
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A BOUNDING ALGORITHM FOR SELECTIVE GRAPH
COLORING PROBLEM

Izunaga, Yoichi
Faculty of Business Sciences, University of Tsukuba

Sato, Keisuke
Signalling and Transport Information Technology Division, Railway Technical Research Institute

https://hdl.handle.net/2324/4755281

出版情報：京都大学数理解析研究所講究録. 2069, pp.84-94, 2018-04. Research Institute for
Mathematical Sciences (RIMS), Kyoto University
バージョン：
権利関係：

A BOUNDING ALGORITHM FOR

SELECTIVE GRAPH COLORING PROBLEM

YOICHI IZUNAGA AND KEISUKE SATO

ABSTRACT. This note addresses the selective graph coloring problem, which is a gener‐
alization of the well‐known vertex coloring problem. Given an undirected graph together
with a partition of its vertex set, it is to find a subset of the vertex set which shares ex‐
actly one vertex with each component of the partition so that the chromatic number of
the subgraph induced by the subset is minimum. In this note, we present a new column
generation algorithm for a linear programming relaxation problem of the selective graph
coloring.

1. INTRODUCTION

Vertex coloring problem (VCP) is one of the most studied combinatorial optimization
problem and has a wide range of applications. Given an undirected graph G=(V, E) with
the set of vertices V=\{1, 2, . . . , n\} and the set of edges E , the objective of VCP is to find
an assignment of colors to each vertex of the graph such that no adjacent vertices receive
the same color and the number of colors is minimized. The minimum number of colors is

called chromatic number of G , denoted by χ(G) .
Several variants of VCP have been proposed so far, e.g., vertex multi‐coloring [11],

weighted vertex coloring [6], and robust vertex coloring [12], in order to reflect more com‐
plex situations in real world applications. In this note, we focus on selective graph coloring
problem (SCP), which is also called partition coloring problem [4]. In this problem, we are
given an undirected graph as well as a k‐partition Q=\{V_{1}, V_{2}, . . . , V_{k}\} of its vertex set V,

and then the objective of SCP is to find a subset V^{\star}\subseteq V which shares exactly one vertex
with each component V_{i} of Q so that the chromatic number of the subgraph induced by V^{\star}

is minimum. Throughout the paper, we refer to the subset V^{\star} and the chromatic number of
the induced subgraph G(V^{\star}) as selective coloring and selective chromatic number (denoted
by χ(G, Q respectively.

SCP originates in an application to the routing and wavelength assignment problem [9],
and then spreads over various fields in real world, including dichotomy‐based constraint
encoding, antenna positioning and frequency assignment, timetabling problem, quality test
scheduling, berth allocation problem, and multiple stacks traveling salesman problem. See
Demange et al. [3] for details.

Obviously, SCP is an NP‐hard optimization problem since it includes VCP as a special
case where the partition Q consists of all singletons of V . For such a hard optimization
problem, bounding procedures, in terms of both upper and lower bounds, play an important
role. In particular, solution methods for the problems involving some integer variables rely
heavily on bounding in the branch‐and‐bound framework. In order to obtain a lower bound

数理解析研究所講究録
第2069巻 2018年 84-94

84

(A) a graph G

and a partition
Q (dotted‐line)

(B) a selective
coloring of G

with two colors

FIGURE 1. Example.

on the selective chromatic number of SCP, we investigate a column generation algorithm
based on the work by Coniglio and Tieves [2], which is regarded as a cutting plane algorithm
in the dual space via a criterion of maximizing the bound improvement.

This note is organized as follows. In Section 2, we present the set covering formulation
of the selective graph coloring problem and its linear programming relaxation problem. In
Section 3, after reviewing the column generation algorithm, and we introduce the recently
proposed bound‐optimal generation. In Section 4, we propose an improved algorithm based
on the bound‐optimal generation. Lastly, in Section 5, we report computational experiments
on the proposed algorithm.

2. SET COVERING FORMULATION AND ITs LP RELAXATION

In the literature, various formulations for SCP have been proposed. Frota et al. [5]
proposed a formulation for SCP based on the idea of the representative vertices presented
by Campelo et al. [1], which avoids the symmetry. Hoshino et al. [8] presented a formulation
which combines the asymmetric representative formulation and the set covering formulation
by means of family of stable sets. More recently, Furini et al. [7] presented a simpler set‐
covering based formulation, and proposed a branch‐and‐price algorithm.

In this study, we adopt the set covering formulation provided by Furini et al. [7]. First, let
us introduce the family of stable sets which shares at most one vertex with each component
of the partition, i.e.,

S=\{S\subseteq V|\{u, v\}\not\in E for any u, v\in S such that |S\cap V_{i}| \leq 1 for i\in K :=\{1 , 2, . . . , k

Introducing a binary variable zs defined as

zs=\left\{\begin{array}{l}
1 \mathrm{i}\mathrm{f} \mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s} \mathrm{i}\mathrm{n} S \mathrm{i}\mathrm{s} \mathrm{a}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}\mathrm{e}\mathrm{d} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{s}\mathrm{a}\mathrm{m}\mathrm{e} \mathrm{c}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{r},\\
0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e},
\end{array}\right.

85

for S\in \mathcal{S} , then SCP is formulated as the following set covering problem:

\mathrm{P} :

minimize \displaystyle \sum zs

subject to \displaystyle \sum_{S\in \mathcal{S}}^{S\in S}a_{iS}zs\geq 1 for i\in K,

z_{S}\in\{0 , 1 \} for S\in S,

where a_{iS}=1 when |S\cap V_{i}|=1 and a_{iS}=0 otherwise, for any i\in K and S\in \mathcal{S} . We will
call the first set of constraints set covering constraint. It should be noted that any solution
of the above problem can be transformed into a selective coloring without changing its
objective value. Throughout the paper, let us denote the optimal value of an optimization
problem by ω

To obtain a lower bound on the optimal value of SCP, we solve the Linear Programming
relaxation, LP relaxation for short, where the binary constraint zs \in \{0 , 1 \} is replaced by
0\leq zs\leq 1 . It is given as

MP:

minimize \displaystyle \sum zs

subject to \displaystyle \sum_{S\in S}^{S\in S}a_{iS}zs\geq 1 for i\in K,

zs\geq 0 for S\in \mathcal{S}.

The upper bound constraint on zs is redundant, hence it can be omitted. This problem is
referred to as master problem (MP).

3. COLUMN GENERATION

3.1. Standard column generation. Owing to the presence of exponentially many vari‐
ables in the formulations mentioned in Section 2, we can not feed them to general purpose
optimization solvers, e.g., CPLEX, Xpress, and Gurobi as the size of instance is large. For
the problems of this kind, it is natural to rely on column generation to solve them.

Column generation operates with a restricted master problem (RMP) which includes only
a small number of variables of the whole. At each iteration in the column generation, we
solve RMP to optimality at first, and then either try to generate a column (or variable)
with a negative reduced cost or to prove that no such column exists. This latter process at
each iteration results in solving the column generation subproblem.

We give a detailed description of all components in the column generation below. Given
a subfamily C\subseteq \mathcal{S} , we consider the following restricted master problem:

RMP (C) :

minimize \displaystyle \sum zs

subject to \displaystyle \sum_{s\in c}^{S\in C}a_{iS}zs\geq 1 for i\in K,

z_{S}\geq 0 for S\in C.

86

We denote the nonnegative dual variable corresponding to the set covering constraint in
RMP(C) by y=(y_{i})_{i\in K} , and then the dual problem of \mathrm{R}\mathrm{M}\mathrm{P}(C) is given as

RMD(C) :

minimize \displaystyle \sum y_{i}
subject to \displaystyle \sum_{i\in K}^{i\in K}a_{iS}y_{i}\leq 1 for S\in C,

y_{i}\geq 0 for i\in K.

Let ((z_{S}^{*})_{S\in C}, (y_{i}^{*})_{i\in K}) be a pair of optimal primal‐dual solutions to restricted master prob‐
lem. At an optimal primal solution (z_{S}^{*})_{S\in C} of RMP (C) , if the reduced cost for any S\in S\backslash \mathcal{C}
is nonpositive, namely,

\displaystyle \sum_{i\in K}a_{i\mathcal{S}}y_{i}^{*}-1\leq 0 for S\in \mathcal{S}\backslash C,

then the current solution (z_{S}^{*})_{S\in C} is optimal for the master problem MP as well. On the
other hand, there exists S\in \mathcal{S}\backslash C with the positive reduced cost, then adding S to C brings
possibly the improvement of the objective value of RMP (C) . Therefore, the nonpositivity of
the reduced cost implies the primal optimality condition. In the dual space, we can regard
the nonpositivity of the reduced cost as the dual feasibility condition. Namely, adding S

with the positive reduced cost to C corresponds to cutting off the current dual optimal
solution y^{*}.

Now, a main object in the column generation is to find a column S\in \mathcal{S}\backslash \mathcal{C} which satisfies

\displaystyle \sum_{i\in K}a_{iS}y_{i}^{*}-1 > 0 , so that we introduce a binary variable x_{u} which is one if a vertex u

belongs to such a column and zero otherwise. Then the column generation subproblem ends
up with a variant of the maximum weight stable set problem as follows.

\mathrm{S}\mathrm{P}^{\mathrm{S}}(y^{*}) :

maximize \displaystyle \sum_{i\in K}y_{i}^{*}r_{i}-1
subject to x_{u}+x_{v}\leq 1 for \{u, v\}\in E,

\displaystyle \sum_{u\in V_{i}}x_{u}=r_{i} for i\in K,

x_{u}\in\{0 , 1 \} for u\in V,

r_{i}\in\{0 , 1 \} for i\in K.

The first set of constraints and the binary constraint of x_{u} imply that x= (x_{u})_{u\in V} is the
incidence vector of a stable set, i.e., the set \{u \in V | x_{u} = 1\} is a stable set. Here, an
auxiliary variable r_{i} and the second set of constraints force a stable set constructed by x to
belong to S . Note that the binary constraint of the variable r_{i} is redundant owing to the
second set of constraints, hence it is relaxed to 0\leq r_{i}\leq 1.

Having found r= (r_{i})_{i\in K} with the positive optimal value, we add the column r to the
current restricted master problem \mathrm{R}\mathrm{M}\mathrm{P}(C) , or equivalently add the following constraint

\displaystyle \sum_{i\in K}r_{i}y_{i}\leq 1,
to the problem of \mathrm{R}\mathrm{M}\mathrm{D}(C) . From the above discussion, outline of the column generation is
described as follows.

87

Algorithm 1 STANDARD COLUMN GENERATION
1: Let C be an initial set of columns.

2: Solve \mathrm{R}\mathrm{M}\mathrm{D}(C) to obtain an optimal solution y^{*} and the optimal value ω(\mathrm{R}\mathrm{M}\mathrm{D}(C)) .
3: Solve \mathrm{S}\mathrm{P}^{\mathrm{S}}(y^{*}) to obtain an optimal solution r.

4: if ω(\mathrm{S}\mathrm{P}^{\mathrm{S}}(y^{*}))\leq 0 then

5: Go to Line 8.

6: else

7: Set C\leftarrow C\cup\{\{i\in K|r_{i}=1\}\} and return to Line 2.

8: Solve \mathrm{R}\mathrm{M}\mathrm{P}(C) whose continuous variable zs is replaced by the binary variable, and set
an upper bound UB to its optimal value.

Note that, for any S \in C , the reduced costs are nonpositive due to the feasibility of
y^{*} for RMD(e). This guarantees the convergence of the algorithm, that is, the algorithm
terminates within a finite number of iterations since it does not generate the column which
has been already added.

3.2. Bound‐optimal column generation. Recently, Coniglio and Tieves [2] have pro‐
posed the bound‐optimal cutting plane method, a new paradigm in the literature of cutting
planes. This method is based on an intuitive strategy of generating cuts (or columns in the
dual), which yields the largest improvement of the objective value.

Adding a particular stable set to subfamily C , we have the following problem

\overline{\mathrm{R}\mathrm{M}\mathrm{P}(C)} :

mimmize \displaystyle \sum z_{S}+w

subject to \displaystyle \sum_{S\in C}^{S\in C}a_{iS^{Z}S}+r_{i}w\geq 1 for i\in K,

w\geq 0, z_{S}\geq 0 for S\in C,

where (r_{i})_{i\in K} is the column corresponding to the added stable set, and we denote w be the
primal variable associated with the column. In the bound‐optimal strategy, we determine
both the primal variables (zs, w) and the variable r_{i} representing a column so as to minimize
the objective value of \mathrm{R}\mathrm{M}\mathrm{P}(C) , which results in the following problem

\mathrm{S}\mathrm{P}^{\mathrm{B}}(C) :

minimize \displaystyle \sum zs+w

subject to \displaystyle \sum_{S\in C}^{S\in C}a_{iS}zs+r_{i}\mathrm{w}\geq 1 for i\in K,

x_{u}+x_{v}\leq 1 for \{u, v\}\in E,

\displaystyle \sum_{u\in V_{i}}x_{u}=r_{i} for i\in K,

w\geq 0, zs\geq 0 for S\in C,

x_{u}\in\{0 , 1 \} for u\in V,
0\leq r_{i}\leq 1 for i\in K.

The differences between the standard column generation and the bound‐optimal genera Γ

tion is that the latter unifies both steps of reoptimizing the restricted master problem and

88

generating a column into a single step. Namely, \overline{\mathrm{R}\mathrm{M}\mathrm{P}(C)} is implicitly reoptimized in the
process of solving the problem \mathrm{S}\mathrm{P}^{\mathrm{B}}(C) .

One of the difficulties in the bound‐optimal generation is due to the bilinear term r_{l}w.

To linearize each bilinear term, Coniglio and Tieves [2] introduced a continuous variable λ_{i}

to replace r_{i}w , and made use of the following McCormick inequalities [10]:

w-(1-r_{i})\leqλ_{i}\leq w and 0\leqλ_{i}\leq r_{i} for i\in K . (3.1)

As the results, the problem can be reformulated as a Mixed Integer Linear Programming
problem, MILP for short, which enables an application of general purpose optimization
solvers to the problem.

4. OUR PROPOSED ALGORITHM

Coniglio and Tieves [2] have reported that the bound‐optimal generation reduces the
number of generated columns compared to the standard column generation. However, the
bound‐optimal generation has the following disadvantages: (i) the algorithm does not have
the convergence property, and (ii) a heavy computational effort is required to solve \mathrm{S}\mathrm{P}^{\mathrm{B}}(C)
at each iteration even though the reformulation to MILP, in a manner of McCormick in‐
equalities previously mentioned, allows us to apply general purpose optimization solvers to
the problem.

4.1. Convergence issue. Among the above disadvantages, the convergence property is
more crucial issue. Once the bound‐optimal generation fails to improve the objective value,
the method keeps on generating a column which have been already added. In [2], this
situation is called stalling iteration. One way to avoid the stalling iteration is to restrict the
reduced cost at the current dual solution y^{*} to being positive, which realizes to introduce
the following approximated constraint

\displaystyle \sum_{i\in K}y_{i}^{*}r_{i}-1\geq δ,
where δ(>0) is a sufficiently small parameter. Then the problem we consider is given as

SP (C, y^{*}, δ) :

minimize \displaystyle \sum zs+w

subject to \displaystyle \sum^{S\in C}a_{iS}zs+r_{i}\mathrm{w}\geq 1 for i\in K,

\displaystyle \sum_{i\in K}^{S\in C}y_{i}^{*}r_{i}-1\geq δ,
x_{u}+x_{v}\leq 1 for \{u, v\}\in E,

\displaystyle \sum_{u\in V_{i}}x_{u}=r_{i} for i\in K,

w\geq 0, z_{S}\geq 0 for S\in C,

x_{\mathrm{u}}\in\{0 , 1 \} for u\in V,
0\leq r_{i}\leq 1 for i\in K.

The following lemma would give a useful information for determining the parameter δ.

89

Lemma 4.1. Let y=(y_{i})_{i\in K} be a feasible solution to RMD(C) , and δ be a positive scalar,
respectively. If the problem SP(C, y, δ) is infeasible, then \displaystyle \sum_{i\in K}y_{i}/(1+ δ) is a lower bound
on the optimal value of MP.

Proof. If the problem is infeasible, then it holds that \displaystyle \sum_{i\in K}a_{iS}y_{i}-1 < δ for any S \in \mathcal{S},
which is rewritten

\displaystyle \sum_{i\in K}a_{iS}(\frac{y_{i}}{1+ δ}) <1 for any S\in \mathcal{S}.

This implies that the solution (y_{i}/(1+ δ))_{i\in K} is feasible to the dual of the master problem
MP, and hence its objective value \displaystyle \sum_{i\in K}y_{i}/(1+ δ) satisfies ω(\mathrm{M}\mathrm{P}) \displaystyle \geq\sum_{i\in K}y_{i}/(1+ δ) due
to the weak duality of LP. \square

From Lemma 4.1, we can obtain a lower bound θ on ω(\mathrm{M}\mathrm{P}) by setting

 θ= ω(\mathrm{R}\mathrm{M}\mathrm{D}(C))/(1+ δ)

when the problem \mathrm{S}\mathrm{P}(C, y^{*}, δ) is infeasible. Obviously, a sequence \{θ_{l} | \ell = 0, 1, 2, . . .\}
obtained by the algorithm converges to the optimal value of MP when we take a sequence
\{δ_{\ell} |\ell=0, 1, 2, . ..\} which satisfies δ_{\ell} \rightarrow 0 . Moreover, the above lemma together with the
integrality of ω(\mathrm{P}) provides that \lceil θ\rceil is a lower bound on ω(\mathrm{P}) . Therefore, if the problem
\mathrm{S}\mathrm{P}(C, y^{*}, δ) is infeasible, we update δ in a simple way δ\leftarrow δ/2 until the objective value is
sufficiently close to the largest lower bound on ω(\mathrm{P}) obtained so far.

\displaystyle \frac{\mathrm{A}1\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}2\mathrm{B}\mathrm{o}\mathrm{U}\mathrm{N}\mathrm{D}-\mathrm{O}\mathrm{P}\mathrm{T}\mathrm{I}\mathrm{M}\mathrm{A}\mathrm{L}\mathrm{G}\mathrm{E}\mathrm{N}\mathrm{E}\mathrm{R}\mathrm{A}\mathrm{T}\mathrm{I}\mathrm{O}\mathrm{N}}{1:\mathrm{L}\mathrm{e}\mathrm{t}C\mathrm{b}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}1\mathrm{s}\mathrm{e}\mathrm{t}\mathrm{o}\mathrm{f}\mathrm{c}\mathrm{o}1\mathrm{u}\mathrm{m}\mathrm{n}\mathrm{s}\mathrm{a}\mathrm{n}\mathrm{d} ε \mathrm{b}\mathrm{e}}a toleranceparameter, respectively.
2: Set counter l\leftarrow 0.

3: Set δ_{0}\leftarrow 0.5, \mathrm{L}\mathrm{B}\leftarrow 1 , and θ_{0}\leftarrow 1.

4: Solve \mathrm{R}\mathrm{M}\mathrm{D}(C) to obtain an optimal solution y^{*} and the optimal value ω(\mathrm{R}\mathrm{M}\mathrm{D}(C)) .
5: while ω(\mathrm{R}\mathrm{M}\mathrm{D}(C))-\mathrm{L}\mathrm{B}> ε and δ_{l}> ε\times 10^{-1} do

6: Find any solution r of \mathrm{S}\mathrm{P}(C, y^{*}, δ_{l}) .
7: if \mathrm{S}\mathrm{P}(C, y^{*}, δ p) is infeasible then

8: θ_{l}\leftarrow ω(\mathrm{R}\mathrm{M}\mathrm{D}(C))/(1+δ_{l}) .

9: if LB > \lceilθ_{\ell}\rceil then

10: \mathrm{L}\mathrm{B}\leftarrow\lceilθ_{l}\rceil.
11: Update δ_{l}\leftarrowδ_{l}/2.
12: else

13: θ_{\ell+1}\leftarrowθ_{\ell}, δ_{\ell+1}\leftarrowδ_{l}.
14: C\leftarrow C\cup\{\{i\in K|r_{i}=1\}\}.
15: Solve \mathrm{R}\mathrm{M}\mathrm{D}(C) to obtain an optimal solution y^{*} and its optimal value.
16: P\leftarrow\ell+1.

17: Solve \mathrm{R}\mathrm{M}\mathrm{P}(C) whose continuous variable zs is replaced by the binary variable, and set
an upper bound UB to its optimal value.

90

4.2. Reduction of computational effort for subproblem. The lower bounding process
(Line 8 to Line 10 in Algorithm 2) operates when the subproblem is infeasible, thus it is
not necessary to solve it to optimality to this end. This prompts us to apply a heuristic
algorithm to the subproblem in order to alleviate the computational burden arising from
the bilinear term.

In this note, we iteratively solve the subproblem by alternately fixing one term of each
bilinear term. Each iteration consists of two phases:

(i) fixing w , solve the problem with respect to x and r , say the problem \mathrm{S}\mathrm{P}_{1},

(ii) fixing x and r , solve the problem with respect to z and w , say the problem \mathrm{S}\mathrm{P}_{2},
which reduces to a just LP problem.

When no improvement of the objective value of \mathrm{S}\mathrm{P}_{1} occurs, we stop this procedure. The
solution returned by the procedure is not necessarily an optimal solution, but a local optimal
one. The procedure is described as follows.

Procedure 1 ALTERNATING VARIABLE FIXING

1: Set counter i\leftarrow 0.

2: Set \mathrm{w}^{(0)}\leftarrow 1.0, α^{(0)}\leftarrow\infty and stop\leftarrow false.
3: while stop= false do
4: (x^{(i+1)}, r^{(i+1)}) \leftarrow \displaystyle \arg\min\{\mathrm{S}\mathrm{P}_{1}(C, y^{*}, δ, \mathrm{w}^{(i)}) | x, r\} and set α^{(i+1)} to its optimal

value.

5: (z^{(i+1)}, w^{(i+1)})\displaystyle \leftarrow\arg\min\{\mathrm{S}\mathrm{P}_{2}(C, y^{*}, δ, x^{(i+1)},r^{(i+1)}) |z, w\}.
6: if α^{(i)}-α^{(i+1)}\leq ε then

7: stop\leftarrow true.

8: i\leftarrow i+1.

Note that the problem \mathrm{S}\mathrm{P}_{2} corresponds to \mathrm{R}\mathrm{M}\mathrm{P}(C) , hence its dual optimal solution y^{*}
can be derived from an optimal solution (z,w) of \mathrm{S}\mathrm{P}_{2} . This implies that we need not
reoptimize the restricted master problem, at Line 15 in Algorithm 2.

5. COMPUTATIONAL EXPERIMENTS

5.1. Computational environment and solved instances. In this section, we present
experimental results to evaluate our bound‐optimal generation in terms of the quality of
solution obtained, the number of generated columns, and the computation time. To clarify
the performance of our algorithm, we compare our bound‐optimal generation (Algorithm 2)
with the standard column generation (Algorithm 1, denoted by STD). We execute Algo‐
rithm 2 in two ways, one of which solves the subproblem at Line 6 by using McCormick
inequalities (3.1), and the other does the subproblem by using Procedure 1. We refer to
the former as BOG‐MC, and the latter as BOG‐ALT, respectively. To compare BOGs with
STD in a fair setting, we use ω(\mathrm{R}\mathrm{M}\mathrm{D}(C))-\mathrm{L}\mathrm{B}\leq ε as one of the stopping conditions of STD,
where LB is given as \lceil ω(\mathrm{R}\mathrm{M}\mathrm{D}(C))/(1+\mathrm{S}\mathrm{P}^{\mathrm{S}}(y^{*}))\rceil in the case of STD. For each algorithm,
we set the tolerance parameter ε=10^{-4} and collect one singleton for each component V_{i} to
make C as an initial set of columns.

91

We executed experiments on a Mac OSX computer with Intel Core i5@3.4GHz processor
and 8\mathrm{G}\mathrm{B} of memory. The algorithms are implemented in Python 3.6.1, calling Gurobi
Optimizer 7.5.1 as both LP and MILP solvers. For each algorithm, we impose a time limit
of 3600 seconds. In a case where each algorithm reaches time limit, we collect all columns
generated until then and solve the problem to obtain an upper bound.

We solved a set of 50 instances consisting of the National Science Foundation Network
(called nsf), which is available from http: //\mathrm{w}\mathrm{w}\mathrm{w}2 . ic. uff. \mathrm{b}\mathrm{r}/\sim \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{s}\mathrm{o}/\mathrm{g}\mathrm{r}\mathrm{u}\mathrm{p}\mathrm{o}/\mathrm{p}\mathrm{c}\mathrm{p} . htm.

5.2. Experimental results. The description of the nsf instances and the computational
results for STD, BOG‐MC and BOG‐ALT on the instances are summarized in Table 1, where
the columns labeled ‘UB’ and ‘LB’ represent the upper and lower bounds finally obtained
by each algorithm, the column labeled ‘Cols’ represents the number of columns generated,
and the column labeled ‘Time’ represents the computation time in seconds, respectively.

Form Table 1, we can observe that BOGs generate the smaller number of columns than
STD in most of the instances, whereas the BOGs require a long computation time. In
particular, BOG‐MC does not converge within the time limit for 11 instances out of whole
of the instances. As for the quality of solution obtained, BOG‐ALT outputs better upper
bound solutions than both BOG‐MC and STD in all instances. It is notable that BOG‐ALT

solves the instances except the instance pl.Os3 to optimality at the root node.
For the instances not solved at the root node, we have tackled them with a branch‐

and‐price approach which is the column generation combined with branch‐and‐bound. The
computational results for the branch‐and‐price approaches (with BOG‐ALT and STD as
the column generation phase) on unsolved instance pl.Os3 are provided in Table 2, where
the columns labeled ‘Node’, \mathrm{U}\mathrm{B}_{\mathrm{B}\mathrm{P}}', \mathrm{L}\mathrm{B}_{\mathrm{B}\mathrm{P}}', \mathrm{C}\mathrm{o}\mathrm{l}\mathrm{s}_{\mathrm{B}\mathrm{P}} ’ and \mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e}_{\mathrm{B}\mathrm{P}} ’ represent the number
of branch‐and‐bound tree nodes explored, the upper and lower bounds finally obtained,
the number of columns generated (including columns generated at the root node), and the
computation time in seconds (including the computation time at the root node), throughout
the branch‐and‐price process. From Table 2, we observe that the branch‐and‐price with
BOG‐ALT outputs an optimal solution after exploring five branch‐and‐bound tree nodes.
On the other hand, the branch‐and‐price with STD has not converged within the time limit,
and we have similar results for the other instances unsolved at the root node.

92

TABLE 1. Computational results.

\overline{\mathrm{I}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}}STD

\overline{\mathrm{N}\mathrm{a}\mathrm{m}\mathrm{e}nmk} \overline{\mathrm{U}\mathrm{B}}LB Cols Time

\overline{\mathrm{p}0.\mathrm{l}\mathrm{s}\mathrm{l}\mathrm{l}61612222<0.1}
\mathrm{p}0 .ls2 22 27 16 2 2 11 <0.1

\mathrm{p}0 .ls3 29 40 23 3 3 18 <0.1

\mathrm{p}0 .ls4 38 67 30 4 3 47 <0.1

\mathrm{p}0 .ls5 27 30 20 2 2 2 <0.1

\mathrm{p}0.2\mathrm{s}\mathrm{l} 37 69 31 4 4 31 <0.1

\mathrm{p}0.2\mathrm{s}2 52 128 44 5 4 51 <0.1

\mathrm{p}0.2\mathrm{s}3 51 i30 40 4 4 81 0.1

\mathrm{p}0.2\mathrm{s}4 57 i76 40 4 4 19 <0.1

\mathrm{p}0.2\mathrm{s}5 66 242 44 5 4 70 0.1

\mathrm{p}0.3\mathrm{s}\mathrm{l} 63 220 49 5 5 27 <0.1

\mathrm{p}0.3\mathrm{s}2 87 452 64 6 5 93 0.2

\mathrm{p}0.3\mathrm{s}3 80 366 58 7 6 44 0.1

\mathrm{p}0.3\mathrm{s}4 80 397 59 7 6 71 0.2

\mathrm{p}0.3\mathrm{s}5 85 363 63 6 5 i16 0.5

\mathrm{p}0.4\mathrm{s}\mathrm{l} 91 527 66 8 6 68 0.2

\mathrm{p}0.4\mathrm{s}2 112 739 82 9 7 89 0.3

\mathrm{p}0.4\mathrm{s}3 101 606 73 8 6 69 0.2

\mathrm{p}0.4\mathrm{s}4 99 i59 76 8 7 77 0.2

\mathrm{p}0.4\mathrm{s}5 112 741 80 8 6 153 0.8

\mathrm{p}0.5\mathrm{s}\mathrm{l} 124 999 87 10 8 79 0.3

\mathrm{p}0.5\mathrm{s}2 130 1017 99 10 8 96 0.4

\mathrm{p}0.5\mathrm{s}3 122 848 92 9 7 131 0.6

\mathrm{p}0.5\mathrm{s}4 118 803 89 8 7 i08 0.4

\mathrm{p}0.5\mathrm{s}5 132 1071 93 9 7 129 0.6

\mathrm{p}0.6\mathrm{s}\mathrm{l} 149 1475 107 il 9 100 0.5

\mathrm{p}0.6\mathrm{s}2 154 1409 113 il 9 94 0.4

\mathrm{p}0.6\mathrm{s}3 153 1371 112 i2 9 109 0.8

\mathrm{p}0.6\mathrm{s}4 161 1613 113 il 9 131 1.0

\mathrm{p}0.6\mathrm{s}5 139 li84 103 il 9 72 0.3

\mathrm{p}0.7\mathrm{s}\mathrm{l} 180 2117 124 13 10 166 6.3

\mathrm{p}0.7\mathrm{s}2 202 2670 1M 14 li 122 0.9

\mathrm{p}0.7\mathrm{s}3 177 1925 131 13 10 114 0.7

\mathrm{p}0.7\mathrm{s}4 187 2151 135 14 11 138 1.5

\mathrm{p}0.7\mathrm{s}5 159 1606 118 11 9 148 10

\mathrm{p}0.8\mathrm{s}\mathrm{l} 201 2549 147 15 11 144 2.7

\mathrm{p}0.8\mathrm{s}2 221 3115 153 15 11 177 27.8

\mathrm{p}0.8\mathrm{s}3 208 2692 147 15 li 127 20

\mathrm{p}0.8\mathrm{s}4 209 2821 147 15 11 157 7.4

\mathrm{p}0.8\mathrm{s}5 184 2014 139 i4 li 96 0.5

\mathrm{p}0.9\mathrm{s}\mathrm{l} 216 2921 161 i6 12 158 4.1

\mathrm{p}0.9\mathrm{s}2 231 3324 167 16 12 152 20

\mathrm{p}0.9\mathrm{s}3 217 2849 166 i6 12 144 15

\mathrm{p}0.9\mathrm{s}4 226 3118 165 16 12 212 402.8

\mathrm{p}0.9\mathrm{s}5 234 3379 169 16 12 189 85.5

pl Osl 250 3948 182 18 13 206 153.1
pl Os2 251 3973 182 i8 13 235 2294.1
pl.Os3 238 3419 182 18 13 188 73.4
pl Os4 257 4261 182 i7 13 202 8.1
pl.Os5 248 3827 182 18 13 187 74.7

TABLE 2. Computational results of the branch‐and‐price.

Instance STD BOG‐ALT

\displaystyle \frac{\overline{\mathrm{N}\mathrm{a}\mathrm{m}\mathrm{e}nmk}\overline{\mathrm{N}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{U}\mathrm{B}_{\mathrm{B}\mathrm{P}}\mathrm{L}\mathrm{B}_{\mathrm{B}\mathrm{P}}\mathrm{C}\mathrm{o}1\mathrm{s}_{\mathrm{B}\mathrm{P}}\mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e}_{8\mathrm{P}}}\overline{\mathrm{N}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{U}\mathrm{B}_{\mathrm{B}\mathrm{P}}\mathrm{L}\mathrm{B}_{\mathrm{B}\mathrm{P}}\mathrm{C}\mathrm{o}1\mathrm{s}_{\mathrm{B}\mathrm{P}}\mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e}_{\mathrm{B}\mathrm{P}}}}{\mathrm{p}1.0\mathrm{s}32383419182111813215>3600213131481239.9}

93

REFERENCES

[1] M. Campelo, R. Correa, and Y. Frota. Cliques, holes and the vertex coloring polytope. Information
Processing Letters, 89(4):159-164 , 2004.

[2] S. Coniglio and M. Tieves. On the generation of cutting planes which maximize the bound improvement.
In International Symposium on Expervmental Algonthms, pages 97‐109. Springer, 2015.

[3] M. Demange, T. Ekim, B. Ries, and C. Tanasescu. On some applications of the selective graph coloring
problem. European Journat of Operational Research, 240:307−314, 2015.

[4] M. Demange, J. Monnot, P. Pop, and B. Ries. On the complexity of the selective graph coloring problem
in some special classes of graphs. Theoretical Computer Science, 540:89−102, 2014.

[5] Y. Frota, N. Maculan, T. Γ . Noronha, and C. C. Ribeiro. A branch‐and‐cut algorithm for partition
coloring. Networks, 55(3):194-204 , 2010.

[6] Γ . Furini and E. Malaguti. Exact weighted vertex coloring via branch‐and‐price. Discrete optimization,
9(2): 130‐136, 2012.

[7] Γ . Furini, E. Malaguti, and A. Santini. Exact and heuristic algorithms for the partition coloring problem.
[8] E. A. Hoshino, Y. A. Frota, and C. C. De Souza. A branch‐and‐price approach for the partition coloring

problem. Operations Research Letters, 39(2):132-137 , 2011.
[9] G. Li and R. Simha. The partition coloring problem and its application to wavelength routing and

assignment. In Proceedings of the First Workshop on Optical Networks, page 1. Citeseer, 2000.
[10] G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I convex

underestimating problems. Mathematical Programming, 10(1):147‐175, 1976.
[11] A. Mehrotra and M. A. Trick. A branch‐and‐price approach for graph multi‐coloring. In Extending the

homzons: Advances in computing, optimization, and decrsion technologies, pages 15‐29. Springer, 2007.
[12] B. Yuceoglu, G. Sahin, and S. P. \mathrm{v} . Hoesel. A column generation based algorithm for the robust graph

coloring problem. Dascrete Apphed Mathematics, 217(2):340-352 , 2017.

(Y. Izunaga) FACULTY OF BUSINESS SCIENCES, UNIVERSITY OF TSUKUBA, OTSUKA 3‐29‐1, BUNKYO‐KU,
TOKYO 112‐0012, JAPAN.

E‐mail address: izunagaQgssm. otsuka. tsukuba. ac. jp

(K. Sato) SIGNALING AND TRANSPORT INFORMATION TECHNOLOGY DivisioN, RAILWAY TECHNICAL RE‐
SEARCH INSTITUTE, HIKARI‐CHO 2‐8‐38, KOKUBUNJI‐SHI, TOKYO 185‐8540, JAPAN.

E‐mail address, K. Sato: sato. keisuke. 49\emptysetrtri. or. jp

94

