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Abstract—Pillared surfaces are the products of a surface
modification technique that allow the implementation of active
control methods by an outer source such as magnetic fields.
Pillar arrays with magnetic tips exhibit different characteristics
depending on the initial positional arrangement of the pillars
and/or the environmental magnetic field conditions. This study
develops methods for simulation and parameter optimization by
machine learning to aid the investigation of pillar behaviors in
various combinations of initial positions and magnetic fields.
Optimization is performed using the co-variance adaptation
evolution strategy (CMA-ES). The algorithm is tested to obtain
preliminary results: (1) the maximum size of the pillar pitch at
a given magnetic field; (2) the initial pillar arrangement of a 3-
pillar unit cell and three settings of applied magnetic field—each
corresponds to a predefined contact state of a three-stage paring
pattern.

Index Terms—magnetic pillar arrays, simulation, machine
learning, CMA-ES

I. INTRODUCTION

Surface engineering is currently of high importance for not
only scientific or industrial research but also daily appliances.
Some well-known surface engineering technologies include
wear-resistant surfaces, hydrophilic or hydrophobic surfaces,
adhesive surfaces, and antifouling surfaces. These functional
surfaces can be engineered by modifying surface properties of
materials chemically or physically.

For physical surface modification, implementation of me-
chanical structure such as pillar arrays is one of the techniques
that provide advantages in various fields of applications—
from cell analysis [1]-[2] to self-cleaning surfaces [3]. In
biomimetics, pillar arrays are often used to model some real
micro- or nano-scale biological surfaces in the studies of
functional surfaces like artificial cilia [4]-[5], Lotus-leaf- [6]—
[7] or gecko-foot-mimetic surfaces [8]-[9].

The functionality of pillared surfaces can be further im-
proved by equipping them with some control methods. For
miniaturized structure, control methods by an outer source
is often used as it is difficult or even impractical in some
cases to attach control equipment to the body of the structure.
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Fig. 1. Pillar arrays with magnetic tips in static magnetic field.

Magnetic elastomer, an elastic structure with magnetic powder
embedded inside, is one of those methods that allows the
actuation control by magnetic fields. Some examples include
magnetic cilia [10]-[13] and magnetic crawler [14].

In previous work [15], the active control method by mag-
netic fields using magnetic particles embedded in the tips of
elastic pillar arrays was studied. It was found that the response
of pillar arrays could be managed by controlling the applied
magnetic fields. The results showed pillar patterns, namely
pair pattern and line pattern, under different magnetic field
strengths as illustrated in Fig. 1. The deformation patterns of
a 45 x 45 pillar array surface could be utilized for a dynamic
object manipulation as shown in Fig. 2.

The results also suggested that the pillar behaviors are
dependent on the initial parameters such as their sizes and po-
sitional arrangements in addition to the environment conditions
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Fig. 2. Object manipulation on a large magnetic pillared surface.

(i.e., magnetic field strengths and directions). This inspired the
idea to use these influential parameters to design and control
the behavior of a large magnetic pillared surface to achieve
more functional dynamic movements.

The question rises as how to determine the values of
the parameters. To answer it, more investigations should be
conducted on how pillar arrays with different arrangements
response to various magnetic field conditions. However, inves-
tigation by pure experiments would consume massive amount
of time and cause large amount of material waste. It is
much faster and more efficient to study the problem through
simulations and machine learning optimization tools to filter
out methods that could lead to failure.

Therefore, this present study aims to make use of the
co-variance matrix adaptation evolution strategy (CMA-ES)
[16], a parameter optimization method that promotes machine
learning, in the development of the active control of magnetic
pillar arrays. The method can also be useful for designing
some other magnetically controllable 3D printed structures as
well as their deformations (i.e, 4D printed structures) like ones
from these studies [17]-[20].

In this work, we simulated the behaviors of a small sized
elastic pillar array with magnetic tips and implemented a
machine learning process via CMA-ES to investigate: (1) the
maximum pillar pitch in which two pillar tips contact at a
given magnetic field strength and (2) the combination of initial
position of the pillar arrays and magnetic field conditions that
allows the pillars to display objective multistage pattern.

II. SIMULATION OF MAGNETIC PILLAR ARRAYS

The position of magnetic pillar tips on the x-y coordinate
plane under the given magnetic field is simulated. The proce-
dure is divided into two main sections, the physical modeling
of magnetic pillars and the theoretical formulation of the pillar
behavior.
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Fig. 3. Simulation model of magnetic pillar arrays. (a) Without magnetic
field. (b) Under a magnetic field. (c) Deformation due to the magnetic force.

A. Physical Modeling of Magnetic Pillars

The mathematical model used for the simulation is based
upon the previous work [21]-[22]. The system for simulation
consists of a collection of individual pillars and the environ-
mental magnetic fields. Each pillar is modelled as an elastic
cylindrical cantilever beam with a spherical magnetic bead
attaching on its tip as shown in Fig. 3a. Here, every pillar
is assumed to be identical in both chemical and physical
properties.

B. Theoretical Formulation of Magnetic Pillar Behavior

With the presence of magnetic field, the magnetic bead
on each pillar is magnetized and therefore, is carrying some
potential energy due to its own magnetic dipole as well as
that of the other magnetic beads of the surrounding pillars.
The total magnetic dipole potential energy (U,agnetic) of the
system can be described as in (1)
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where N is the total number of pillars in the system. m; is
the dipole moment of the j th bead which is calculated using
(2) and (3).
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B;. is the applied magnetic field at the j th bead. my, is the
dipole moment of k th bead. r;j is the position vector from
the k th bead to j th bead. a;, p10, and p is the pillar radius,
the vacuum permeability, and the permeability of the bead
material, respectively [23].

The magnetic force acting on the pillars causes them to
bend resulting in elastic potential energy (Ugjqstic) Which is
calculated as in (4). z; and y; is the x and y component
of the current tip position whereas xg; and yg; is the x and
y component of the initial tip position of the j th pillar,



respectively. k is the spring constant of an elastic cylindrical
pillar (cantilever).

N
1
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The schematic diagram of pillar deformation is shown in Figs.
3b and 3c where Axy = z1 — zo91, Ay1 = Y1 — Yo1, and
similarly for Azo and Ays.

When the field strength is strong enough, the pillars attach to
each other resulting in the potential energy due to the contact
stress (Ucontact)- In this study, it is calculated based on the
Hertzian contact of two spheres [24] as described in (5) and
(6). ay; is the distance that the surfaces of the spherical heads
of k th and j th pillars are pressed into each other. a is the
pillar radius.
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Therefore, the total potential energy (U) can be described
below in (7).

U= Umagnetic + Uelastic + Ucontact (7)

According to the minimum total potential energy principle
of the system, the pillar arrays will arrange themselves in a for-
mation that results in the lowest total potential energy. Hence,
the position of the pillar tips could be found by evaluating the
position of pillar arrays corresponding to the lowest potential
energy at a given magnetic field which could be done using
some computational methods. We used the steepest descent
method [25] or CMA-ES which we implemented them in C++
or Python, respectively, because of their convergence property
which is suitable for solving numerical optimization problems
in this work.

III. IMPLEMENTATION OF MACHINE LEARNING

Fig. 4 shows the schematic diagram of the optimization al-
gorithm for one generation in the evolution. In each generation,
some number of sets of parameters to be optimized (referred
to as off springs) are generated. Each set of parameters is
fed to the simulation program to obtain the characteristics of
pillar arrays under a specific magnetic field. The simulation
results are then compared with the desired result to determine
the value of the objective function which shall be minimized.
From each generation, some healthy results that give the lowest
objective function values are selected to be the parents of
the next generation. Again, some number of new off springs
are generated and the process continues until the objective
function value is small enough. The best offspring of the last
generation is selected as the final optimization result.
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program

Generation N

Result n

l

Offspring n
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Generation
N+1
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Fig. 4. Schematic diagram of the optimization algorithm for Generation N.

In this work, we could utilize CMA-ES from a Python
library called ‘cmaes’ [26] to optimize the pitch between
two pillars and to search for the combination of initial pillar
positional arrangement and the environmental magnetic field
that delivers the desired multistage pairing behavior. The
library can be used on its own or through an automatic
hyperparameter optimization framework Optuna [27].

A. Optimization of Pillar Pitch

A system of two pillars is evaluated. The pillars are con-
strained to only move along the x axis and the magnetic field
is only applied in x-direction. The optimization parameters
passed to the C++ simulation program are the x components
of the initial position of each pillar. CMA-ES is used to find
the pitch between two pillars that will result in their tips just
touching each other (i.e., the maximum pitch) at the provided
magnetic field strength. Here, the objective function returned
the difference in mm of the simulated final distance between
two pillars and the desired distance which is the pillar diameter
in this case. Note that any two pillars of the same size contact
if the distance between their tips becomes less than or equal
to two times their radius, i.e., their diameter.

B. Parameter Search for Predefined Multistage Pairing

The optimization is executed on groups of parameters. Each
group comprises of: (1) the change in initial position (Ax and
Ay) of each pillar, and (2) sets of x and y components of
magnetic field that when applied to the pillar arrays would
result in the desired contact states. To evaluate n stages
of pairing (contact), n sets of magnetic field conditions are
needed—each one for each stage. Therefore, in a group, there
are n sets of parameters, all with the same pillar positional
arrangement but different magnetic field condition.

Each group of parameters is passed to the Python simulation
program to obtain the pillar tip position corresponding to
that particular group. The simulation result from each set
(stage) in the group is compared with the previously specified
contact state for that stage. The objective function combines
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Fig. 5. Simulation results for the pillar arrays of the size 3 x 3 under a
horizontal magnetic field. (a) Pair pattern at the field strength of 0.15 T. (b)
Line pattern at the field strength of 0.30 T.

those comparison values from all sets and then, evaluates the
similarity as a whole. The value returned from the objective
function is minimized as the generation increased. After some
generations, the group with the lowest objective function value
is finally selected as the best combination.

IV. PRELIMINARY RESULTS

Preliminary results for the simulation and the implementa-
tion of machine learning are described in this section.

A. Simulation Results

The final position of the magnetic tips of 3 x 3 pillar
arrays under a horizontal magnetic field (i.e, y-component
of the magnetic field was zero) was simulated using C++
simulation program. Here, the pillars had the radius of 0.20
mm, the height of 3.0 mm, and the pitch of 1.0 mm. The
results illustrated in Fig. 5 showed pair and line pattern at
the magnetic field strength of 0.15 and 0.30 T, respectively.
It was confirmed that the simulation output matched with the
experimental results from the previous study in Fig. 1.

B. Optimization of Pillar Pitch

The size of the initial pillar pitch that resulted in two pillar
tips just touching each other at a given magnetic field was
investigated. The pillar size was 0.20 mm in radius and 3.0
mm in height. The optimization results after 30 generations
suggested the best maximum pitch to be 0.941, 1.238, and
1.630 mm approximately for the magnetic field strength of
0.075, 0.15, and 0.30 T, respectively. The pitch increased as
the field strength increased supporting the fact that a stronger
magnetic force is capable of attracting two magnetic pillar
heads from a further distance into contact.

Fig. 6 shows the pitch optimization results for the case of
0.30 T magnetic field. Ten random generated off springs from
each Oth, 10th, and 30th generation were plotted having the
size of their initial pitch as the x axis and their final distance
between the two pillars as the y axis. The off springs of the
Oth generation scattered over a large range. The range reduced
rapidly in the later generations as the values of the off springs
were approaching the solution. In 30th generation, the off
springs grouped up around the value of the contact line which
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Fig. 6. Plot of random ten off springs from each Generation 0, 10, and 30 of
the pillar pitch optimization at 0.3 T magnetic field and the final pillar state
corresponding to the size of initial pitch: (a) Separated (b) Separated with a
small gap (c) Pushed slightly into each other (d) Pushed into each other.

was equal to 0.40 mm (two times pillar radius) where the pillar
tips contacted.

The states of contact of the pillar tips depended on their
initial pitch. The pillars did not contact if the pitch was too
large (Figs. 6a and 6b). On the other hand, they were pushed
into each other if the pitch was too small (Figs. 6¢ and 6d).
The initial pitch that resulted in the final pillar tips contacted
with the least area of the pillars being pushed into each other
was considered as the best solution in the generation (Fig. 6d
for Generation 0 and Fig. 6¢ for Generation 30).

C. Parameters Search for Three-stage Pairing

A system with a unit cell of three pillar arrays was evalu-
ated. The pillar radius was 0.050 mm and the height was 0.50
mm. Here, three stages of the contact state of the pillars were
specified as followed: (1) the tip of the first and the third pillar
in the unit cell contacted to the tip of the third and the first
pillar the neighboring cells, respectively, (2) the tips of the first
and the second pillar contacted, and (3) the tips of the second
and the third pillar contacted. The mechanism is portrayed in
the column of desired mechanism in Fig. 7. The pillars in the
unit cell are in color whereas the neighboring pillars are in
white. The periodic change of this mechanism could create a
dynamic movement that might be useful for conveying objects
on the surface of the pillar tips.

The CMA-ES found the initial positional arrangement of the
pillars in a unit cell when the applied magnetic field B was
zero to be in a shallow V-like pattern as shown in yellow color
in Fig. 7. The three magnetic field conditions that satisfied
the previously specified three-stage pairing were: (1) 0.33 T
horizontal (2) 0.80 T left-to-right diagonal (3) 0.98 T right-
to-left diagonal magnetic field. The resulted pattern from each
set of parameters is shown in blue color with the unit cell
displaying in a darker yellow or blue color in the figure.
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Fig. 7. Results of the parameter search for three-stage pairing problem.

The results showed that multistage contact is possible with
the combination of designed initial arrangement of the pillar
arrays and specific magnetic field conditions. This preliminary
system required only a simple magnetic field that is directed
to only one direction at a time to generate three-stage paring
behavior. In this case, the control of magnetic field is expected
to be rather simple. However, more advanced development in
the control of magnetic field is certainly necessary to create a
practical device in the future.

V. CONCLUSION

This study developed methods for the simulation and param-
eter optimization of a system of pillar arrays with magnetic
tips. The simulation is based on the minimum total potential
energy principle where the positions of the magnetic pillar tips
are found at the minimum total sum of the potential energies
due to the magnetic dipole moment, the elastic deformation,
and the contact stress. The C++ simulation program with the
steepest descent method as the computational method could
successfully find the final tip position of pillar arrays. The
results showed pair and line patterns correlating with the
results from the actual experiments.

Machine learning process is implemented through CMA-ES
as an alternative for the simulation of pillar behavior and in the
parameter optimization process to optimize the pillar pitch and
search for the parameters that allow multi-stage paring. The
method could successfully obtain the preliminary results: (1)
the maximum size of pillar pitch where two pillars contact
at a given magnetic field strength and (2) the combinations
of initial pillar positional arrangement and magnetic field
conditions that allow simple three-stage paring of pillar arrays.

Even though the investigation of pillar behaviors through
simulations and machine learning process is indeed more
efficient than that of the practical experiments, the amount
of time consumed (the computational cost) is still a main

limitation for this method. As large number of generations
are necessary to obtain accurate results in addition to the fact
that the execution time increases significantly when more pillar
elements are added into the array, solving problems with more
complex pillar patterns that require a large unit cell could take
tremendous amount of time.

Future development in the algorithm is essential to lessen
the effects of these limitations so that we can utilize the
machine learning to its full potential to realize our final goal of
designing and controlling the behavior of a large mechanical
system of pillar arrays as well as other magnetically control-
lable 3D or 4D printed structures [17]-[20].
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