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Analogues of the Aoki-Ohno and Le-Murakami
relations for finite multiple zeta values

Masanobu Kaneko, Kojiro Oyama, and Shingo Saito

Abstract

We establish finite analogues of the identities known as the Aoki-Ohno relation
and the Le-Murakami relation in the theory of multiple zeta values. We use an
explicit form of a generating series given by Aoki and Ohno.

1 Introduction and statement of the results

For an index set of positive integers k = (k1, ..., k,) with k; > 1, the multiple zeta value
((k) and the multiple zeta-star value (*(k) are defined respectively by the nested series
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We refer to the sum ky + - - - + k., the length r» and the number of components k; with
k; > 1 as the weight, depth, and height of the index k respectively.
For given k and s, let Iy(k, s) be the set of indices k = (ky,...,k;) with k& > 1 of
weight k& and height s. We naturally have k£ > 2s and s > 1; otherwise Iy(k, s) is empty.
Aoki and Ohno proved in [1] the identity
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On the other hand, for {(k), the following identity is known as the Le-Murakami relation
([6]): for even k,
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where B, denotes the Bernoulli number. As Euler discovered, the right-hand side is a
rational multiple of the Riemann zeta value ((k).



In this short article, we establish the analogous identities for finite multiple zeta values.
For an index set of positive integers k = (kq,...,k,), the finite multiple zeta value
Ca(k) and the finite multiple zeta-star value (%(k) are elements in the quotient ring

A= <Hp z/ pZ) / <@p 7/ pZ> (p runs over all primes) represented respectively by
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Studies of finite multiple zeta(-star) values go back at least to Hoffman [2] (the preprint
was available around 2004) and Zhao [10]. But it was only recently that Zagier proposed
(in 2012 to the first-named author) considering them in the (characteristic 0) ring A ([5],
see also [3, 4]). In A, the naive analogue (4(k) of the Riemann zeta value ((k) is zero
because Zﬁ;ll 1/n* is congruent to 0 modulo p for all sufficiently large primes p. However,
the “true” analogue of ((k) in A is considered to be

Z(k) = (Bi_k)p'

We note that this value is zero when k is even because the odd-indexed Bernoulli numbers
are 0 except Bj. It is still an open problem whether Z (k) # 0 for any odd k > 3.

We now state our main theorem, where the role of Z(k) as a finite analogue of ((k) is
evident.

Theorem 1.1. The following identities hold in A:
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We should note that the right-hand sides are exactly the same. In the next section,
we give a proof of the theorem.

2 Proof of Theorem 1.1

Let Li;(¢) be the ‘nonstrict’ version of the multiple-polylogarithm:
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Aoki and Ohno [1] computed the generating function

by = Z Z Li; () k28,2572
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and, in view of Lip(1) = ¢*(k) (if k& > 1), evaluated it at ¢t = 1 to obtain the identity
(1.1). For our purpose, the function Lij(¢) is useful because the truncated sum
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used to define (% (k) is the sum of the coefficients of ¢ in Lig(¢) fori =1,...,p—1. In
[1, Section 3], Aoki and Ohno showed that

(I)o = Z ant",
n=1
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The problem is then to compute the coefficient of 25~2522=2 in 3~} a,, modulo p.
We proceed as follows:
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Writing A, 1,(2) as
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where (a), =a(a+1)---(a+n—1), we have
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Here, F(a,b;c; z) is the Gauss hypergeometric series

F(a,b;c;2) ia)
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where (a), for n > 1 is as before and (a)y = 1. Note that if a (or b) is a nonpositive
integer —m, then F'(a, b;c; z) is a polynomial in z of degree at most m, and the renowned
formula of Gauss

L(e)l'(c—a—10)
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becomes

F(=m,b;c;1) = %

Hence
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F(—p+1,2z;22+1;1) = mod p.

We also compute

Op-1(Z)p-t _ (—1)1712(21071 —1) 22— 1+1)1
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mod p.

Since we only need the coefficient of 2272, we may work modulo higher powers of z and,

in particular, we may replace (27! —1)/((22)P~ — 1) by 1, assuming p is large enough.
(We may assume this because an identity in A holds true if the p-components on both
sides agree in Z/pZ for all large enough p.) Hence,

pi“"zpzj{(_zi)l (:L'—i—i—l_x—i—l)

* % ((x+z—1l)(z—l) - (x—z—ll)(z—l—l)>} wod p.

By the binomial expansion,
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From this we obtain
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and, by letting i — s — 1 and m — k — 1, the coefficient of 2¥72225=2 in this is

This is known to be congruent modulo p to
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(see for example, [11, Theorem 8.2.7]). Concerning the other term,
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every quantity that appears as a coefficient in the expansion into power series in x and
z is a multiple of the sum of the form Zf:—ll 1/0™, and all are congruent to 0 modulo p.
This concludes the proof of (1.2).

We may prove (1.3) in a similar manner by using the generating series of Ohno-Zagier
[7], but we deduce (1.3) from (1.2) by showing that the left-hand sides of both formulas
are equal up to sign.

Set S,s = Zke[o(k,s)(_1)dep(k)<A(k> and 57 = Zke[o(k,s) Ca(k).
Lemma 2.1. S} = (—1)""'5,.
Proof. We use the well-known identity (see, for instance, [8, Corollary 3.16])

r

S (=1 Calki, - k)Rt - k) = 0. (2.1)

i=0
Taking the sum of this over all k € Iy(k,s) and separating the terms corresponding to
1 =0 and ¢ = r, we obtain

Stat D > (=) (K) > G |+ (=D)FSk. = 0.

k/+k//:k k/elo(k/,s/) k//e[(k//7s//)
s’+s”:s

K

%
Here, k' denotes the reversal of k', and the set I(k”,s”) consists of all indices (no re-

striction on the first component) of weight &” and height s”. We have used ( A(i) =
(=1)*C4(k) in computing the last term (i = r). Since the second sum in the middle is
symmetric and hence 0 (by Hoffman [2, Theorem 4.4] and (4(k) = 0 for all k& > 1), the

lemma follows. [l

Since Z(k) = 0 if k is even, we see from Lemma 2.1 that the formula for S, is the
same as that for Sy . This concludes the proof of our theorem.

Remark 2.2. K. Yaeo [9] proved the lemma in the case s = 1 and T. Murakami (unpub-
lished) in general for all odd k.
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