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Abstract: 19 
In this paper, we discuss the theoretical interpretation of the artificial compressibility method 20 
(ACM) to propose a new explicit method for the unsteady numerical simulation of fluid flow. 21 
The proposed method employs the compressible continuity and Navier–Stokes equations, 22 
which facilitates the replacement of pressure as one of the major variables with density, 23 
theoretically backed by virtual particle concept. This new concept justifies the theoretical 24 
treatment assuming the speed of sound in ACM as a model parameter determined by the grid 25 
system. More importantly, the present method realizes, in a fully explicit manner, the solving 26 
of a set of equations, which prevents the solving of the Poisson equation of pressure. The new 27 
method was validated and proven by comparing the results of two-dimensional cavity flow 28 
between the proposed method, conventional incompressible method, and the Lattice–29 
Boltzmann method with varying Reynolds numbers (100, 1000, and 10000). The results of the 30 
proposed method agree well with conventional and reference data for both steady-state and 31 
unsteady-state conditions, although slight numerical oscillations were observed for the 32 
proposed method at a Reynolds number of 10000. Thus, the numerical validation assures that 33 
the proposed method is an explicit method based on a solid theoretical ground to be a new 34 
efficient simulation framework. 35 
 36 
Keywords: Explicit computational fluid dynamics simulation, virtual particle, computational 37 
fluid dynamics, cavity flow  38 



 

3 

1. Introduction 39 
Most computational fluid dynamics (CFD) simulations of air flow under low Mach 40 

conditions assume incompressible fluids because the compressibility of fluid is negligible for 41 
velocity fields. This assumption also means that the change in internal energy by dissipation 42 
and work by compression and expansion is not necessary to consider for such determination 43 
of the air flow. However, this also requires coupling the continuity and Navier–Stokes 44 
equations to determine the pressure 𝑝 that inevitably requires solving the Poisson equation 45 
by an iterative numerical procedure, which accounts for the majority of computational load of 46 
such a conventional framework presuming ‘incompressible fluid’. 47 

To avoid solving the Poisson equation of 𝑝, several technical procedures have been 48 
proposed earlier. For example, Chorin [1] proposed a new algorithm known as the artificial 49 
compressibility method (ACM), in which some degree of artificial compressibility is 50 
considered despite dealing with an incompressible fluid. Technically, ACM replaces the speed 51 
of sound 𝑎 with an arbitrary model parameter. This allows the method to solve the temporal 52 
evolution of 𝑝 without an iteration process. Although ACM was originally aimed at solving a 53 
steady flow field of incompressible fluid with high numerical efficiency, some studies have 54 
reported that ACM can be applied for unsteady flow fields [2–4]. Additionally, modified 55 
ACMs have also been proposed as a numerically effective and stable method. Accordingly, 56 
Clausen [5] interpreted ACM as a compressible fluid with an isentropic process based on the 57 
theoretical equation of 𝑝. Additionally, they proposed an entropically damped artificial 58 
compressibility method (EDACM), which can reduce the acoustic wave propagation that 59 
causes temporal and spatial oscillations. EDACM replaced the temperature diffusion with 60 
pressure diffusion to reduce unfavorable oscillations in 𝑝 and velocity 𝒖. Ansumali et al. [6] 61 
proposed the kinetically reduced local Navier–Stokes equations (KRLNS), which establishes 62 
the simplified the pressure equation based on the grand potential instead of the entropy as the 63 
suitable thermodynamic potential. Borok et al. [7] conduct numerical simulations of 64 
two-dimensional cavity flow and two-dimensional Taylor-Green vortex flow to compare the 65 
results of the KRLNS and ACM. In addition, Toutant [8] proposed the general pressure 66 
equation (GPE), which the pressure equation is derived by the budget equation of the enthalpy, 67 
and compared them [9]. In the field of marine engineering, the technical approach of 68 
compressible CFD methods is also studied. For example, Bigay et al. [10] proposed a 69 
weakly-compressible cartesian hydrodynamic (WCCH) solver, which the pressure equation is 70 
based on the polytropic equation of state. All of these methods have the Eulerian governing 71 
equations such as Navier–Stokes equations, which means they describe the fluid motion on 72 
the macroscopic scale. On the other hand, the Lattice–Boltzmann method (LBM) [11] has 73 
been focused in various wind engineering fields. It solves the lattice Boltzmann equation, 74 
which means that it describes the flow motion on the mesoscopic scale. He et al. [12] 75 
compared LBM and ACM in detail to consider the relationship between them. 76 

However, as mentioned above, several CFD methods have been proposed, we focus 77 
on ACM and EDACM in this study. Although these precursors successfully proved that their 78 
artificial compressible framework is applicable in solving incompressible fluid flows 79 
explicitly, the speed of sound 𝑎 is determined by the arbitrary model parameter. Alternatively, 80 
these methods must be understood as technical procedures to solve problems regarding 81 
incompressible fluids numerically with an artificial parameter. As a result, both ACM and 82 
EDACM require the quantification of artificial parameter in numerical procedures, as reported 83 
in previous studies [13–17].  84 

Motivated by the above background, we report a theoretical consideration accounting 85 
for incompressible fluids into an unsteady simulation framework, presuming a fully explicit 86 
method wherein a new idea relying on the virtual particle concept is introduced. The virtual 87 
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particles are conceptually ideal, that are introduced in the LBM; however, the proposed 88 
method still retains the Eulerian governing equations, namely, the continuity and Navier–89 
Stokes equations. The proposed method is compared with the conventional CFD method 90 
(Simplified Marker-And Cell method, or SMAC) [18], LBM, and that employed in a previous 91 
study by Ghia et al. [19] for a two-dimensional cavity flow to justify the applicability of the 92 
proposed method, named as the explicit method with the virtual particle concept (EMV).  93 

This study is organized as follows: the theoretical background of EMV is explained 94 
in Section 2, the velocity fields of the cavity flow are discussed in Section 3, and the 95 
conclusive remarks are provided in Section 4.  96 
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2. Theory 97 
2.1 Governing equations 98 
 We start from the theoretical budget equations for a compressible fluid to consider 99 
the physical interpretation of artificial compressibility approaches (e.g., ACM and EDACM). 100 
The continuity and Navier–Stokes equations for a compressible fluid can be written as  101 

𝜕𝜌
𝜕𝑡 + 𝑢!

𝜕𝜌
𝜕𝑥!

= −𝜌𝜃, (2.1.1) 

𝜌
𝜕𝑢"
𝜕𝑡 + 𝜌𝑢!

𝜕𝑢"
𝜕𝑥!

= −
𝜕𝑝
𝜕𝑥"

+
𝜕
𝜕𝑥!

,𝜆𝜃𝛿"! + 𝜇𝑒"!1. (2.1.2) 

Here, variables are defined as follows; 𝑡: time [s], 𝑥!: the coordinate for the i-th direction 102 
[m], 𝑢!: the velocity for the i-th component [m/s], 𝑝: the pressure [Pa], 𝜌: the fluid density 103 
[kg/m3], 𝜇: the dynamic viscosity [kg/ms], 𝜆: the second dynamic viscosity [kg/ms], 𝑒!" =104 
(𝜕𝑢"/𝜕𝑥! + 𝜕𝑢!/𝜕𝑥") : the velocity strain tensor, 𝛿!" : the Kronecker’s delta, and 𝜃 =105 
𝜕𝑢!/𝜕𝑥!: the divergence of the velocity. 106 

For an ideal gas, where 𝜌 can be expressed by two independent microstate variables, 107 
𝑝 and temperature 𝑇, 𝜌 = 𝜌(𝑝, 𝑇). Hence, the total derivative of 𝜌 with respect to 𝑡 gives 108 
the equation of 𝑝	as follows:  109 

𝐷𝜌
𝐷𝑡 = 4

𝜕𝜌
𝜕𝑝5#

𝐷𝑝
𝐷𝑡 + 4

𝜕𝜌
𝜕𝑇5$

𝐷𝑇
𝐷𝑡 . (2.1.3) 

Here, 𝐷/𝐷𝑡 = 𝜕/𝜕𝑡 + 𝑢"𝜕/𝜕𝑥", and the suffix of 𝑇 or 𝑝 indicates the partial derivative 110 
with fixing 𝑇 or 𝑝, respectively. By employing the continuity equation, the budget equation 111 
of internal energy, and the ideal gas equation (𝑝/𝜌 = 𝑅𝑇, where 𝑅 is the gas constant 112 
[J/kgK]), we obtain 113 

𝐷𝑝
𝐷𝑡 =

(𝛾 − 1);𝑘
𝜕%𝑇
𝜕𝑥!𝜕𝑥!

+ 𝜙> − 𝛾𝑝𝜃. (2.1.4) 

Here, 𝑘 is the thermal conductivity [J/Kms], 𝜙 is the dissipation rate of the kinetic energy 114 
of the fluid per volume [J/m3s], and 𝛾 = 𝑐#/𝑐$ is the ratio of the specific heat (𝑐#: the 115 
specific heat with the isobaric condition [J/kgK], and 𝑐$	is the specific heat with isochoric 116 
condition [J/kgK]). 117 
 We consider how Eq. (2.1.4) is expressed for isothermal, isentropic, and isochoric 118 
conditions.  119 

For an ideal gas, the internal energy budget equation is written as follows:  120 
𝜌𝑐&

𝐷𝑇
𝐷𝑡 = 𝑘

∂%𝑇
𝜕𝑥!𝜕𝑥!

+ 𝜙 − 𝑝𝜃. (2.1.5) 

The isothermal condition means that 𝐷𝑇/𝐷𝑡 = 0 and 𝜕𝑇/𝜕𝑥" = 0; therefore, we obtain 121 
𝜙 = 𝑝𝜃, meaning that the entire reduction of kinetic energy owing to the dissipation, balances 122 
with work, by the pressure and volume expansion. Because the speed of sound 𝑎 is defined 123 
as  124 

𝑎% =
𝜕𝑝
𝜕𝜌, (2.1.6) 

we can rewrite Eq. (2.1.4) under isothermal conditions by substituting 𝜙 = 𝑝𝜃 and 𝑎% =125 
𝑝/𝜌 as follows. 126 

𝐷𝑝
𝐷𝑡 = −𝑝𝜃 = −𝑎%𝜌𝜃. (2.1.7) 

For an isentropic condition, the specific entropy 𝑠 [J/kgK], expressed by  127 
𝜌𝑇

𝐷𝑠
𝐷𝑡 = 𝑘

∂%𝑇
𝜕𝑥!𝜕𝑥!

+ 𝜙, (2.1.8) 

is kept constant. Therefore, we obtained 𝐷𝑠/𝐷𝑡 = 0, or RHS=0. By substituting 𝑎% = 𝛾𝑝/𝜌, 128 
we obtain.  129 
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𝐷𝑝
𝐷𝑡 = −𝛾𝑝𝜃 = −𝑎%𝜌𝜃,	 (2.1.9) 

which is identical to Eq. (2.1.7).  130 
Eqs. (2.1.7) and (2.1.9) are identical because both the isothermal and isentropic 131 

conditions are categorized as barotropic flow, where 𝑝 = 𝑝(𝜌). Therefore, the simple chain 132 
rule 𝐷𝑝/𝐷𝑡 = (𝐷𝜌/𝐷𝑡)(𝑑𝑝/𝑑𝜌) gives the following 𝑝 equation:  133 

𝐷𝑝
𝐷𝑡 = −𝑎%𝜌𝜃, (2.1.10) 

with Eq. (2.1.6). Therefore, the 𝑝 equation for both barotropic conditions is identically 134 
expressed by using 𝑎, 𝜌, and 𝜃. Eq. (2.1.10) is considered to be employed as a basic 135 
equation for the original ACM [1], although they have not mentioned the physical meaning of 136 
the governing equation. We recall the interpretation of Eq. (2.1.10), with several assumptions 137 
applied in the ACM in Section 2.2.1.  138 
 For the isochoric condition, we can assume that 𝐷𝜌/𝐷𝑡 = 0 in Eq. (2.1.3). Hence, 139 
we obtain,  140 

𝑇 =
𝛾

𝜌𝑐$(𝛾 − 1)
𝑝. (2.1.11) 

Substitution of Eq. (2.1.11) to Eq. (2.1.5) gives  141 
𝐷𝑝
𝐷𝑡 = 𝛼𝛾

𝜕%𝑝
𝜕𝑥!𝜕𝑥!

+ (𝛾 − 1)𝜙 − 𝛾𝑝𝜃. (2.1.12) 

Here, 𝛼 = 𝑘/𝜌𝑐# [m2/s] is the thermal diffusivity. Eq. (2.1.12) is the original form of 𝑝 in 142 
the equation used in EDACM [5], although they did not mention their assumption as the 143 
isochoric condition. Under this condition, 𝑎  cannot be defined since 𝑎% = 𝜕𝑝/𝜕𝜌 → ∞ 144 
theoretically. However, we nominally denote 𝑝 = 𝑎%𝜌. By substituting 𝑎 and taking the 145 
condition of 𝑎 → ∞, we obtain 146 

lim
'→)

𝜌𝜃 = lim
'→)

1
𝛾𝑎% ;𝛼𝛾

𝜕%𝑝
𝜕𝑥!𝜕𝑥!

+ (𝛾 − 1)𝜙 −
𝐷𝑝
𝐷𝑡> = 0. (2.1.13) 

This means that the isochoric condition is identical with the incompressible assumption. 147 
 Based on the equations of 𝑝 in Eq. (2.1.10) for the barotropic condition, and Eq. 148 
(2.1.12) for the isochoric condition, we discuss the premise and assumptions used in ACM 149 
and EDACM in the following section. 150 
 151 
2.2 Artificial compressibility approach  152 
2.2.1. ACM by Chorin (1967) [1]  153 

The original ACM proposed by Chorin [1] employed the following two assumptions: 154 
i) a substantial derivative of 𝑝 can be expressed as 𝐷𝑝/𝐷𝑡~𝜕𝑝/𝜕𝑡, and ii) 𝑎 is a model 155 
parameter (or artificial speed of sound) satisfying 𝑝 = 𝑎%𝜌. These assumptions give the 156 
following 𝑝	equation:  157 

𝜕𝑝
𝜕𝑡 = −𝑎%𝜌𝜃. (2.2.1) 

Therefore, employing ACM indicates that the following set of equations is solved.  158 
𝜕𝜌
𝜕𝑡 = −𝜌𝜃, (2.2.2) 

𝜕𝑢"
𝜕𝑡 + 𝑢!

𝜕𝑢"
𝜕𝑥!

= −
𝑎%

𝜌
𝜕𝜌
𝜕𝑥"

+
1
𝜌
𝜕
𝜕𝑥!

,𝜆𝜃𝛿"! + 𝜇𝑒"!1. (2.2.3) 

 According to these equations, we discuss the physical meaning and interpretation of 159 
ACM. First, the conventional ACM is used as a numerical technique to solve an 160 
incompressible flow problem under steady-state conditions with an arbitrary parameter 𝑎. As 161 
seen, the difference in Eq. (2.1.1), and Eq. (2.2.2), the mass conservation cannot be satisfied 162 
under the unsteady-state condition in ACM. Therefore, we have to interpret that Eq. (2.2.2) 163 
satisfies the physical constraint of continuity only when 𝜕𝜌/𝜕𝑡 = 0 . In other words, 164 
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extending the ACM for solving an unsteady flow development is not theoretically appropriate. 165 
Alternatively, Eq. (2.2.1) is physically reasonable even under an unsteady state if the 166 
advection term of 𝑝 (i.e., 𝑢"𝜕𝑝/𝜕𝑥") remains the same as Eq. (2.1.10) for both barotropic 167 
flow conditions. This means that we should solve the set of equations in Eq. (2.1.10), and Eq. 168 
(2.2.3) for the unsteady-state flow. Secondly, Clausen (2013) [5] explains that ACM is one of 169 
the limitations with isentropic assumption; however, both isothermal and isentropic (i.e.,  170 
barotropic conditions) give the same 𝑝 equation as in Eq. (2.1.7), and Eq. (2.1.9). Therefore, 171 
the conventional ACM must be interpreted as barotropic flow under the assumption of 172 
𝑢"𝜕"𝑝 = 0. The last aspect is the selection of 𝑎. We can understand that its preferable to 173 
replace the value of 𝑎 by an artificial speed of sound, that’s less than its realistic speed in 174 
terms of numerical procedure for both 𝜌 and 𝑢! because the characteristic speeds of the 175 
system are expressed as 𝑢! and 𝑢! ± 𝑎 from the eigenvalues of the coefficient matrix of the 176 
governing equations. However, the aforementioned derivation of the set of equations for the 177 
ACM does not explain why we can assume 𝑎 as an arbitral model parameter. 178 
 179 
2.2.2. EDACM by Clausen (2013) [5]  180 

Clausen (2013) [5] introduced EDACM as a method that minimizes the density 181 
fluctuation. When 𝜌 = 𝜌(𝑝, 𝑇), the total derivative of 𝜌 is  182 

𝑑𝜌 = 4
𝜕𝜌
𝜕𝑇5$

𝑑𝑇 + 4
𝜕𝜌
𝜕𝑝5#

𝑑𝑝. (2.2.4) 

If we assume that 𝑑𝜌~0 as employed in the EDACM, we obtain 183 

𝑑𝑝 = −4
𝜕𝜌
𝜕𝑇5$

4
𝜕𝜌
𝜕𝑝5#

*+

𝑑𝑇 = 𝜌𝑐$ 41 −
1
𝛾5 𝑑𝑇. 

(2.2.5) 

The integral of Eq. (2.2.5) leads to Eq. (2.1.11), meaning that the assumption in EDACM is 184 
identical to the isochoric or incompressible condition, although Clausen (2013) [5] did not 185 
mention this aspect. In addition, the EDACM assumes that i) 𝜙 = 0, and ii) 𝑎% = 𝛾𝑝/𝜌. 186 
When these assumptions are applied to Eq. (2.1.12), the 𝑝 equation in EDACM is written as  187 

𝐷𝑝
𝐷𝑡 = 𝛼𝛾

𝜕%𝑝
𝜕𝑥!𝜕𝑥!

− 𝑎%𝜌𝜃. (2.2.6) 

Hence, applying EDACM indicates that the following set of equations is solved. 188 
𝜕𝜌
𝜕𝑡 + 𝑢!

𝜕𝜌
𝜕𝑥!

= −𝜌𝜃 −
𝜙
𝑇𝑐&

, (2.2.7) 

𝜕𝑢"
𝜕𝑡 + 𝑢!

𝜕𝑢"
𝜕𝑥!

= −
𝑎%

𝛾𝜌
𝜕𝜌
𝜕𝑥"

+
1
𝜌
𝜕
𝜕𝑥!

,𝜆𝜃𝛿"! + 𝜇𝑒"!1. (2.2.8) 

  Similarly, the mass conservation is not achieved in EDACM because of the 189 
difference in Eq. (2.2.7), and Eq. (2.2.1). Additionally, the physical interpretation of Eq. 190 
(2.2.7) is not clear. Moreover, EDACM must be interpreted as an isochoric (incompressible) 191 
condition because minimizing 𝑑𝜌 is absolutely required. However, the condition is satisfied 192 
only when 𝑎% = 𝜕𝑝/𝜕𝜌 → ∞. Nonetheless, the parameter 𝑎 appears in Eq. (2.2.8) as an 193 
arbitrary model parameter. Furthermore, the derivation of equations for EDACM does not 194 
explain why 𝑎 can be a model parameter. 195 
 To summarize the problems in artificial compressible approach, firstly mass 196 
conservation is not satisfied theoretically, and secondly the speed of sound 𝑎 can be selected 197 
as an arbitrary model parameter that is also not explained theoretically. We think that both 198 
aspects are not critical issues in terms of solving the fluid dynamics numerically, based on 199 
ACM and EDACM, as previous researchers have justified the accuracy of these methods by 200 
comparing the conventional numerical method [4,14]. However, theoretical understanding is 201 
required to reason, why these assumptions allow us to derive the fluid dynamics motion 202 
numerically, based on artificial compressibility equation with parameter 𝑎. 203 
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 204 
2.3 Interpretation of parameter 𝑎 205 
2.3.1. General theory of kinetic energy of gases 206 

To provide a theoretical interpretation to assume 𝑎 as the model parameter in ACM 207 
and EDACM, we consider the fundamental definition of the pressure by molecule motions. 208 
Given that a mono-atomic molecule 𝑖 of 𝑛 [mol] with mass 𝑚 [kg/pcs], the velocity 𝒒𝒊 209 
[m/s], the total internal energy 𝑈 [J] is 210 

𝑈 = 0.5𝑚𝛴"
,-!𝒒"% = 0.5𝑚𝑞#%𝑛𝑁., (2.3.1) 

where 𝑁' is Avogadro number, by taking the summation of the total number of molecules 211 
𝑛𝑁' [pcs]. 𝑞( is the root mean squared speed of molecules, or the thermal velocity, which is 212 
written as  213 

𝑞#% =
1
𝑛𝑁.

𝛴"
,-!𝒒"% =

∫ 𝑓(𝒒)𝒒%)
*) 𝑑𝒒

∫ 𝑓(𝒒))
*) 𝑑𝒒

. (2.3.2) 

Here, 𝑓(𝒒) is the Maxwell distribution for molecules with respect to velocity 𝒒 [m/s]. Eq. 214 
(2.3.1) is also written as  215 

𝑈 =
0.5
𝐷 𝑚Σ"

,-!𝑞/"
%			(𝑓𝑜𝑟	𝐷) =

⎩
⎪
⎨

⎪
⎧ 0.5𝑚Σ"

,-!𝑞/"
%			(𝑓𝑜𝑟	1𝐷)

0.5𝑚Σ"
,-! [𝑞/"

% + 𝑞0"
%\			(𝑓𝑜𝑟	2𝐷)

0.5𝑚Σ"
,-! [𝑞/"

% + 𝑞0"
% + 𝑞1"

%\			(𝑓𝑜𝑟	3𝐷)

. (2.3.3) 

Because of the homogeneity of molecules in each direction for dimension 𝐷. Here, 𝑞)! , 𝑞*!  216 
and 𝑞+!  represent the velocity component in 𝑥, 𝑦, 𝑧 and direction of 𝒒!, respectively. 217 

Meanwhile since molecule motions are given by a change in momentum in one 218 
direction per unit area:  219 

𝑝 = 𝑚Σ"-𝑞/"
%. (2.3.4) 

Here, 𝑁 [pcs/m3] is the molecular density per unit volume (=𝑛𝑁'/𝛺	[pcs/m3], where 𝛺 [m3] 220 
is the fluid volume). By multiplying Ω, we obtain 221 

𝑝Ω = 𝑚Σ"
,-!𝑞/"

%. (2.3.5) 
Therefore, the following relationship for 𝑈 and 𝑝 for D-dimensional gas can be obtained:  222 

𝑝Ω =
2𝑈
𝐷 =

𝑚𝑞#%𝑛𝑁.
𝐷 . (2.3.6) 

We call Eq. (2.3.6) the general form of Bernoulli’s theorem for D-dimensional gas. By 223 
dividing 𝛺, 𝑝 can be written as: 224 

𝑝 = 𝜌
𝑞#%

𝐷 ,	 
(2.3.7) 

where 𝜌 = 𝑛𝑁'𝑚/𝛺	[kg/m3] is the total number of molecules multiplied by the mass per 225 
volume. This indicates that pressure is given by thermal velocity 𝑞( defined by the total 226 
mean internal energy of molecules. 227 
 228 
2.3.2. Explicit method with virtual particle concept (EMV) 229 

On introduction of the concept of virtual particles, by grouping molecules of number 230 
𝐸, the particle will have a velocity 𝒒$! , where 𝑖 represents an index to express the i-th virtual 231 
particle (𝑖 = 1 to 𝑛𝑁'/𝐸). The virtual particle can move from one point to another, defined 232 
by a lattice grid with uniform grid length of 𝛥 during a representative time scale Δ𝑡. The 233 
motion to diagonal neighboring grids, such as the length of √2𝛥 and √3𝛥, is also possible 234 
depending on considering ultra-discretization, which means the discretization of the 235 
dependent variables. In this context, velocity of the molecules is discretized as 𝒄! (𝑖 = 0 to 236 
𝑀, where 𝑀 is the number of discretized velocities). Examples of the lattice grid are given in 237 
Appendix A1. 238 
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By following the definition and derivation of 𝑈 and 𝑝 based on the theory of 239 
kinetic energy of gases, we can define the internal energy 𝑈$ and pressure 𝑝$ by the virtual 240 
particles as follows:  241 

𝑈& = 0.5𝑚&Σ"
,-!/3𝒒𝒗"

% = 0.5𝑚&𝑞&#
% 𝑛𝑁.
𝐸 = 0.5𝑚𝑞&#

%𝑛𝑁.. (2.3.8) 

Here, 𝑚$ = 𝑚𝐸 [kg] is the mass of virtual particle with 𝐸 a molecule. The root mean 242 
squared velocity of the virtual particle, 𝑞$(, is  243 

𝑞&#
% =

𝐸
𝑛𝑁.

Σ"
,-!/3𝒒𝒗"

% =
Σ"567 𝑓"𝒄𝒊%

Σ"567 𝑓"
. (2.3.9) 

Here, 𝑓!  (𝑖 = 0 to 𝑀) is the distribution function of the virtual particle. 𝑓!  and 𝒄!  are 244 
determined once the lattice grid for the discretization is defined (please refer to Appendix A1). 245 
If we assume that the distribution of virtual particle is homogenous in each 𝐷 direction, we 246 
obtain  247 

𝑈& =
0.5
𝐷 𝑚&Σ9

,-!/3𝑞&/
" %. (2.3.10) 

Here, 𝑞$)
!  represents the x-component of 𝒒𝒗! . The pressure 𝑝$  due to virtual particle 248 

motions is given by a change in the momentum in one direction per unit area as:  249 
𝑝& = 𝑚&Σ"

-/3	𝑞&/
" %. (2.3.11) 

Here, 𝑁/𝐸  [pcs/m3] is the virtual particle density per unit volume (=𝑛𝑁'/𝐸𝛺 ). By 250 
multiplying Ω, we obtain 251 

𝑝&Ω = 𝑚&Σ"
,-!/3𝑞&/

" %. (2.3.12) 
Therefore, the following relationship is obtained for 𝑈$ and 𝑝$ for 𝐷 dimensional flow:  252 

𝑝&Ω =
2𝑈&
𝐷 =

𝑚&𝑞&#
%𝑛𝑁.

𝐷𝐸 =
𝑚𝑞&#

%𝑛𝑁.
𝐷 . (2.3.13) 

By dividing Eq. (2.3.13) by 𝛺, 253 

𝑝& = 𝜌&
𝑞&#

%

𝐷 = 𝜌
𝑞&#

%

𝐷 . (2.3.14) 

Here, 𝜌$ = (𝑚$𝑛𝑁')/𝐸𝛺 = 𝑚𝑛𝑁'/𝛺 = 𝜌  [kg/m3] is the fluid density. This is 𝜌 = 𝜌$ 254 
because the total mass does not change when the molecules or virtual particles are accounted 255 
for.  256 
 From Eqs. (2.3.8) and (2.3.14), the following relationships are obtained:  257 

𝑈& = 𝑈
𝑞&#

%

𝑞#%
, (2.3.15) 

𝑝& = 𝑝
𝑞&#

%

𝑞#%
. (2.3.16) 

Therefore, 𝑈$ and 𝑝$ are smaller than those determined by kinematic energies of molecules. 258 
This is because the virtual particle is defined as a group of 𝐸 molecules, indicating that 259 
internal energy within the group is not accounted for by 𝑈$ and 𝑝$. When we denote these 260 
differences as Δ𝑈$ and Δ𝑝$, 𝑈 and 𝑝 are written as  261 

𝑈 = 𝑈& + Δ𝑈&	

= 0.5𝑚&𝑞&#
% 𝑛𝑁.
𝐸 + Δ𝑈&, 

(2.3.17) 

𝑝 = 𝑝& + Δ𝑝&	

=
𝜌𝑞&#

%

𝐷 + Δ𝑝&. 
(2.3.18) 

This also gives,  262 
𝛥𝑝& =

2𝛥𝑈&
Ω𝐷 . (2.3.19) 

If we can group 𝐸 molecules such that Δ𝑈$/𝛺 = 𝐶𝑜𝑛𝑠𝑡. with respect to 𝑥!, the pressure 263 
gradient term in the Navier–Stokes equation can be written as  264 
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𝜕𝑝
𝜕𝑥"

=
𝜕𝑝&
𝜕𝑥"

+
𝜕Δ𝑝&
𝜕𝑥"

=
𝜕𝑝&
𝜕𝑥"

.	 (2.3.20) 

That allows us to replace 𝑝 to 𝑝$  in the Navier–Stokes equations, indicating that the 265 
pressure determined by all molecule motions is not necessary for calculating the macroscopic 266 
fluid distributions.  267 

The applicability of this concept may depend on how the group of 𝐸 molecules is 268 
defined, whereas the definition of grouping is very ambiguous because the selection of 𝐸 269 
does not appear in the derived relationship in Eqs. (2.3.17)–(2.3.20). The virtual particle 270 
concept being introduced is itself is identical to that of LBM; however, the present 271 
explanation of the virtual particle concept gives a theoretical understanding that pressure due 272 
to internal energy within the virtual particle is neglected in the LBM.  273 

If we select a lattice grid, 𝑓! and 𝒄! in Eq. (2.3.9) are explicitly determined, and 274 
therefore, we obtain the following expression for 𝑝$ (please refer to Appendix A2 for the 275 
derivation). 276 

𝑝& = 𝜌
𝑐%

3 =
𝜌
3 4

𝛥
𝛥𝑡5

%

. (2.3.21) 

This relationship is identical to the assumption that 𝑎 = Δ/(√3Δ𝑡). Therefore, the concept of 277 
a virtual particle justifies that speed of sound 𝑎, can be an artificial parameter, determined by 278 
the grid system of a numerical simulation. However, 𝑎 is not an arbitrary parameter that can 279 
be empirically determined, but is one that is fixed by the grid system. By employing Eqs. 280 
(2.1.2) and (2.3.21), we can get the final version of the Navier–Stokes equations of EMV as 281 
follows;  282 

𝜕𝜌𝑢"
𝜕𝑡 +

𝜕𝜌𝑢"𝑢!
𝜕𝑥!

= −
1
34

∆
∆𝑡5

% 𝜕𝜌
𝜕𝑥"

+
𝜕
𝜕𝑥!

,𝜆𝜃𝛿"! + 𝜇𝑒"!1. (2.3.22) 

As a result, we can solve 𝑢! and 𝜌 explicitly by Eqs. (2.1.1) and (2.3.22). Therefore, we 283 
refer to this as the explicit method with virtual particle concept (EMV). The Mach number of 284 
EMV is calculated by the following equation, which becomes larger than real;  285 

𝑀𝑎 =
𝑉
𝑎 = √3𝑉 4

∆𝑡
∆ 5 (2.3.23) 

Here, 𝑀𝑎 is the Mach number [−] and 𝑉 is the fluid velocity [m/s]. The justification for 286 
introducing the virtual particle for reproducing the velocity fields of incompressible fluids is 287 
discussed in Section 3.  288 
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3. Application to two-dimensional cavity flow 289 
3.1 Numerical description 290 

A two-dimensional cavity flow has been solved using the EMV, conventional CFD 291 
(based on Simplified Marker and Cell, hereafter, denoted as SMAC [18]), and LBM. 292 
Additionally, the results were compared with reference data by Ghia et al. [19], who 293 
conducted direct numerical simulation based on coupled strongly implicit multigrid 294 
(CSI-MG) method [20]. This section describes the basic numerical conditions employed in 295 
these simulations.  296 

Fig.1 and Table 1 show the schematic diagram of cavity and numerical conditions for 297 
each case. We consider a simple two-dimensional cavity flow in which the side and bottom 298 
walls are fixed and the top is specified as fixed velocity of 𝑢- = 1m/s. 𝜇	is fixed as well, and 299 
the width and height of the cavity denoted as 𝐻 is determined by the Reynolds number 300 
𝑅𝑒 = 𝜌.𝑢-𝐻/𝜇, where 𝜌. is the initial air density since 𝜌 changes with time in EMV and 301 
LBM. Three conditions of 𝑅𝑒 number are employed: 𝑅𝑒 = 100, 1000, and 10000. Grid 302 
numbers of 1002, 1502, and 2502 are used, respectively, for each 𝑅𝑒 . A uniform grid 303 
resolution Δ𝑥 = Δ𝑦 = Δ is applied in 𝑥 and 𝑦 directions for EMV, SMAC, and LBM. 304 

The governing equations are discretized in a staggered grid system [21] for EMV and 305 
SMAC. As for the temporal development, the first-order Euler scheme is adopted with Δ𝑡 =306 
𝐶.Δ/𝑢- for SAMC and Δ𝑡 = 𝐶/Δ/(𝑢- + 𝑎)	for EMV and LBM. Here, 𝐶. is the Courant 307 
number. For SMAC method, 𝐶. = 0.25, whereas 𝐶. = 𝑢-Δ𝑡/Δ + 1/√3~0.83	for EMV and 308 
LBM in the present simulations. We employed the different Courant numbers in SMAC and 309 
other methods because we employed the same Δ𝑡 for all the simulations. The advection, 310 
diffusion, and pressure terms are discretized by the second-order central scheme, whereas the 311 
first-order upwind and total variation diminishing (TVD) scheme [22] are employed for 312 
advection terms of continuity and Navier–Stokes equations when 𝑅𝑒 = 10000. This is 313 
because the numerical oscillations cannot be reduced in the EMV with 𝑅𝑒 = 10000. It 314 
should be noted that we were able to obtain the converged flow fields even though the 315 
second-order central scheme was employed in the advection term in the explicit methods of 316 
SMAC and EMV due to the molecular and numerical diffusion terms. The details of 317 
discretization are given in Appendix A2. LBM employs a 2D9V (two-dimensional and 318 
nine-discrete particle speeds) grid system with the BKG model [23] with collocation grids.  319 
 320 

 321 
Fig.1 Schematic diagram of numerical domain. 322 
 323 
Table 1. Numerical settings for compared simulations and reference data. 324 

Method Variables to be 
solved 

Discretization 
Storage Advection Diffusion/Gradient 

EMV (𝑅𝑒 = 100, 1000) 𝑢", 𝜌 1st - Euler 2nd - central 2nd - central 

EMV (𝑅𝑒 = 10000) 𝑢", 𝜌 1st - Euler 1st-upwind (𝜌) 
TVD (𝑢") 

2nd - central 



 

12 

SMAC 𝑢", 	𝑝 1st - Euler 2nd - central 2nd - central 
LBM 𝑓" - - - 

Ghia et al. [19] 𝑢", 𝑝 - Khosla et al. [24] 2nd - central 
 325 
3.2 Converged flow distribution 326 
 Fig. 2 shows snapshots of the streamlines and 𝑝 distribution at 𝑡 = 𝑡0 for each 𝑅𝑒 327 
number. Here, 𝑡0  represents the time when flow fields converge. 𝑝 in EMV and LBM 328 
represent the values determined by 𝜌 from distribution of Eq. (2.3.21). As can be seen in Fig. 329 
2 (a–c) of 𝑅𝑒 = 100, three calculation methods show identical primary vortex as well as 330 
pressure distribution in a steady-state condition. Additionally, the secondary vortices shown at 331 
both bottom corners are also well captured for all three methods. When 𝑅𝑒 = 1000 in Fig. 2 332 
(d–f), similar results can be seen; i.e., both primary and secondary vortices were well 333 
reproduced for each method. In the case of 𝑅𝑒 = 10000, the EMV in Fig. 2 (g) reproduces 334 
the primary vortex and vortices in the bottom-right corner as those in SMAC in Fig.2 (h). 335 
Additionally, subsidiary vortices in the bottom-right and left-top corners are seemingly 336 
identical. In contrast, slight differences in the vortex shapes near the left-bottom corner can be 337 
observed. Although the LBM can capture the primary vortex consistent with the other two 338 
methods, the shapes of subsidiary vortices differ from those of EMV or SMAC. This result 339 
means that both the EMV and LBM employed identical concepts for determining 𝑝; however, 340 
the reproduced flow field slightly differed from each other. In contrast, EMV and SMAC 341 
show significantly similar flow patterns regardless of the difference in the governing 342 
equations.  343 

Regarding numerical stability for each simulation, a slight numerical oscillation can 344 
be seen at pressure distribution of 𝑅𝑒 = 10000 near the right wall (𝑥/𝐻~0.9, 𝑦/𝐻~0.5) 345 
only in EMV (Fig.2 (g)), although both SMAC (Fig.2 (h)) and LBM (Fig.2 (i)) do not show 346 
any unnatural fluctuations. This is confirmed by exploring time evolutions of 𝑢 and 𝑝 at 347 
several points, despite not showed in this paper. The dominant frequency of these oscillations 348 
in EMV are much higher frequency than the frequency of propagations of the sound waves. 349 
Thus, we concluded that this oscillation is because EMV solves the governing equations 350 
explicitly, whereas SMAC employs iterative simulation by solving the Poisson equation of 𝑝.  351 
 The velocity profiles of the EMV are compared with those of SMAC, LBM, and 352 
direct numerical simulation (DNS) results (Ghia et al. (1982) [19]) in Fig. 3. The vertical 353 
profiles of 𝑢 and horizontal profiles of 𝑣 are taken at 𝑥/𝐻=0.5 and 𝑦/𝐻=0.5, respectively. 354 
Both velocity components are normalized by 𝑢-. As can be seen in Figs. 3 (a) and (b), the 355 
results of EMV show profiles identical to those of SMAC and Ghia et al. (1982) at 𝑅𝑒 = 100 356 
and 1000, indicating that EMV can reproduce the flow fields, similar to the conventional 357 
method, even though explicit numerical method is employed. 358 

On the other hand, the profile of EMV is underestimated by approximately 15% at 359 
maximum as compared with those of SMAC and DNS, 𝑅𝑒 = 10000 as shown in Fig. 3 (c). 360 
The difference is the most significant at the peaks of 𝑢 and 𝑣 near each wall. Furthermore, a 361 
slight numerical oscillation of 𝑣 can be admitted between 𝑥/𝐻=0.9 and 1.0. Both of these 362 
aspects are due to the difference in the spatial discretization scheme between EMV and 363 
SMAC, i.e., SMAC employed the second-order central scheme for the advection term, 364 
whereas EMV inevitably adopted the first-order upwind scheme for the advection term in 𝜌 365 
equation and TVD scheme in 𝑢! equations. This means that the artificial numerical viscosity 366 
was added only in the EMV to avoid numerical oscillation, which led to deviations between 367 
EMV and SMAC. As shown in Appendix A3, we confirmed that 2-D cavity flows using the 368 
first-order upwind deference scheme for both EMV and SMAC does not show any differences 369 
in velocity distributions, although the results are different from DNS data (Ghia 1982). These 370 
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results imply that EMV can reproduce the velocity fields similar to those in conventional 371 
methods wherein the perfect incompressibility of fluid is assumed, although we have to 372 
employ an appropriate advection scheme to avoid numerical oscillation and obtain converged 373 
flow fields. 374 

In contrast to these slight differences in EMV and SMAC, LBM shows larger 375 
differences in both 𝑢 and 𝑣. It should be noted that the discrepancies of EMV from SMAC 376 
and DNS are much smaller than those of LBM, especially at 𝑅𝑒 = 10000. 377 
 378 

 379 
Fig.2 Streamlines and pressure distributions at each Reynolds number of (a-c) 𝑅𝑒 = 100, 380 
(d-f) 𝑅𝑒 = 1000, and (g-i) Re=10000 at time, 𝑡/𝑡0 = 1,	where 𝑡0 is the duration when the 381 
flow distribution converges. 𝑝/ is the initial pressure value. The distributions are determined 382 
by (a), (d), (c) EMV, (b), (e), (h) SMAC, and (c), (f), (i) LBM.  383 
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 384 

 385 
Fig.3 Velocity profiles in the center line of cavity for 𝑢 at 𝑥/𝐻 = 0.5 and 𝑣 at 𝑦/𝐻 =386 
0.5.	(a) 𝑅𝑒 = 100, (b) 𝑅𝑒 = 1000, and (c) 𝑅𝑒 = 10000. Reference data is after Ghia et al. 387 
(1982).  388 
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3.3. Temporal evolutions  389 
 The other concern is whether EMV can reproduce the temporal evolutions of the 390 
velocity fields consistent with the conventional method. In this section, we qualitatively 391 
discuss the temporal development of flow by comparing changes in the vortex structures 392 
within the cavity, and time evolutions of velocity at the center of the cavity.  393 

Fig.4 shows the flow distributions determined by EMV and SMAC, 𝑅𝑒 = 1000 at 394 
three different moments of 𝑡/𝑡0 = 0.05, 0.2, and 0.4 (The distributions at 𝑅𝑒 = 100 does 395 
not show significant difference between EMV and SMAC; therefore, we discuss the patterns 396 
of 𝑅𝑒 = 1000 and 10000). 𝑡/𝑡0 = 0.05 in Figs. 4 (a) and (d), we can see the difference in 397 
streamlines at the bottom of the cavity, although the overall distribution patterns are similar to 398 
each other in terms of streamlines and locations of the primary vortex near 𝑥/𝐻 = 𝑦/𝐻~0.8. 399 
Additionally, the 𝑝 distribution seems to show some difference. Such a difference may be 400 
due to the effect of acoustic wave propagating with the speed of sound. In SMAC, the 401 
assumption of incompressibility indicates that the propagating speed of acoustic wave is 402 
infinite, which is enabled by solving the Poisson equation of 𝑝. In contrast, the propagating 403 
speed in EMV is the artificial speed of sound	𝑎 = Δ/√3Δ𝑡 by solving the compressible 404 
continuity equation as explained in Section 2.3. Such differences become less significant as 405 
the time step evolves, as shown in Figs.4 (b) and (e), and Figs. 4 (c) and (f). At 𝑡/𝑡0 = 0.2, 406 
the streamline and pressure distribution show good agreement except for the secondary vortex 407 
in the bottom-right corner of the cavity. Accordingly, the difference in flow patterns cannot be 408 
seen at 𝑡/𝑡0 = 0.4. 409 

Fig. 5 looks the same as Fig. 4 but for 𝑅𝑒 = 10000. 𝑡/𝑡0 = 0.03 in Figs. 5 (a) and 410 
(d), both results have two vortices near the center of the cavity; however, the shapes and 411 
locations of the two vortices differ in EMV and SMAC. Additionally, the secondary vortices 412 
observed near three corners of the cavity (i.e., (𝑥/𝐻, 𝑦/𝐻) ~ (0.1, 0.1), (0.1, 0.9), and (0.9, 413 
0.1)) show significant differences. For example, at (0.1, 0.1), the core of the vortex is located 414 
at a lower and righter position for EMV than SMAC. With time development, these two 415 
vortices near the cavity center combine with each other and one primary vortex is formed at 416 
the center of the cavity, as seen in Figs. 5 (b) and (e). At this moment, the flow distributions 417 
are considerably similar in EMV and SMAC; however, slight differences can be observed 418 
near each corner. At 𝑡/𝑡0 = 0.2 in Figs. 5 (c) and (f), the results of both EMV and SMAC 419 
are almost identical, although the numerical oscillations occur near the side wall, as seen in 420 
the profiles of 𝑣 (in Fig. 3. (c)).  421 

Figs. 6 and 7 show the temporal evolutions of 𝑢, 𝑣, and 𝑝 at the center of the 422 
cavity (𝑥/𝐻 = 0.5, 𝑦/𝐻 = 0.5), and the maximum and minimum density, 𝜌12) and 𝜌1!3, 423 
within the entire domain at each time step to qualitatively discuss the differences in each 424 
method. The horizontal axis is normalized by 𝑡0.  425 

At 𝑅𝑒 = 100, both 𝑢 and 𝑝 by EMV	show the apparent oscillation from 𝑡/𝑡0 = 0 426 
to 0.4, whereas those of SMAC do not fluctuate at all. Similar oscillations can be seen for the 427 
LBM. With temporal development, such oscillations decrease for EMV. Consequently, 𝑢, 𝑣, 428 
and 𝑝 of the EMV agree well with those of the SMAC. These differences among the 429 
methods mean that the explicit method causes such oscillations with respect to time. However, 430 
we could not differentiate these oscillations from the numerical oscillation because they can 431 
occur due to the propagation of a wave with finite speed of sound. Additionally, we have to 432 
assume that the considerable smooth temporal development of velocity and 𝑝 is unnatural 433 
owing to the iterative method while solving the Poisson equation of 𝑝 in SMAC. Note that 434 
the difference in approached values of 𝑡 = 𝑡0 among EMV, SMAC, and LBM reflects the 435 
differences shown in profiles of Fig. 3. A similar trend can be seen when 𝑅𝑒 = 1000	in Figs. 436 
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6 (c) and (d). Regarding the compressible effect in EMV, Fig. 7 shows that the maximum 437 
difference in the density is less than ±5%. 438 
Alternatively, Figs. 3 (e) and (f), 𝑅𝑒 = 10000 show that oscillations of 𝑢, 𝑣, and 𝑝 of 439 

EMV are not reduced even though time evolves. In contrast, those of SMAC show 440 
significantly smooth changes with time. We cannot state that these fluctuations are artificial or 441 
numerical problems; however, such fluctuations may cause the divergence of numerical 442 
simulation and must be avoided for the numerically stable simulations. In addition, such 443 
oscillations can also be seen in 𝜌12) and 𝜌1!3 of EMV (Fig. 7). However, the difference of 444 
the density within the entire domain is kept less than 8% at 𝑅𝑒 = 10000. 445 
 446 

 447 
Fig.4 Temporal changes in velocity distributions for 𝑅𝑒 = 1000 for (a–c) EMV and (d–f) 448 
SMAC. (a), (d) at 𝑡/𝑡0 = 0.05, (b), (e), 𝑡/𝑡0 = 0.2 and (c), (f) 𝑡/𝑡0 = 0.4. 449 
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 450 
Fig.5 Same as Fig. 4, but for 𝑅𝑒 = 10000. (a) (d) at 𝑡/𝑡0 = 0.03, (b), (e), 𝑡/𝑡0 = 0.1 and 451 
(c), (f) 𝑡/𝑡0 = 0.2. 452 
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 453 
Fig.6 Temporal evolutions of velocity and pressure at center of cavity (𝑥/𝐻 = 0.5 and 454 
𝑦/𝐻 = 0.5) for (a,b) 𝑅𝑒 = 100, (c,d) 𝑅𝑒 = 1000, and (e,f)	𝑅𝑒 = 10000. 455 
 456 
 457 

 458 
Fig. 7 Temporal evolutions of maximum and minimum density, 𝜌12) and 𝜌1!3 within the 459 
entire domain at each time step. 𝜌/ indicates the density at the initial condition.  460 
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4. Conclusion 461 
 In this paper, we discussed the theoretical interpretation of an artificially 462 
compressible method such as ACM and EDACM to propose a new explicit numerical method 463 
for numerical simulation of fluid flow. The new method, the explicit numerical method with 464 
virtual particle concept called as EMV, employs the compressible continuity and Navier–465 
Stokes equations by replacing the pressure to density with an artificial parameter. Additionally, 466 
the validity of EMV was proven by comparing the results of the two-dimensional cavity flow 467 
among the conventional and reference numerical simulations.  468 

In theoretical derivation, we confirmed that ACM and EDACM correspond to 469 
barotropic and isochoric conditions, respectively, by comparing the set of equations employed 470 
in ACM and EDACM with theoretically derived equations for the three macroscopic states. 471 
Previous studies have stated that ACM corresponds to the isentropic state; however, we 472 
extended the interpretation of ACM as a barotropic condition including both isothermal and 473 
isentropic states. Additionally, we provided a new interpretation of EDACM as the isochoric 474 
conditions. Moreover, we clarified the potential problems in artificial compressibility method: 475 
i) both ACM and EDACM may violate the mass conservation law under unsteady-state 476 
conditions, and ii) the governing equations of both methods cannot explain why artificial 477 
compressibility method can be employed with 𝑎 as an arbitrary model parameter.  478 
 To overcome these problems, we propose a new simulation method called EMV, 479 
which employs compressible continuity and Navier–Stokes equations. By introducing the 480 
virtual particle concept, we provide a theoretical interpretation of replacing 𝑎 as an artificial 481 
parameter determined by the grid system of numerical simulation.  482 

To confirm the validity of EMV, a numerical simulation of two-dimensional cavity 483 
flow was compared with EMV, SMAC, LBM, and previous numerical simulations for three 484 
conditions of 𝑅𝑒 = 100, 1000, and 10000. The results of EMV agree well with SMAC and 485 
reference data for both steady-state and temporal evolutions in comparison with those of LBM 486 
at 𝑅𝑒 = 100 and 1000. In contrast, when 𝑅𝑒 = 10000, the numerical oscillation could be 487 
seen only in the EMV results. Hence we conclude that such oscillations are due to the 488 
numerical instability of the advection term, which can be avoided by applying a numerically 489 
suitable scheme even in EMV.  490 
 Although the proposed method was verified in terms of theoretical framework with 491 
the virtual particle concept as well as numerical feasibility, comparable with previous methods, 492 
our numerical simulations employed in this study were very simple for two-dimensional 493 
cavity flow. Furthermore, we only employed the staggered grid system by using SMAC and 494 
EMV methods. The proposed method will be adopted for various flows with difference grid 495 
systems in future studies, yielding the development of an explicit method for numerically 496 
efficient simulation. 497 
 498 
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Appendix  505 
A1. Distribution function of a virtual particle 506 

The distribution function of molecules is expressed by the Maxwell distribution as 507 
follows:  508 

𝑓(𝒒) = 4
𝑚𝛽
2𝜋 5

;
%
𝑒𝑥𝑝 4−

𝑚𝛽
2 𝒒𝟐5. (A1.1) 

Here, 𝒒 and 𝑚 represent the velocity and mass of molecules, 𝛽 = 1/𝑘4𝑇 is the inverse 509 
temperature, and 𝑘4 is the Boltzmann constant. When all the molecules are exposed to a 510 
macroscopic velocity 𝒖, the distribution is modified as  511 

𝑓(𝒒) = 4
𝑚𝛽
2𝜋 5

;
%
𝑒𝑥𝑝 4−

𝑚𝛽
2
(𝒒 − 𝒖)𝟐5, (A1.2) 

because the relative velocity of molecules becomes 𝒒 − 𝒖. 512 
We assume that the distribution function of virtual particles, 𝑓!, can be expressed by 513 

a similar function by applying the Taylor series expansion up to 𝒖𝟐:  514 
𝑓" = 𝐴"[1 + 𝐵𝒖 ∙ 𝒖 − 2𝐵𝒄" ⋅ 𝒖 + 2𝐵%(𝒄" ⋅ 𝒖)%]. (A1.3) 

Here, 𝐴! (𝑖 = 0 to 𝑀, where 𝑀 is the number of velocities in a lattice grid) and 𝐵 =515 
−3/2𝑐% (𝑐 = Δ/Δ𝑡, where is the representative speed of virtual particles defined by the 516 
shortest grid length 𝛥 and the representative time scale Δ𝑡) are determined to satisfy the 517 
macroscopic nature of a fluid, independently. The ultra-discretized velocity is denoted as 𝒄! 518 
(𝑖 = 0 to 𝑀). 𝐴! and 𝒄𝒊 are determined once a lattice grid on which the virtual particles 519 
can move is selected. If we employ the typical velocity and lattice grid models used in the 520 
Lattice–Boltzmann method, as shown in Fig. A1, we can obtain these coefficients, as listed in 521 
Table A1.  522 

By using these coefficients, 𝑞$( is explicitly determined as  523 

𝑞&# = Σ"𝑓"𝒄"% =
𝐷
3 𝑐

%, (A1.4) 

regardless of the selection of the lattice grid. This also gives the simplest form of 𝑝$ as 524 

	𝑝& = 𝜌
𝑐%

3 =
𝜌
3 4

𝛥
𝛥𝑡5

%

. (A1.5) 

 525 

 526 
Fig. A1 Definition of lattice grids (a) 1D3V, (b) 2D9V, (c) 3D15V, and (d) 3D19V models 527 
 528 
Table A1: Coefficient for the discrete distribution function 𝑓!. For 1D3V, 𝐶6 = 𝐴/ and 𝐶% =529 
𝐴6 = 𝐴% , for 2D9V, 𝐶6 = 𝐴/ , 𝐶% = 𝐴6  to 𝐴7 , and 𝐶8 = 𝐴9  to 𝐴: , for 3D15, 𝐶6 = 𝐴/ , 530 
𝐶% = 𝐴6 to 𝐴;, and 𝐶8 = 𝐴< to 𝐴67, and for 3D19V, 𝐶6 = 𝐴/, 𝐶% = 𝐴6 to 𝐴;, and 𝐶8 =531 
𝐴< to 𝐴6:.  532 

Lattice grid types 𝐶+ 𝐶% 𝐶; 
1D3V 2/3	 1/6	 - 
2D9V 4/9	 1/9	 1/36 
3D15V 2/9	 1/9	 1/72 
3D19V 1/3	 1/18	 1/36 

 533 
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 534 
A2. Discretization  535 
 For two-dimensional cavity flow of compressible fluids, the governing equations 536 
with virtual particle concepts can be written as follows:  537 

𝜕𝜌
𝜕𝑡 +

𝜕𝜌𝑢
𝜕𝑥 +

𝜕𝜌𝑣
𝜕𝑦 = 0, (A2.1) 

𝜕𝜌𝑢
𝜕𝑡 +

𝜕𝜌𝑢%

𝜕𝑥 +
𝜕𝜌𝑢𝑣
𝜕𝑦 = −

𝑐%

3
𝜕𝜌
𝜕𝑥 + 𝜇

𝜕%𝑢
𝜕𝑥% + 𝜇

𝜕%𝑢
𝜕𝑦%, 

(A2.2) 

𝜕𝜌𝑣
𝜕𝑡 +

𝜕𝜌𝑢𝑣
𝜕𝑥 +

𝜕𝜌𝑣%

𝜕𝑦 = −
𝑐%

3
𝜕𝜌
𝜕𝑦 + 𝜇

𝜕%𝑣
𝜕𝑥% + 𝜇

𝜕%𝑣
𝜕𝑦%. 

(A2.3) 

By replacing the pressure term with 𝜌 and 𝑐 = Δ/Δ𝑡 based on the virtual particle concept, 538 
the first equation obtained is the continuity, and the latter two are Navier–Stokes (NS) 539 
equations. The second viscosity terms in NS equations do not appear in two-dimensional 540 
cases because 𝜆 = −𝜇. The variables are defined at each stencil based on staggered grids. 541 
The velocity 𝑢, 𝑣, and density 𝜌 are defined at (𝑖, 𝐽), (𝐼, 𝑗) and (𝐼, 𝐽) as shown in Fig. A1. 542 
These variables are denoted as, 𝑢!=, 𝑣>", and 𝜌>=. When a quantity that is not defined at the 543 
grids is required, the values are interpolated by variables defined on the grids. The 544 
interpolation method is explained in each budget equation.  545 
 The discrete form of continuity is derived by following the finite volume method as 546 

{
𝜕𝜌
𝜕𝑡="#
𝑑𝑉 +{ 4

𝜕𝜌𝑢
𝜕𝑥 +

𝜕𝜌𝑣
𝜕𝑦 5="#

𝑑𝑉 = 0. (A2.4) 

By taking the average volume with respect to the cell 𝑉>= for 𝜌? = 𝜌>= (Fig. A2), where the 547 
subscript 𝑃 indicates the present position when volume is considered. By employing the 548 
first-order Euler discretization method for storage term and defining the numerical flux at the 549 
boundary 𝑏 (=𝑒, 𝑤, 𝑠, and 𝑛), 𝜙@∗ , Eq. (A2.4) is written as 550 

𝜌>,@,A+ = 𝜌B −
∆
𝑎C
(𝜙D∗𝑢D − 𝜙F∗ 𝑢F + 𝜙,∗𝑣, − 𝜙G∗𝑣G), (A2.5) 

where, 𝑢0 = 𝑢!B6,= , 𝑢D = 𝑢!,= , 𝑣3 = 𝑣>,"B6 , 𝑣E = 𝑣>," , and 𝑎F = Δ%/Δ𝑡 . The superscript 551 
𝑛 + 1 represents the value at time step 𝑛 + 1. The variables without the superscript indicate 552 
the value at the time step of 𝑛. 𝜙@∗  is defined as a general numerical flux form by employing 553 
a parameter 𝜓 as 554 

𝜙H∗ = 𝜙I + 0.5𝜓(𝜙J − 𝜙I). (A2.6) 
Here, the subscripts 𝑈 and 𝐷 indicate the quantities at the upwind and downwind stencils 555 
with respect to 𝑏 in Fig. A1 (b). 𝜙@∗  can be written in a form consistent with the central 556 
interpolation schemes as  557 

𝜙H∗ = 0.5(𝜙I + 𝜙J) + 0.5	(1 − 𝜓)(𝜙I − 𝜙J). (A2.7) 
𝜓 can be used to control the numerical viscosity to avoid numerical oscillation. 𝜓 = 0 and 558 
𝜓 = 1 correspond to upwind and central interpolation schemes, respectively. The total 559 
variation diminishing (TVD) scheme requires 𝜓 to be in TVD region as a function of the 560 
local gradient 𝑟@. An example of 𝜓(𝑟@) is the van Albada limiter function [22], as used in 561 
this paper.  562 

𝜓(𝑟H) =
𝑟H + 𝑟H%

1 + 𝑟H%
, (A2.8) 

𝑟H =
𝜙I − 𝜙II
𝜙J − 𝜙I

. (A2.9) 

Here, the superscript 𝑈𝑈 indicates the two-grid upwind stencil with respect to b in Fig. 563 
A2(b). 564 
 By substituting Eq. (A2.7) in Eq. (A2.5), the discrete continuity equation can be 565 
written as the form consistent with the central interpolated scheme as 566 
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𝜌>,@,A+ = 41 +
𝑎B − 𝑏B
𝑎C

5 𝜌B + Σ7
𝑎7 + 𝑏7
𝑎C

𝜌7 . (A2.10) 

Here, the coefficients are defined as follows: 𝑎G = −0.5𝑢0Δ, 𝑎H = 0.5𝑢DΔ, 𝑎I = −0.5𝑣3Δ, 567 
𝑎J = 0.5𝑣EΔ , 𝑏G = 0.5p1 − 𝜓(𝑟0)q|𝑢0|Δ , 𝑏H = 0.5p1 − 𝜓(𝑟D)q|𝑢D|Δ , 𝑏I = 0.5p1 −568 
𝜓(𝑟3)q|𝑣3|Δ, 𝑏J = 0.5p1 − 𝜓(𝑟E)q|𝑣E|Δ, 𝑎? = ΣK𝑎Kand 𝑏? = ΣK𝑏K. ΣK means taking all 569 
summation with respect to the surrounding stencils of 𝑀 = 𝐸,𝑊,𝑁 and 𝑆 (Fig. A2 (b)). 570 

Similarly, the momentum equation of 𝑢 can be integrated with respect to the volume 571 
𝑉!,= for 𝑢? = 𝑢!,= as  572 

{
𝜕𝜌𝑢
𝜕𝑡=$,#

𝑑𝑉 + { ;
𝜕𝜌𝑢%

𝜕𝑥 +
𝜕𝜌𝑢𝑣
𝜕𝑦 >

=$,#
𝑑𝑉 = −

𝑐%

3 {
𝜕𝜌
𝜕𝑥=$,#
𝑑𝑉 +{ ;𝜇

𝜕%𝑢
𝜕𝑥% + 𝜇

𝜕%𝑢
𝜕𝑦%>=$,#

𝑑𝑉. (A2.11) 

By employing the first-order Euler scheme for storage, the central interpolation scheme for 573 
diffusion terms, and the numerical flux in the advection terms, the discrete form can be 574 
written as follows:  575 

𝑢B,A+ = ;
𝜌B
𝜌B,A+

−
𝑐B

𝑐C𝜌B,A+
>𝑢B −

𝑐%Δ
3𝑐C𝜌B,A+

(𝜌D,A+ − 𝜌F,A+) +
1

𝑐C𝜌B,A+
Σ7𝑐7𝑢7	

+
Δ

𝑐C𝜌B,A+
(𝜌D𝜙D∗ − 𝜌F𝜙F∗ + 𝑣,𝜙,∗ − 𝑣G𝜙G∗). 

(A2.12) 

Here, 𝜌0 = 𝜌>,= , 𝜌D = 𝜌>L6,= , 𝜌03B6 = 𝜌>,=3B6 , 𝜌D3B6 = 𝜌>L6,=3B6 , 𝜌? = 0.5(𝜌0 + 𝜌D) , 𝜌?3B6 =576 
0.5(𝜌03B6 + 𝜌D3B6), 𝑣3 = 0.5(𝑣>,"B6 + 𝑣>L6,"B6), 𝑣E = 0.5(𝑣>," + 𝑣>L6,"). The coefficients are 577 
defined as follows: 𝑐F = Δ𝑡/Δ% , 𝑐G = 𝑐H = 𝑐I = 𝑐J = 𝜇 , 𝑐? = ΣK𝑐K . 𝜙0∗	and 𝜙D∗ , and, 578 
𝜙3∗  and 𝜙E∗,	are determined by taking 𝜙 = 𝑢%  and 𝜙 = 𝜌𝑢  in Eq. (A2.6), respectively. 579 
𝜌?3B6 is taken at 𝑛 + 1 time step, for consistency of the discrete form for 𝜕𝜌𝑢/𝜕𝑡 and 580 
𝑢𝜕𝜌𝜕𝑡 + 𝜌𝜕𝑢/𝜕𝑡. Moreover, the densities in term 𝜕𝜌/𝜕𝑥	are determined by the values at 581 
𝑛 + 1 time step using Eq. (A2.10), which is solved before the momentum equations because 582 
of the convergence of Eq. (A2.12). 583 
 In the same matter, the momentum equation of 𝑣 can be integrated with respect to 584 
the volume 𝑉>,", and the following equation can be obtained. 585 

𝑣B,A+ = ;
𝜌B
𝜌B,A+

−
𝑑B

𝑑C𝜌B,A+
>𝑣B −

𝑐%Δ
3𝑑C𝜌B,A+

(𝜌,,A+ − 𝜌G,A+) +
1

𝑑C𝜌$,A+
Σ7𝑑7𝑢7	

+
Δ

𝑑C𝜌B,A+
(𝑢D𝜙D∗ − 𝑢F𝜙F∗ + 𝜌,𝜙,∗ − 𝜌G𝜙G∗). 

(A2.13) 

Here, 𝜌3 = 𝜌>,= , 𝜌E = 𝜌>,=L6 , 𝜌33B6 = 𝜌>,=3B6 , 𝜌E3B6 = 𝜌>,=L63B6 , 𝜌? = 0.5(𝜌3 + 𝜌E) , 𝜌?3B6 =586 
0.5(𝜌33B6 + 𝜌E3B6) , 𝑢0 = 0.5(𝑢!B6,= + 𝑢!B6,=L6) , 𝑢D = 0.5(𝑢!,= + 𝑢!,=L6) . The coefficients 587 
are defined as follows: 𝑑F = Δ𝑡/Δ%, 𝑑G = 𝑑H = 𝑑I = 𝑑J = 𝜇, 𝑑? = ΣK𝑑K . 𝜙0∗	and 𝜙D∗ , 588 
and, 𝜙3∗  and 𝜙E∗,	are determined by taking 𝜙 = 𝜌𝑣 and 𝜙 = 𝑣% in Eq. (A2.6), respectively.  589 
 When the numerical flux at boundary 𝑏 can be estimated by each interpolated value 590 
at 𝑏 , Eqs. (A2.12) and (A2.13) can be written in a form consistent with the central 591 
interpolated schemes as follows:  592 

𝑢B,A+ = ;
𝜌B
𝜌B,A+

+
𝑓B − 𝑐B − 𝑔B
𝑐C𝜌$,A+

>𝑢B −
𝑐%Δ

3𝑐C𝜌B,A+
(𝜌D,A+ − 𝜌F,A+) + Σ7

𝑐7 + 0.5𝑓7 + 𝑔7
𝑐C𝜌B,A+

𝑢7 , (A2.14) 

𝑣B,A+ = ;
𝜌B
𝜌B,A+

+
ℎB − 𝑑B − 𝑘$
𝑑C𝜌$,A+

> 𝑣B −
𝑐%Δ

3𝑑C𝜌B,A+
(𝜌,,A+ − 𝜌G,A+) + Σ7

𝑑7 + 0.5ℎ7 + 𝑘7
𝑑C𝜌B,A+

𝑣7 . (A2.15) 

Here, the additional coefficients are defined as follows: 𝑓G = −𝜌0𝜙0∗Δ, 𝑓H = 𝜌D𝜙D∗ Δ, 𝑓I =593 
−𝑣3𝜙0∗Δ, 𝑓J = 𝑣E𝜙E∗Δ, 𝑓? = ΣK𝑓K . 𝜙0∗ and 𝜙D∗  are interpolated values using Eq. (A2.6) 594 
with 𝜙 = 𝑢, and 𝜙3∗  and 𝜙E∗ are interpolated values using Eq. (A2.6) with 𝜙 = 𝜌. 𝑔4 =595 
0.5|𝑓4|(1 − 𝜓(𝑟@))  for 𝐵 = 𝐸,𝑊,𝑁  and 𝑆 , 𝑔? = ΣK𝑔K .  Similarly, ℎG = −𝑢0𝜙0∗Δ , 596 
ℎH = 𝑢D𝜙D∗ Δ , ℎI = −𝜌3𝜙0∗Δ , ℎJ = 𝜌E𝜙E∗Δ , ℎ? = ΣKℎK .  𝜙0∗  and 𝜙D∗  are interpolated 597 
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values by Eq. (A2.6) with 𝜙 = 𝜌, and 𝜙3∗  and 𝜙E∗ are interpolated values using Eq. (A2.6) 598 
with 𝜙 = 𝑣. 𝑘4 = 0.5|ℎ4|(1 − 𝜓(𝑟@)) for = 𝐸,𝑊,𝑁 and 𝑆, 𝑘? = ΣK𝑘K. 599 
 600 

 601 
Fig.A2 Grid definition. (a) variables on the staggered grid and control volume 𝑉>=, 𝑉!=, and 602 
𝑉>", (b) boundary 𝑏 (=𝑤, 𝑒, 𝑠, and 𝑛) and stencils 𝑀 (=𝑊, 𝐸, 𝑆, and 𝑁), and (c) stencils 603 
of 𝑈𝑈, 𝑈, and 𝐷 with respect to the boundary 𝑏 for the TVD scheme. 604 
 605 
A.3 Comparisons between EMV and SMAC with upwind scheme 606 
 In Section 3, we clarified that EMV and SMAC showed slight differences in the 607 
velocity fields at 𝑅𝑒 = 10000. This is because of the difference in the numerical scheme for 608 
discretization of the advection term, but is not due to the proposed method where 𝑎 =609 
Δ/√3Δ𝑡. To confirm this aspect, the results are presented here by applying the first-order 610 
upwind scheme in both continuity and N-S equations for EMV and SMAC. 611 
 Fig. A3 shows the snapshots at 𝑡 = 𝑡0. Clearly, the locations of each vortex core and 612 
the size of the primary and secondary vortices are consistent between EMV and SMAC. Fig. 613 
A4 shows the velocity profiles at 𝑥/𝐻 = 0.5 for 𝑢 at 𝑦/𝐻 = 0.5 for 𝑣. These profiles 614 
considerably agree between EMV and SMAC, including near each wall where the velocity 615 
shear becomes significant. Fig. A5 shows the temporal evolutions of velocity and pressure at 616 
the center of cavity (𝑥/𝐻 = 0.5 and 𝑦/𝐻 = 0.5). The time evolutions between the two 617 
methods show good agreement. Alternatively, the velocity and pressure field simulated by the 618 
first-order upwind scheme are considerably different from those simulated by the SMAC with 619 
second-order scheme or previous results by Ghia (1982), as shown in Figs. A4 and A5. 620 
According to these results, we can conclude that the idea employed in EMV is acceptable for 621 
reproducing the velocity and pressure field consistent with those by SMAC. However, we 622 
need to consider an appropriate discretization scheme for the advection term due to numerical 623 
instability in the explicit numerical simulations. 624 
 625 
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 626 
Fig. A3 Streamlines and pressure distributions at 𝑅𝑒 = 10000 for (a) EMV and (b) SMAC 627 
with first-order upwind advection scheme for advection term. 628 
 629 

 630 
Fig. A4 Velocity profiles in the center lines of cavity for 𝑢 at 𝑥/𝐻 = 0.5 and 𝑣 at 𝑦/𝐻 =631 
0.5.	for 𝑅𝑒 = 10000 with the first-order upwind scheme for the advection term. Reference 632 
data is after Ghia et al. (1982). 633 
 634 

 635 



 

25 

Fig. A5 Temporal evolutions of (a) velocity and (b) pressure at center of cavity (𝑥/𝐻 = 0.5 636 
and 𝑦/𝐻 = 0.5 ) for 𝑅𝑒 = 10000  with the first-order upwind scheme. CS is the 637 
second-order center scheme used for SMAC in Section 3.  638 
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Nomenclature: 639 
𝑎 = (𝑑𝑝/𝑑𝜌)/.9: speed of sound [m/s] 640 
𝑐 = Δ/Δ𝑡: representative speed of virtual particle [m/s] 641 
𝒄𝒊: ultra-discrete velocity of virtual particle [m/s] 642 
𝑐#: specific heat under isobar condition [J/kgK] 643 
𝑐$: specific heat under isochoric condition [J/kgK] 644 
𝐷: dimension [-] 645 
𝑒!" = (𝜕𝑢!/𝜕𝑥" + 𝜕𝑢"/𝜕𝑥!): velocity strain tensor [1/s] 646 
𝑘: thermal conductivity [J/Kms] 647 
𝑘4: Boltzmann constant [J/K] 648 
𝑚: mass of molecule [kg/pcs] 649 
𝑁: molecule density per unit volume [pcs/m3] 650 
𝑛: amount of substance [mol] 651 
𝑁': Avogadro number [-] 652 
𝑝: pressure [Pa] 653 
𝑝$: pressure by virtual particle impulse [Pa] 654 
𝒒!: velocity of molecule i [m/s] 655 
𝑞)! ,𝑞*! , 𝑞+! : velocity component of molecule i [m/s] 656 
𝑞(: thermal velocity [m/s] 657 
𝒒𝒗! : velocity of virtual particle i [m/s] 658 
𝑞$! ),𝑞$! *, 𝑞$! +: velocity component of molecule i [m/s] 659 
𝑞$(: thermal velocity defined by virtual particle [m/s] 660 
𝑅: gas constant [J/kgK] (𝑝/𝜌 = 𝑅𝑇: ideal gas law) 661 
𝑠: specific entropy [J/kgK] 662 
𝑇: temperature [K] 663 
𝑡: time [s] 664 
𝑈: internal energy [J] 665 
𝑈$: internal energy by virtual particle [J] 666 
𝑢!: velocity in tensor notation [m/s] 667 
𝑉: fluid velocity [m/s] 668 
𝑢, 𝑣, 𝑤: velocity in component notation [m/s] 669 
𝑥, 𝑦, 𝑧: coordinate in component notation [m] 670 
𝑥!: coordinate [m] 671 
𝛼 = 𝑘/𝜌𝑐#: thermal diffusivity [m2/s] 672 
𝛾 = 𝑐#/𝑐$: ratio of specific heat [−] 673 
Δ: grid spacing [m] 674 
Δ𝑡: discrete time [s] 675 
𝛿!": Kronecker’s delta [-] 676 
𝜃 = 𝜕𝑢!/𝜕𝑥!: divergence of 𝑢! [1/s] 677 
𝜆: second dynamic viscosity [kg/ms] 678 
𝜇: dynamic viscosity [kg/ms] 679 
𝜙: dissipation rate [J/m3s] 680 
𝜌, 𝜌/, 𝜌12), 𝜌1!3: density [kg/m3]  681 
𝛺: volume [m3]  682 
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