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Abstract. We consider the long time behavior of solutions to the initial value prob-

lem for the “complex-valued” cubic nonlinear Klein-Gordon equation (NLKG) in one

space dimension. In [12], Sunagawa derived the L∞ decay estimate of solutions to

(NLKG). In this note, we obtain the large time asymptotic profile of solutions to

(NLKG).
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1. Introduction

In this note, we consider the long time behavior of solutions to the

initial value problem for the “complex-valued” cubic nonlinear Klein-Gordon

equation in one space dimension:{
(2+ 1)u = λ|u|2u t ∈ R, x ∈ R,

u(0, x) = u0(x), ∂tu(0, x) = u1(x) x ∈ R,
(1.1)

where 2 = ∂2
t −∂2

x is d’Alembertian, u : R×R → C is an unknown function,

u0, u1 : R → C are given functions, and λ is a non-zero real constant. The

complex-valued nonlinear Klein-Gordon equation/system arise in various

fields of physics. For example, the nonlinear Dirac equation, which is an

important model in the relativistic quantum fields [4], [14], can be reduced

to a system of complex valued nonlinear Klein-Gordon equations. Therefore

we believe that our study will aid in understanding the long time behavior

of solution to such physical models.

Since L∞ decay rate of solution to the one dimensional linear Klein-

Gordon equation is O(|t|−1/2) as |t| → ∞, the linear scattering theory in-
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dicates that the cubic nonlinear term is the long range type. In fact, it

is well-known that the non-trivial solutions to (1.1) do not scatter to the

free solution, see [5], [6], [11]. Therefore the asymptotic behavior in time of

solution to (1.1) is different from that of the linear equation. For the real-

valued case, the asymptotic behavior in time of solution to (1.1) is studied

by the several authors. Delort [2] obtained an asymptotic profile of a time

global solution to the general quasilinear Klein-Gordon equation including

(1.1) for the small initial data with compact support. See also Lindblad

and Soffer [9] for an alternative proof of his result for (1.1). Note that the

compact support assumption in [2] is removed by Hayashi and Naumkin

[7] for (1.1). Recently, Stingo [13] extended Delort’s result for the general

quasilinear Klein-Gordon equation to mildly decaying initial data.

For the complex-valued case, Sunagawa [12] derived the L∞ decay esti-

mate of solutions to (1.1). The main purpose of this note is to obtain the

large time asymptotic profile of solutions to the initial value problem (1.1).

We consider the case t ⩾ 0 only since the case t ⩽ 0 can be treated in a

similar way.

Our main result is as follows.

Theorem 1.1 Let m ⩾ 11 be an integer. Then, there exists ε0 > 0 with

the following properties: If u0 and u1 are compactly supported and satisfy

ε := ∥u0∥Hm + ∥u1∥Hm−1 ⩽ ε0, then, there exists a unique global solution

u ∈ C([0,∞);Hm(R)) ∩ C1([0,∞);Hm−1(R)) to (1.1) which satisfies

∥u(t)∥L∞
x

⩽ Cε(1 + t)−1/2 (1.2)

for any t ⩾ 0. Furthermore, there exist Φ± ∈ L∞(R) such that

u(t, x) =
1

t1/2
Φ+

(x
t

)
exp

(
i
√
t2 − |x|2 + iΨ+

(x
t

)
log t

)
+

1

t1/2
Φ−

(x
t

)
exp

(
−i
√

t2 − |x|2 + iΨ−

(x
t

)
log t

)
+O

(
εt−3/2+Cε

)
as t → ∞, (1.3)

where Ψ± are given by
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Ψ+(y) = −1

2
λ
√

1− |y|2
(
|Φ+(y)|2 + 2 |Φ−(y)|2

)
,

Ψ−(y) =
1

2
λ
√
1− |y|2

(
2 |Φ+(y)|2 + |Φ−(y)|2

)
and C is a positive constant independent of ε.

From (1.3), we see that an asymptotic profile of time global solution

to (1.1) is given by solution to the linear Klein-Gordon equation with a

logarithmic phase correction. It is known that Φ− = Φ+ for the real-valued

case (see [2]). Note that in [10] we constructed a solution to (1.1) which

converge to “prescribed” final states in the sense of (1.3).

Remark 1.2 We mention the paper by Candy and Lindblad [1] who

obtained the large time asymptotics of solutions for the one dimensional

cubic nonlinear Dirac equation which is called the Thirring model [14] and

can be reduced to a system of complex-valued Klein-Gordon equations with

derivative interactions. Here, the asymptotic behavior of the solution is

given by the solution to the linear Dirac equation with a logarithmic phase

correction as in Theorem 1.1.

Remark 1.3 In [10], we studied large time behavior of complex-valued

solutions to the Klein-Gordon equation with a gauge invariant quadratic

nonlinearity in two space dimensions:

(2+ 1)u = λ|u|u t ∈ R, x ∈ R2, (1.4)

where 2 = ∂2
t − ∂2

x1
− ∂2

x2
is d’Alembertian, u : R×R2 → C is an unknown

function, and λ is a non-zero real constant. As in the one dimensional cubic

case, (1.4) is long range type. We constructed a solution to (1.4) which

converges to prescribed final states, where the final state is given by the

free solution with a logarithmic phase correction. Note that the logarithmic

phase correction given by [10] has one more parameter which is characterized

by the final data. It is an interesting open question whether all small global

solutions to (1.4) behave like such an asymptotic profile.

We give an outline of the proof of Theorem 1.1. As in [2], [3], [12], we

first reduce the Cauchy problem for (1.1) on [0,∞)×R into the initial value

problem in the interior of hyperbola:
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D = {(t, x) ∈ R× R | t ⩾ 0, (t+ 2B)2 − |x|2 ⩾ τ20 }, (1.5)

where B and τ0 are positive constants which are determined by the initial

data (see Section 2). Then we analyze the solution to (1.1) in D by using

the hyperbolic coordinate:

t+ 2B = τ cosh z, x = τ sinh z, τ ⩾ τ0, z ∈ R.

For a solution u to (1.1), we introduce a new unknown function v = v(τ, z)

via the identity

u(t, x) =
1

τ1/2 coshκz
v(τ, z), (1.6)

where κ is a positive constant which is fixed later. Indeed, we shall choose

κ > 5/2 to derive a large time asymptotics of u from an asymptotics of v in

τ , see Section 4 for the detail.

Furthermore, we define functions ϕ± = ϕ±(τ, z) by

v(τ, z) = ϕ+(τ, z)e
iτ + ϕ−(τ, z)e

−iτ .

For the real-valued case, we are able to take ϕ− = ϕ+. However, for the

complex-valued case, we cannot expect such a relation. Hence, to determine

ϕ± uniquely, we impose

∂τv(τ, z) = iϕ+(τ, z)e
iτ − iϕ−(τ, z)e

−iτ ,

that is,

ϕ±(τ, z) =
1

2
(v(τ, z)∓ i∂τv(τ, z))e

∓iτ .

Then the evolution equations for ϕ± are given by

∂τϕ± = ∓ i

2

λ

τ(coshκz)2
|ϕ+e

iτ + ϕ−e
−iτ |2(ϕ+e

iτ + ϕ−e
−iτ )e∓iτ

+O(τ−2), (1.7)

as τ → ∞ (see (3.5) for the derivation), where the first term on the right
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hand side of (1.7) is contribution from the nonlinear term. We rewrite (1.7)

as follows:

∂τϕ+ = − i

2

λ

τ(coshκz)2
(|ϕ+|2 + 2|ϕ−|2)ϕ+

− i

2

λ

τ(coshκz)2
{ϕ2

+ϕ−e
2iτ + (2|ϕ+|2 + |ϕ−|2)ϕ−e

−2iτ + ϕ+ϕ
2
−e

−4iτ}

+O(τ−2),

We have a similar equation for ϕ−. For the second term (non-resonant

term), we shall see that the oscillation factors eiωτ enable us to replace the

non-resonant term by a term which has better decay by a normal forms

procedure. To treat the first term (resonant term), we consider the large

time behavior of |ϕ±|2. Since the resonant terms for the evolution equations

of |ϕ±|2 are purely imaginary, we see that {|ϕ±(τ, ·)|2}τ⩾τ0 are Cauchy se-

quences in L∞
z as τ → ∞ and |ϕ±(τ, ·)|2 converge to some non-negative

functions a± ∈ L∞
z as τ → ∞. By using the function a± and the gauge

transform, we obtain the large time asymptotic profiles of ϕ± which yields

(1.3).

The rest of the paper is organized as follows. In Section 2, we reduce

the Cauchy problem for (1.1) on [0,∞)×R into the initial value problem on

the domain D given by (1.5). Then, in Section 3, we derive the L∞ estimate

of the solution to (1.1) in D. In Section 4, we obtain the asymptotic profile

of solution to (1.1) by analyzing the large time behaviors of ϕ±.

2. Reduction of the problem

In this section, we reduce the Cauchy problem for (1.1) on [0,∞) × R
into the initial value problem on the interior of the hyperbola D by using

the argument by [2], [3], [12].

Let B be a positive constant which satisfies

supp u0 ∪ supp u1 ⊂ {x ∈ R | |x| ⩽ B}.

We fix a positive number τ0 > max{1, 2B}. We employ the following result

by Delort [2, Proposition 1.4].

Proposition 2.1 Let m ⩾ 3 be an integer. Then there exists ε0 > 0
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with the following properties: If (u0, u1) ∈ Hm(R)×Hm−1(R) satisfies ε :=
∥u0∥Hm+∥u1∥Hm−1 ⩽ ε0, then, there exist T ⩾ (τ20 −3B3)/(2B) and unique

solution u ∈ C([0, T ];Hm(R)) ∩ C1([0, T ];Hm−1(R)) to (1.1). Especially, u

is defined on {(t, x) ∈ R2||x| ⩽ (τ20 − 3B2)/(2B), (t + 2B)2 − |x|2 = τ20 }.
Furthermore, u satisfies

∑
0⩽j+k⩽m

∫
|y|⩽ τ2

0−3B2

2B

∣∣∣∂j
t ∂

k
xu
∣∣
(t,x)=(

√
τ2
0+y2−2B,y)

∣∣∣2 dy ⩽ Cε2.

Proof of Proposition 2.1. By the standard local existence theorem for the

nonlinear Klein-Gordon equation (see [8] for instance), there exist T =

O(1/ε) and unique solution u ∈ C([0, T ];Hm(R)) ∩ C1([0, T ];Hm−1(R))
to (1.1) such that

sup
0⩽t⩽T

(∥u(t)∥Hm + ∥∂tu(t)∥Hm−1) ⩽ Cε.

Furthermore, by the property of finite speed of propagation for the solution

to (1.1), we have supp u(t) ⊂ {x ∈ R | |x| ⩽ t+B} for 0 ⩽ t ⩽ T . Choosing

ε > 0 sufficiently small, we can take T ⩾ (τ20 − 3B2)/(2B). Then we have

the conclusion. □

By Proposition 2.1 and the property of finite speed of propagation for

the solution to (1.1), it suffices to consider the solution u to (1.1) on the

domain D.

3. L∞ estimate of solution

In this section, we derive the L∞ decay estimate of solution to (1.1) in

the region D given by (1.5). Although the L∞ decay estimate of solution

has already been proven by [12], we give the detail of the proof because we

use the several estimates in the proof to derive the asymptotic behavior of

the solution.

As in the papers [2], [3], [9], [12], we use the hyperbolic coordinate

t+ 2B = τ cosh z, x = τ sinh z, τ ⩾ τ0, z ∈ R.

Let u be a solution to (1.1). We introduce a new unknown function v =

v(τ, z) via the identity
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u(t, x) =
1

τ1/2 coshκz
v(τ, z), (3.1)

where κ > 5/2 is fixed later (see Section 4). Furthermore, we define functions

ϕ± = ϕ±(τ, z) by

v(τ, z) = ϕ+(τ, z)e
iτ + ϕ−(τ, z)e

−iτ , (3.2)

∂τv(τ, z) = iϕ+(τ, z)e
iτ − iϕ−(τ, z)e

−iτ . (3.3)

By a simple calculation, we see that v satisfies

∂2
τv + v =

λ

τ(coshκz)2
|v|2v + 1

τ2
Pv, (3.4)

where P is a differential operator given by

P = ∂2
z − 2κ(tanhκz)∂z + κ2 − 1

4
− 2κ2

(coshκz)2
.

Hence we obtain

∂τϕ± = ∓ i

2
e∓iτ (∂2

τv + v) = ∓ i

2

λ

τ(coshκz)2
|v|2ve∓iτ ∓ i

2

1

τ2
Pve∓iτ . (3.5)

We derive the L∞ estimates for ϕ±. For T ⩾ τ0, let

MT := sup
(τ,z)∈[τ0,T ]×R

(
|ϕ+(τ, z)|2 + |ϕ−(τ, z)|2

)1/2
.

Lemma 3.1 Let m = ⌊2κ⌋ + 61 and κ > 0. Assume that ∥u0∥Hm +

∥u1∥Hm−1 ⩽ ε0, where ε0 is given by Proposition 2.1. Then, there exists

ε1 > 0 such that if MT ⩽ ε1/2 holds for some 0 < ε ⩽ ε1 and T ⩾ τ0, then

we have MT ⩽ Cε, where C is a positive constant independent of ε and T .

If κ > 5/2 and ∥u0∥H⌊2κ⌋+6 + ∥u1∥H⌊2κ⌋+5 is sufficiently small, then

Proposition 2.1 ensures that Mτ0 ⩽ ε ⩽ ε1. Therefore we need m ⩾ 11 in

Theorem 1.1. Combining this with Lemma 3.1 and the standard continuity

1⌊ · ⌋ denotes the usual floor function.
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argument, we obtain MT ⩽ Cε for any T ⩾ τ0. Hence we obtain the decay

estimate (1.2) for the solution to (1.1).

Proof of Lemma 3.1. We assume that v satisfies MT ⩽ ε1/2. Throughout

the proof, we denote by C or Cj positive constants which are independent

of ε and T .

We first prove

|Pv(τ, z)| ⩽ CετC1ε (3.6)

for any τ0 ⩽ τ ⩽ T . To show (3.6), we employ the energy estimates used by

Delort, Fang and Xue [3]. Let us define

Em[v](τ) :=
1

2

m∑
j=1

∫
R

(∣∣∂τ∂j
zv(τ, z)

∣∣2 + 1

τ2
∣∣∂1+j

z v(τ, z)
∣∣2 + ∣∣∂j

zv(τ, z)
∣∣2) dz.

We shall show

E3[v](τ) ⩽ Cε2τCε. (3.7)

Then (3.6) follows from the Sobolev embedding and (3.7). Let us prove (3.7).

By a similar argument as that in [3, Proposition 2.1.2], for any m ∈ Z+ and

ℓ = 0, 1, we have

d

dτ
Em[v](τ) ⩽ 2κ

τ1+ℓ
Em+ℓ[v](τ) + CEm[v]1/2(τ)

∥∥(∂2
τ − τ−2P + 1

)
v(τ)

∥∥
Hm

z

+
C

τ2
Em[v](τ).

Equation (3.4) and the assumption MT ⩽ ε1/2 yield∥∥(∂2
τ − τ−2P + 1

)
v(τ)

∥∥
Hm

z

⩽ |λ|
τ
∥|v|2v∥Hm

z
⩽ C

|λ|
τ
∥v∥2L∞

z
∥v∥Hm

z
⩽ C

τ
εEm[v]1/2(τ).

Hence



On the complex valued NLKG in 1D 195

d

dτ
Em[v](τ) ⩽ 2κ

τ1+ℓ
Em+ℓ[v](τ) +

(
Cε

τ
+

C

τ2

)
Em[v](τ). (3.8)

By (3.8) with m = ⌊2κ⌋+ 5 and ℓ = 0, we obtain

d

dτ
E⌊2κ⌋+5[v](τ) ⩽

(
2κ+ C2ε

τ
+

C

τ2

)
E⌊2κ⌋+5[v](τ)

⩽
(
⌊2κ⌋+ 5/4

τ
+

C

τ2

)
E⌊2κ⌋+5[v](τ),

provided C2ε ⩽ 1/4. Then the Gronwall lemma and Proposition 2.1 yield

E⌊2κ⌋+5[v](τ) ⩽ E⌊2κ⌋+5[v](τ0) exp

(∫ τ

τ0

(
⌊2κ⌋+ 5/4

σ
+

C

σ2

)
dσ

)
⩽ Cε2τ ⌊2κ⌋+5/4. (3.9)

Combining (3.9) and (3.8) with m = ⌊2κ⌋+ 4 and ℓ = 1, we obtain

d

dτ
E⌊2κ⌋+4[v](τ) ⩽

2κ

τ2
E⌊2κ⌋+5[v](τ) +

(
Cε

τ
+

C

τ2

)
E⌊2κ⌋+4[v](τ)

⩽ Cε2τ ⌊2κ⌋−3/4 +

(
Cε

τ
+

C

τ2

)
E⌊2κ⌋+4[v](τ).

Then by the Gronwall lemma and Proposition 2.1, we have

E⌊2κ⌋+4[v](τ) ⩽ Cε2τ ⌊2κ⌋+1/4.

Repeating this argument, we obtain

E4[v](τ) ⩽ Cε2τ1/4. (3.10)

Combining (3.10) and (3.8) with m = 3 and ℓ = 1, we have

d

dτ
E3[v](τ) ⩽

2κ

τ2
E4[v](τ) +

(
Cε

τ
+

C

τ2

)
E3[v](τ)

⩽ Cε2

τ7/4
+

(
Cε

τ
+

C

τ2

)
E3[v](τ).
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Then the Gronwall lemma and Proposition 2.1 yield (3.7).

We turn to the estimates for ϕ±. From (3.5), (3.6) and the assumption

MT ⩽ ε1/2, we see

|∂τϕ±(τ, z)| ⩽
Cε3/2

τ
+

Cε

τ2−C1ε
⩽ Cε

τ
, (3.11)

provided C1ε ⩽ 1. This is not enough to obtain the boundedness of ϕ±.

To derive the desired bound, we make use of the oscillation factors in the

nonlinear term. A direct calculation shows

|v|2v = ϕ2
+ϕ−e

3iτ + (|ϕ+|2 + 2|ϕ−|2)ϕ+e
iτ

+ (2|ϕ+|2 + |ϕ−|2)ϕ−e
−iτ + ϕ+ϕ

2
−e

−3iτ . (3.12)

Substituting (3.12) into (3.5), we find

∂τϕ+ = − i

2

λ

τ(coshκz)2
(|ϕ+|2 + 2|ϕ−|2)ϕ+ +

1

τ
N+ − i

2

1

τ2
Pve−iτ , (3.13)

∂τϕ− =
i

2

λ

τ(coshκz)2
(2|ϕ+|2 + |ϕ−|2)ϕ− +

1

τ
N− +

i

2

1

τ2
Pveiτ , (3.14)

where N± = N±(τ, z) are given by

N+ = − i

2

λ

(coshκz)2
{ϕ2

+ϕ−e
2iτ + (2|ϕ+|2 + |ϕ−|2)ϕ−e

−2iτ + ϕ+ϕ
2
−e

−4iτ},

N− =
i

2

λ

(coshκz)2
{ϕ2

+ϕ−e
4iτ + (|ϕ+|2 + 2|ϕ−|2)ϕ+e

2iτ + ϕ+ϕ
2
−e

−2iτ}.

Since the first term on the right hand side of (3.13) is purely imaginary,

(3.13) implies

|ϕ+(τ, z)|2 = |ϕ+(τ0, z)|2 + 2

∫ τ

τ0

1

σ
ℜ(N+ϕ+)dσ

+

∫ τ

τ0

1

σ2
ℑ(Pvϕ+e

−iτ )dσ. (3.15)

By the Sobolev embedding and Proposition 2.1, we have
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|ϕ+(τ0, z)|2 ⩽ Cε2. (3.16)

To evaluate the second term on the right hand side of (3.15), we make use

of the oscillation factor eiωτ , ω ̸= 0. Integrating by parts, we have∫ τ

τ0

e2iσ

σ
|ϕ+|2ϕ+ϕ−(σ, z)dσ

=
e2iτ

2iτ
|ϕ+|2ϕ+ϕ−(τ, z)−

e2iτ

2iτ0
|ϕ+|2ϕ+ϕ−(τ0, z)

+
1

2i

∫ τ

τ0

e2iσ

σ2
|ϕ+|2ϕ+ϕ−(σ, z)dσ − 1

2i

∫ τ

τ0

e2iσ

σ
∂σ(|ϕ+|2ϕ+ϕ−)(σ, z)dσ.

Combining the above identity, MT ⩽ ε1/2 and (3.11), we find∣∣∣∣∫ τ

τ0

e2iσ

σ
|ϕ+|2ϕ+ϕ−(σ, z)dσ

∣∣∣∣
⩽ Cε2

τ
+ Cε2 + Cε2

∫ τ

τ0

dσ

σ2
+ Cε2

∫ τ

τ0

dσ

σ2
⩽ Cε2.

In a similar way, we obtain∣∣∣∣2 ∫ τ

τ0

1

σ
ℜ(N+ϕ+)dσ

∣∣∣∣ ⩽ Cε2. (3.17)

For the third term on the right hand side of (3.15), the Young inequality

and (3.6) yield∣∣∣∣∫ τ

τ0

1

σ2
ℑ(Pvϕ+e

−iτ )dσ

∣∣∣∣ ⩽ 1

2

∫ τ

τ0

1

σ2
(|Pv|2 + |ϕ+|2)dσ

⩽ Cε2
∫ τ

τ0

1

σ2−2C1ε
dσ +

∫ τ

τ0

1

σ2
|ϕ+|2dσ

⩽ Cε2 +

∫ τ

τ0

1

σ2
|ϕ+|2dσ, (3.18)

provided that C1ε ⩽ 1/4.
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Let ε1 = min(1, 1/(4C1), 1/(4C2)). Then by (3.15), (3.16), (3.17) and

(3.18), we see that if 0 < ε ⩽ ε1, then

|ϕ+(τ, z)|2 ⩽ Cε2 +

∫ τ

τ0

1

σ2
|ϕ+|2(σ, z)dσ.

We have the similar estimate for ϕ−. Then the Gronwall lemma yields

MT ⩽ Cε. This completes the proof of Lemma 3.1. □

4. Large time asymptotics of solution

In this section we derive the large time asymptotics of solution to (1.1).

By Lemma 3.1, for any τ ⩾ τ0 and z ∈ R, we have

|ϕ±(τ, z)| ⩽ Cε. (4.1)

Combining (4.1) with the argument used in the previous section, for any

τ ⩾ τ0 and z ∈ R, we have

|Pv(τ, z)| ⩽ CετCε, |∂τϕ±(τ, z)| ⩽
Cε

τ
. (4.2)

From (3.13), for τ0 ⩽ τ1 < τ2 we have

|ϕ+(τ2, z)|2 − |ϕ+(τ1, z)|2

= 2

∫ τ2

τ1

1

σ
ℜ(N+ϕ+)dσ +

∫ τ2

τ1

1

σ2
ℑ(Pvϕ+e

−iτ )dσ. (4.3)

Combining the same argument as that in (3.17) with (4.1) and (4.2), we

have ∣∣∣∣2 ∫ τ2

τ1

1

σ
ℜ(N+ϕ+)dσ

∣∣∣∣ ⩽ Cε4

τ1
. (4.4)

From (4.1) and (4.2), we see∣∣∣∣∫ τ2

τ1

1

σ2
ℑ(Pvϕ+e

−iτ )dσ

∣∣∣∣ ⩽ Cε2

τ1−Cε
1

. (4.5)
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Collecting (4.3), (4.4) and (4.5), we obtain

∣∣|ϕ+(τ2, z)|2 − |ϕ+(τ1, z)|2
∣∣ ⩽ Cε2

τ1−Cε
1

. (4.6)

We have the similar estimate for ϕ−. Therefore, we find that {|ϕ±(τ,·)|2}τ⩾τ0

are Cauchy sequences in L∞
z as τ → ∞. Hence there exist non-negative

functions a± ∈ L∞
z such that

∥|ϕ±(τ)|2 − a±∥L∞
z

⩽ Cε2

τ1−Cε
(4.7)

for τ ⩾ τ0. Note that a+ satisfies

a+(z) = |ϕ+(τ0, z)|2 + 2

∫ ∞

τ0

1

σ
ℜ(N+ϕ+)dσ +

∫ ∞

τ0

1

σ2
ℑ(Pvϕ+e

−iτ )dσ.

Hence (3.6) yields a+ ∈ W 1,∞
z . Similarly, we have a− ∈ W 1,∞

z .

By (3.13) and (3.14),

∂τϕ+(z) = − i

2

λ

τ(coshκz)2
(a+(z) + 2a−(z))ϕ+(z) +R+(τ, z), (4.8)

∂τϕ−(z) =
i

2

λ

τ(coshκz)2
(2a+(z) + a−(z))ϕ−(z) +R−(τ, z), (4.9)

where R± = R±(τ, z) are given by

R+ = − i

2

λ

τ(coshκz)2
(|ϕ+|2 + 2|ϕ−|2)ϕ+ +

i

2

λ

τ(coshκz)2
(a+ + 2a−)ϕ+

+
1

τ
N+ − i

2

1

τ2
Pve−iτ ,

R− =
i

2

λ

τ(coshκz)2
(2|ϕ+|2 + |ϕ−|2)ϕ− − i

2

λ

τ(coshκz)2
(2a+ + a−)ϕ−

+
1

τ
N− +

i

2

1

τ2
Pveiτ .

It follows from (4.8) and (4.9) that
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∂τ

{
ϕ+(z) exp

(
i

2

λ

(coshκz)2
(a+(z) + 2a−(z)) log τ

)}
= R+(τ, z) exp

(
i

2

λ

(coshκz)2
(a+(z) + 2a−(z)) log τ

)
,

∂τ

{
ϕ−(z) exp

(
− i

2

λ

(coshκz)2
(2a+(z) + a−(z)) log τ

)}
= R−(τ, z) exp

(
− i

2

λ

(coshκz)2
(2a+(z) + a−(z)) log τ

)
.

By (4.1), (4.2), (4.7) and the argument used in the proof of (3.17), we have∣∣∣∣∫ τ2

τ1

R+(σ, z) exp

(
i

2

λ

(coshκz)2
(a+(z) + 2a−(z)) log σ

)
dσ

∣∣∣∣ ⩽ Cετ−1+Cε
1 ,∣∣∣∣∫ τ2

τ1

R1(σ, z) exp

(
− i

2

λ

(coshκz)2
(2a+(z) + a−(z)) log σ

)
dσ

∣∣∣∣ ⩽ Cετ−1+Cε
1

for any 0<τ1<τ2. By the above estimates, we see that ϕ+ exp( i
2

λ
(coshκz)2 (a+

+2a−) log τ) and ϕ− exp(− i
2

λ
(coshκz)2 (2a++a−) log τ) are Cauchy sequences

in L∞
z as τ → ∞. Therefore we find that there exist functions b± ∈ L∞

z

such that∥∥∥∥ϕ+(τ) exp

(
i

2

λ

(coshκz)2
(a+ + 2a−) log τ

)
− b+

∥∥∥∥
L∞

z

⩽ Cε

τ1−Cε
,

∥∥∥∥ϕ−(τ) exp

(
− i

2

λ

(coshκz)2
(2a+ + a−) log τ

)
− b−

∥∥∥∥
L∞

z

⩽ Cε

τ1−Cε

for τ ⩾ τ0. Especially, we have a± = |b±|2 and b± ∈ W 1,∞
z . Hence we have

ϕ+(τ, z) = b+(z) exp

(
− i

2

λ

(coshκz)2
(|b+(z)|2 + 2|b−(z)|2) log τ

)
+O

( ε

τ1−Cε

)
, (4.10)
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ϕ−(τ, z) = b−(z) exp

(
i

2

λ

(coshκz)2
(2|b+(z)|2 + |b−(z)|2) log τ

)
+O

( ε

τ1−Cε

)
(4.11)

as τ → ∞. Let

c±(z) :=
(cosh z)1/2

coshκz
b±(z), d±(y) :=

{
c±(tanh

−1 y) if |y| < 1,

0 if |y| ⩾ 1.

Then by (3.1), (3.2), (4.10) and (4.11), we have

u(t, x) =
1

(t+ 2B)1/2
d+ (y) exp

(
i(t+ 2B)

√
1− |y|2

− i

2
λ

√
1− |y|2

(
|d+ (y)|2 + 2 |d− (y)|2

)
× log

(
(t+ 2B)

√
1− |y|2

)) ∣∣∣∣
y= x

t+2B

+
1

(t+ 2B)1/2
d− (y) exp

(
−i(t+ 2B)

√
1− |y|2

+
i

2
λ

√
1− |y|2

(
2 |d+ (y)|2 + |d− (y)|2

)
× log

(
(t+ 2B)

√
1− |y|2

)) ∣∣∣∣
y= x

t+2B

+O
(
εt−

3
2+Cε

)
, (4.12)

as t → ∞.

Furthermore, introducing

e+(y) := d+(y) exp
(
2iB

√
1− |y|2

)
× exp

(
− i

2
λ
√

1− |y|2(|d+(y)|2 + 2|d−(y)|2) log
√

1− |y|2
)
,
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e−(y) := d−(y) exp
(
−2iB

√
1− |y|2

)
× exp

(
i

2
λ
√

1− |y|2(2|d+(y)|2 + |d−(y)|2) log
√

1− |y|2
)
,

we see that the first term on the right hand side of (4.12) is equal to

1

(t+ 2B)1/2
e+ (y) exp

(
it

√
1− |y|2

)
× exp

(
− i

2
λ

√
1− |y|2

(
|e+ (y)|2 + 2 |e− (y)|2

)
log t

)
× exp (iΘ+ (t, y))

∣∣∣∣
y= x

t+2B

+O
(
εt−3/2+Cε

)
, (4.13)

as t → ∞, where Θ+ is defined by

Θ+(t, y) = − i

2
λ
√
1− |y|2(|d+(y)|2 + 2|d−(y)|2) log

(
1 +

2B

t

)
.

A direct calculation shows (c.f. [2, page 59])∣∣∣∣ 1

(t+ 2B)1/2
− 1

t1/2

∣∣∣∣ ⩽ Ct−3/2, (4.14)∣∣∣∣∣∣
√

1−
∣∣∣∣ x

t+ 2B

∣∣∣∣2 −
√

1−
∣∣∣x
t

∣∣∣2 − 2B (x/t)
2

t

√
1− |x/t|2

∣∣∣∣∣∣
⩽ Ct−2

(
1−

∣∣∣x
t

∣∣∣2)−3/2

. (4.15)

Since b± ∈ W 1,∞
z , we see that the function

g+(t, y) = e+(y) exp

(
− i

2
λ
√

1− |y|2(|e+(y)|2 + 2|e−(y)|2) log t
)

satisfies
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|∂j
yg+(t, y)| ⩽ Cjε(log t)

j(1− |y|)κ/2−1/4−j

for j = 0, 1. Hence∣∣∣∣g+(t, x

t+ 2B

)
− g+

(
t,
x

t

)∣∣∣∣
⩽ C1ε

log t

t

{(
1− |x|

t

)
+

+
1

t

}κ/2−5/4

⩽ C1ε
log t

t
(4.16)

for κ > 5/2. We also note

exp

(
iΘ+

(
t,

x

t+ 2B

))
= 1 +O

(
ε2

t

)
. (4.17)

Combining (4.13), (4.14), (4.15), (4.16) and (4.17), we have that the first

term on the right hand side of (4.12) is equal to

1

t1/2
e+

(x
t

)
exp

it

√
1−

∣∣∣x
t

∣∣∣2 + i
2B (x/t)

2√
1− |x/t|2


× exp

(
− i

2
λ

√
1−

∣∣∣x
t

∣∣∣2(∣∣∣e+ (x
t

)∣∣∣2 + 2
∣∣∣e− (x

t

)∣∣∣2) log t

)

+O
(
εt−3/2+Cε

)
,

as t → ∞. We have a similar asymptotic formula for the second term on the

right hand side of (4.12). Hence choosing Φ±(y) = e±(y) exp
(
±i 2By2√

1−|y|2

)
,

we obtain the asymptotic formula (1.3). This completes the proof of Theo-

rem 1.1.
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