set S; =R, A\j(dz) = dz, I' = (—1,1), v(dy) = X2(dy) = dy,

and put
1

V2r

We see that Wy(z)? = 1/7,2 € R and thus Assumption 3°(ii) is satisfied. The correlation
kernel Kg, is given by

Ty

¢1($,y) =

e

IR / sin(x — z’)
/ — /
Ksinc(m"x ) = %/1 ely(fl' lB)dy = m7 T, T S R.

(i) DPP with the Airy kernel : We set S1 =R, A\j(dx) = dz, I’ = [0,00), v(dy) = A2(dy) = dy,
and put
1(z,y) = Ai(z +y),

where Ai(z) denotes the Airy function [45]

: 1 [ k3
Ai(z) == — cos | + kx| dk.
T Jo

We see that Uy (x)? = —zAi(z)? + Ai'(z)%, 2 € R and thus Assumption 3(ii) is satisfied. The
correlation kernel Kg, is given by
Ai(z)Ai'(2') — Ai(2") AT (x)

/
) ,I,,IGR,
/
r—XT

Kpiry(2,2') = / Ai(z + y)Ai(2’ +y)dy =
0

where Ai'(z) := dAi(z)/dx.

(iii) DPP with the Bessel kernel : We set S; = [0,00), A1(dx) = dz, T' = [0,1], v(dy) = A2(dy) =
dy. With parameter v > —1 we put

iz, y) = Vaydy(zy),
where J, is the Bessel function of the first kind defined by

Jy(z) = 72% <§>2n+y, z € C\ (—00,0). (3.18)

We see that Uy (z)? = 2{J,(2)? — J,_1(z)J,11(x)}/2, x € [0,00) and thus Assumption 3’(ii)
is satisfied. The correlation kernel Kg, is given by

1
K]g/e)ssel(x’ xl) - /0 \/@JI/(:Cy) V xly‘]v(xly)dy

= %{Z,)z{g}y(m)xﬂ]ﬁ(az/) - a:J,'/(a:)J,,(x/)}, x, 7’ €0, 00), (3.19)

where J(z) := dJ,(z)/dx.

These three kinds of infinite DPPs, (2, Kgine, dz), (2, Kairy, dz), and (E7K](3Ve)ssel7 10,00y (7)d),

are obtained as the scaling limits of the finite DPPs, (Z, KI(-I]Xr)mite’ AN(0,1/2)(dz)) and (Z, Kﬁ';’glirre,

Ar(+1,1)(d7)), given in Section [B.1] as follows.
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(1) Bulk scaling limit,

V2N o (2, Kjjo)h e A N(0,1/2)(dz)) =50 (2, Kiine, dx).

Hermite’

(ii) Soft-edge scaling limit,
N N—00
\/_NI/G © S\/_ (‘—" I(-Ier)mlte’ )‘N(O 1/2) (dx)) ;> (:" KAirya dm)
(iii) Hard-edge scaling limit, for v > —1,

AN o (B, K ipotrer Arw 1 (@) M2 ) B2 (2, KL 1 1 o) (@) ).

Laguerre’

See, for instance, [43], 21}, 8, [32], for more details.

The DPPs with the sinc kernel and the Bessel kernel with the special values of parameter v can
be obtained as the bulk scaling limits of the DPPs, (£, Ki¥ A%~ (dz)), Ry = Ax_1, By, Cn, Dn
given in Section as

E 0 (E KAN_l >‘[0 2m) (dx)) N;SO (E,Ksinc,dx)a
No (Z, s Ao, (d)) }N%oo — -(1/2)
— (B, K , 190y ()dx),
N o ( )\[0 ﬂ](dx)) ( Bessel® +[0, )( ) )
Dy N—o00 /— (—1/2)
No(E K a)‘[OJr}(dx)) = (:7KBeSse1 71[0700)('%')dx)7 (3'20)

where

sin(x —2')  sin(z + 2')

KV (2,2") = z, 2’ € [0,00),

Bessel 7T($ — x/) - 7T($ T CCI) 5
sin(x — 2’ sin(z + 2’
K]gesls/e?)( ’l‘l) = ( ) + ( ) ﬂj, ﬂj/ e [07 OO)

m(z — ') m(x+a2)’

Since Jy5(z) = /2/(mz)sinz and J_y5(x) = /2/(7x)cosz, the above correlation kernels are
readily obtained from (3.J9) by setting ¥ = 1/2 and —1/2, respectively.

3.5 Infinite DPPs in R associated with orthonormal theta functions

Let S = R with A (dz) = dz, and \(dz) = 1j9,00)(z)dx for the types R = B,C,D. Here we
assume that 7 € H is pure imaginary. We put

OA(y,z /7, T
WA 57) = oL UTTD
m09(277; 27)
R
’l/JR(.%',’)/;T) — S (’7/2’37/71-’7—)’ R:B,C,D,

299 (77y; 27)

and I' = (0,1) with v(dy) = dvy, where ©F% R = A, B,C, D are given by (B.13).
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Using the equalities

l / 62i{(’y_,y/)+(n_m)}xd$ = 5nm5(7 - 7/)’
R

™

L [ et 2mmlegy — 0, for nymeZ, 4,4 €T,

27TR

we can show the orthonormality relations [33];

@11 0 G T sy = 0(v — ),
<1/}R(7’Y’ T)71/}R('77/; T)>L2(R,1[07m)($)dm) - 5(7 - 7/), R = A,B7 C7D7 ,Y’,)/ e .

We can also evaluate the upper bounds for W (xz; 7)% := || ®(x, -; T)]]%Q(F’V), reR, R=AB,C,D,
and confirm that Assumption 3(ii) is also satisfied. Hence by Corollary 2.9] we obtain the four types
of infinite DPPs (2, K2, dx), (2, KE, 1(0,00)(z)d), R = B,C, D. The correlation kernels are written
as follows,

1 1 . / N / — N
Kf(x,x') _ _/ eQz(J}—x )y 192(1./7(- + 7777)192(1. /7T et T) d’}/, CC,CC/ eR,
0

T Vo (277; 27)
1 . / _ .
KB(z,a') = 1 / ei(x—g;/),yﬂl(x/ﬂ' + 7v/2; )0 (2 Jm — Ty /25 T) »
T D2 (77:27)
1 ‘ '
+/ ei(x+m/)w91(ﬂ:/7r +77/2;7)01 (2 /7 + 77/2),7-)@] e e [0.00)
-1 Do (77y; 27)
1 Va2 /74 7y/2; 702 (2! /7 — 7v/2;7)
KC N =_—_ i(z—a')y Y2 3 ;
1 . / .
_/ gileta'yy V2(3/ ™+ 7Y/27) 05 (' /7 + 77/2),7-)d7] e € [0.00)
-1 Do (77y; 27)
1 . / _ .
KP(z,2') = 2i [/ ei(x—w/)q/ﬂQ(x/ﬂ' + 77/5,7')19'2(36 /T —TY/25T) »
T L1 o(77; 27)

L . / .
+/ gitaray Y2/ £ Ty B0 /7 £ TY/2ET) L e 0. 00). (3.21)
1 Vo(T7;27)

If we change the integral variables appropriately, the above become the correlation kernels ICE /2

R = A,B,C, D, with t, = 47T, given in Lemma 3.5 in [33]. Using the quasi-periodicity (B3] of
the theta functions, we can show that the DPP (2, KA, dz) has a periodicity of 7; S, KA (z,2') =
KA(z,2'), z,2' € R. By the symmetry (B.2) of the theta functions, we see that pZ(0) = K£(0,0) =
0, R=B,C.

The infinite DPPs associated with the above correlation kernels (8.2I]) are obtained as the bulk
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scaling limits of the finite DPPs in intervals studied in Section B3] [33];
N —00

3o<~,K 10 Np o () 23

(E O7r dl’
NO(E,KT O7r dl’
No(Z, K )\OW (dz))
N— oo

No(Z, CN Ao (dz)) 910,00 (x)d2),
No(Z, KBCN , Ao, ( dx

=, KA, dx),

=
ﬂé

B 110 00y (z)dz),

No (2, KP¥ Ngr(dz)) =57 (2, KD, 1(g 00 (2)da). (3.22)
If we take the limit S — oo in (BED), we obtain the follovvlng three infinite DPPs,
(E, Kf, dac) %goo (E7 KsinC7 d$)7
= KB 1 ST—00
(2, K7, 10,00 (z)d) } 20 (2, KU, 10 oo (2)d),

(EJ(TC, 1[0,00) (1’)d1’) Bessel?
= JT 0 —1/2
(5, KD 1) o0y (2)dz) " (2, K502 10 oy (2)d), (3.23)

which are the same as the limiting DPPs given by (3.20)).

Remark 4 The results (317), (3.20), (3:22]), and (3:23)) imply that, in the limit transitions from
the finite DPPs (2, KN A®v) Ry = An_1, By, By, Cn, Cy, BCy, Dy, to the infinite DPPs

(2, Ksine, dx), (E, K72 1(0,00) (7)dz), (E,K(fl/Q) 1(0,00)(z)d), the scaling limits associated with

Bessel? Bessel
N — oo and the limit 7 — oo are commutable.

4 Examples in Two-dimensional Spaces

4.1 Infinite DPPs on C : Ginibre and Ginibre-type DPPs
4.1.1 Three types of Ginibre DPPs

Let AN(m,02;c)(dz) denote the complex normal distribution,

1

—|lz—ml|? /52
AN(m,o:0) (dT) = e le=ml/o g
— 12ef(l“R*mR)Q/UQ*(:L“I*mI)Q/UQddexI’
o

m € C,mg := ®m,my := Sm,o > 0. We set S =C,

1 —|x
A(dz) = Ao, (de) = —e o qs

= AN(0,1/2) (dZR)AN(0,1/2) (1),
and
WA(,7) = e~ (@h—aD)/2+207
T/JC(HU,’Y) = \/isinh(2mfy)e—(xrz,—x%)/2’
WP (2, 7) == V2 cosh(2ay)e~ @R —oD)/2,

27



It is easy to confirm that
1 -
= [ i) e = R ),
1 R TR .-l a2 6(y—=°)—o0(v+9), R=C,
— x, x,v)e *Idr; = e *R cosh(4x X
o R e (dm) {5( S

Therefore, we have

@A) YN 2o V(@) = 8y =7)dy, 7,7 €T =R,
<¢R(',7)a ¢R('a 7/)>L2(C,)\N(0’1;C))V(d’y) = 6(’7 - Wl)d’)/, ’7,’7, S FR = (0, OO), R = C, D,

with v(dy) = Ax(o,1/4)(dy) = V2/me 2 dy. We also see that U4 ()2 := ||¢4(x, )HLQ(FA = elel?
UO(2)? = ([, ) |2, (€ = sinh |z|?, and UP(2)? := HzpD( 3, (D) = cosh|z|?, x € C.
Thus Assumption 3 is sa‘msﬁed and we can apply Corollary 29 The kernels (2.14]) of obtained
DPPs are given as

KMz,2') = \/ze—{(w%—w%)ﬂwg?—wiQ)}/Z /OO 2= gy
n —0o
K (z,a') = 2\/26{(12“1‘2”(%2%2)}/2/ e~2” sinh(2zv) sinh(22/7)d,
i 0

KP(z,a") = 2\/26{(121‘1%”(%2%2)}/2/ e~ 27" cosh(2x) cosh (2277 ) dr.
g 0

The integrals are performed and we obtain K®(x,2') = e”RzIKgmlbre(m,w')eﬂ'mﬁxi, R=AC D,
with

Kéinibre(x’ x/) = 6932:’, (41)
Kginibre(x’ x/) = Sinh(x?)’ (42)
Kginibre(x’ x/) = COSh(x_I)’ x, 'I/ eC. (43)

Due to the gauge invariance of DPP mentioned in Section 2.3l the obtained three types of infi-
nite DPPs on C are written as (E’Kginibre’)‘N(O,l;(C)(dx))’ R = A,C,D. The DPP, (5, Kéinibre,
AN(0,1;¢)(dx)) with (£T)) describes the eigenvalue distribution of the Gaussian random complex ma-
trix in the bulk scaling limit, which is called the complex Ginibre ensemble [23| [43], 28] 29, 211 [52].
This density profile is uniform with the Lebesgue measure dx on C as

1
PGinibre(T)dx = Kélinibre(x"I)AN(O,I;C)(d‘T) = ;dede, z e C.

On the other hands, the Ginibre DPPs of types C' and D with the correlation kernels (£2]) and
(43) are rotationally symmetric around the origin, but non-uniform on C. The density profiles
with the Lebesgue measure dx on C are given by

1 —2|x
pginibre(x)dx = Kginibre(xax))‘N(O,l;(C) (d.%') - 2_(1 —e 2 ‘2)dedea S (C7

™

1
pginibre(x)dx = Kginibre(xa x))‘N(O,l;(C) (d.%') - %(1 + e—Q\x\Q)dede’ zeC.
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They were first obtained in [34] by taking the limit W — oo keeping the density of points of the
infinite DPPs in the strip on C, {z € C: 0 < 3z < W}. See (£I6]) in Section [£.4] which represents
the corresponding limit transitions. See also Remarks 5 and 8 in [34] in which the present Ginibre
DPPs of types C' and D are discussed as new examples of the Mittag—Leffler fields studied by
[5L 6, [7].
4.1.2 Ginibre and Ginibre-type DPPs as examples of Weyl-Heisenberg ensembles
Let d = 1 and consider the following window function,

G(zr) = 2!/~ "k zp € R. (4.4)
It is obvious that Assumption 4 is satisfied, ||G||L2 Rdeg) = 1+ I this case (2.19) becomes [1, 3] 2]

emmRmI

Glmbre(\/_x \/—x) —m(|z]?+|2’|? )/2

By taking into account the direct decomposition

KWH(m’x,) ma: x]
L2(R) = Lgdd(R) D Lgven(R)7

we have
Wi (L2 (R)) = Wiyn (L24q(R)) © Wiy (Laven (R))-
When G(—y) = G(y), we have
Wivi(Loaa(R)) C {F € L*(C) : F(—z) = —F(x),z € C} =: L744(C),
WWH( even( )) C {F € LQ((C) : F(_'I) F(x) T e (C} - Leven((c)

We consider the restriction of operator

W : L244(C) = L24(R).
WH L2,,(C) odd( ) odd( )
and its adjoint
Wi : Loga(R) = Lig4(C).
Laa® ° °
Then, the kernel of the operator Wiy LQH(R)WWH 2, is given by

Y Kwn (@, 2) — Ky (z, —2).

Kodd ( ) 5

Similarly, we have the kernel,
1
Kyt (z,2') = §(KWH(36,36') + Kwu(z, —2')).

When the window function G is given by (4.4]), we obtain

emmRmI

KOdd( ) = Glnlbre(\/_x \/_:C) - |$| —Hx\ )/2

67T’L$ $
Glmbre(\/_x \/_1' ) - |m|2+\x ‘ )/27 1’,1’1 S (C,

emexI

even /
K ( ) - eTK’Z{L’ {L’
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where K&, ... and KB . are given by (&2) and ([Z3), respectively.

The Ginibre DPP of type A is extended to Ginibre-type DPPs indexed by ¢ € Ny, which
are introduced in [52] and also known as the infinite pure polyanalytic ensembles (cf. [2]). Each
Ginibre-type DPP with index ¢ € Ny is associated with the correlation kernel

K(qu)nibre—type(x7 .%'/) = LgO)(‘x - xl‘Q)Kéinibre(xv xl)7 T, .%'/ € (C7 (45)

where L((IO) is the ¢-th Laguerre polynomial (37 with parameter v = 0 and Kéinibre is defined
by (&I)). This DPP can be viewed as the Weyl-Heisenberg ensemble, (=, K\I;\}IH, drrdxy), with the

window function G(z) = hy(z), = € R, which is defined using the ¢g-th Hermite polynomial ([B6) as

o) 9—a/2+1/4 o ( )
qx::Te H,(V2rz), x€R, qe¢&N.
q!
Indeed, we see that
TITR L]
K&;‘H(x 7)) = ¢ K() (Vrx, /T2 )e _”|$|2+|$‘)/2 z, € C, q€Ny.

eﬂ—w x Ginibre-type

See [2] for more details about the Weyl-Heisenberg aspect of finite polyanalytic ensembles. Other
examples of the Weyl-Heisenberg ensembles are given in [11 [3] 2].

4.1.3 Representations of Ginibre and Ginibre-type kernels in the Bargmann—Fock
space and the eigenspaces of Landau levels

We consider an application of Corollary ZXT0l Let S1 = C and S = No with A;(dz) = Axo,1;0)(d2).
We put
= — . 4.
on(z) Nk n € Ny (4.6)
Note that {@y, () }nen, forms a complete orthonormal system of the Bargmann—Fock space, which
is the space of square-integrable analytic functions on C with respect to the complex Gaussian
measure;

{¢n, (Pm>L2(C7>\N(0,1;<c)) = Opm, n,m € No.

We assume that I' = S5 = No. We can see that [|¢.(z) |2y = D ,en, [2[*"/n! = el 2 € C. Hence
Assumption 3’ is satisfied. By Corollary 210, we obtain the DPP on C in which the correlation
kernel with respect to Ax(o,1.c) is given by

0 I\
Kgr(z,2') = ) pn(@)pn(a) = (m,)
n€Np n=0
= ex?, z,z’ € C.
This is the reproducing kernel in the Bargmann—Fock space and obtained DPP is identified with
(2, K&inibrer AN(0.1,0) (d2)). See [52, 16 2.
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If weset ' =2Ng+1={1,3,5,...} or I' = 2Ny = {0,2,4,... }, we will obtain the DPPs with
the following kernels

" ) o) ($$/)2k+1
K3 = = sinh(zz’
BE (z,2) kZ:O @k 1)1 sinh(zz’),
00 ~N\2k
Keven( /) - Z (:(E;Ck))l = COSh(CEF), :C’x’ e C.
k=0 '

The obtained DPPs are identified with (2, K&, i es AN(o,1;0)(dr)) and (Z, K& e AN(0,1;,0)(d)),
respectively.

The correlation kernel of Ginibre-type DPP (43]) admits the similar representation in terms of
the compler Hermite polynomials defined by

_ or 91 _
HPvQ(C? C) = ( 1)p+q Ccacp 8qu CC? C € C7 D, q € N07

which were introduced by It [30]. We note that their generating function is given by

Zsz,q —q = exp((s + Ct — st)

p=04¢=0

and the set {H,, ,(¢,¢)/v/P'q! : p, ¢ € Np} forms a complete orthonormal system of L?(C, AN(0,1;0)(dC))-
Let S1 = C and Sy = Ng with Ai(dx) = Ay(o,1,c)(dz), and for fixed ¢ € Ny, define

1
09 (z) .= ——=H, 4(x,7), z€C, neN.
nlg!

Then {go,(@q) () }nen, forms a complete orthonormal system of the eigenspace corresponding to the
g-th Landau level, which coincides with the Bargmann—Fock space when ¢ = 0. Since the following
formula is known

R | -
L((JO)(’C - 77‘2)607 - Z p|q| pQ(C C) PQ(T/ 77) Cﬂ? € (Ca qc N07
p=0

we obtain the following expansion formula for (4.5]),
Kéqi)nibre—type Z Qp(q) /)a €, ! € (C, qe I\IO-

The obtained DPPs are identified with (2, K (@

Ginibre-type AN(0,1;,0)(dr)), ¢ € Ng constructed as Weyl-
Heisenberg ensembles in Section [4.1.2]

4.1.4 Application of duality relations

We consider the simplified setting B3] of W with (@) and I' = Ny. If we set A\(dz) =
AN(0,1;0)(dx), Ay be a disk (i.e., two-dimensional ball) B2 with radius r € (0,00) centered at the
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origin in $; = C ~ R? and Ay = S = Ny in (1)), we obtain

=3 en(@)pnld) = e
n=0

A / !
- KGinibre(xvx )7 r,x € (Ca

where Ké‘inibre denotes the correlation kernel of the Ginibre DPP of type A, and

— 1 r 2 ! 2w : /
KB n,n / n(T)on () A o (dz) = 7/ dse 5 s"t" le/ df €' =)
No ( ) Bg()@ ( )4,0 ( ) N(O,l,(C)( ) W\/W 0 0
2

82n+le s T
= 20, / 7|ds = Opn/ / Ar(nt1,1)(du), n,n’ € Ny.
0 n: 0

Define

2 n_—u o0 2k ,—r2
ue r<Fe
An(T) ::/0 du = Z 0 €Ny, re€(0,00),
k=n+1

where the second equality is due to Eq.(4.1) in [52]. That is, if we write the Gamma distribution
with parameters (a,b) as I'(a, b) (see Section B.I.T]) and the Poisson distribution with parameter c
as Po(c),

M(7) = P(R, <72) =P(Y,2 > n+1),
provided R, ~ TI'(n+1,1) and Y,» ~ Po(r?). Then DPP (Z, =) K(]B )) on Ny is the product measure
Qneng u?ezﬁyunl under the natural identification between {O, 1}NO and the power set of Ny, where

typ Bernoulli jenotes the Bernoulli measure of probability p € [0,1]. Theorem gives the duality
relation

P (e (B2) = m) = Py (No) = m),  ¥m € Ny,
where we have identified the DPP, (=2 (NO), (o) , A1(dx)) with the Glnlbre DPP of type A, (&, ibres
Kélmbre, AN(0,1; .c))- If we introduce a series of random variables X € {0,1},n € Ny, which are

mutually independent and X, QN ,uBeznfulh, n € Np, then the above implies the equivalence in

probability law

—A (1aW) —(
:‘Ginibre(B2) ‘:‘ Z X 0 OO)
n€eNp

Similarly, we have the following equalities by the results in Section L.1.3] and Theorem [2.6]
(law) — (law)
‘—‘Glmbre 182 Z X :‘ginibre 182 Z X 0 OO)
ne2No+1 ne2Ny

The argument above is valid for general radially symmetric DPPs associated with radially
symmetric finite measure A\j(dz) = p(|z|)dx on C. Let p,(z) = a,a™,n € Ny be an orthonormal
system in L?(C, \;) where a,, > 0,n € Ny are the normalization constants, and we set

K& (@,2') =3 pu@)pa(@) = > a2 (@r)" 2’ €C,
n=0 n=0

K& (n,n') = /BQ%() (2)M1(d2) = GuwAa(r) 7,1’ € N,
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where )

1 T
An (1) = —/ u"p(v/u)du
Zn Jo
with Z, = [;° u"p(y/u)du. Then DPP (EgNO), K, NO),p(\x!)dw) on C is radially symmetric and DPP
(ESB‘?)7 Klg]o )) on Ny is again identified with the product measure ®n€NO ,u/\BeE};’um For example, if

p(s) = 7 te=** and a, = 1/v/nl, then (EgNO),K((CNO),p(]x\)dx) is the Ginibre DPP of type A. The
function A, (r) is considered as a probability distribution function on [0, c0) and hence there exist
independent random variables R,,,n € Ny such that

A1) = P(R, < 12).

If we define Xr(f) = 14g, <y2y for each n € Ny, then Theorem gives the duality relation

—(N (law) —(B2) (law .
=0 (B2) "= =) S X1, re(0,0).
n€eNp

Indeed, {XT(LT),n € Ny} are mutually independent {0,1}-valued random variables whose laws are
given by {u?ﬁffu“i, n € No}. If we take a set Ay C Ny, then DPP (E§A2),K((CA2),p(]x\)dx) satisfies

=(A (law) _(B?)
=) (B2) ') =) (a,) 12 S x( (0, 50).
neho
We note that if we write Hg = >, 0x,, then 3. 6|y 2 is equal to >, dr, in law, which was

discussed in Theorem 4.7.1 in [29] by constructmg {Rp}nen, in terms of size-biased sampling.

4.2 Finite DPPs on sphere S?

Let S? ;= {z € R3 : ||z||gs = 1} be the two-dimensional unit sphere centered at the origin in the
three-dimensional Euclidean space R?, where || - ||gs denotes the Euclidean distance in R3. We will
use the following coordinates for z = (z(1, 22 20)) on §2,

1) 2)

#M =sinfcosp, z? =sinfsing, 23 =cosh, 6ec[0,7], ¢ecl0,27). (4.7

We consider the case that S; = S? and S = Ny, in which we assume that A1(dz) is given by the
Lebesgue surface area measure doo(x) on S? such that

A (dz) = doy(z) = doa(0, ) := sinfdfdp, M (S?) = 02(S?) =

For n € {0,1,...,N — 1}, N € N, put

S2 _s? L 1 —ine ; ng N—l—ng 9 4
o, () =) (0,p) = \/He sin 5 cos 2 0 €0,7], ¢€][0,2m), (4.8)

with



It is easy to confirm the following orthonormality relations on S?,

™ 2w
2 2 2 T oo A
O Ol = [ @0 [ e o 00000 drs(0,) = G 1 € No
We set ¢1(-,n) = <p§f(-), nel:={0,1,...,N —1}, N € Ny, By the argument given in Remark

3 in Section Bl we see Assumption 3’ is satisfied. Then Corollary 210l gives the DPP with N
points on §?, (Z, K. o doa(x)), whose correlation kernel is given by

SQ )
é ((0,9), (0, ¢))
—1 n N—1—n
N ) , ) o' 0 o’
:_E( —i(P=0") @i = i z e
4 ( > <e Sin 2 S11 2 ) (COS 2 COS 2 )

/ N\ N—-1
_N <ei(“’“"/) sin g sin v + cos b cos 9—> . (4.9)

K& (2,2') =

a7 2 2 2

The density of points with respect to dos(z) is given by

N
p(x) = Kéév)(x,x) = e = constant, x € S2.

/

For two points = = (0, ¢) and 2’ = (¢, ¢') on S?,

|z — 2|35 = (sin @ cos ¢ — sin 6’ cos ¢’)? + (sin fsin ¢ — sin §’ sin ') + (cos 6 — cos §')*
— B — '),

with
0 _ 6/ A 0 0/ A
O(r —2') := 2 [sin cos 2= _isin i sin 2 —%
2 2 2 2

0 . / - 0 o !
= 2cos = cos —e'PT)/2 |7 tan — — ¢ tan — | .
2 2 2 2
Then we can show that the probability density of this DPP with respect to doy(x) = vazl doa(z;)
is given as

Wy L 112
Pg2 (x) = W H lzr — x]HRS,
S2 1<j<k<N
with )
oN(N+1), N [N

75 = VT [1G-!

j=1
Since ||z — #'[|3;s =2 — 2z - 2’ for z,2’ € S?, we have the equality

) / 0 ! 0 o |?
—i(p—¢") g 2 qin —— hd el
e sin 2 sin 5 + cos = cos 5

1
(1 2 =
2(—1—9095) 5

Hence the absolute value of ([49]) is written as

(N-1)/2
(N) N E 1+zx-2
‘KS2 (x?x) - 47 ( 9 ’
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and hence the two-point correlation function (L2]) with respect to doa(x) is given by

N\ 2 1 L NN-1
p?(z,2') = <4—> [1 — <¥> ] , z,z €S2
T

The system (Z, Kéév), doy(r)) is uniform and isotropic on S?, which is called the spherical ensemble
39, 21, 4, [T, [12).

Remark 5 Let G; and G5 be N x N independent random matrices, whose entries are i.i.d. follow-
ing N(0,1; C). Krishnapur [39] studied the statistical ensemble of the eigenvalues z = (z1,...,2n)

on C of G7'Gy and proved that it gives the DPP (> 5ZJ”K(G]Y)1G2’ A(dz)) with
1
N dz

KW N (14 2V A = %
G;1G2(z7z) ( +ZZ) ? ( Z) T (1+‘Z’2)N+17
which implies that the probability density of z with respect to the Lebesgue measure dz = HN

j=14%j
on C is given by

N

(N) _ 1 2 1

pG;lcg(z) Y H |2k — 2] H 1+ 2PN+
G;lGQ 1<j<k<N /=1

with a normalization constant Z (]Y)l .
GGy

projection from S? to C:=Cu {00} which makes an equatorial plane of S?, then the DPP,

(22,6 ZJ.,Kg\lpl Gy A(dz)) is realized as the image of the DPP in the spherical ensemble, (Z, Kéév),

doa(z)) [39]. Actually if we consider the stereographic projection such that the north pole of S?
(6 = 0) is mapped to the origin of C and the south pole of S? (§ = 7) is to oo, the image of
x = (sin @ cos p, sin O sin @, cos #) € S? is given by

Krishnapur claimed that if we consider the stereographic

. 0 -~
z:ewtanie(c, 0 €l0,7], ¢el0,2m).

We see that

lz — /|3 = |z = 2'f?

4
(T+ A1 +[2]?)
and

4
— dz.
(1 +12P2"

Hence we can verify the statement of Krishnapur [39].

dO’Q (1‘) =

The equivalent system with the spherical ensemble of DPP was studied by Caillol [I7] as a
two-dimensional one-component plasma model in physics. It is interesting to see that he used the
Cayley—Klein parameters defined by

, 0 , 0
a = /2 cos 2 B = —ie /% sin 3 ¢ €[0,2m), 6 €0,
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The orthonormal functions (4.8) can be identified with the following up to irrelevant factors,

5 (e, B) = Jih_naN‘l‘"B", ne{0,1,...,N—1}.
If we define o B
<(a7 5)7 (0/7 /8/)>CK = ad + B3,

the correlation kernel (4.9) is written as

N

" 4r

EQ(@,2") = K$) (0, 8), (o, B)) ({(, B8), (', 8))ex) "

SQ

Following the claim given in [17] (see also Section 15.6.2 in [21]), we consider the vicinity of the
north pole, z,, = (0,0,1) € R?, that is  ~ 0. We put

2r 2!
VN’ VN’

and take the limit N — oo keeping r and 7’ be constants. Then in ([£3]), we see that

0:

0 0 1 rr!
I AP _99/ _
sin > sin 5 1 N
0/ 92 + 9/2 7“2 + 7"/2
1-— .

p— —Nl— =
COSQCOS2 3 ON

We set re'? = z,7'¢?’ = 2/ € C with rdrde = dz. Then the kernel given by (£.9) multiplied by dos

has the following limit,

. N
lim K20, 0). (0o 0. )| o

N 1= 2P+ 4
= lim — (1+—Qzz7-ELTELLY g
anéo477< +N{ZZ 2 N

1
= —e¢
T

(22722,

Since the spherical ensemble is uniform and isotropic on S?, we obtain the same limiting DPP in
the vicinity of any point on S?. This implies the following limit theorem [17] [35].

Proposition 4.1 The following weak convergence is established,

\/No <H K

N—oo [—
2 E, Kg 7d02(9ﬂ)> = <:7Kéinibrea)‘N(O,l;C)(dx)>7

where the limit point process is the Ginibre DPP of type A given in Section [4.1]

4.3 Finite DPPs on torus T?

We will consider the finite DPPs on a surface of torus with double periodicity of 2w; := 27
and 2ws := 277, where we assume that 7 = i37 € i(0,00). The surface of such a torus T? =
T?(27,277) := S}(27) x S}(2737) can be identified with a rectangular domain in C,

Dorarm) =12 € C:0 <Rz < 27,0 <2 <2737} C C  with double periodicity of (27, 277).
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So we first consider the systems on Doz o7 7).
Let S = C with A(dz) = 1p,,_, . (z)dzrdzr. For N € N, put

—NENG22 /(417 R
SDRN,(27r,27'7T)(x) - LI()@MRN) J N(n) NRNi NRNT n e {1 N}
" . hRN(T) NEN 7 o’ ’ Y .

where ©F, #(Ry), NN, and JEN (n) are given by B13), (314), (3I5), and (B.I6)), respectively,

and

Cx . 2
hﬁNﬁl(T) = 4r? ﬁe‘ZTMJAN_I(") /NAN_I, ne{l,...,N},
BEN (r) o= 82| oo 2w N ) N 1,...,N}, for Ry = Cy,Cy,BC
n (7—)_ QNRN ) TLG{,..., }’ or ny = Un, Uy, N>y
ST 1
n =
2N BN’ ’
hEN (1) = for Ry = By, By,
n . ) N>
ST 72T7T JHN /NHN
SN ! , ne€{2,3,...,N},
%T _2 JDN NDN
2NRN T (n ne {1 N}
h,?N(T) =
\/ —QT’”JDN(" INPN e {2,3,... N —1}.

The following orthonormahty relations were proved in [34],
<80§N’(27T’2m)a @ﬁN’(zw’zm)>L2(<C,1D(2w,zm)(f)d:v) =Opm, nymel:={L....,N},
Ry = An_1, BN, BY,, Cn, O\, BCy, Dy. By the argument given in Remark 3 in Section B.I1] we

see Assumption 3 is satisfied. Then Corollary 2.9 gives the seven types of DPPs with the correlation
kernels,

KRN7(27|',27'7T Z QDRN’ (2m,27m) )Spgzv,(?w,%'ﬂ) (x/)’ (410)

with respect to the measure \(dz) = 1D(2ﬂ72m)d$ on C for Ry = An_1, By, BY;, Cn, C¥,, BCn, Dy.
Using the quasi-periodicity of the Jacobi theta functions (B3] and (B.4]), we can show that the
correlation kernels are quasi-double-periodic as [34],

KRN,(QF,QTW)(x + 27_‘_7.%,/) _ KRN,(2ﬂ72TW)(x’x/ + 271')
(_1)NAN—1 KRN’(27F’2T7T)(.%',.%'/), Ry = An_1,

— _KRN7(27T72T7T)(1"1'I)7 RN - BN7 C]\\/jaBCN7
KB, (@2m27m) (x,x/)’ Ry = B]\\/[, Cn, Dy,
e—NRNi$RKRN7(27"7277T) (x’ a’,‘/), Ry = AN 1, CN, C]\\/f, BCN, DN,

KRN7(27T72T7T) 2 / = .
(1’+ T7T,.%') _efNRNZEBRKRN7(27T’2T7r)(.%',.%'/), RN —BN,B N

NN iz RN (27,277) (00 1), Ry = An_1, Cn, Cy,BCy, Dy,

KRN,(27T,2T7r) / 2 _ -
(1',1' + T7T) _e/\/'RNlmRKRN,(27r,2T7r) (m’x/)7 RN _ BN7 B]\\/[
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The above implies the following double periodicity (up to an irrelevant gauge transformation),

eNRNi:vR
S2WKRN,(27r,2T7r) (CE, CC/) — ?S2T7FKRN,(27T72T7T) (CE, CC/)
e./\/ ‘Nizy

Ry,(2m,2 ! !
=K {2 Tﬂ)(xw%')a T, T eD(27r,2T7r)'

In other words, we have obtained the seven types of DPPs with a finite number of points /N on

a surface of torus T2?(2m,277). Hence here we write them as <E,K§2}¥2W 2T7r),d:c>, Ry = An_1,
By, By, Cn, C¥, BCn, Dn. Using the Macdonald denominator formula given by Rosengren and
Schlosser [51] (see (2.6) in [34] in the present notations), the probability densities for these finite

DPPs with respect to the Lebesgue measures, der = vazl dx; are given as follows;

Anv_ 1 N
An_ B 1 N N-1 9
pT2(2;727—7r) ((B) - ZAN_l eXp | — 2T Z(x])l
T2 (2m,277) J=1
. 2
0 (Z %;T) WAN-1 (%;T) , if N is even,
X k=1
N 2
Tk T . .
3 (; —7[_;7') WAN-1 (%;T> , if N is odd,
1 NEv & x 2
R _ N2 R .
pTQAEQmQﬂr) (x) - ZRNi eXp _W Z(mj)l ‘W N (%’7)‘ ’
T2(2m,277) j=1
Ry = By, By, Cn, Cx, BCn, Dy, (4.11)
for x € (T?(2m,277))Y, where WE¥ are the Macdonald denominators given by (C.I) in Appendix
and Zjﬁ%ﬂ 97y are normalization constants [34].

We can prove the following symmetry properties for the present DPPs on T?(27, 277).

Proposition 4.2 (i) The finite DPPs <E,Kﬂ%"(’27r 2ﬂr),dw) with 7 = Q7 € i(0,00) have the

following shift invariance,

San N (B K35 gy 00) = (B K5 5y ),

T2(27,277) = B2 (07 977))
Sorn (B K iy gy dr) B (B K21, do),
Se(E K, ode) =) (@ KR, dx). Ry = BY,On. Dy,
See(E K, o de) =) (2, KBy, dr), Ry = Cy,CY.BCy.Dy.
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(ii) The densities of points pTQ(27r 27#)( x) given by K T2( x,x) have the following zeros,

2 2T7T)(

pT2N(27r,2m) (0) =

p%v(?ﬂ 27m) (0) = pT2 2 QTW)( m) =0,

pTQ(QW,QW)(O) pT2 2 27'7r)( ) =0, Ry = Cy,BCn,
P12 (2m 2rmy (0) = quz om.2rm)(T) = p%\zzw,zm) (rm) = 0.

Proof (i) It is easy to verify the statements if we use the formulas (ZII]) with (CI]) for the
probability densities. Use the formulas (B.3)-(B.5)), which show the change of values of ¥, (v; ),
pw=0,1,3, due to the shift of variable v — v+ 1,v — v+ 7 and v — v + 7/2, respectively. For the
shift S;., note the fact that

NEn N NEv N N Rl
Srmexp [ - f —ors )t | [t ez,

23T 4 (@)1 | = exp 23T 4

Jj=1 j=1 (=1
As a matter of course, the statements can be proved also by showing the shift invariance of the
correlation kernels ([I0) up to irrelevant gauge transformations. (ii) By the properties (B.6]) of
the Jacobi theta functions, the zeros of densities p?ﬁ%’%ﬂ) (x) are determined as above. Then the
proof is complete. g

We note that the periods 27/N € (0,00) and 277/N € i(0,00) of (Z, K%JEQ‘; 2m),d x) shown by

Proposition (i) become zeros as N — co. Hence, as the N — oo limit of (= KWA&; 97y dx), it
is expected to obtain a uniform system of infinite number of points on C. Actually we can prove
the following limit theorems.

Proposition 4.3 The following weak convergence is established,

1 N — o AN_ N -
5 ST © <‘:" K’]T2I\(]27T1727—7r)’ dx) ;go <‘:‘? Kéinibre’ )‘N(O,l;C) (dx)> ’

N R N —_
< KTQA(TQF 277)’ dl’) == <:7 Kginibrea )‘N(O,l;(C) (d.%')) ) RN = BN7 B]\\//'7 CN7 C]\\/fa BCN7

2T

N D N —_
23T < KT2]¥27T2T7F) dx) = <:’Ké)inibre’)\N(O’l;c)(dlﬂ»’

where the limit point processes are the three types of Ginibre DPPs given in Section [{.1]
Proof By (B.), we see that

An-—1,(2m27m) 3T 1/4 1 2 A —N737/4—ivV/ NrSTe—x?
©®n N —x | ~N""— | — e I
N 21 \ 7

o (n—1/2\* W m—1/2
X exp [—71\97’( Wi ) —}—(21\/77\97'x+\/ﬁ77\97') ~ |
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as N — oo with (n —1/2)/v/N = O(1) > 0. Then

2
FAN-1 7T\$’7' T 4 T
']T2 2m,277)

oo —
2%7_6—N7TST/2—i\/N7r\ST(J: z') —(xI +JJI / e—27r§’ru2+{2i\/W%T(x—a:’)—f—Z\/NW%T}udu

1 2, 2 T2 & 2
— 237_6—(1‘14—1‘1 )—(xz—=x') /2/ 6—2#%7’1} dv
™ —V/N/2—i(z—z")/{2V7ST}
5 L@ -@TP2 a9 N L oo
7T

It implies that

2
Cx —’L$R:L‘1
. An_1 7T\$’7' 7T\$’7' o TST € A 1 7(‘x‘2+|m/|2)/2
]\}E}})o KTQ(QW,QTTF) < 2 N - eilmi{x/ KGlnlbre(x € )71' .
Similarly, we can show that
2 .
(@3 (@3 (@3 —1TRII
lim K2 SUR LI R 2MST ) _ €T RE (3, af) S (a2
Neooo T2(2m,27m) N ’ N N eiim%xi Ginibre\**» T )

for RN = BN, B]\\//, CN, C]\\//, BCN7 and

2
~ x Cx —ITRT
lm KON < 27T\ST:U’ 271'07'33,) ( 27T\s7'> _ ef?fKGlmme(x x) o~ (al2+12'2) /2
™

Noeo T2(2m27m) N N e~ ITRT]

Then the statement will be proved. g

4.4 Finite and infinite DPPs on cylinder R x S!

Here we consider the finite DPPs on a surface of cylinder with infinite length having periodicity of
2ma in the circumference direction, o € (0, 00), which we write here as R x S!(27a). The surface
of R x S!(27a) can be identified with a strip with width 27« in C,

Doro :={2€C:0< Sz < 2ma} C C with periodicity of 2rmic.

So we first consider the systems on Doy,. Let S = C. For N € N, we set
1

)\(d.%') = )‘N(O,1/4) (dwR))\[o Qﬂa)(d.%'l) \/_71_3/2 _2$2R1D2,m (.%')d.%’Rd.%'I.
Define
LPSN_lzm(w) — ef[(./\/'ANfl72JAN*1(n))2/(16a2)+(/\/'AN*172JAN*1(n))m/(2a)}’ nell,...,N},

PRN2T0 () 1= f2em WIN =27V (m)?/(160%) g, [(/\/R’V QJRN(n))%] , ne{l,...,N},
for RN = BN, CN,
_ DN _2JDN (n))2 o x
Dy 2ma () {\/56 WPN=2JPN (n))?/(1602) o)y [(J\/DN — 2JDN(n))%}, ne{l,...,N—1},
L n =N,
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where NN and J®¥(n), Ry = An_1, By, Cn, Dy are given by (BII) and ([BIZ), respectively.
They have periodicity or quasi-periodicity of 2mic,

(_1)N+1SD1§N727T0‘(1-), RN e AN*I?
S011;21\;,27roz(x + 27”-0[) _ _SDT}ENQﬂa(x), Ry = By, (4.12)
SOf«szwa(x)’ RN = CN7DN

It is easy to verify the following orthonormality relations; for Ry = Ax_1, By, Cn, Dy,

Ry 2T

(2

RN,unra>

s P =0nm, n,mel:={1,...,N}.

L2(C,AN(0,1/4) (dZR)A0,270) (d1))

By the argument given in Remark 3 in Section B.IJ] we see Assumption 3’ is satisfied. Then
Corollary 2.9] gives the following four types of DPPs with the correlation kernels,

2
K2 (2l ZSDRN’zm pn™ ™ (2'), Ry = An_1, By, Cn, Dy.

From (4.12)), we can see the periodicity or quasi-periodicity of 2mwia in the correlation kernels,

(—DNFIK V2T (g 0f), Ry = An-1,
KAN2T (g 4 omia, 2 ) = KEN2T (g o + 2mia) = { —KBN270 (g ), Ry = By,
KRNQWQ('%'P%J)a RN - CN7DN7

which implies

ngaKRN’Qm(m,x’) = KRN’QM(JU,JU'), 2,2 € Dorq,.
That is, we have obtained the four types of DPPs with N points on a surface of cylinder, RxS!(27a).
Hence here we write them as (57[(]5581(27@)7)\N(0,1/4)(de))\[o,2m) (dwl)), Ry = An_1, By, Cy,

Dy. (See [19] for related systems in two dimensions.)
By Lemma [AJ]in Appendix [Al the probability densities for these finite DPPs with respect to
the Lebesgue measures, dx = vazl dx; are given as follows; for ¢ € (R x S'(27a))V, a € (0, ),

N
An_ 1 . T — T _ 2
pPa" () = — I | sinh? =& =4 I | e 2@
Z N-1 - 2@
@ 1<j<k<N =1

1 T — T T+ T

B .12 Yk . 124k

P (%) = —p- | | (smh o ! sinh o j)
o 1<j<k<N

1 Tr — T; T + x5

C 1.2 4k .12 4k

pN () = e I | <s1nh 5 L sinh 50 ]>
a 1<i<k<N

1 . T — T . T+ T, _ 2
piN(z) = P H (Smh2 5 J sinh? 5 ]> He 2wk, (4.13)

@ 1<j<k<N =1

=

<smh2 il _2(36[)2),
2

(07
12

Il
—

=

(sinh2 %672(10211) ,

(=1

with normalization constants Zfv.
If we use the formulas ([4.I3)), it is easy to verify the following symmetry properties.
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Proposition 4.4 (i) The infinite DPPs (E,K@SI(ZM),AN(M /4)(dmR))\[072m)(de)> with o €

(0,00) have the following shift invariance,

—_ An—
Sig <:7 Kngf(me AN(0,1/4) (ATR) A0 270) (dwl))
law) [ _
( = ) <:‘a K[gggll(zwa), >‘N(0,1/4) (de))‘[O,Zwa) (dxl)) , Vhe [0’ 27TO(),
Sira (‘Ea KEI;;(VSI (27a)’ )\N(O,1/4) (de))‘[O,%ra) (d.%'[))

(law) /o
= <*:‘,K[§>]<v§1(27ra),>‘N(0,1/4)(de)A[O,Zwa)(de)) , By =Cp,Dn.

(ii) The densities of points pgjxvgl(%a) (z) given by K]givgl(%a)(

x,x) have the following zeros,
B C c ,
pRggl(Qna)(o) = 07 p[@igl(gﬂa)(o) = PRggl(gm) (27704) =0.

Using the Jacobi theta functions (B.I]), the limits of the correlation kernels in N — oo can be
expressed as follows,

. _I .
lim KA2£—1 (1’,%”) _ 02 <’L(§U +x ) 2 > . K/Leven )(1',1'1),

oo RxS!(27ma) wma 2nal ) T RxS1(2ma

. _I .
L KA me:0) = s <z(x+x) i ) _ A )

oo RxS! wma | 2ra * RS (27a)

. 1 i(x+a') i i(x—a') i
By AN . _ .
]\}1—I>noo Kgs ama) (1) = 2 {792 ( 2rae 27ra2> V2 ( 2ra ' 2ma? ) |7

B
= KRXSI(ZWO:) (.%'7 x/)

. 1 i(x+a) i i(x—2) i
lim KSN =239 ; — ;
Noyao “RXSL(2ma) (@, 2) 2 { 3 < 2ra 27Ta2> 3 < 2t 2ma

L C
= Kgyg1 (ama) (@, 2)

. 1 i(x+a') i i(x—a') i
Dn N _ = . .
]\}1—I>noo Kaks1 oy (#:7) = 2 {793 ( 2rae 27ra2> s ( 2ra ' 2wa?

=: ]RDXSl(ZWa) (.%', .%',), (414)

r,2' € R x S(27a).

Proposition 4.5 The five limit kernels ([d14) define the five kinds of infinite DPPs on the cylin-
der, (E7K§;<ﬁgl(2ﬂa)a)‘N(O7l/4) (dzr) A 2ra)(da1)), ¢ =even, odd, and (E, Kg 1 50 AN(0,1/4) (d2R)
>‘[0,27ra) (dxl))f R=B,C,D.

The particle densities at # € Doy ~ R x S'(27a) are obtained from the limit kernels (Z14]) by
setting ' = x. Since x + T = 2zR, © — T = 2ixy, the definitions of the Jacobi theta functions (B.I)
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with parity (B.2]) give explicit expressions for them; for instance,

1 1 { T ?
B _ R, I,
PR (2re) (%) = 2 {192 (E’ 27ra2> — v <27TO¢’ 27Ta2>}
= Z e~ (n=1/2)*/202 [cosh{(?n — 1)zr/a} — cos{(2n — 1)x1/a}] ,

) xy 1
{193 <7TO( 2ra? > — Vs (%’ 27Ta2>}

= Z e /20 [cosh(anR/oz) - cos(2nx1/a)] .

n=1

p]%x St(2ma) (1’) =

2 N |

They show that the obtained particle densities are indeed nonnegative, and that
B C C .
PRxs 270) (0) = 0, PRys1(270) (0) = PRxs1 (270 (i) = 0.

Remark 6 In [34], the infinite DPPs on a strip in C were introduced by taking an anisotropic
scaling limit associated with N’ — oo of the doubly periodic DPPs (Theorem 3.4 in [34]). There the
limiting correlation kernels are expressed by the integrals of products of Jacobi’s theta functions. We
have found that, if we correctly perform Jacobi’s imaginary transformations (B.g]) of the integrands,
the integrals can be calculated and the results are identified with the correlation kernels simply

given by (414]).

Using the quasi-periodicity of the Jacobi theta functions (B.4]), we can show that, for § =
even, odd,

2 2,2 1 eit1/e 2 2,2 1
N2 —(zi+ R PC A i € e
81/(2a) ]RXSl(Zwa) (.%',.%' )\/;6 (zgt+og )27-(-(1 = eiwi/a KRxgl(Qna) (1‘,1‘ )\/;e (g +og o
By the gauge invariance, this implies the shift invariance,

S1/2a) <5, Kﬁ;ﬁgl(zm), AN(0,1/4) (ATR) A0 270) (d$l))

(law)
< Kngl(mra) )‘N(0,1/4)(de)A[O,%ra)(de)), (4.15)

£ = even,odd. Moreover, by the properties (B.) of the Jacobi theta functions, we obtain the
equality

A,even / 2 _ 2 4qt 2 1 _ ei:vI/(2a) A,odd / 2 2 4 2 1
51/ K, Rxgl(%a)(x’x)\/;e it 2ra | gl (2a) Ky s (ama) (T 2)1 € (TRton™) _—

To 2ma

Hence again by the gauge invariance,

even (law) 0
S1/(4a) <~,K§X§1(2m) A (0,1/4)(de)A[O,Zwa)(de)) = (H,Kﬁngl(%a) AN(O, 1/4)(deR))\[o,2m)(dﬂ?I)>,

that is, the even-limit and the odd-limit of type A are equivalent up to the shift by 1/(4«) in the
real-axis direction.

We note that the period 1/(2a) € (0,00) of < RXﬁSl(%ra) AN(0,1/4) (ATR) A[p,270 (d:cl)> f =
even, odd, shown by (£I5]) becomes zero as @ — co. Hence, as the v — oo limits of these DPPs,
a uniform system of infinite number of points on C will be obtained. In order to see such limit
transitions, first we perform Jacobi’s imaginary transformations (B.8]).
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Lemma 4.6 The following equalities hold,

i:BR:BI — 1
A,even / 2 — (22421, %) 1 € zx’ = —(|z|%+]2]2)/2 P2
K ’ xTr.x —e R R/J— — - e —e 19 X + x, Qs 2772@

RXSl(Qna)( ’ ) T 2o IR T 0(( ) ) )7

2 2y 1 iwrer 1 : _
Kﬁgfsfild(wa)(:c,x’)\/;e(12R+:vR2)2_ & " a2l (|2t \2)/2793((33 + ) 2mia?),

T ethxi T
2 , 1
KH?XSl(%ra) ($,x/)\/je_($2R+xR2 2_
T T
ITRTT — o . B 1 |
= 6< 7 {erm Po((z + 2" 2m’a2) — e ™ Y ((x — 7)ey; 27”-&2)}_6,(‘33‘2“1 |2)/2’
e"*r7*1 o
2 , 1
Kﬂgxgl (27a) (CE, x’) \/je—($2R+xR2) 2_
T T
ITRTT — o . B 1 |
= 6< 7 {erm I3((z + ') 2m’a2) — e ™ Y5 ((x — T )oy; 27”-&2)}_6,(‘33‘2“1 |2)/2’
e"*r7*1 o
2 , 1
Klgxgl(Qm) (z, $/)\/je_($2R+xR,2)2_
T T
ITRTT — o . B 1 |
= 6< 7 {erm I3((z + ') 2m’a2) + e ™ 95((x — 7 )a; 27”-&2)}_6,(‘33‘2“1 |2)/2‘
e"r71 o

By the asymptotics of the Jacobi theta functions (B.7), the following limit transitions are immedi-
ately concluded from the expressions in Lemma

Proposition 4.7 The following limit transitions from the four types of infinite DPPs on R X
St(2wa) to the three types of Ginibre DPPs on C are established,

—_— A, a—0 [ —

(:" KRXﬁSl (2ma)’ )‘N(O,1/4) (de))\[()vQWOé) (d$1)> % <‘:" Kéinibre’ )‘N(O,l;C) (dx)> ) ﬂ = even, Odd,
=, Kot (2may A00,1/0) (dTR)Ajp 2 (d) = <: K Gimiores AN( )(dx)>
—_ —5 X Ginibres "N(0,1;C )
E, K st (2ra) AN(0,1/4) (ATR) A0, 270) (d21)

(Ea K[é)xgl (2ma) )‘N(0,1/4) (de))‘[O,%ra) (d$1)> a;go <E’ K(l})inibre’ )‘N(O,l;(C) (dx)> . (4'16)

5 Examples in Spaces with Arbitrary Dimensions

5.1 Heisenberg family of infinite DPPs on C?

The Ginibre DPP of type A on C given in Section FI] can be generalized to the DPPs on C? for
d > 2. This generalization was done by [Il, B, 2] as the Weyl-Heisenberg ensembles of DPP, but
here we derive the DPPs on C%, d € N, following Corollary 210 given in Section
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Let S =C% Sy =T =R,

d
a 1 2 1 i2gp2
A(dz) = al;II)\N(o,l;C)(dl“( )) = ¢ = —d (lor[*+er)
=: )\N(O 1'(Cd) (dx)
(a) 2\ opp
= _ —4ly
Ao(dy) = v(dy) = H)‘N(O 1) (dy'™)) = <7T> e 2l

a=1

and
iz, y) = e_(m"‘2_I“F)/Q“(m'y”xl'y), T =xR +ir] € Cd, Yy E R,

We see that Wy (x)? := |9 (, )HLQ(Rd = ¢ll’ 2 € €. Hence Assumption 3 is satisfied and then,
by Corollary 210, we obtain the DPP on C¢ with the correlation kernel,

/2
KO (z,4') = (2) o~ {an 2= o)+ (1o [P~ [y |2)} /2 / ¢~ 2lyP—{(arctian) +ah—ia) 4] g,
R4

T
eimR-mI (d) ,
= e”R m KHelsenberg(x7 z )
with
(d) Nzl / d
KHeisenberg(x’x ) =€ y X, X € C*.

The kernels in this form on C?%,d € N have been studied by Zelditch and his coworkers (see [66,
14] and references therein), who identified them with the Szeg6 kernels for the reduced Heisenberg
group [20] (59, 24]. Here we call the DPPs associated with the correlation kernels in this form the
Heisenberg family of DPPs on C% d € N. This family includes the Ginibre DPP of type A as the
lowest dimensional case with d = 1.

Definition 5.1 The Heisenberg family of DPPs is a one-parameter (d € N) family of

d .
( KI({e)lsenberg’ )‘N(O,l;(Cd) (dx)) with
I(‘Icfa)isenberg(x7xl) = em-?’ .%',.%'/ S (Cd-
Since

()

Heisenberg

1
(T, ) AN(0,1504) (dz) = ﬁd%‘, z e CY,

every DPP in the Heisenberg family is uniform on C? and the density with respect to the Lebesgue
measure dz is given by 1/7%. Hyperuniformity [62] of the Heisenberg family of DPPs has been
studied in [3] [42].

5.2 Finite DPPs on S

First we recall basic properties of spherical harmonics on S [44]. For d € N, let P = P(R*!) be a
vector space of all complex-valued polynomials on R4, and Py, k € Ny, be its subspaces consisting
of homogeneous polynomials of degree k; p(z) = zla\=k Cax®, cq € Cox = (M. zld+D) ¢ R+
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where we have used the notations z® := [[%1 ()% with a := (a1,...,0q41) € NI |a] =
Zgi} ay. The vector space of all harmonic functions in P is denoted by H = {p € P : Ap = 0}
and let Hy = H N Px, k € Np.
Now we consider a unit sphere in R%t! denoted by S?, in which we use the polar coordinates
for z = (zM, ... 2@+ e §¢,
+1) = gin 04 - -sin By sin Oy,
2@ =gin6,---sinf,cosl,_1, a=2,...,d,

2D = cos By, with 0, €[0,27), 6,€[0,7], a=2,....d. (5.1)

Note that [|z]|2., = Zzi% 2@? = 1. For d = 2, if we put 1 = /2 — ¢ and 0 = 6, the polar
coordinates (4.7 used in Section are obtained. The standard measure on S? is given by the
Lebesgue area measure expressed as

dog(z) = sin® 1 0,8in% 20,1 -sinfhodby ---dfy, xS (5.2)

The total measure of S is calculated as

27T(d+1)/2
= 0g(S%) = ——————. 5.3
I Y TR E) .
We write the space of harmonic polynomials in Hj, restricted on S¢ as
k) = {h‘gd :he Hk}, k e Ny.
We can see that
L @22k -Dd+k-2! 2 ., i
Consider an orthonormal basis {lg(d’k)}f:(f’k) of V(4,r) With respect to dog;
(YR V(AR o g oy = / Y, @) ()Y (@) dog(x) = bpm,  n,m € Ny, (5.5)
Sd
Then, if we put
D(d,k) -
KYan(z,2) = 3 v/ @)y M), o’ es,
j=1

then {KY@r (z, ')}, wesa give the reproducing kernel in V(@E) in the sense that

Y (2') = SdY(x)Ky(w(x,x')dad(x), VY € Viak)-

For A > —1/2, we define

11—
P)() = 2Py (—k,k+2A;A+ 55 “) ,
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where oI, denotes the Gauss hypergeometric function, 2Fi (e, 8,7; 2) := Y0 o{(0)n(B)n/¥)n}2" /0!,
with (@), = a(a+1) - (a+n—1) =T'(a+n)/I'(a), n € N, (a)y := 1. Then the following equality
is established,

D(d, k) pld-1)/2

KYam (z,2') = oy D (x-2'), =2 € s,

where wy and D(d, k) are given by (5.3) and (5.4)), respectively, and x - 2’ := Zzi% 2@ g/(@
We see that KY@# (z,2) is O(d + 1, R)-invariant in the sense

KYan (gz, gz') = KY@w (z,2"), Vge O(d+1,R), Va2’ €S

Let {e1,...,eqs1} be the standard basis of R*! and Lg be the stabilizer subgroup of SO(d + 1, R)

at eqy1 represented as
A O
b= {(4 ©) acsous).

Vit =Y € Viapy : Y(lw) =Y (2), Ve Ly, VreS?,

We define

Then KY@m ¢ y(Ld(jk). The function P)(s) is called the ultraspherical polynomial [45]. The space
y(Ldok) is a one-dimensional vector space generated by P,gd_l)/ 2($'ed+1). In general, any Lg-invariant

function is a constant for each Lg-orbit, O = {z € S x-eqr1 = a},—1 < a < 1, and hence functions
in y(Ldok) is called the zonal harmonics of degree k. Note that, when we set

= ("1 R,

we call C(s) the Gegenbauer polynomial of degree k [45).

Fix d € Nand k € Ng. Then, if we consider the case that S; = S, Sy = N with \; (dz) = dog(x),
L3(T,v) = 2({1,...,D(d,k)}) C So, and ¢y (z,n) = Yy, (%k) (x), then (B.5]) with Remark 3 in Section
B guarantees Assumption 3’. Hence Corollary 210 determines a unique DPP on S¢, in which
the correlation kernel is given by [13]

TV (2.2') = D(d, k)Péd—l)/Q(x )
Wd
d—1+42k

d—1)/2
= T, O ).

It is obvious that the obtained DPP is rotationally invariant on S%, since the kernel K @k (x, ')
depend only on the inner product z - /. The density of points is uniform on S? and is given with
respect to o4(dz) by

D _
py(d,k) — KYak (z,2) = (j;k) P]gd 1)/2(1)
D(d, k) 2kd-1 de1
= = k
Wy (d—1)lwy +of )

where we have used the fact that P} (1) = oF) (—k, k + 2\, A +1/2;0) = 1, A > —1/2 [45].
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Next we consider the DPP on S¢ for fixed d € N and L € N such that the correlation kernel is
given by the following finite sum [1'3]

L—1
1 _
Kjammontes0) (% Ejkﬂ@k>xx = Y Dl kE )

k=0
L—1

1 d—14+2k (q-1)/2

= o e, (5.6)

k=0

where the total number of points on S¢ is given by

2L+d 2(d+L -2
de
z S

= ELd +o(L7). (5.7)

The DPP (= K}(li)momc(gd) dog(x)) is rotationally invariant in S? and is called the harmonic ensem-

ble in S? with N points by Beltran et al. [I3]. We note the recurrence relation of the Gegenbauer
polynomials (see, Eq.(18.9.7) in [45]),

(n+ NC;(z) = MCy ' (z) — CpF5 ().
This implies that
d—1+2k (a-1)/2 d+1)/2 d+1)/2
——1 AP0 =) - 5 )

> 2.
d—1 , k>
Since Cé\ (z) =1, Cf\ (z) = 2\x, we obtain the following expression for the correlation kernel,
N(d,L 1 d+1)/2 d+1)/2
K}(largnon)iz(Sd) (.%',.%'/) = W_d |:C£ +1 )/ ( ) + C( + )/ (.%' . x/)} )

If we introduce the Jacobi polynomials defined as [45]

Pr(za’ﬁ) (z) == w
n!

2

and use the contiguous relation, (b —a)2F1(a,b;c;2) +aoFi(a+1,b;¢;2) —baFi(a,b+1;¢;2) = 0,
the above is written as follows [13],

1_
2F1<—n,n—|—a—|—ﬂ+1;a—i—1; x),

MWL) () = L N, L) pa/a(a-2/2)
harmonic(S4)\*"? (L+d/2 1)

(1‘ ’ 1'/), (58)
where (X271 .= T(L + d/2) /{(L — 1)'T(d/2 + 1)} = P\ 272 (1),

In particular, when d = 1, for 2 = (z(M), 2®)) = (sin6, cos 0), 2/ = (', 2’?) = (sin ', cos ') €
St c R2,0,0' € [0,27), we have z - 2’ = cos(f — 0') and

/
K}(flg;ﬁlﬁ(gl)(xvml)dal(x) = %2F1 (1 (22L 1)7 s (22L 1); ;;SiHQ -0 ) do
~ sin{(2L — 1)(0 — 0)/2} df
T sin{(6-0)/2) o2m
sin{N (6 —0")/2} df

= Sn{(0 —0)/2} 2%’ (5:9)
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where we have used the fact that N(1, L) = 2L —1 given by (5.7)). This verifies the identification of
the 1-sphere case of the present DPP with the CUE, (E, KANfl,)\[Ov%)(dG)), given in Section
On the other hand, when d = 2, (5.1)) gives N(2,L) = L? and

2 /
(N(2,1)) _L o l-z-w
Kharmonic(SQ)(x7 .%',) - 47T2F1 <_L +1,L+1;2; T)

N R 2
N R (—vN 1 VN 12 T e
4 4
which is different from Kéév) (x,2") given by (£3) in Section

5.3 Euclidean family of infinite DPPs on RY

We consider the vicinity of the north pole eqq = (0,...,0,1) on $? and put ; = R/L, R € [0, 0).
Then, as L — oo, the polar coordinates (5.]) behave as

. . . 1.
M ~ 7 sinfy_q1---sinfysinfy =: Zx(l),

. . 1._
(@ ~ fsmﬂd_l --.sinf, cosB,_1 =: Ex(“), a=2,...,d,

1 /R\?
(d+1) 1 _ 1L
v 1 2<L>‘

In this case, for z, 2’ € S,

a ~ ~12
x'xlzzlx(a)x, :1—2L2H$—$/HRd+O<_>’ as L — oo,
-

12
where 7,7’ € R? and || - ||z« denotes the Euclidean norm in R%. Hence we can conclude that
, T 1 . -
x -z = cos <Z> tolzz ) with r := ||Z — @’||ge, as L — oo. (5.10)

In this limit, the measure on S? given by (5.2)) behaves as

d—1
d
dog(x) ~ (%) sin?20,_1 - -sinfydby - - - dad_lfR

1 o d— 1 _ ~
= ﬁdad_l(az)Rd YdR = ﬁdx, zestl TeR%

The following limit is proved for the correlation kernel K (N(d,L) ) given by (B.0).

harmonic(S¢
Lemma 5.2 When (510) holds, the limit

. 1 (Nv@,L
k(d) (T) - l}gr;o ﬁK}(largnon)ii(Sd) (.%', .%'/)
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exists and has the following expressions,

Jaya(r)
& Jdp
HOC) = Gy (5.11)
1 e
- W/O 87" J(4-2)/2(rs)ds, (5.12)

where J,(z) is the Bessel function of the first kind with index v defined by (B.I8)).

Proof For d € N and r € (0,00), the following formula of Mehler—Heine type is known (Theorem
8.1.1 in [61]); for o, 8 € R,

fng 0 ) < (5) ),

n
where the limit is uniform on compact subset of C. Then under (5.10), (5.8) gives
/2
i g(N(@.L) N 2 2
Lh—l;glo ﬁKharmonic(Sd)(x’ x ) = mr(d/2 + 1) ; Jd/?(r)‘

By (53) and the equality I'(22) = {2%*/(2y/7)}T(2)[ (z + 1/2), we can confirm that 2I'(d/2 +
1)/(wgd)) = 1/{(2y/7)%}. Hence (GII) is proved. By the integral formula (see, for instance,
Bq.(10.22.1) in [45]),

2TV (2)dz = 22T, 0 (2),
we can derive (B.12]) from (5.IT]). The proof is complete. g

This result implies that for each d € N we obtain an infinite-dimensional DPP on R? such that
it is uniform and isotropic on R? and the correlation kernel is given by

KDz, 2") = k9D(|z — 2'|[ga), 2 €RY, (5.13)

where k(@ (r) is given by (G.11) and (EI12).

We can give the following alternative expression for K (@,

Lemma 5.3 For d € N, the correlation kernel K9 given by (5.13) with (512) is written as

1 i(x—z')- 1 i(x—z')-
KD (z,2') = 2n)d /Rd 1ga(y)e @)V dy = o) /]Bd ey gy, (5.14)

where B denotes the unit ball centered at the origin; B := {y € R®: |y| < 1}.

Proof The statement is proved for d = 1 and 2 by direct calculation as follows. For d = 1, (5.12))

gives
1
r
k(l)(r) = 1/%/0 31/2J,1/2(7"s)ds.

Here we use the equality J_;/5(2) = /2/(72) cos z. Then

1t 1
k(l)(r) = —/ cos(rs)ds = 2—/ e"dy,
0

i ™)1
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which gives (5.I4) with d = 1, if we put » = 2 — 2’ and regard an interval [~1,1] C R as B!. For

d =2, (512) gives

1 1
K (r) = — / sJo(rs)ds. (5.15)
2T 0
We use the following integral representation for Jy given as Eq.(10.9.1) in [45],
Jo(z) = 1 /7T cos(z cos @)dp = L " e8P
0 = ; p)ap = 27 J, p-
Hence (5.13)) is written as
@ 1 1 2m ) p
EY (r) = / dss/ df e' =Y. (5.16)
(2m)* Jo 0

We can identify the integral variables (s,#) in (5.16) with the polar coordinates in R? and (5.14])
with d = 2 is obtained, if we recognize r = ||z — 2'||p2, s = ||y||r2, and (x — 2) - y = rscosf. Now
we assume d > 3. In this case RHS of (5.14) is given by

1 1 27 s
I=—— | d d—l/ d@/d@ in 6
(27T)d/0 SS ) 1 ) 92 SN U9

™ ™
X - X / dfy_osin®3 6, 5 / dfy_q sin®2 0, erscosfa,
0 0

Since
2T T s
/ db; / dfy sin By - - - / dfy_osin® 30, 5 = 04_2(ST?) = wy_o,
0 0 0

we have

Wy—9 1 ™ )
I = 7d ds s%1 dfg_1 sind—2 0g_1€75C08 Oa—1
(2m) Jo 0

If we use the following integral representation of the Bessel function of the first kind,

In(2) = ———1 (3>m/ﬂ Sin2™(0)¢i2 %09, m € =N
" Val(m+1/2) \2/  J, ’ 2

which is obtained from Eq.(10.9.4) in [45], the equivalence between (5.14) and (5.I2]) is verified.

Hence the proof is complete. g

The kernel (5.14)) is obtained as the correlation kernel Kg, given by (2I7) in Corollary 2101
if we consider the case such that S; = Sy = R% \(dz) = dz, Xo(dy) = v(dy) = dy, ¥1(z,y) =
Y /(2m)¥2 and T = B? € RY. We see Wy (z)? := ||o (x, -)H%Q(F’dy) = |B9|/(2m)¢, 2 € RY, where
the volume of B¢ is denoted by [B?| = 7%/2/I'((d + 2)/2).

The kernels K(? on R% d € N have been studied by Zelditch and others (see [66, 57, 67, 18]
and references therein), who regarded them as the Szeg6 kernels for the reduced Euclidean motion

group [60], 65]. Here we call the DPPs associated with the correlation kernels in this form the
Fuclidean family of DPPs on R%,d € N.
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Definition 5.4 The Euclidean family of DPPs is a one-parameter (d € N) family of
(E,Kgﬁdid,dx> with

(d) 1 dap(lr = 2|ga)
Kyeria (@, 2') = (2m)4/2 d/2
R4

[l — a']|

1 1 Yo ,
= ond2 . @2z | ° / Ja—2y/2([|x — 2'||gas)ds
@Y o — |72 Jo

1 i(x—z') 1 i(z—x')-
:W/Rd ]_Bd(y)e( )ydy: (27‘(‘)d /Bde( )ydy, :C,:CIG]Rd.

The above result is summarized as follows [35].

Proposition 5.5 The following is established for d € N,

<i’> He N/ <E,K(N) dad(m)) gy (EaK}(«:(i)cliwdx)'

9 harmonic(S%)’

We see that

@ L 1 Japr) 1
KEuClid('I’ 'I) - }g% (27T)d/2 rd/2 - 2d7Td/2F((d + 2)/2) ‘

Then the Euclidean family of DPPs are uniform on R with densities

@ !
PEuclid 247d/2T((d + 2)/2)

with respect to the Lebesgue measures dz of R%.
For lower dimensions, the correlation kernels and the densities are given as follows,

(1) _sin(z —af) ) a1
KEuclid(x’x,) - m - Ksinc(x’x,) with PEuclid — ;,
(2) n N(lr =2 lge) @ 1
Kgyaal® @) = 27|z — 2/||gz with  ppiaiq = e
1 Sion_xIHRS . (3)
K(3) ] N _ B ] o " _ 1
Buclid (7, 7") 2z — CUIH]%@ Tz = 2/ lgs cos ||z — x'||gs wi Pclid =

This family of DPPs includes the DPP with the sinc kernel Ky, as the lowest dimensional case
with d = 1. Since (Z, KW ,doq) has been identified with the CUE, (E,KANfl,)\[OQW)), by

harmonic(S!)
(59), Proposition [5.5] can be regarded as the multidimensional extension of the limit theorem from

the CUE to the DPP with K. given by the first line of (8.20). Note that, if d is odd,

(@d-1/2
KD (r) = <_Li> ST

2mr dr r

This is proved by Rayleigh’s formula for the spherical Bessel function of the first kind (Eq. (10.49.14)

in [45]);
. s m 1d\"sinx
Jm(2) =[5 Tmy1y2(2) = <_E%> —— meN
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6 Concluding Remarks

In Section (.2, we studied the finite DPPs (2, K () dog(z)), N € N called the harmonic

~ ““harmonic(S4)’
ensembles on S%, d € N [I3]. Then we proved as Proposition in Section B.3] that their bulk
scaling limits are given by (E,Kggchd,dx), which we call the Euclidean family of DPPs. On S2,
there are two distinct types of uniform and isotropic DPPs, one of which is the harmonic ensemble

(= KW (82)7d02(m)) studied in Section [13] , and other of which is the DPP called the

’ ““harmonic

spherical ensemble (=, Kéév), doa(x)) studied in Section 2] [39] 4]. As mentioned above, the scaling

limit of the former is given by (Z, K]E]2u)cli q» dz), while as given by Propositiond.I]the bulk scaling limit

of the latter is (E7Kéinibre7)\N(0,1;C) (dz)), which is equivalent with (E7KI({1e)isenberg7)‘N(O,I;C) (dx)).
The spherical ensemble on S? shall be generalized to DPPs on the higher dimensional spheres
S?d ~ C?, d > 2 so that they are uniform and isotropic and their bulk scaling limits are given by
DPPs in the Heisenberg family. The papers [11] 12] will be useful.

With L2(S,\) and L?*T,v), we can consider the system of biorthonormal functions, which
consists of a pair of distinct families of measurable functions {¢)(z,v) : € S,y € I'} and {¢(z,7) :

x € S,v € I'} satisfying the biorthonormality relations

WC7), 0 N 2 (dy) = 6(y =+ )dy, 7,7 €T. (6.1)

If the integral kernel defined by
K(o.2) = [ wla )o@ vld), w0 €S, (62)
r

is of finite rank, we can construct a finite DPP on S whose correlation kernel is given by (6.2)
following a standard method of random matrix theory (see, for instance, Appendix C in [33]).
By the biorthonormality (6.1)), it is easy to verify that K" is a projection kernel, but it is not
necessarily an orthogonal projection. This observation means that such a DPP is not constructed
by the method reported in this paper. Generalization of the present framework in order to cover
such DPPs associated with biorthonormal systems is required. Moreover, the dynamical extensions
of DPPs called determinantal processes (see, for instance, [32]) shall be studied in the context of
the present paper.

For finite DPPs, we can readily derive the systems of stochastic interacting particle systems
whose stationary states are given by the DPPs. For example, with N € N, the system of stochastic
differential equations (SDEs) on St [27, [31],

1 Xi(t) — Xp(t
dX;(t) = dB;(t) + 5 cot Mdt, j=1,...,N, t>0, (6.3)
1<k<N
k#j
driven by independent one-dimensional standard Brownian motions Bj(t),j = 1,...,N,t > 0 has

the DPP (Z, K4~-1, Ajo,27)(dz)) given in Section as a stationary probability measure. Another
example is given by the system of SDEs on C,

N+1)Z; Z:(t)— Z .

kA
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N € N, driven by independent complex Brownian motions B;»C(t) = B]R(t) + iB}(t), where
BR( ), BI-( ) are independent one-dimensional standard Brownian motions, j = 1,...,N,t > 0,

does the DPP (3_;dz;, K (N)l s ,A(dz)) of Krishnapur [39] as a stationary probability measure,

which is obtained as the stereographlc projection of (Z, Kég ),dag(x)) as explained in Remark 5
in Section £2l A general theory has been developed by Osada et al. for infinite-dimensional
stochastic differential equations (ISDEs), some of which have infinite DPPs as invariant probability
measures [46], 47, 48, 49, 37, [50]. We expect to obtain the universal ISDEs along the limit theorems
given in Propositions and [4.1] taking account of the fact that (6.3]) and (6.4]) might give useful

approximations to characterize Osada’s Dyson/Ginibre ISDEs.
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A Weyl Denominator Formulas

The Weyl denominator formulas for classical root systems play a fundamental role in Lie theory
and related area. For reduced root systems they are given in the form,

Z det(w)e?P) =P = H (1—-e),

weW aceR

where W is the Weyl group, R, the set of positive roots and p = % Za€R+ «
For classical root systems Ay_1, By, Cn and Dy, N € N, the explicit forms are given as follows,

(type An-1) det ( i 1) = H (2k — ),

1<j,k<N :
1<j<k<N

(type Bn) 1<dekt<N < N+1 ]) H 2N (1~ z) H (21 — zj)(1 — zj21),
) 1<j<k<N
N-1 N 1—
(type Cy) 1<dekt<N <z£ + ]> H 2, N1 = 22) H (2 — 25) (1 — zjzk),
7 1<j<k<N
N
N _
(type Dy) | det (N4 ) =2]]2 ™ [T G —2)(1 - 22, (A1)
g =1 1<j<k<N
respectively. See, for instance, [51].
If we change the variables as
zp=e 2% (. eC, k=1,...,N, (A.2)

then, the following equalities are derived from the above.
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Lemma A.1 For (, € C,k=1,..., N, the following equalities are established.

. An_ AN_1(; . — .
(type AN—l) 1<d2t<N |:efz(./\/— N—-1_2J°N 1(]))Ck:| — (2Z)N(N 1)/2 H Sln(Ck — C])
SRS 1<j<k<N

(type By) | det [ sin{V™ — 27 ()G}

N
NON=DTTsin¢e [ sin(¢r — ¢)sin(G + ),

1<j<k<N

(type Cy) | det [sin{(NO¥ =279 ()G} |

1<j,k<N

N
NVED T sin(2z) [ sin(Ge — &) sin(Ge + &),
(=1

1<j<k<N

(type D) | det [ cos{(M = 277%(3))Gi)]

_ 2(N*1)2 H sin((k — CJ) Sin(Ck + Cj),

1<j<k<N

where N'BN and JEN(5), Ry = An_1, By, On, Dn, are given by B11) and B.12).

B Jacobi Theta Functions

Let
z=e""", q=¢€

for v € C and 7 € H. The Jacobi theta functions are defined as follows [64] [45],

Po(v;7) = Z(— )"q =1+ 22 )" eTmin’ cos(2nmv),
nez
91 (v;7) :Z-Z(_ )"q (n— 1/22 2n—1 22 ) 1 rmi(n— 1/2)? sin{(2n — 1)mv},
nez n=1
Do (v an 1/2)? 2n—1 _QZeTwzn 1/2)2 cos{(2n — 1)mv},
nez
Zq 22 =1 +2Z T Gog (2nmv). (B.1)
nez

(Note that the present functions ¥, (v;7), = 1,2,3 are denoted by ¥, (mv,q), and Yo(v;T) by
Y4(mv, q) in [64].) For 31 > 0, ¥, (v;7), p = 0,1,2,3 are holomorphic for [v| < co. The parity with
respect to v is given by

"91(_2};7—) = _"91(1);7—)’ 19#(_2};7—) = ﬂH(U;T)’ n = 0’253’ (BQ)
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and they have the quasi-double-periodicity;

Y, (v; =0,3
Yu(v+1;7) = plosT),  w=0.3, (B.3)
—yu(v;7), p=12,
—(2v+7)mig ( . ) =0.1
€ /U’ T ) M ) )
Y, (v+T7) = K B.4
ulv ) {e_(2v+7)“19u(v;7'), w=2,3. (B4)
The following relations are derived by (B,
T - —(v+T1/4)Tme
Yo (v—i— 57’) — e~ (vt7/4) Y (v; 1),
T
01 (v gim) = e O v 7).
T (U+T/4)7TZ
( 2’7) Va(v;7),
I3 (v + Z, 7') e~ T/, (v; 7). (B.5)
2
By the definition (B.I), when 7 € H,
91(0;7) = 01(1;7) =0,  i(z;7) >0, 2 €(0,1),
Do(=1/2;7) = 92(1/2;7) =0,  da(x;7) >0, =€ (-1/2,1/2),
Po(z;7) >0, v3(x;7) >0, xR (B.6)
The asymptotics
Jo(v;7) ~ 1, D1(v;7) ~ 2™ A sin(mv),  Vg(v;7) ~ 27 cos(mv),  Dg(v;T) ~ 1,
in 37— 400 (i, g=eT —0) (B.7)

are known. We will use the following functional equations known as Jacobi’s imaginary transfor-
mation [64], [45],

A 1
190(1);7_) _ e7rz/4 -1/2 —7rw2/779 <E’ __) ’

T T

01 (v; 1) = 3T/ Ap=1/2mmiv? Tyy <— —l>,

T T

192(,0;7_) 7m/4 71/2 77rw2/7-19 <E’_l>’

T T
1
O3(v; ) = €M/ Ar— 12 Ty, (;,—;>. (B.8)

C Macdonald Denominators

Assume that N € N. As extensions of the Weyl denominators for classical root systems, Rosen-
gren and Schlosser [51] studied the Macdonald denominators for the seven types of irreducible
reduced affine root systems [41], W2~ (z;7), 2 = (21,...,2y) € CV, 7 € H, Ry = An_1,
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By, BY;, Cn, CNy BCn, Dy, N € N. (See also [63, [38].) Up to trivial factors they are written
using the Jacobi theta functions as follows.

WAN—I(z;T) = H V1(zk — 25 7),
1<j<k<N

N
WBN(z;T) = Ht?l(zg;T) H {ﬁl(zk—zj;T)ﬁl(zk—i—zj;T)},
=1 1<j<k<N

N
WEN (z;7) = Hz?l(QZg; 27) H {ﬁl(zk — 2j;T)01 (21 + 25 7')},
(=1

1<j<k<N
N
WCN(z;T) = Hvﬂl(QZg;T) H {791(zk — zj; 7)1 (2 + 253 T)},
=1 1<j<k<N
N T
CN (o) — . . .
WEN(z;7) —Hﬁl (Zg, 5) H {ﬂl(zk—Zj7T)791(Zk+Zj,T)},
(=1 1<j<k<N
N
WBCN (z;7) = {ﬁl(Zg; T)%0(22¢; 27’)} H {191(zk — zj; 7)1 (21 + 25 7')},
=1 1<j<k<N
WDN(z;T) = H {ﬁl(zk—Zj;T)Vﬂl(Zk—i-Zj;T)}. (Cl)
1<j<k<N
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